EPFL Anna Lachowska
Sections IN, SC 13 mars 2025

Analyse II — Corrigé de la Série 4

Exercice 1.

Pour trouver des solutions de I’équation homogene on utilise I’équation caractéristique: A2 +
pA+ q =0, ou p et g sont des coefficients dans léquation différentielle " 4+ py’ + qy = 0. Pour
trouver une solution particulére on utilise 1’Ansatz convenable pour chaque équation (voir le
cours du 6 mars). Si la partie droite de 1’équation contient plusieurs fonctions exponentielles
et trigonométriques, on utilise le principe de la superposition des solutions.

i) (1) L’équation caracteristique est A*> — 5\ + 6 = 0. Pour les deux solutions linéairement
indépendentes on peut prendre vy (x) = €** et vo(x) = €.
(2) Le nombre a = +i n’est pas une racine de I’équation caracteristique. Le polynome
dans I'expression pour f(z) = (3z% + 1) cos(x) est de degré 2. Donc il existe une solution

particuliere de la forme

Ypart (1) = (Az* + Bx + C) cos(x) + (Dx* + Ex + F) sin(x).

i) (1) L’équation caracteristique est A*> — 5\ + 6 = 0. Pour les deux solutions linéairement
indépendentes on peut prendre vy (z) = €2 et vy(z) = €.
(2) Le nombre a = 3 est une racine de 1’équation caracteristique de multiplicité 1. Le
polynome dans l'expression pour f(z) = €3* est de degré 0. Donc il existe une solution
particuliere de la forme

Ypart () = Aze®.

1) (1) L’équation caracteristique est A*> — 3\ + 2 = 0. Pour les deux solutions linéairement
indépendentes on peut prendre vy (z) = €* et vo(x) = .
(2) Les nombres a = 3 et a = 0 ne sont pas des racines de I’équation caracteristique. Les
polynomes dans 'expression pour f(z) = ze3*+2x2e% sont de degré 1 et 2 respectivement.

Donc il existe une solution particuliere de la forme

Ypart () = (Az + B)e* + (Cx* + Dz + E).

w) (1) L’équation caracteristique est A> — 3\ + 2 = 0. Pour les deux solutions linéairement
indépendentes on peut prendre vy (z) = €* et vy(x) = .
(2) Le nombre a = 2 est une racine de ’équation caracteristique de multiplicité 1, mais
les nombres a = 2 £ i ne sont pas des racines. Les polynomes dans Uexpression f(z) =

e?* sin(x) + €2 sont de degré 0. Donc il existe une solution particuliere de la forme
Ypart(T) = Ae*” sin(x) + Be* cos(z) + Cxe®.
v) (1) L’équation caracteristique est A> — 4\ + 4 = 0. Pour les deux solutions linéairement
indépendentes on peut prendre v;(x) = €2 et vy(x) = xe?®.
(2) Les nombres a = 1 + i ne sont pas des racine de 1’équation caracteristique. Les

polynomes dans 'expression f(z) = e” cos(z) — e” sin(z) sont de degré 0. Donc il existe
une solution particuliere de la forme

Ypart () = Ae” sin(z) + Be” cos(z).

1



vi) (1) L’équation caracteristique est A? + 4\ + 4 = 0. Pour les deux solutions linéairement
indépendentes on peut prendre vy (x) = e et vy(x) = e,
(2) Le nombre a = —2 est une racine de 1’équation caracteristique de multiplicité 2, mais
le nombre a = 2 n’est pas une racine. Les polynomes dans l'expression pour f(x) =
3xe 2 — e%* sont de degré 1 et 0 respectivement. Donc il existe une solution particuliere
de la forme
Ypart () = 2% (Az + B)e > + Ce*.

