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Analyse II – Corrigé de la Série 9

Exercice 1.

On a la fonction composée f(x, y) = f̄
(
u(x, y), v(x, y)

)
= f̄(2x − y, x + 3y). Par le Théorème

sur la matrice Jacobienne d’une fonction composée, on a

Jf (x, y) = Jf̄(u(x,y),v(x,y)) · J(u(x,y),v(x,y))(
∂f

∂x
,
∂f

∂y

)
= ∇f(x, y) = ∇f̄(u, v) ·

 ∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y


En particulier, on obtient

∂f

∂x
=
∂f̄

∂u

∂u

∂x
+
∂f̄

∂v

∂v

∂x
,

En utilisant la formule pour la dérivation de fonctions composées et la règle de la dérivée d’un
produit, on a successivement

∂2f

∂x2
=

∂

∂x

(
∂f̄

∂u

)
∂u

∂x
+
∂f̄

∂u

∂2u

∂x2
+

∂

∂x

(
∂f̄

∂v

)
∂v

∂x
+
∂f̄

∂v

∂2v

∂x2
.

La formule de la dérivée partielle par rapport à x alors donne

∂

∂x

(
∂f̄

∂u

)
=
∂2f̄

∂u2

∂u

∂x
+

∂2f̄

∂u∂v

∂v

∂x
,

et de même pour ∂
∂x

(
∂f̄
∂v

)
. Alors on obtient

∂2f

∂x2
=

(
∂2f̄

∂u2

∂u

∂x
+

∂2f̄

∂u∂v

∂v

∂x

)
∂u

∂x
+
∂f̄

∂u

∂2u

∂x2
+

(
∂2f̄

∂u∂v

∂u

∂x
+
∂2f̄

∂v2

∂v

∂x

)
∂v

∂x
+
∂f̄

∂v

∂2v

∂x2
.

Les dérivées analogues par rapport à y, c.-à-d. ∂f
∂y

et ∂2f
∂y2

, sont obtenues en remplaçant x par y
ci-dessus. En substituant

∂u

∂x
= 2,

∂u

∂y
= −1,

∂2u

∂x2
= 0,

∂2u

∂y2
= 0,

∂v

∂x
= 1,

∂v

∂y
= 3,

∂2v

∂x2
= 0,

∂2v

∂y2
= 0,

dans les expressions pour ∂2f
∂x2

et ∂2f
∂y2

, on obtient

∆f =
∂2f

∂x2
+
∂2f

∂y2

=
∂2f̄

∂u2

((
∂u

∂x

)2

+

(
∂u

∂y

)2
)

+
∂2f̄

∂u∂v

(
2
∂u

∂x

∂v

∂x
+ 2

∂u

∂y

∂v

∂y

)
+
∂2f̄

∂v2

((
∂v

∂x

)2

+

(
∂v

∂y

)2
)

+
∂f̄

∂u

(
∂2u

∂x2
+
∂2u

∂y2

)
+
∂f̄

∂v

(
∂2v

∂x2
+
∂2v

∂y2

)

= 5
∂2f̄

∂u2
− 2

∂2f̄

∂u∂v
+ 10

∂2f̄

∂v2
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Exercice 2.

i) Le domaine de H est D = {(x, y) ∈ R2 : x > 0}. Ainsi u > 0 et donc Im(H) = D̃ =
{(u, v) ∈ R2 : u > 0}, c.-à-d. D̃ = D. Pour trouver la transformation inverse G on résout
les équations de u et v pour x et y. On a y = v

√
x , d’où

u = x2 + 2v2x ⇒ x =
−2v2 ±

√
4v4 + 4u

2
= −v2 ±

√
v4 + u .

Comme x > 0, il faut prendre la solution avec +
√

et donc

(x, y) = G(u, v) =

(
−v2 +

√
v4 + u , v

√
−v2 +

√
v4 + u

)
.

