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Analyse II — Corrigé de la Série 9

Exercice 1.

On a la fonction composée f(x,y) = f(u(m, y),v(x,y)) = f(2x — y,x + 3y). Par le Théoreme
sur la matrice Jacobienne d’une fonction composée, on a

Jf(ma y) = Jf(u(x,y),v(z,y)) ) J(u(:my),v(w))

ou  du
(%7%) = Vf(x,y) = Vf(U,U) ’ ( z ZZ )
or  dy
En particulier, on obtient
of 8f ou L of of ov
0r  Oudr v oz’

En utilisant la formule pour la dérivation de fonctions composées et la regle de la dérivée d’un
produit, on a successivement

62_f: (8]”) 6u+8f 0%u L9 (8f> 8v+8f 0%
02 Ox \ou) dxr  Ou dx?  dx \ov) dxr  Ov Ox? "
La formule de la dérivée partlelle par rapport a x alors donne

<8f) 02f8u+ 82]‘7@
or \ du ou? dx  Oudv Oz’

et de méme pour a% (g—f). Alors on obtient

O _ (0% ou  OF v\ Ou Of Ow (O u 0°f Ov\dv Of 0%
or2  \ou2 dxr Oudv 0x ) dxr  Ou Ox2 Oudv Oxr  Ov? Ox ) Ox  Ov Ox?

Les dérivées analogues par rapport a y, c.-a~d. af et g L sont obtenues en remplacant x par y
ci-dessus. En substituant

2 2
%:2’ @:_17 @207 %:0’
ox dy 0x? 0y?
o, o, * o,
ox y 0x? 0y?

dans les expressions pour 227{ et gy{ , on obtient

02f  O*f
Af = —+ —=
/ ox? + Oy?

OPF [ (ou\®  [ou\® OPF [ Oudv _Oudv\ O ([N’ [ov)’
=—(=) +(5) |+ 2 42|+ |=) + (%
ou? or dy oudv Ox Or dy Oy ov? ox dy
LOf (Pu  Pu | Of (D0 0P
Oou \ 0x?  0y? ov \ox2 ' 9y?

TP
ou? Oudv ov?




Exercice 2.

i) Le domaine de H est D = {(z,y) € R* : > 0}. Ainsi u > 0 et donc Im(H) = D =
{(u,v) € R? : u > 0}, c-a-d. D = D. Pour trouver la transformation inverse G' on résout
les équations de u et v pour z et y. On a y = vy/x , dou

—202 + Vvt + 4
T = Y v u:—v2j:\/'u4+u.

u= x>+ % = 5

Comme z > 0, il faut prendre la solution avec +,/ et donc

(z,y) = G(u,v) = (—v2 + Vot +u, v\/—v2 + \/W) .

Le dérivées partielles de G sont

0G4 1

ou 2yt tu
0G4 403 2 (—v2 + Vvt + u)

e T

Ov 2ol tu Vol +u
8G2 (%

ou Wl Fuy/—v? + Vol +u

@:\/—02—1—\/1}4—1—114—
Jv

v < o + 40® )
20+ ————
-2 + Vot +u 2Vt +u
—v? (=v? + Vol +u)
Ty o £ ot
vy’
ViE+uy/ v + Vot fu

La matrice jacobienne de GG est alors

=\/—112+\/v4+u—|—

~ (0,G1(u,v) 0,G1(u,v)
Jo(u,v) = (8UG2(u,v) 0,Go(u, v))

1 % —2v (—v2 + \/W)

— 2
Vot tu v (o2 tvitiu)
4/ —v2+Vortu —v24vviFu

Pour évaluer en (u,v) = H(z,y), observons que

4 4 2 1 22)2 2 4 2
\/v4+u=\/(%) +x2+2y2:\/y—2—|—x2+2y2:\/(y )Ryt
X

T 2 T

et donc

Sl

x? 492

T —2y\/x x L _oy/z
Jo(H(z,y) = 5 ( 36?3{/\2/_) = 2y (i ig/\z/_) : (1)

Weve



i1) La matrice jacobienne de H est

_ (0:Hi(ry) 0,Hi(wy)) _( 20 Ay
JH(xyy)_(axHQ(m7y) 8yH2(x,y) N _MLW? \/15 ;

(J ( )),1 1 \/LE —4y 1 x  —dyx®?
x, = = 53 = 357 9 o\ )
T T B\ 2 ) AP\ 2

ce qui est la méme matrice qu’en (1).

On a donc montré pour cet exemple que Jg (H(x,y)) = (JH(x,y))fl. Cette égalité est
vraie en général parce qu’en prenant G = F'~! on obtient F o G = id et d’apres le théoréme
du cours sur les matrices Jacobiennes d’une fonction composée, on a

(3 §) =t =) st

-1
d'ou Jp-1(x,y) = (JF (F~(, y))) pour autant que F et F~! existent et soient C'.

