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Analyse II – Corrigé de la Série 4

Exercice 1.
Pour trouver des solutions de l’équation homogène on utilise l’équation caractéristique: λ2 +
pλ+ q = 0, où p et q sont des coefficients dans léquation différentielle y′′ + py′ + qy = 0. Pour
trouver une solution particulère on utilise l’Ansatz convenable pour chaque équation (voir le
cours du 6 mars). Si la partie droite de l’équation contient plusieurs fonctions exponentielles
et trigonométriques, on utilise le principe de la superposition des solutions.

i) (1) L’équation caractèristique est λ2 − 5λ + 6 = 0. Pour les deux solutions linéairement
indépendentes on peut prendre v1(x) = e2x et v2(x) = e3x.
(2) Le nombre a = ±i n’est pas une racine de l’équation caractèristique. Le polynôme
dans l’expression pour f(x) = (3x2 + 1) cos(x) est de degré 2. Donc il existe une solution
particulière de la forme

ypart(x) = (Ax2 +Bx+ C) cos(x) + (Dx2 + Ex+ F ) sin(x).

ii) (1) L’équation caractèristique est λ2 − 5λ + 6 = 0. Pour les deux solutions linéairement
indépendentes on peut prendre v1(x) = e2x et v2(x) = e3x.
(2) Le nombre a = 3 est une racine de l’équation caractèristique de multiplicité 1. Le
polynôme dans l’expression pour f(x) = e3x est de degré 0. Donc il existe une solution
particulière de la forme

ypart(x) = Axe3x.

iii) (1) L’équation caractèristique est λ2 − 3λ + 2 = 0. Pour les deux solutions linéairement
indépendentes on peut prendre v1(x) = ex et v2(x) = e2x.
(2) Les nombres a = 3 et a = 0 ne sont pas des racines de l’équation caractèristique. Les
polynômes dans l’expression pour f(x) = xe3x+2x2e0x sont de degré 1 et 2 respectivement.
Donc il existe une solution particulière de la forme

ypart(x) = (Ax+B)e3x + (Cx2 +Dx+ E).

iv) (1) L’équation caractèristique est λ2 − 3λ + 2 = 0. Pour les deux solutions linéairement
indépendentes on peut prendre v1(x) = ex et v2(x) = e2x.
(2) Le nombre a = 2 est une racine de l’équation caractèristique de multiplicité 1, mais
les nombres a = 2 ± i ne sont pas des racines. Les polynômes dans l’expression f(x) =
e2x sin(x) + e2x sont de degré 0. Donc il existe une solution particulière de la forme

ypart(x) = Ae2x sin(x) +Be2x cos(x) + Cxe2x.

v) (1) L’équation caractèristique est λ2 − 4λ + 4 = 0. Pour les deux solutions linéairement
indépendentes on peut prendre v1(x) = e2x et v2(x) = xe2x.
(2) Les nombres a = 1 ± i ne sont pas des racine de l’équation caractèristique. Les
polynômes dans l’expression f(x) = ex cos(x) − ex sin(x) sont de degré 0. Donc il existe
une solution particulière de la forme

ypart(x) = Aex sin(x) +Bex cos(x).
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vi) (1) L’équation caractèristique est λ2 + 4λ + 4 = 0. Pour les deux solutions linéairement
indépendentes on peut prendre v1(x) = e−2x et v2(x) = xe−2x.
(2) Le nombre a = −2 est une racine de l’équation caractèristique de multiplicité 2, mais
le nombre a = 2 n’est pas une racine. Les polynômes dans l’expression pour f(x) =
3xe−2x − e2x sont de degré 1 et 0 respectivement. Donc il existe une solution particulière
de la forme

ypart(x) = x2(Ax+B)e−2x + Ce2x.

