
Analyse II — Démonstrations CHAPITRE 2. DÉMONSTRATIONS À CONNAÎTRE

↭

Théorème : Ca-

ractérisation

des limites à

partir des suites

convergentes

Une fonction f : E →↑ R définie au voisinage de →↑x0 admet pour limite ω ↓
R lorsque →↑x ↑ →↑x0 si et seulement si pour toute suite d’éléments

{→↑ak

}
de{→↑x ↓ E tel que →↑x ↔= →↑x0

}
, qui converge vers →↑x0, la suite

{
f

(→↑ak

)}
converge vers ω.

En d’autres mots :
(

lim→↑x →→↑x0
f

(→↑x
)

= ω

)
↗↘

(
lim

k→↑
f

(→↑ak

)
= ω, ≃

{→↑ak

}
⇐ E \

{→↑x0
}

telle que lim
k→↑

→↑ak = →↑x0

)

Preuve =→ Nous savons par hypothèse que lim→↑x →→↑x0 f
(→↑x

)
= ω. Ainsi, par la

définition de la limite, on sait que, pour tout ε > 0, il existe ϑ > 0
tel que :

0 <
∥∥→↑x ⇒ →↑x0

∥∥ ⇑ ϑ =↘
∣∣f

(→↑x
)

⇒ ω
∣∣ ⇑ ε

Soit une suite arbitraire
{→↑ak

}
⇐ E\

{→↑x0
}

telle que limk→↑
→↑ak = →↑x0.

Puisque la définition des limites pour les suites marche pour tout ε̃,
nous pouvons prendre ε̃ = ϑ. Ainsi, par définition, pour ε̃ = ϑ > 0,
nous savons que ⇓k0 tel que, pour tout k ⇔ k0, on a :

∥∥→↑ak ⇒ →↑x0
∥∥ ⇑ ϑ

Or, puisque
{→↑ak

}
⇐ E \

{→↑x 0

}
, nous savons que →↑ak ⇒→↑x0 ↔= 0. Ainsi,

pour tout k ⇔ k0, 0 <
∥∥→↑ak ⇒ →↑x0

∥∥ ⇑ ϑ. Cependant, cela implique
par la première implication que :

∣∣f
(→↑ak

)
⇒ ω

∣∣ ⇑ ε

Ainsi, nous avons démontré que pour tout ε > 0, il existe k0 tel
que pour tout k ⇔ k0 on a

∣∣f
(→↑ak

)
⇒ ω

∣∣ ⇑ ε. En d’autres mots, nous
avons montré que :

lim
k→↑

f
(→↑ak

)
= ω

Preuve ↑= Nous allons faire cette preuve par la contraposée. Ainsi, nous sup-
posons par hypothèse que lim→↑x →→↑x0 f

(→↑x
)

↔= ω.
Par la définition de la limite, on obtient que ⇓ε > 0 tel que ≃ϑ > 0,
⇓→↑xω tel que :

∥∥→↑xω ⇒ →↑x0
∥∥ ⇑ ϑ et

∣∣f
(→↑xω

)
⇒ ω

∣∣ > ε

Puisque c’est vrai pour tout ϑ, alors c’est aussi vrai pour le cas
particulier où ϑ = 1

k , k ↓ N+. Ainsi, pour le ε dont nous connaissons
l’existence, pour tout k ↓ N+, il existe →↑xk ↓ E tel que :

∥∥→↑xk ⇒ →↑x0
∥∥ ⇑ 1

k
et

∣∣f
(→↑xk

)
⇒ ω

∣∣ > ε

On obtient la suite
{→↑xk

}↑
k=1

qui est telle que, par la définition,
limk→↑

→↑xk = →↑x0. Cependant, cette suite est aussi telle que
∣∣f

(→↑xk

)
⇒ ω

∣∣ >

ε pour tout k ↓ N+, ce qui implique que :

lim
k→↑

f
(→↑xk

)
↔= ω

↭

Théorème du

min et du max

sur un compact

Une fonction continue sur un sous-ensemble compact E ⇐ R2 atteint son maximum
et son minimum, i.e. :

⇓ max→↑x ↓E
f

(→↑x
)
, ⇓ min→↑x ↓E

f
(→↑x

)
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Notes par Joachim Favre

Preuve f(E)
est borné

Nous voulons commencer par montrer que
{

f
(−→x )}−→x ∈E

est borné.
Supposons par l’absurde que f(E) n’est pas borné, c’est à dire que
pour tout k ≥ 0, il existe un −→xk ∈ E tel que

∣∣f(−→xk

)∣∣ ≥ k. Ceci nous
donne une suite

{−→xk

}
∈ E.

Puisque E est un ensemble compact, nous savons qu’il est borné, et
donc

{−→xk

}
est bornée. Ainsi, par le théorème de Bolzano-Weierstrass,

nous pouvons trouver une sous suite convergente
{−→xkp

}
, qui a pour

limite un vecteur −→x0 ∈ Rn. Puisque E est compact (et donc fermé),
nous savons que −→x0 ∈ E.
Puisque f est continue, nous savons que :

lim
p→∞

f
(−→xkp

)
= f

(−→x0
)

∈ R

Mais, par construction,
∣∣f(−→xk

)∣∣ ≥ k pour tout k ∈ N, ce qui est
notre contradiction. Nous en concluons que f est bornée sur E.

Preuve f at-
teint ses extre-
mum

Nous voulons montrer que f atteint son minimum et son maximum
sur E.
Par ce que nous venons de démontrer, nous savons que f(E) est un
sous-ensemble borné. Ainsi :

∃M = sup
{

f
(−→x ), −→x ∈ E

}
, ∃m = inf

{
f
(−→x ), −→x ∈ E

}
Par la définition du supremum et de l’infimum, nous pouvons nous
en rapprocher arbitrairement, donc cela implique qu’il existe deux
suites

{−→ak

}
,
{−→

bk

}
∈ E telles que :

lim
k→∞

f
(−→ak

)
= m, lim

k→∞
f
(−→

bk

)
= M

Or, puisque
{−→ak

}
,
{−→

bk

}
∈ E (qui est borné), ce sont des suites

bornées, et donc il existe des sous-suites convergentes. En d’autres
mots :

−→akp → −→a ∈ Rn,
−→
bkp →

−→
b ∈ Rn

De plus, puisque E est compact (et donc fermé), nous savons que
−→a ∈ E et

−→
b ∈ E. Ainsi, par la continuité de f :

m = lim
k→∞

f
(−→ak

)
= lim

p→∞
f
(−→akp

)
= f

(−→a )
M = lim

k→∞
f
(−→

bk

)
= lim

p→∞
f
(−→

bkp

)
= f

(−→
b
)

Ainsi, nous savons qu’il existe −→a ,
−→
b ∈ E tels que :

f
(−→a ) = m = min−→x ∈E

f
(−→x )

f
(−→

b
)

= M = max−→x ∈E
f
(−→x )

□

Proposition :
Hypothèses équi-
valentes pour le
théorème de la
condition suffi-
sante pour un
extremum local
quand n = 2

Dans le cas où n = 2, nous pouvons réécrire les conditions de notre théorème.
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