Le dérivées partielles de G sont

∂G1

∂u
=

1

2
√
v4 + u

∂G1

∂v
= −2v +

4v3

2
√
v4 + u

=
−2v

(
−v2 +

√
v4 + u

)
√
v4 + u

∂G2

∂u
=

v

4
√
v4 + u

√
−v2 +

√
v4 + u

∂G2

∂v
=

√
−v2 +

√
v4 + u+

v

2
√
−v2 +

√
v4 + u

(
−2v +

4v3

2
√
v4 + u

)

=

√
−v2 +

√
v4 + u+

−v2
(
−v2 +

√
v4 + u

)
√
v4 + u

√
−v2 +

√
v4 + u

=

(
−v2 +

√
v4 + u

)2

√
v4 + u

√
−v2 +

√
v4 + u

La matrice jacobienne de G est alors

JG(u, v) =

(
∂uG1(u, v) ∂vG1(u, v)
∂uG2(u, v) ∂vG2(u, v)

)

=
1√

v4 + u

 1
2

−2v
(
−v2 +

√
v4 + u

)
v

4
√
−v2+

√
v4+u

(−v2+
√
v4+u)

2

√
−v2+

√
v4+u


Pour évaluer en (u, v) = H(x, y), observons que

√
v4 + u =

√(
y√
x

)4

+ x2 + 2y2 =

√
y4

x2
+ x2 + 2y2 =

√
(y2 + x2)2

x2
=
y2 + x2

x

et donc

JG
(
H(x, y)

)
=

x

x2 + y2

(
1
2

−2y
√
x

y
4
√
x
√
x

x3/2

)
=

x

x2 + y2

(
1
2
−2y
√
x

y
4x

x3/2

)
. (1)
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ii) La matrice jacobienne de H est

JH(x, y) =

(
∂xH1(x, y) ∂yH1(x, y)
∂xH2(x, y) ∂yH2(x, y)

)
=

(
2x 4y
− y

2x3/2
1√
x

)
,

d’où (
JH(x, y)

)−1
=

1

2
√
x+ 2y2

x3/2

(
1√
x
−4y

y
2x3/2

2x

)
=

1

2(x2 + y2)

(
x −4yx3/2

y
2

2x5/2

)
,

ce qui est la même matrice qu’en (1).

On a donc montré pour cet exemple que JG
(
H(x, y)

)
=
(
JH(x, y)

)−1
. Cette égalité est

vraie en général parce qu’en prenant G = F−1 on obtient F ◦G = id et d’après le théorème
du cours sur les matrices Jacobiennes d’une fonction composée, on a(

1 0
0 1

)
= Jid(x, y) = JF

(
F−1(x, y)

)
· JF−1(x, y),

d’où JF−1(x, y) =
(
JF
(
F−1(x, y)

))−1

pour autant que F et F−1 existent et soient C1.

Exercice 3.
Soit g : R∗+ × [0, 2π[→ R2 \ {0} la fonction changement de coordonnées

g(r, ϕ) =

{
x = r cos(ϕ)
y = r sin(ϕ)

Alors la matrice Jacobienne de g est

Jg(r, ϕ) =

(
cos(ϕ) −r sin(ϕ)
sin(ϕ) r cos(ϕ)

)
,

et son déterminant est det(Jg) = r > 0. Dans une première étape on va trouver le gradient

de f , ∇f =
(
∂f
∂x
, ∂f
∂y

)
en termes de coordonnées polaires. Par le Théorème de la dérivée d’une

fonction composée, on a(
∂(f ◦ g)

∂r
,
∂(f ◦ g)

∂ϕ

)
=

(
∂f

∂x
,
∂f

∂y

)
· Jg(r, ϕ).

Alors on obtient pour le gradient

∇f =

(
∂f

∂x
,
∂f

∂y

)
=

(
∂(f ◦ g)

∂r
,
∂(f ◦ g)

∂ϕ

)
· [Jg(r, ϕ)]−1.

La matrice inverse s’écrit facilement pour la matrice 2 × 2. En général pour une matrice
inversible A on trouve

A =

(
a b
c d

)
=⇒ A−1 =

1

det(A)

(
d −b
−c a

)
.

Donc l’inverse de la matrice Jacobienne s’écrit

J−1
g =

1

r

(
r cos(ϕ) r sin(ϕ)
− sin(ϕ) cos(ϕ)

)
=

(
cos(ϕ) sin(ϕ)
−1
r

sin(ϕ) 1
r

cos(ϕ)

)
.
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On obtient pour le gradient(
∂f

∂x
,
∂f

∂y

)
=

(
∂(f ◦ g)

∂r
,
∂(f ◦ g)

∂ϕ

)
·
(

cos(ϕ) sin(ϕ)
−1
r

sin(ϕ) 1
r

cos(ϕ)

)
=

=

(
cos(ϕ)

∂(f ◦ g)

∂r
− 1

r
sin(ϕ)

∂(f ◦ g)

∂ϕ
, sin(ϕ)

∂(f ◦ g)

∂r
+

1

r
cos(ϕ)

∂(f ◦ g)

∂ϕ

)
.