Maintenant on revient à l’équation (iv):

y′′ − 3y′ + 2y = e2x(sin(x) + 1)

pour trouver d’abord la solution générale, et puis la solution particulière yp(x) satisfaisant les
conditions initiales yp(0) = −1

2
et y′p(0) = 1

2
. Considérons l’ansatz trouvé v0(x) = Ae2x sin(x) +

Be2x cos(x) + Cxe2x. On calcule

v′0(x) = (2A−B)e2x sin(x) + (A+ 2B)e2x cos(x) + Ce2x + 2Cxe2x,

v′′0(x) = (3A− 4B)e2x sin(x) + (4A+ 3B)e2x cos(x) + 4Ce2x + 4Cxe2x.

En remplaçant les expressions pour v′0(x), v′′0(x) dans l’équation on obtient

(3A− 4B)e2x sin(x) + (4A+ 3B)e2x cos(x) + 4Ce2x + 4Cxe2x−

−3[(2A−B)e2x sin(x)+(A+2B)e2x cos(x)+Ce2x+2Cxe2x]+2[Ae2x sin(x)+Be2x cos(x)+Cxe2x] =

(−A−B)e2x sin(x) + (A−B)e2x cos(x) + Ce2x = e2x sin(x) + e2x,

d’où on trouve A = B = −1
2
, C = 1.

La solution générale de cette équation s’écrit

y(x) = C1e
x + C2e

2x + v0(x) = C1e
x + C2e

2x − 1

2
e2x sin(x)− 1

2
e2x cos(x) + xe2x.

Pour appliquer les conditions initiales on calcule la dérivée:

y′(x) = C1e
x + 2C2e

2x − 1

2
e2x cos(x)− 1

2
e2x cos(x)− 3

2
e2x sin(x) + e2x + 2xe2x.

Alors on a

y(0) = C1 + C2 −
1

2
= −1

2
; y′(0) = C1 + 2C2 −

3

2
+ 1 =

1

2
,

et donc C1 = −C2 = −1. La solution particulière recherchée est

yp(x) = −ex + e2x − 1

2
e2x sin(x)− 1

2
e2x cos(x) + xe2x.

Finalement on a yp(π/2) = −eπ/2 + (1/2 + π/2)eπ.
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Exercice 2.

i) On trouve d’abord la solutions générale de l’équation homogène à coefficients constants
y′′ + y = 0. L’équation caractèristique est λ2 + 1 = 0, donc λ1,2 = ±i et on obtient

yhom(x) = C1 cos(x) + C2 sin(x), C1, C2,∈ R, x ∈ R.

Le Wronskien des deux solutions v1(x) = cos(x) et v2(x) = sin(x) est

W [cos(x), sin(x)] = det

(
cos(x) sin(x)
− sin(x) cos(x)

)
= 1.

Alors par la méthode de la variation des constantes on cherche une solution particulière
de la forme ypart(x) = C1(x) cos(x) + C2(x) sin(x), où C1(x) et C2(x) sont données par les
formules

C1(x) = −
∫

f(x)v2(x)

W [v1, v2](x)
dx = −

∫
tan(x) sin(x) dx,

C2(x) =

∫
f(x)v1(x)

W [v1, v2](x)
dx =

∫
tan(x) cos(x) dx,

Donc on obtient facilement qui C2(x) =

∫
sin(x) dx = − cos(x) (rappelez-vous qu’on n’a

pas besoin des constantes d’intégration pour une solution particulière).

Pour trouver C1(x) observons que

− sin(x)2

cos(x)
=

cos(x)2 − 1

cos(x)
= cos(x)− 1

cos(x)

et donc

C1(x) = sin(x)−
∫

1

cos(x)
dx .

