Chapitre 2

Démonstrations a connaitre

Théoréme : Exis- Soit f : I — R une fonction continue telle que f(y) # 0 pour tout y € I, et soit

tence et unicité
d’une solution
des EDVS

g : J — R une fonction continue.
Existence : Alors, pour tout couple (zg,bo) ol zg € J et by € I, 'équation

fw)y' = g(x)

admet une solution y : J' C J + I vérifiant la condition initiale.
Unicité : Siy; : J1 — I et yo : Jo — I sont deux solutions telles que y (o) =
ya(xo) = bo, alors :

y1(z) =yo(x), VeeinNdy

Preuve Nous allons seulement montrer ’existence de la solution.
Soit la fonction suivante :

Fy) = byf(t)dt

On sait que F(y) est dérivable par le théoréme fondamental du
calcul intégral. De plus, on sait que F'(y) = f(y) # 0 sur I, donc
f(y) ne change pas pas de signe et donc F(y) est monotone. Puisque
F(y) est continue et monotone, on sait qu’elle est inversible sur I.

Soit aussi la fonction suivante :
-
G(x) = / g(t)dt
Zo
Par le théoreme fondamental du calcul intégral, on sait aussi que
G(x0) = 0 et que G est dérivable sur J.
Définissons aussi la fonction suivante dans un voisinage de zp (on
sait que F est inversible sur I, et F~1(G(zg)) =bo € I) :
-1
y(z) = F~(G(x))
Nous allons démontrer que y(z) est une solution de I’équation
f(W)y' () = g(z) dans un voisinage de zy € J, et qu’elle satisfait
y(llfo) = bo.
En manipulant notre définition, on obtient que, dans un voisinage
de xg € J :

Fly(e) = Ga) L Fya)y'@) = G'@) = f@)y/(@) = go)

De plus, nous savons par la définition de G et F' que G(zg) =0 et
F(bg) =0, donc :

y(zo) = F~H(G(x0)) = F71(0) = bo
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Idée de la Nous partons de notre équation :

preuve dy
g(y)% = f(x)

Et, notre théoréme nous dit que c’est plus ou moins équivalent & :

/ Fy)dy = / g(2)de = F(y) = G(z)

Soient p, f : I — R des fonctions continues. Supposons que vg : I — R est une
solution particuliere de I’équation suivante :

y'(z) + p(x)y(z) = f(2)
Alors, la solution générale de cette équation est :
v(z) = vo(x) + Ce P@ VO eR

ou P(z) est une primitive de p(z) sur I.

Preuve Nous allons montrer que toute solution de cette équation est de la
forme vg(z) + Ce P,
Soit vy (x) une solution de y'(x) + p(z)y(z) = f(x). On a aussi que
vo(z) est une solution de la méme équation.
Alors, d’apres le principe de superposition de solutions, la fonction
v1(x) — vo(x) est une solution de I’équation :

y' () + p(z)y(z) = f(x) - f(z) =0
Ainsi, v1(z) — vo(x) est une solution de 1’équation homogene :
y'(2) + p(x)y(z) =0

Cependant, c’est une EDVS, donc nous savons que la solution
générale de cette équation homogene est :

v(z) = Ce P® e R arbitraire

ot P(x) est une primitive de p(z) sur I.
On en déduit qu’il existe une valeur de C' € R telle que vy (z) —
vo(z) = Ce~P(*), Ainsi, on obtient que la solution v, () est de la
forme :

v1(x) = vo(x) + Ce™ P@

Puisque v (z) était une solution arbitraire, nous obtenons que l'en-
semble de toutes les solutions de I'équation y'(z) + p(z)y(z) = f(z)
est :

v(z) =vo(z) +Ce @ CeRzel

Donc, par définition, v(z) est la solution générale.
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