Maintenant on revient a ’équation (iv):

y' — 3y + 2y = e*(sin(z) + 1)
pour trouver d’abord la solution générale, et puis la solution particuliere y,(z) satisfaisant les
conditions initiales y,(0) = —3 et 3/ (0) = 3. Considérons 'ansatz trouvé vy(z) = Ae*” sin(z) +
Be* cos(x) + Cze**. On calcule

vh(z) = (24 — B)e* sin(x) + (A + 2B)e** cos(x) + Ce** + 2Cxe*,
vy (1) = (3A — 4B)e** sin(x) + (4A + 3B)e*” cos(x) + 4Ce* + 4Cze™.
En remplagant les expressions pour v(x), v (z) dans I’équation on obtient
(3A — 4B)e* sin(x) + (4A + 3B)e* cos(x) + 4Ce* + 4Cxe* —
—3[(2A—B)e* sin(x)+(A+2B)e* cos(x)+Ce* +20ze*|+2[Ae*” sin(x)+ Be** cos(x)+Cxe®]| =
(—A — B)e* sin(x) + (A — B)e** cos(z) + Ce** = e** sin(x) + e**,

d’ott on trouve A= B =—3, C =1.

La solution générale de cette équation s’écrit
T 2x T 2x 1 2x 3 1 2x 2x
y(x) = Cre” 4+ Coe™® + vo(x) = Cre® + Cre™ — 3¢ sin(x) — 3¢ cos(x) + we™".
Pour appliquer les conditions initiales on calcule la dérivée:

1 1 3
Y (z) = Cre” + 2C5e* — 562” cos(x) — 56296 cos(z) — 56% sin(z) + e** + 2re®”.

Alors on a . . 5 )
0O)=Ci+Cy — == —=; "0)=C1+20 —=+1==
y(0) =Ci+ G — 3 5 YO =C+20G-o+1=7,
et donc Cf = —C5 = —1. La solution particuliere recherchée est
x 2z 1 2x _: 1 2x 2z
Yp(z) = —€* + e — 3¢ sin(x) — ¢ cos(z) + xe™.

Finalement on a y,(7/2) = —e™?2 + (1/2 4+ 7/2)e.



Exercice 2.

i) On trouve d’abord la solutions générale de 1’équation homogene a coefficients constants
y" +y = 0. L’équation caracteristique est A> + 1 = 0, donc A\; 2 = +i et on obtient

Ynom () = C cos(z) + Cysin(x), C,Cy,eR, zeR.

Le Wronskien des deux solutions v;(z) = cos(x) et ve(x) = sin(z) est

W [cos(x), sin(z)] = det ( cos(z) Sm(w)) _1

—sin(z) cos(x)

Alors par la méthode de la variation des constantes on cherche une solution particuliere
de la forme ypart () = C1(x) cos(x) + Ca(x) sin(x), ou Cy(z) et Co(x) sont données par les

formules
/ W[(fl, oal( /tan(x) sin(x) dx,
/W[(Z),zfc)lg]; dr = /tan(m) cos(z) dz,

Donc on obtient facilement qui Cy(z) = / sin(x) de = — cos(x) (rappelez-vous qu’on n’a

pas besoin des constantes d’intégration pour une solution particuliere).

Pour trouver C}(z) observons que

—sin(z)®  cos(z)®*—1 cos(z) — 1
cos(z)  cos(x) () cos(x)
et donc )
Cl(ﬂf) = Sin(l’) — / m

Pour trouver cette derniére primitive, on pose le changement de variable ¢ = sin(z) et on
calcule

| o ffsz(& w= | %
; dt =

<x>d‘0:/
- [ = [ s
g,

11—
%(%ﬂﬁ%) dt = %<ln(|1+t|) —1n(y1—t|))
(i) - ez - ()

)

cos(x)

1 ln(' 1 + sin(z) 2) _ m(\ 1 jozl(l;gx)



1 + sin(x)
cos(z)

Ainsi C(z) = sin(z) — m(‘

) et donc
Ypart () = C1(x) cos(x) + Ca(x) sin(x)

_ [sin(x) _ ln(’ L+ sin(z) )} cos(x) — cos(x) sin(x)
)

cos(z)
i) Les points problématiques sont ceux ou cos(z) = 0 ou 1+ sin(z) = 0. La fonction f est
donc bien définie sur tous les autres points, c.-a-d. sur R\ {z € R | 2 = § 4 n7 avec
n € Z}.