(Voir les notes du cours).

Maintenant il nous reste à calculer les dérivées secondes. Pour trouver ∂2f
∂x2

= ∂
∂x

(∂xf), il suffit de

remplacer f par ∂f
∂x

dans l’expression qu’on a déjà trouvé pour la première dérivée par rapport

à x. On va écrire ∂xf pour ∂f
∂x

, ∂2
r,ϕ(f ◦ g) pour ∂2(f◦g)

∂r∂ϕ
etc.

∂2f

∂x2
= cos(ϕ)

∂

∂r
(∂xf)− 1

r
sin(ϕ)

∂

∂ϕ
(∂xf) =

= cos2(ϕ)∂2
r2(f ◦ g) +

2 sin(ϕ) cos(ϕ)

r2
∂ϕ(f ◦ g)− 2 sin(ϕ) cos(ϕ)

r
∂2
r,ϕ(f ◦ g)+

+
sin2(ϕ)

r
∂r(f ◦ g) +

sin2(ϕ)

r2
∂2
φ2(f ◦ g).

D’une façon similaire on calcule

∂2f

∂y2
= sin(ϕ)

∂

∂r
(∂yf) +

1

r
cos(ϕ)

∂

∂ϕ
(∂yf) =

= sin2(ϕ)∂2
r2(f ◦ g)− 2 sin(ϕ) cos(ϕ)

r2
∂ϕ(f ◦ g) +

2 sin(ϕ) cos(ϕ)

r
∂2
r,ϕ(f ◦ g)+

+
cos2(ϕ)

r
∂r(f ◦ g) +

cos2(ϕ)

r2
∂2
ϕ2(f ◦ g).

Finalement on obtient

∂2f

∂x2
+
∂2f

∂y2
= ∂2

r2(f ◦ g) +
1

r
∂r(f ◦ g) +

1

r2
∂2
φ2(f ◦ g),

la formule énoncée au cours.

Exercice 4.

i) On a la fonction G : R∗+ × [0, π]× [0, 2π[−→ R3 \ {0} avec

G(ρ, θ, ϕ) =
(
G1(ρ, θ, ϕ), G2(ρ, θ, ϕ), G3(ρ, θ, ϕ)

)
,

où x = G1(ρ, θ, ϕ) = ρ sin(θ) cos(ϕ),

y = G2(ρ, θ, ϕ) = ρ sin(θ) sin(ϕ),

z = G3(ρ, θ, ϕ) = ρ cos(θ).

On vérifie par un calcul direct que x2 + y2 + z2 = ρ2. Ainsi le point (x, y, z) est bien sur la
sphère de rayon ρ.
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ii) La matrice jacobienne de G est

JG(ρ, θ, ϕ) =



∂G1

∂ρ
(ρ, θ, ϕ)

∂G1

∂θ
(ρ, θ, ϕ)

∂G1

∂ϕ
(ρ, θ, ϕ)

∂G2

∂ρ
(ρ, θ, ϕ)

∂G2

∂θ
(ρ, θ, ϕ)

∂G2

∂ϕ
(ρ, θ, ϕ)

∂G3

∂ρ
(ρ, θ, ϕ)

∂G3

∂θ
(ρ, θ, ϕ)

∂G3

∂ϕ
(ρ, θ, ϕ)



=

sin(θ) cos(ϕ) ρ cos(θ) cos(ϕ) −ρ sin(θ) sin(ϕ)

sin(θ) sin(ϕ) ρ cos(θ) sin(ϕ) ρ sin(θ) cos(ϕ)

cos(θ) −ρ sin(θ) 0

 .

Son déterminant est

det
(
JG(ρ, θ, ϕ)

)
= ρ2 cos2(θ) sin(θ) cos2(ϕ) + ρ2 sin3(θ) sin2(ϕ)+

+ρ2 cos2(θ) sin(θ) sin2(ϕ) + ρ2 sin3(θ) cos2(ϕ) = ρ2 sin(θ).