Pour trouver cette dernière primitive, on pose le changement de variable t = sin(x) et on
calcule

∫
1

cos(x)
dx =

∫
cos(x)

cos2(x)
dx =

∫
d(sin(x))

1− sin2(x)

=

∫
1

1− t2
dt =

∫
1

(1 + t)(1− t)
dt

=

∫
1

2

(
1

1 + t
+

1

1− t

)
dt =

1

2

(
ln
(
|1 + t|

)
− ln

(
|1− t|

))
=

1

2
ln

(∣∣∣∣1 + t

1− t

∣∣∣∣) =
1

2
ln

(∣∣∣∣1 + sin(x)

1− sin(x)

∣∣∣∣) =
1

2
ln

(∣∣∣∣∣
(
1 + sin(x)

)2
1− sin(x)2

∣∣∣∣∣
)

=
1

2
ln

(∣∣∣∣1 + sin(x)

cos(x)

∣∣∣∣2
)

= ln

(∣∣∣∣1 + sin(x)

cos(x)

∣∣∣∣)
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Ainsi C1(x) = sin(x)− ln

(∣∣∣∣1 + sin(x)

cos(x)

∣∣∣∣) et donc

ypart(x) = C1(x) cos(x) + C2(x) sin(x)

=

[
sin(x)− ln

(∣∣∣∣1 + sin(x)

cos(x)

∣∣∣∣)]cos(x)− cos(x) sin(x)

= − cos(x) ln

(∣∣∣∣1 + sin(x)

cos(x)

∣∣∣∣)
ii) Les points problématiques sont ceux où cos(x) = 0 ou 1 + sin(x) = 0. La fonction f est

donc bien définie sur tous les autres points, c.-à-d. sur R \ {x ∈ R | x = π
2

+ nπ avec
n ∈ Z}.
Pour x2n = π

2
+ 2nπ, on a cos(x2n) = 0 et 1 + sin(x2n) = 2 , et pour tout n ∈ N

lim
x→x2n

f(x) = lim
x→x2n

(
− cos(x) ln

(∣∣∣∣1 + sin(x)

cos(x)

∣∣∣∣))
= lim

x→x2n

(
− cos(x) ln

(
|1 + sin(x)|

))
+ lim

x→xn

(
cos(x) ln

(
| cos(x)|

))
= lim

x→x2n

(
− cos(x)

)
· lim
x→x2n

ln
(
|1 + sin(x)|

)
+ lim

y→0

(
y ln
(
|y|
))

= 0 · ln(2) + 0 = 0 ,

où la dernière limite en y est calculée par Bernoulli-l’Hospital. En effet, les hypothèses

sont satisfaites si on écrit y ln(|y|) =
ln(|y|)

1/y
(le vérifier). A priori, on devrait séparer les

cas y > 0 et y < 0 mais comme
d

dy
ln(|y|) =

1

y
pour y > 0 et pour y < 0, il suffit de

calculer une seule limite :

lim
y→0

(
y ln
(
|y|
))

= lim
y→0

ln(|y|)
1
y

BH
= lim

y→0

1
y

− 1
y2

= lim
y→0

(−y) = 0 . (1)

Si on définit f en ces points par f(x2n) = 0 , elle est continue en ces points (on a en effet
fait un prolongement par continuité).

Pour x2n+1 = π
2

+ (2n + 1)π = 3π
2

+ 2nπ , on a cos(x2n+1) = 0 et 1 + sin(x2n+1) = 0 .
On fait un changement de variable x = 3π

2
+ 2nπ+ z, alors x→ x2n+1 correspond à z → 0.

Alors on a sin(3π
2

+ 2nπ + z) = sin(3π
2

+ 2nπ) cos(z) + cos(3π
2

+ 2nπ) sin(z) = − cos(z) et
cos(3π

2
+ 2nπ + z) = cos(3π

2
+ 2nπ) cos(z)− sin(3π

2
+ 2nπ) sin(z) = sin(z). On calcule

lim
x→x2n+1

cos(x) ln

(∣∣∣∣1 + sin(x)

cos(x)

∣∣∣∣) = lim
z→0

sin(z) ln

(∣∣∣∣1− cos(z)

sin(z)

∣∣∣∣) =

= lim
z→0

(sin(z) ln |1− cos(z)| − sin(z) ln | sin(z)|).