Exercice 3.
Soit ¢ : R x [0,2r[— R?\ {0} la fonction changement de coordonnées

x = rcos(p)
y = rsin(y)

g(r,p) = {
Alors la matrice Jacobienne de g est

ing) = (o) Srte) ),

et son déterminant est det(J,) = r > 0. Dans une premiere étape on va trouver le gradient

de f, Vf = <ﬂ %> en termes de coordonnées polaires. Par le Théoreme de la dérivée d'une

oz’ Oy
(8(f09)7 8(fog)) _ <3f af) Jy(r, ).

fonction composée, on a
or Oy 0z’ dy

Alors on obtient pour le gradient

V= (% %) - (a“;: 2 8“;;9)) )]

La matrice inverse s’écrit facilement pour la matrice 2 x 2. En général pour une matrice
inversible A on trouve

A=(ff fz) — A_lzdetl(A)(—dc _ab)

Donc l'inverse de la matrice Jacobienne s’écrit
1 1 reos(p) rsin(p) | _ cos(¢y) sin(¢)
9\ —sin(p) cos(p) )\ —psin(p) peos(p) )

3




On obtient pour le gradient

(3 5) = (P52 252) - (5 sty )

or r in(p) oo s1n(gp)T r Op

(Voir les notes du cours).
Maintenant il nous reste a calculer les dérivées secondes. Pour trouver 24 = s 9 (9,.f), il suffit de

_ (Cosw)@(f °09) 1. \9fog)

oz
remplacer f par % dans I'expression qu’on a déja trouvé pour la premiere dérivée par rapport
& . On va écrire 0, f pour 2L, 92 (f o g) pour aggf) ete.
2
O cos(p) S (0.1) —  sin(ip )%(&J) -
2sin() cos 2sin(y) cos
_ COS2(Q0)832 (f o g) + (@:2 (90) a@(f o g) - (907)0 (90) ai@(f o g)+
sin? sin
P, (10 g)+ T og)

D’une fagon similaire on calcule

9% f

) 0
8—y2=sm<> (O,1)+ + c0s(9)5-(0,) =

_ sin?(0)93(f o g) — 2sin(y) cos(p) 0.(f 0 g) + ZSin(goi cos(p) 337@(f o g)+

r2

2 2
+ Dy (rog)+ P a0 g)

r2

Finalement on obtient
o*f  O0f 1 1
.2 T o O%(fog)+ ;3r(f 0g)+ ﬁ322(f °©g),

la formule énoncée au cours.

Exercice 4.

i) On a la fonction G: R x [0, 7] x [0, 27 — R\ {0} avec
G<p70790) = (Gl(p797@)aG2(p70a 90)7G3(pa0a @))7

ol x = G1(p,0,0) = psin() cos(ip),
= Ga(p, 0, ) = psin() sin(p),
z = G3(p,0,¢) = pcos().

On vérifie par un calcul direct que 2% + y* + 22 = p?. Ainsi le point (x,y, ) est bien sur la
sphere de rayon p.



i1) La matrice jacobienne de G est

0G, 0G, 0G,

o —(p,0,9) 50 ——(p,0,¢) 90 —(p,0,¢)

oG oG oG
Ja(p,0,p) = a—pz(/ww) 8—92(/)79,90) 8—;(/),9,90)

0G5 0G5 0G5

o (p. 0, ¢) 20 (p. 0, ¢) 9 (p. 0, ¢)

sin(f) cos(p) pcos(f)cos(p) —psin()sin(y)
= | sin(0)sin(p) pcos(f)sin(p) psin(f) cos(p)
cos(0) —psin(6) 0
Son déterminant est

det(Ja(p, 0, p)) = p* cos®(0) sin(0) cos*(p) + p* sin®(0) sin®(p)+

+p? cos?(0) sin(#) sin’ () + p*sin®(0) cos?(¢) = p? sin(h).
On peut conclure que la fonction G(p, 0, ¢) est bijective lorsque p*sin(6) # 0 ce qui corre-
spond & l'ensemble R x]0, 7[x [0, 2r[— R* \ {z = y = 0}.

i) Soit f : R® — R une fonction dérivable de (z,y, z) telle que f o G(p,0,9) = f o G(p).
Puisque f et G sont dérivables sur R?\ {0}, on a I’égalité

IfoG) O(foG) O(foQ) of of of
( ap 00 o ) (895 ay’ 32) Ta(p,0,2)-

Alors on a sur 'ensemble R? \ {z = y = 0} ol la matrice Jg est invertible que

_(9F of of IfoG) O(foG) O(foG) .
Vf_(ax dy’ az) ( ap 00 oy )'[JG('O’Q’@)] '

O(foG) __ O(foG) _

90— T op
suffit de calculer la premiére ligne de la matrice inverse J5'. L’inverse de la matrice donnée
s’écrit a 'aide de la matrice complémentaire C'

Car (f o G) ne dépend que de p, on a

0 et donc pour calculer V f il nous

1
Jt = C
¢ 7 det(Jg)

Les éléments de la matrice C' sont donnés par la formule Cy; = (—1)""/det(A$;), ot pour
obtenir la matrice A$; on élimine la j-¢me ligne et la i-¢me colonne de la matrice originale
Je. (Voir le cours d’ algebre linéaire). Alors on a

det(Af;) —det(A3;) det(As,;)