On peut conclure que la fonction G(ρ, θ, ϕ) est bijective lorsque ρ2 sin(θ) 6= 0 ce qui corre-
spond à l’ensemble R∗+×]0, π[×[0, 2π[−→ R3 \ {x = y = 0}.

iii) Soit f : R3 → R une fonction dérivable de (x, y, z) telle que f ◦ G(ρ, θ, ϕ) = f ◦ G(ρ).
Puisque f et G sont dérivables sur R3 \ {0}, on a l’égalité(

∂(f ◦G)

∂ρ
,
∂(f ◦G)

∂θ
,
∂(f ◦G)

∂ϕ

)
=

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
· JG(ρ, θ, ϕ).

Alors on a sur l’ensemble R3 \ {x = y = 0} où la matrice JG est invertible que

∇f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
=

(
∂(f ◦G)

∂ρ
,
∂(f ◦G)

∂θ
,
∂(f ◦G)

∂ϕ

)
· [JG(ρ, θ, ϕ)]−1 .

Car (f ◦G) ne dépend que de ρ, on a ∂(f◦G)
∂θ

= ∂(f◦G)
∂ϕ

= 0 et donc pour calculer ∇f il nous

suffit de calculer la première ligne de la matrice inverse J−1
G . L’inverse de la matrice donnée

s’écrit à l’aide de la matrice complémentaire C

J−1
G =

1

det(JG)
C.

Les éléments de la matrice C sont donnés par la formule Cij = (−1)i+jdet(Acj,i), où pour
obtenir la matrice Acj,i on élimine la j-ème ligne et la i-ème colonne de la matrice originale
JG. (Voir le cours d’algèbre linéaire). Alors on a

J−1
G =

1

ρ2 sin(θ)

 det(Ac1,1) − det(Ac2,1) det(Ac3,1)
∗ ∗ ∗
∗ ∗ ∗

 ,

où

Ac1,1 =

(
ρ cos(θ) sin(ϕ) ρ sin(θ) cos(ϕ)
−ρ sin(θ) 0

)
, Ac2,1 =

(
ρ cos(θ) cos(ϕ) −ρ sin(θ) sin(ϕ)
−ρ sin(θ) 0

)
,
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Ac3,1 =

(
ρ cos(θ) cos(ϕ) −ρ sin(θ) sin(ϕ)
ρ cos(θ) sin(ϕ) ρ sin(θ) cos(ϕ)

)
.

Donc on a

J−1
G =

1

ρ2 sin(θ)

 ρ2 sin2(θ) cos(ϕ) ρ2 sin2(θ) sin(ϕ) ρ2 sin(θ) cos(θ)
∗ ∗ ∗
∗ ∗ ∗

 =

=

 sin(θ) cos(ϕ) sin(θ) sin(ϕ) cos(θ)
∗ ∗ ∗
∗ ∗ ∗

 .

Finalement on obtient pour le gradient

∇f =

(
∂(f ◦G)

∂ρ
, 0, 0

)
·

 sin(θ) cos(ϕ) sin(θ) sin(ϕ) cos(θ)
∗ ∗ ∗
∗ ∗ ∗

 =

=

(
sin(θ) cos(ϕ)

∂(f ◦G)

∂ρ
, sin(θ) sin(ϕ)

∂(f ◦G)

∂ρ
, cos(θ)

∂(f ◦G)

∂ρ

)
.

Exercice 5.

i) D’après la matrice Jacobienne donnée on conclu que ∂g1
∂x

= 2x et ∂g1
∂y

= −2y. La première

égalité implique g1(x, y) = x2 + h(y), où h(y) est une fonction inconnue de y. Puis,
la deuxième relation donne ∂g1

∂y
= h′(y) = −2y ce qui nous permet de conclure que

g1(x, y) = x2 +h(y) = x2−y2 +C1. D’une façon similaire les égalités ∂g2
∂x

= 2y et ∂g2
∂y

= 2x

impliquent g2(x, y) = 2xy + C2. Puisque g(1, 1) = (1, 1), on obtient pour les constantes
C1 = 1 et C2 = −1. Finalement, g(x, y) = (x2 − y2 + 1, 2xy − 1) et g(−1, 2) = (−2,−5).