On utilise les formules 1 − cos(z) = 2 sin2(z/2) et sin(z) = 2 sin(z/2) cos(z/2), alors on
obtient

lim
z→0

(sin(z) ln |1− cos(z)| − sin(z) ln | sin(z)|) =

= lim
z→0

(sin(z) ln(2 sin2(z/2))− sin(z) ln | sin(z)|) =
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= lim
z→0

(sin(z) ln 2 + 4 cos(z/2) sin(z/2) ln | sin(z/2)| − sin(z) ln | sin(z)|) = 0,

puisque la limite de chaque composante de la somme est zéro, où on utilise la limite
limy→0 y ln |y| = 0, voir (1) ci-dessus.

Si on définit f en ces points par f(x2n+1) = 0 (prolongement par continuité), elle est aussi
continue en ces points et donc sur tout R.

Les points qui pourraient poser problème pour la dérivabilité sont les points où f n’était
pas continue à la base, c’est-à-dire

{
xn = π

2
+ nπ : n ∈ Z

}
.

Etudions d’abord la dérivabilité de f en les points de la forme x2n. Pour ces points on a

− cos(x) = sin
(
x− π

2

)
= sin

(
x− π

2
− 2nπ

)
= sin(x− x2n) ,

et donc

lim
x→x2n

f(x)− f(x2n)

x− x2n
= lim

x→x2n

− cos(x)

x− x2n
ln

(∣∣∣∣1 + sin(x)

cos(x)

∣∣∣∣)
= lim

x→x2n

sin(x− x2n)

x− x2n
ln

(∣∣∣∣1 + sin(x)

cos(x)

∣∣∣∣)
= lim

x→x2n

sin(x− x2n)

x− x2n
· lim
x→x2n

(
ln
(
|1 + sin(x)|

)
− ln

(
| cos(x)|

))
= 1 · (ln(2) +∞) =∞

parce que lim
x→x2n

− ln
(
| cos(x)|

)
=∞. Ainsi f n’est pas dérivable en x2n pour tout n ∈ N.

Pour les points de la forme x2n+1 on a

− cos(x) = − sin
(
x+ π

2

)
= − sin

(
x−

(
−π

2
− 2nπ

))
= − sin(x− x2n+1) ,

et donc

lim
x→x2n+1

f(x)− f(x2n+1)

x− x2n+1

= lim
x→x2n+1

− cos(x)

x− x2n+1

ln

(∣∣∣∣1 + sin(x)

cos(x)

∣∣∣∣)
= lim

x→x2n+1

−sin(x− x2n+1)

x− x2n+1

ln

(∣∣∣∣1 + sin(x)

cos(x)

∣∣∣∣)
= (−1) · (−∞) =∞

parce qu’il suit par la règle de Bernoulli-l’Hospital

lim
x→x2n+1

1 + sin(x)

cos(x)
BH
= lim

x→x2n+1

cos(x)

− sin(x)
=

lim
x→x2n+1

cos(x)

lim
x→x2n+1

(− sin(x))
=

0

1
= 0 . (2)

que lim
x→x2n+1

ln

(∣∣∣∣1 + sin(x)

cos(x)

∣∣∣∣) = −∞. Ainsi f n’est pas dérivable en x2n+1 pour tout n ∈ N.

La fonction f n’est donc pas dérivable en xn = π
2

+ nπ. Ceci est une conséquence du fait
que f est solution de l’équation différentielle y′′ + y = tan(x). En effet, si f était (deux
fois) dérivable en ces points, on aurait une contradiction parce que le membre de droite
tan(x) n’est pas défini en ces points.

