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donc r et t sont de même signe.
Nous pouvons aussi voir que :

Tr Hessf

(→↑a
)

= ω1︸︷︷︸
<0

+ ω2︸︷︷︸
<0

= r + t < 0

donc r et t doivent être les deux strictement négatifs, puisqu’ils ont
le même signe.
Nous en déduisons bien que det Hessf

(→↑a
)

> 0 et r < 0.

Preuve point 2
→=

Supposons que det Hessf

(→↑a
)

> 0 et r < 0.
Alors, puisque det Hessf

(→↑a
)

= ω1ω2 > 0, nous en déduisons que
ω1 et ω2 sont de même signe. De plus, nous voyons aussi que rt >

s
2 → 0 =↑ rt > 0.

Ainsi, puisque rt > 0 et r < 0, nous obtenons que t < 0. De plus,
cela implique que :

Tr Hessf

(→↑a
)

= ω1 + ω2 = r︸︷︷︸
<0

+ t︸︷︷︸
<0

< 0

Puisque ω1 et ω2 sont de mêmes signes, et ω1 + ω2 < 0, nous en
déduisons bien que ω1 < 0 et ω2 < 0.

Preuve point 3 Nous voyons que :

det Hessf

(→↑a
)

< 0 ↓↑ ω1ω2 < 0 ↓↑ ω1 et ω2 sont de signes opposés

Note person-
nelle

La démonstration de ce théorème peut sembler très longue et com-
pliquée, mais elle ne l’est pas ! À partir du moment où on sait que
le déterminant est donné par ad ↔ bc et que la trace est donnée par
la somme des éléments diagonaux, il su!t de poser nos hypothèses
et de simplement voir ce que nous pouvons en déduire, en gardant
en tête où nous voulons aller.

Théorème :

Condition né-

cessaire pour

un extremum

sous contrainte

quand n = 2

Soit l’ensemble E ↗ R2 et soient les fonctions f, g : E ↘≃ R de classe C
1. Supposons

que f(x, y) admette un extremum en (a, b) ⇐ E sous la contrainte g(x, y) = 0, et
que ⇒g(a, b) ⇑= →↑

0 .
Alors, il existe ω ⇐ R, appelé le multiplicateur de Lagrange, tel que :

⇒f(a, b) = ω⇒g(a, b)

Preuve Nous savons que ⇒g(a, b) ⇑= →↑
0 , donc au moins l’une des dérivées

partielles est non-nulle. Supposons que ωg
ωy (a, b) ⇑= 0 (le cas ωg

ωx (a, b) ⇑=
0 est similaire).
Nous avons g(a, b) = 0 puisque (a, b) satisfait la contrainte g(x, y) =
0. Ainsi, par le TFI, il existe une fonction y = h(x) de classe C

1 au
voisinage de x = a telle que :

h
→(x) = ↔

ωg
ωx (x, h(x))
ωg
ωy (x, h(x))

, avec g(x, h(x)) = 0

Aussi, pour (x, y) satisfaisant notre contrainte g(x, y) = 0, nous
pouvons remplacer y = h(x) dans l’expression f(x, y) pour obtenir
une fonction d’une seule variable :

f(x, y) si g(x, y) = 0= f(x, h(x))
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Nous savons que les extrema de cette fonction, respectent :

f ′(x, h(x)) = ∂f

∂x
(x, h(x)) + ∂f

∂y
(x, h(x))h′(x) = 0

Par hypothèse, (a, b) est un point d’extremum, et il respecte la
contrainte g(a, b) = 0, donc les hypothèses de l’équation que nous
venons d’obtenir sont bien respectées, ce qui nous permet de trouver
que :

∂f

∂x
(a, b) = −∂f

∂y
(a, b)h′(a)

Pour résumer, nous avons trouvé jusque là que :

∂f

∂x
(a, b) = −∂f

∂y
(a, b)h′(a), h′(a) TFI= −

∂g
∂x (a, b)
∂g
∂y (a, b)

Ceci implique que :

∂f

∂x
(a, b)︸ ︷︷ ︸
v1

= ∂f

∂y
(a, b)︸ ︷︷ ︸
v2

u1︷ ︸︸ ︷
∂g

∂x
(a, b)

∂g

∂y
(a, b)︸ ︷︷ ︸

u2 ̸=0

Séparons notre preuve en différents cas. Si u1 = 0, alors v1 = 0
et donc ∇f(a, b) = (0, v2) et ∇g(a, b) = (0, u2). Ceci implique bien
qu’il existe un λ ∈ R tel que v2 = λ u2︸︷︷︸

̸=0

et donc :

∇f(a, b) = λ∇g(a, b)

Sinon (si u1 ̸= 0), alors, en définissant v1
u1

= v2
u2

:= λ ∈ R, nous
trouvons :

(v1, v2) = λ(u1, u2) ⇐⇒ ∇f(a, b) = λ∇g(a, b)

□

Intuition de la
preuve

Nous trouvons f(x, y) sous la forme d’une fonction d’une seule
variable et la dérivons, puis nous utilisons le théorème des fonctions
implicites, ce qui nous permet de trouver un lien entre les dérivées
de f et celles de g.
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