La fonction de classe C1 est bijective dans un voisinage d’un point si et seulement si le
déterminant de la matrice Jacobienne est non nul en se point. On trouve det Jg(x, y) =
4x2 + 4y2 ≥ 0, avec l’égalité en un seul point (x, y) = (0, 0). Alors g est localement
bijective sur R2 \ {(0, 0)}.

ii) D’une manière similaire au cas précédent, on trouve d’après la matrice Jacobienne :

g1(x, y) = xy2 + h1(y) = xy2 + C1

g2(x, y) = 2x2 + h2(y) = 2x2 − y + C2

Puisque g(1, 1) = (1, 1), on obtient pour les constantes: C1 = 0, C2 = 0, et donc g(x, y) =
(xy2, 2x2 − y). Finalement, g(−1, 2) = (−4, 0).

On trouve dans ce cas det Jg(x, y) = −y2 − 8x2y = −y(y + 8x2). Le déterminant est nul
si y = 0 ou bien y = −8x2. Alors la fonction g est localement bijective sur chacun des
ensembles

{(x, y) ∈ R2 : y > 0}, {(x, y) ∈ R2 : −8x2 < y < 0, x > 0},

{(x, y) ∈ R2 : −8x2 < y < 0, x < 0}, {(x, y) ∈ R2 : y < −8x2}.
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Exercice 6.

Les fonctions F données sont des intégrales dépendant d’un paramètre de la forme

F (t) =

∫ b(t)

a(t)

f(x, t) dx .

Si les fonctions f , a et b sont de classe C1, la dérivée de F est (cf. cours)

d

dt
F (t) = f

(
b(t), t

)
· b′(t)− f

(
a(t), t

)
· a′(t) +

∫ b(t)

a(t)

∂f

∂t
(x, t) dx . (2)

i) On a f(x, t) = xt+sin(x)
ln(x)

∈ C1
(

]2, 3[× ]1,∞[
)

, a(t) = 2 et b(t) = 3 avec a, b ∈ C1(R).

Puisque les bornes sont constantes, le membre de droite de (??) consiste uniquement de
l’intégrale et on a

F ′(t) =

∫ 3

2

∂

∂t

(
xt + sin(x)

ln(x)

)
dx =

∫ 3

2

xt ln(x)

ln(x)
dx =

∫ 3

2

xt dx =

[
xt+1

t+ 1

]3

2

=
3t+1 − 2t+1

t+ 1
.

ii) On a f(x, t) = ln(x2 + t2) ∈ C1
(
]1,∞[× ]1,∞[

)
, a(t) = t et b(t) = t2 avec a, b ∈ C1(R).

Les bornes dépendent de t. On a

F ′(t) = ln
((
t2
)2

+ t2
) d

dt
(t2)− ln

(
t2 + t2

) d
dt

(t) +

∫ t2

t

∂

∂t

(
ln(x2 + t2)

)
dx

= 2t ln
(
t2
(
t2 + 1

))
− ln

(
2t2
)

+

∫ t2

t

2t

x2 + t2
dx .

Puisque 2t

∫ t2

t

1

x2 + t2
dx =

[
2t

t
arctan

(x
t

)]t2
t

= 2 arctan(t)− π

2
, on a finalement

F ′(t) = 2t ln
(
t2(t2 + 1)

)
− ln

(
2t2
)

+ 2 arctan(t)− π

2
.

iii) Pour f(x, t) = etx
3

x
∈ C1( ]1,∞[× ]1,∞[ ), a(t) = 1 et b(t) = 3

√
t avec a, b ∈ C1( ]1,∞[ ),

seulement la borne supérieure dépend de t si bien que le terme en f(a(t), t) n’apparâıt pas.

F ′(t) =
etx

3

x

∣∣∣∣∣
x= 3√t

· d
dt

(
3
√
t
)

+

∫ 3√t

1

∂

∂t

(
etx

3

x

)
dx

=
et

2

3
√
t
· 1

3
t−2/3 +

∫ 3√t

1

x2etx
3

dx =
1

3

et
2

t
+

[
1

3t
etx

3

] 3√t

1

=
1

3t

(
et

2 − et
)

+
1

3

et
2

t
=

1

3t

(
2et

2 − et
)
.
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