La fonction f est de classe C2 dans les intervalles ]− π
2

+ nπ, π
2

+ nπ[ pour tout n ∈ Z.
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iii) On considère la solution générale de la forme

y(x) = ypart(x)+C1 sin(x)+C2 cos(x) = − cos(x) ln

(∣∣∣∣1 + sin(x)

cos(x)

∣∣∣∣)+C1 sin(x)+C2 cos(x),

où C1 et C2 sont des constantes réelles. On se souvient que C ′1(x)v1(x) + C ′2(x)v2(x) = 0
par la méthode de la variation des constantes, et donc on a

y′part(x) = C1(x)v′1(x) + C2(x)v′2(x) = −(sin(x)− ln

(∣∣∣∣1 + sin(x)

cos(x)

∣∣∣∣)) sin(x)− cos2(x).

La solution maximale est définie sur l’intervalle maximale où la fonction est de classe C2

et qui contient le point x = 0, puisque elle doit satisfaire les conditions initiales y(0) =
0, y′(0) = 1. Donc l’intervalle de définition est ]− π

2
, π
2
[. Pour déterminer les constantes C1

et C2 on calcule
y(0) = C2 = 0, y′(0) = −1 + C1 = 1.

Alors C1 = 2, C2 = 0, and on a la solution maximale

y(x) = − cos(x) ln

(∣∣∣∣1 + sin(x)

cos(x)

∣∣∣∣)+ 2 sin(x), x ∈]− π

2
,
π

2
[.

Exercice 3.

Première méthode : introduisons la nouvelle variable indépendante t par t = ln(x) et posons
z(t) = y(x(t)) = y(et). Alors

z′(t) =
d

dt
z(t) =

d

dt
y(et) = et y′(et)

z′′(t) = et y′(et) + e2t y′′(et)

De plus

x2y′′ + 3xy′ + y =
(
e2t y′′(et) + et y′(et)

)
+ 2et y′(et) + y(et)

= z′′(t) + 2z′(t) + z(t)

et donc
x2y′′ + 3xy′ + y = 2 + x2 ⇔ z′′ + 2z′ + z = 2 + e2t .

On résout alors l’équation différentielle en z qui est à coefficients constants. Son équation
caractéristique est λ2 + 2λ+ 1 = 0 qui admet une racine double λ = −1. Donc

zhom(t) = C1e
−t + C2te

−t .

On cherche une solution particulière par la méthode des coefficients indéterminés. Comme
a = 0 et a = 2 ne sont pas des solutions de l’équation caractèristique, on utilise l’Ansatz
zpart = Ae2t +B. Comme

z′′part + 2z′part + zpart = e2t + 2 ⇔ (4A+ 2 · 2A+ A)e2t +B = e2t + 2 ,

on a A = 1
9

et B = 2. Ainsi zpart(t) = 1
9
e2t + 2 , et la solution générale est

z(t) = zhom(t) + zpart(t) = C1e
−t + C2te

−t + 1
9
e2t + 2 , t, C1, C2 ∈ R .
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En revenant à la variable x par la substitution t = ln(x), on trouve la solution de l’équation
initiale qui est

y(x) =
(
C1 + C2 ln(x)

)1

x
+

1

9
x2 + 2 , x ∈]0,∞[ et C1, C2 ∈ R .

Deuxième méthode : Puisque v1(x) =
1

x
6= 0 est une solution de l’équation homogène

y′′ +
3

x
y′ +

1

x2
y = 0, x > 0,

on trouve la second solution linéairement indépendente par la formule (voir le cours du 27
février):

v2(x) = v1(x)

∫
e−P (x)

v21(x)
dx,

où P (x) est une primitive de la fonction p(x) =
3

x
. Donc on a P (x) = 3 ln(x), x > 0 et

v2(x) =
1

x

∫
e−3 ln(x)(

1

x2

) dx =
1

x

∫
1

x
dx =

1

x
ln(x), x > 0.

La solution générale de l’équation homogène est donc

yhom(x) = C1
1

x
+ C2

1

x
ln(x), x > 0, C1, C2 ∈ R.