Pour zy, = 5 +2nm, ona cos(xy,) =0 et 1+ sin(zy,) =2, et pour tout n € N

()

1 + sin(z)
cos(x)

= — cos(x) m(

1 + sin(z)

xlirggn flo) = xglagn <_ cos(z cos(z)
= lim ( s(z)In(]1 + sin(z )|)> + lim <Cos(a:) ln(|cos(m)|)>
T—Ton T—Tn

= zgrgg (— cos(z)) - hrmr;n In(|1 + sin(z)|) —|—£1_r>r(1) (yIn(Jy]))
=0-In(2)+0=0,

ou la derniere limite en y est calculée par Bernoulli-I'Hospital. En effet, les hypotheses

1
sont satisfaites si on écrit ylIn(|y|) = nl(/|y|) (le vérifier). A priori, on devrait séparer les
)

d 1
cas y > 0 et y < 0 mais comme d—yln(|y|) = ; pour y > 0 et pour y < 0, il suffit de

calculer une seule limite:

@D

1
Yy o1 ) —
—iglg)_?%—l{glg)( y)=0. (1)

lim (y1n(Jy1)) = lim 2%

< =

Si on définit f en ces points par f(z2,) = 0, elle est continue en ces points (on a en effet
fait un prolongement par continuité).

Pour zo,41 =2+ 2n+ 1)1 =3 +2n1, ona cos(Ta,41) =0 et 1+ sin(za,q1) =0.
On fait un changement de variable x = 37“ +2nm + z, alors x — 9,41 correspond a z — 0.
Alors on a sin(2 + 2nm + 2) = sin(2F + 2n7) cos(z) + cos(2F + 2n7)sin(z) = — cos(z) et
cos(3 4 2nm + z) = cos(2F + 2n) cos(z) — sin(3F 4 2nm) sin(z) = sin(z). On calcule

(’1+sin(x) (‘1 ~ cos(2) ) _

cos(z) sin(z)
On utilise les formules 1 — cos(z) = 2sin®(z/2) et sin(z) = 2sin(z/2) cos(z/2), alors on
obtient

lim cos(z)In

T—>T2an+1 z—0

) = lim sin(2) In

= lim(sin(z) In |1 — cos(z)| — sin(z) In | sin(z)]).

z—0

lim(sin(2) In |1 — cos(z)| — sin(2) In | sin(2)])

z—0

= lim(sin(z) In(2sin?*(2/2)) — sin(2) In | sin(z)|) =

z—0
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= lim (sin(z) In2 4+ 4 cos(z/2) sin(z/2) In | sin(z/2)| — sin(z) In | sin(z)|) = 0,

z2—0

puisque la limite de chaque composante de la somme est zéro, ot on utilise la limite
lim, o yIn|y| = 0, voir (1) ci-dessus.

Si on définit f en ces points par f(zg9,41) = 0 (prolongement par continuité), elle est aussi
continue en ces points et donc sur tout R.

Les points qui pourraient poser probleme pour la dérivabilité sont les points ou f n’était
pas continue a la base, c¢’est-a-dire {:(:n =5+nm:ne€ Z}.

Etudions d’abord la dérivabilité de f en les points de la forme z5,. Pour ces points on a

—cos(z) = sin(z — ) =sin(z — Z — 2n7) = sin(z — 22,)

et donc
o L) = fan) - cos(a) m(‘lﬂ_m(f) )
T, X — Top T Ton L — Top COS($)
gy ) (Lot
Ty, T — Top cos(z)
. sin(x — x9,) :
=1 —= 1 (l 1 —1 >
A ol (In([1+ sin(@)]) — In(fcos(z)])

=1-(In(2) + 00) = 0

parce que lim —In(|cos(z)|) = co. Ainsi f n’est pas dérivable en x5, pour tout n € N.
Iﬁl‘2n

