
Chapitre 2

Démonstrations à connaître

Théorème : Exis-

tence et unicité

d’une solution

des EDVS

Soit f : I ‘æ R une fonction continue telle que f(y) ”= 0 pour tout y œ I, et soit
g : J ‘æ R une fonction continue.
Existence : Alors, pour tout couple (x0, b0) où x0 œ J et b0 œ I, l’équation

f(y)yÕ = g(x)

admet une solution y : J
Õ µ J ‘æ I vérifiant la condition initiale.

Unicité : Si y1 : J1 ‘æ I et y2 : J2 ‘æ I sont deux solutions telles que y1(x0) =
y2(x0) = b0, alors :

y1(x) = y2(x), ’x œ J1 fl J2

Preuve Nous allons seulement montrer l’existence de la solution.
Soit la fonction suivante :

F (y) =
y

b0

f(t)dt

On sait que F (y) est dérivable par le théorème fondamental du
calcul intégral. De plus, on sait que F

Õ(y) = f(y) ”= 0 sur I, donc
f(y) ne change pas pas de signe et donc F (y) est monotone. Puisque
F (y) est continue et monotone, on sait qu’elle est inversible sur I.
Soit aussi la fonction suivante :

G(x) =
x

x0

g(t)dt

Par le théorème fondamental du calcul intégral, on sait aussi que
G(x0) = 0 et que G est dérivable sur J .
Définissons aussi la fonction suivante dans un voisinage de x0 (on
sait que F est inversible sur I, et F

≠1(G(x0)) = b0 œ I) :

y(x) = F
≠1(G(x))

Nous allons démontrer que y(x) est une solution de l’équation
f(y)yÕ(x) = g(x) dans un voisinage de x0 œ J , et qu’elle satisfait
y(x0) = b0.
En manipulant notre définition, on obtient que, dans un voisinage
de x0 œ J :

F (y(x)) = G(x)
d

dx=∆ F
Õ(y(x))yÕ(x) = G

Õ(x) =∆ f(y)yÕ(x) = g(x)

De plus, nous savons par la définition de G et F que G(x0) = 0 et
F (b0) = 0, donc :

y(x0) = F
≠1(G(x0)) = F

≠1(0) = b0

⇤
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Idée de la
preuve

Nous partons de notre équation :

g(y) dy

dx
= f(x)

Et, notre théorème nous dit que c’est plus ou moins équivalent à :

f(y)dy = g(x)dx ≈∆ F (y) = G(x)

Proposition

pour les EDL1

Soient p, f : I ‘æ R des fonctions continues. Supposons que v0 : I ‘æ R est une
solution particulière de l’équation suivante :

y
Õ(x) + p(x)y(x) = f(x)

Alors, la solution générale de cette équation est :

v(x) = v0(x) + Ce
≠P (x)

, ’C œ R

où P (x) est une primitive de p(x) sur I.

Preuve Nous allons montrer que toute solution de cette équation est de la
forme v0(x) + Ce

≠P (x).
Soit v1(x) une solution de y

Õ(x) + p(x)y(x) = f(x). On a aussi que
v0(x) est une solution de la même équation.
Alors, d’après le principe de superposition de solutions, la fonction
v1(x) ≠ v0(x) est une solution de l’équation :

y
Õ(x) + p(x)y(x) = f(x) ≠ f(x) = 0

Ainsi, v1(x) ≠ v0(x) est une solution de l’équation homogène :

y
Õ(x) + p(x)y(x) = 0

Cependant, c’est une EDVS, donc nous savons que la solution
générale de cette équation homogène est :

v(x) = Ce
≠P (x)

, C œ R arbitraire

où P (x) est une primitive de p(x) sur I.
On en déduit qu’il existe une valeur de C œ R telle que v1(x) ≠
v0(x) = Ce

≠P (x). Ainsi, on obtient que la solution v1(x) est de la
forme :

v1(x) = v0(x) + Ce
≠P (x)

Puisque v1(x) était une solution arbitraire, nous obtenons que l’en-
semble de toutes les solutions de l’équation y

Õ(x) + p(x)y(x) = f(x)
est :

v(x) = v0(x) + Ce
≠P (x)

, C œ R, x œ I

Donc, par définition, v(x) est la solution générale.

⇤

Proposition

pour le Wrons-

kien

Soient v1, v2 : I ‘æ R deux solutions de l’équation y
ÕÕ(x) + p(x)yÕ(x) + q(x)y(x) = 0

(EDL2 homogène).
v1(x) et v2(x) sont linéairement indépendants si et seulement si W [v1, v2](x) ”= 0
pour tout x œ I.

Preuve ≈=
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