Nous utilisons la méthode de la variation des constantes pour obtenir une solution particulière.
On a (voir le cours du 4 mars) 1

x

1

x
ln(x)

− 1

x2
− 1

x2
ln(x) +

1

x2

(C ′1(x)
C ′2(x)

)
=

 0
2 + x2

x2

 .

Pour le Wronskien on a

w(x) = − 1

x3
ln(x) +

1

x3
+

1

x3
ln(x) =

1

x3

et donc

(
C ′1(x)
C ′2(x)

)
= x3

− 1

x2
ln(x) +

1

x2
−1

x
ln(x)

1

x2
1

x


 0

2 + x2

x2


ce qui donne

C ′1(x) = − ln(x)(2 + x2)

C ′2(x) = 2 + x2
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et donc

C1(x) = −
∫

ln(x)(2 + x2) dx

= − ln(x)

(
2x+

1

3
x3
)

+

∫
2 +

1

3
x2 dx

= − ln(x)

(
2x+

1

3
x3
)

+

(
2x+

1

9
x3
)

C2(x) = 2x+
1

3
x3

et on obtient pour la solution particulière

ypart(x) = C1(x)v1(x) + C2(x)v2(x)

= − ln(x)

(
2 +

1

3
x2
)

+

(
2 +

1

9
x2
)

+ ln(x)

(
2 +

1

3
x2
)

= 2 +
1

9
x2.

La solution générale de l’équation est donc

y(x) = ypart(x) + yhom(x)

= 2 +
1

9
x2 + C1

1

x
+ C2

1

x
ln(x) , x > 0, C1, C2 ∈ R.

Exercice 4.

i) a). Pour tout y = (y1,−y1 + δ, y3, . . . yn) ∈ E, δ > 0, la boule B(y, δ/2) ⊂ E.

ii) b). Le complémentaire CE = {x ∈ Rn : ||x|| > π} est un sous-ensemble ouvert: si
y ∈ CE, alors B(y, 1

2
(||y|| − π)) ⊂ CE.

iii) a). Pour tout y = (ε1,±ε2, . . . yn) ∈ E, ε1, ε2 > 0, la boule B(y, 1
2
min(ε1, ε2)) ⊂ E.

iv) c). Soit y = (y1, 0, y2, . . . , yn) ∈ E. Pour tout δ > 0, la boule B(y, δ) 3 (y1, δ/2, y2, . . . , yn
et donc B(y, δ) 6⊂ E. Le sous-ensemble CE n’est pas ouvert non plus: soit z =
(0, 0, z3, . . . zn) ∈ CE et donc pour tout δ > 0 la boule B(z, δ) 3 (δ/2, 0, z3, . . . zn) n’est
pas contenue dans CE.

v) c). Soit y = (0, y2 6= y3, y3, . . . yn) ∈ E. Pour tout δ > 0, la boule B(y, δ) 3 (δ/2, y2 6=
y3, y3, . . . yn) et donc B(y, δ) 6⊂ E. Le sous-ensemble CE n’est pas ouvert non plus. On a
z = (0, z2, z3 = z2, . . . zn) ∈ CE). Pour tout δ > 0, la boule B(z, δ) 3 (0, z2 + δ/2, z3 =
z2, . . . , zn) et donc B(z, δ) 6⊂ CE.

vi) b). Le complémentaire CE = {x ∈ Rn : x1 6= 2 ou x2 6= −2} est un sous-ensemble ouvert.
Soit y = (y1, y2, . . . yn) ∈ CE. Alors B(y, 1

2

√
(y1 − 2)2 + (y2 + 2)2) ⊂ CE.

vii) c). Dans toute boule de centre à coordonnées rationnelles il existent toujours des point à
coordonnées irrationnelles, et inversement. C’est un conséquence du théorème de densité
de Q dans R.

viii) a). Pour tout y = (ε, y2, . . . yn) ∈ E, ε > 0, ||y|| < 1, la boule B(y, 1
2
min(ε, 1−||y||)) ⊂ E.
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