Pour les points de la forme 5,1 on a

—cos(z) = — sin(x + %) = — sin(x — (—g — 2n7r)) = —sin(z — Topy1) ,
et donc
o IE) = fe) | —cos(a) m(r+ﬂmu>>
TTon i T — Tan+1 T=Topt1 L — Ton+41 cos(x)
— lim _sin(@ — z9n41) 1n< 1 + sin(z) )
P T — Tont1 cos(x)
= (-1) - (~o0) =
parce qu’il suit par la regle de Bernoulli-I’'Hospital
: lim cos(z)
_ 1 +sin(z) u . cos(x) T—Tant1 0
llm ———= = lim : = — . =—-=0. (2)
e—zon1 COS(T) e—z2n1 — Sin(x) lim (—sin(z)) 1
T—T2n+1
1+
que lim ln( —|—s—1n(x) ) = —o0. Ainsi f n’est pas dérivable en x5, pour tout n € N.
Ty cos(x)

La fonction f n’est donc pas dérivable en x,, = § + nm. Ceci est une conséquence du fait
que f est solution de I’équation différentielle y” + y = tan(x). En effet, si f était (deux
fois) dérivable en ces points, on aurait une contradiction parce que le membre de droite
tan(z) n’est pas défini en ces points.

La fonction f est de classe C* dans les intervalles | — 5 + n, 2 4 nr| pour tout n € Z.



iii) On considere la solution générale de la forme

1 + sin(z)

Y(@) = Ypart (2) + Crsin(z) + O3 cos(z) = — cos() ln< cos(z)

) +C sin(z) 4 Cy cos(x),
ou Cy et Cy sont des constantes réelles. On se souvient que C}(z)vy(z) + Ch(z)ve(z) =0
par la méthode de la variation des constantes, et donc on a

1 + sin(x)
cos(x)

) = Gl ) + Colalr) = ~(sne) — | )sinte) — cost(o),

La solution maximale est définie sur I'intervalle maximale ot la fonction est de classe C?

et qui contient le point x = 0, puisque elle doit satisfaire les conditions initiales y(0) =
T T

0,7%'(0) = 1. Donc 'intervalle de définition est | — Z, Z[. Pour déterminer les constantes C}

272
et Cy on calcule
y(0) =Cy =0, y(0)=-1+C, =1.

Alors € = 2,C5 = 0, and on a la solution maximale

1 + sin(x)
cos(z)

y(x) = — cos(z) ln(‘

> + 2sin(x), xe]—g,g[.

Exercice 3.

Premiere méthode : introduisons la nouvelle variable indépendante ¢ par ¢ = In(x) et posons
2(t) = y(z(t)) = y(e'). Alors

(1) = Sa(0) = S(e) = y'(e)

Z//<t> — et y/(et) + 62t y//(et)
De plus

2y’ +3zy +y = (2 (e) + €'y (¢") + 2¢"/ (¢") + y(e)
() + 22/() + 2(0)
et donc
2y + 3y +y=2+2" & 2t r=246".

On résout alors I'équation différentielle en z qui est a coefficients constants. Son équation
caractéristique est A2 +2\ 4+ 1 =0 qui admet une racine double A = —1. Donc

Zhom(t) = Cre™" + Cote™ .

On cherche une solution particuliere par la méthode des coefficients indéterminés. Comme
a = 0 et a = 2 ne sont pas des solutions de I’équation caracteristique, on utilise I’Ansatz
Zpart = Ae* + B. Comme

"

Zpart + 2Z£)art + Zpart = e +2 = (414 +2-2A+ A)€2t L+ B=¢*19 ,

et B=2. Ainsi zpat(t) = 1e2t 1 2 et la solution générale est

ona A= 5

1
9

Z(t) = Zhom(t> -+ Zpart(t> = Cleit -+ Cgteit + %621‘/ + 27 t, Cl, 02 € R .
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En revenant a la variable x par la substitution ¢ = In(z), on trouve la solution de 1’équation
initiale qui est

1 1
y(r) = <Cl +021H(93)>E + §x2 +2, x €]0,00[ et C,Cy €R .