1
Jt=—— | % * * ,
¢ pZsin(0) y . .
ou
A pcos(f)sin(p) psin(f) cos(yp) e pcos(f) cos(p) —psin(f)sin(y)
LL™ \ —psin(h) 0 » P21 psin(0) 0 ’



e [ pcos(f)cos(ep) —psin(P)sin(p)
A0 = < pcos(0)sin(p) psin() cos(p) )

Donc on a

p?sin?(6) cos(¢) p*sin®(0) sin(p) p?sin(f) cos()
J(;l =—— | = * * =
* * *

sin(f) cos(p) sin(f)sin(p) cos(h)

Finalement on obtient pour le gradient

sin(f) cos(p) sin(f)sin(p) cos(h)
_[(O(foQ) B

= (sin(e) COS(gp)a(fa—;G)’ sin(0) sin(w)(fa(fa—;G), COS(G)a(fa;G)) _

Exercice 5.

1)

i)

D’apres la matrice Jacobienne donnée on conclu que %i; =2x et %iyl = —2y. La premiere
égalité implique gi(z,y) = 2 + h(y), ot h(y) est une fonction inconnue de y. Puis,
la deuxieme relation donne %—g; = h'(y) = —2y ce qui nous permet de conclure que
g1(z,y) = 22+ h(y) = 22 —y*+ C;. D’une fagon similaire les égalités % =2y et %—f =2x
impliquent go(z,y) = 22y + Cy. Puisque ¢g(1,1) = (1,1), on obtient pour les constantes
Cy =1 et Cy = —1. Finalement, g(x,y) = (2% —y* + 1,2zy — 1) et g(—1,2) = (=2, —5).

La fonction de classe C' est bijective dans un voisinage d’'un point si et seulement si le
déterminant de la matrice Jacobienne est non nul en se point. On trouve det Jy(z,y) =
422 + 4y* > 0, avec 'égalité en un seul point (z,y) = (0,0). Alors g est localement
bijective sur R?\ {(0,0)}.

D’une maniere similaire au cas précédent, on trouve d’apres la matrice Jacobienne :
g1(z,y) = 2y + h(y) = 2y + C

g2(,y) = 22° + ho(y) = 22° —y + Cy
Puisque ¢(1,1) = (1,1), on obtient pour les constantes: C; = 0, Cy = 0, et donc g(z,y) =
(ry?,22% — y). Finalement, g(—1,2) = (—4,0).
On trouve dans ce cas det J,(z,y) = —y* — 8%y = —y(y + 82?). Le déterminant est nul

si y = 0 ou bien y = —8x2. Alors la fonction ¢ est localement bijective sur chacun des

ensembles
{(z,y) € R?:y > 0}, {(x,y) € R?: 822 <y<0,2> 0},

{(z,y) eR?: =8z <y <0,z <0}, {(z,y) € R? : y < —8a?}.



Exercice 6.

Les fonctions F' données sont des intégrales dépendant d’un parametre de la forme

F(t) = / j:) Flot)de.

Si les fonctions f, a et b sont de classe C, la dérivée de F est (cf. cours)

b(t)
%F(t) = f(b(t),t) - V' (t) — f(a(t),?) -a/(t)—{—/a(t) %(aﬁ,t) dz . (2)

i) On a f(z,t) = xtf;s(i;)(x) € C'(]2,3[x]1,00[), a(t) = 2 et b(t) = 3 avec a,b € C*(R).
Puisque les bornes sont constantes, le membre de droite de (??) consiste uniquement de

I'intégrale et on a

F/(t) _ /3 2 w dr — /3 l‘t IH(ZE) Jr — /3 xt e — It+l 3 _ 3t+l _ 2t+l
s Ot In(x) 5 In(z) 9 t+1], t+1

i) On a f(z,t) =In(z? + %) € C*(]1,00[ x |1, 00[), a(t) =t et b(t) =1t avec a,b € C*(R).
Les bornes dépendent de t. On a

P =n( (1) + 1) %@2) (2 4+ #) %@) + / % (In(2? + 1)) do

£t
_ 2 (42 B 2
=2tln(#* (* + 1)) ln(2t)+/t peanwrLl

2 t?
1 2t
Puisque 2t / —— dr = | — arctan <£> = 2arctan(t) — T , on a finalement
a2t t t/], 2

F'(t) =2tIn (*(t* + 1)) — In (2¢%) + 2arctan(t) — g .

iii) Pour f(z,) = £ € C1(]1,00[x |1,00[), aft) =1 et b(t) = V/f avec a,b € CL(]1,00]),
seulement la borne supérieure dépend de ¢ si bien que le terme en f(a(t),t) n’apparait pas.

ta3 % tas

e d 0 (e

F'(t) = C— (3 t) / — d

®) _w dt Vi) + o ot \ x *
2 q ¥t 1 et 1 ¥
1 1
2
= % <et2 —et> + %% = % (26t2 —et> :