1
Deuxieme méthode : Puisque v;(x) = — # 0 est une solution de I’équation homogene
x

3 1
y'+ -y + —5y=0, x>0,
x x
on trouve la second solution linéairement indépendente par la formule (voir le cours du 27

février):
e—P(ac)

vo(z) = Ul(iv)/mdﬂf,

3
ou P(x) est une primitive de la fonction p(x) = —. Donc on a P(z) = 3In(z), z > 0 et
T

1 [ e 3@ 1 (1 1
Ug(x):E/de:;/de:Eln(x), x> 0.
22
La solution générale de 1’équation homogene est donc
1 1
yhom(w) =C1—+ Cg—ln(l’), x>0, Cl, Cy € R.
x x

Nous utilisons la méthode de la variation des constantes pour obtenir une solution particuliere.
On a (voir le cours du 4 mars)

- il 0
= . In(z) Ci(z)Y _ 94 o2
1 1 ' 1 C(x)
—P _ﬁ H(SC) + P $2
Pour le Wronskien on a
1 1 1 1
w(z) = —;ln(w) + =+ o In(x) = ]
et donc
1 1 1
- - _Z 0
(C’{(I)) _ . In(x) + o - In(z) 2 52
Cy(x) 1 1 :
2 x z

ce qui donne

Ci(x) = —In(@)(2 + 7)
Ch(z) =2+ 2?



et donc

Ci(z) = — /ln(x)(Z +2%) dzx
= —In(z) (290 + %x?’) + / 24 za’dv
— —In(x) (Qx - %gﬁ) + (2:5 + %:::3)

1
Cy(x) =22 + ga:?’

et on obtient pour la solution particuliere

Ypart(2) = Cr(z)v1(7) + Co(2)v2(7)

= —In(z) (2 + %ﬂ) + (2 + %ﬁ) + In(z) (2 + %ﬁ)

1
=24 —z2.
+9SC

La solution générale de I’équation est donc
y(x) = Ypart (x) + yhom(l')
1 1 1
= 2—|—§J}2+Ol— +02—1Il<1’> , x>0,C, Cy R,
x x

Exercice 4.
i) a). Pour tout y = (y1, —y1 + 0,ys,...yn) € E, § > 0, la boule B(y,d/2) C E.

ii) b). Le complémentaire CE = {x € R" : ||z|| > 7} est un sous-ensemble ouvert: si
y € CE, alors B(y, 5(||ly|| — 7)) C CE.

i) a). Pour tout y = (e1,teq,...yn) € E, £1,62 > 0, la boule B(y, %min(el,ag)) Cc E.

iv) ¢). Soit y = (y1,0,y2,...,y,) € E. Pour tout 6 > 0, la boule B(y,0) 3 (y1,9/2,92, ..., Yn
et donc B(y,0) ¢ E. Le sous-ensemble C'E' n’est pas ouvert non plus: soit z =
(0,0, z25,...2,) € CE et donc pour tout 6 > 0 la boule B(z,6) 3 (§/2,0, 23, ... 2,) nest
pas contenue dans C'E.

v) ¢). Soit y = (0,92 # Y3, Ys,---Yn) € E. Pour tout 6 > 0, la boule B(y,d) > (§/2,y, #
Y3, Y3, - - - Ypn) et donc B(y,d) ¢ E. Le sous-ensemble C'E n’est pas ouvert non plus. On a
2 =(0,29,23 = 29,...2,) € CE). Pour tout 6 > 0, la boule B(z,6) > (0,22 + 0/2,23 =
Z9y...,2,) et donc B(z,0) ¢ CE.

vi) b). Le complémentaire CE = {x € R" : 21 # 2 ou x9 # —2} est un sous-ensemble ouvert.
Soit y = (y1, Y2, - - Ya) € CE. Alors B(y, 34/(y1 — 2)* + (y2 +2)?) C CE.

vii) ¢). Dans toute boule de centre a coordonnées rationnelles il existent toujours des point a
coordonnées irrationnelles, et inversement. C’est un conséquence du théoreme de densité

de Q dans R.

viti) a). Pour tout y = (2,4, ...yn) € E, £ > 0, ||y|| < 1, la boule B(y, smin(e,1—|Jy||)) C E.



