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Analyse II – Corrigé de la Série 14

Exercice 1.

On utilise les coordonnées cylindriques (r, ϕ, z) définies par G : D̄ → D telle que

(x, y, z) = G(r, ϕ, z) =
(
r cos(ϕ), r sin(ϕ), z

)
.

Le Jacobien est donc

JG(r, ϕ, z) = det

cos(ϕ) −r sin(ϕ) 0
sin(ϕ) r cos(ϕ) 0

0 0 1

 = r .

Pour la sphère on a r2 + z2 = R2. Donc on obtient les limites d’intégration: (r, ϕ, z) ∈
[0,
√
R2 − z2]× [0, 2π[×[−R,R].

Alors on la calcule :

V =

∫ 2π

0

dϕ

∫ R

−R

∫ √R2−z2

0

r dr dz = 2π

∫ R

−R

[
1

2
r2

]r=√R2−z2

r=0

dz = 2π

∫ R

−R

R2 − z2

2
dz

= 2π

[
R2z

2
− z3

6

]z=R
z=−R

= 2π

(
R3

3
−
(
−R

3

3

))
=

4πR3

3
.

Exercice 2.

i) Le domaine D est représenté à la Fig. ??. Pour le changement de variable, on définit
l’application H : D → D̄ telle que (u, v) = H(x, y) avec{

u = x2 + y2 = H1(x, y)

v = x2 − y2 = H2(x, y)

Il suit de la définition de D que D̄ = [5, 9]× [1, 4] . La matrice Jacobienne de H est

JH(x, y) =

(
∂xH1(x, y) ∂yH1(x, y)

∂xH2(x, y) ∂yH2(x, y)

)
=

(
2x 2y
2x −2y

)
et son Jacobien est det

(
JH(x, y)

)
= −8xy .

Soit G = H−1 : D̄ → D la transformation inverse telle que (x, y) = G(u, v). Pour calculer
l’intégrale, on a besoin du Jacobien de G qui est

det
(
JG(u, v)

)
=

[
1

det
(
JH(x, y)

)]
(x,y)=G(u,v)

=

[
− 1

8xy

]
(x,y)=G(u,v)

Comme xy 6= 0 sur D, le jacobien de G est bien défini. L’intégrale est donc
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∫∫
D

x3y3 dx dy =

∫∫
D̄

[
x3y3

]
(x,y)=G(u,v)

· |det (JG(u, v))| du dv

=

∫∫
D̄

[
x3y3 · 1

8xy

]
(x,y)=G(u,v)

du dv =
1

8

∫∫
D̄

[
x2y2

]
(x,y)=G(u,v)

du dv.

Pour exprimer x et y en fonction de u et v, observons que 2x2 = u + v et 2y2 = u− v .
Ainsi

x2y2 =
1

4
(u+ v)(u− v) =

1

4
(u2 − v2)

et l’intégrale devient∫∫
D

x3y3 dx dy =
1

32

∫ 4

1

∫ 9

5

(u2 − v2) du dv =
1

32

∫ 4

1

[
1

3
u3 − uv2

]u=9

u=5

dv

=
1

32

∫ 4

1

(
93 − 53

3
− 4v2

)
dv =

1

24

∫ 4

1

(151− 3v2) dv

=
1

24

[
151v − v3

]4

1
=

390

24
=

65

4
.
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ii) Le domaine D se trouve dans le premier quadrant (car x, y ≥ 0) et est délimité d’une part
par les droites y = x et y = 4x et d’autre part par les courbes xy = 1 et xy = 2 (cf.
Fig. ??).
Pour calculer l’intégrale on définit le changement de variable H : D → D̄, où (u, v) =
H(x, y) avec {

u = xy = H1(x, y)

v = y
x

= H2(x, y)

et, par définition de D, D̄ = [1, 2]× [1, 4]. La matrice Jacobienne de H est

JH(x, y) =

(
∂xH1(x, y) ∂yH1(x, y)

∂xH2(x, y) ∂yH2(x, y)

)
=

(
y x
− y
x2

1
x

)
et son Jacobien est det

(
JH(x, y)

)
= 2 y

x
qui est bien défini sur D car x 6= 0.
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Soit G = H−1 : D̄ → D la transformation inverse telle que (x, y) = G(u, v). Le Jacobien
de G est alors

det
(
JG(u, v)

)
=

[
1

det
(
JH(x, y)

)]
(x,y)=G(u,v)

=

[
x

2y

]
(x,y)=G(u,v)

=
1

2v

car v = y
x
. Comme v > 0 sur D̄, ce Jacobien est bien défini. Ainsi∫∫

D

x2y2 dx dy =

∫ 4

1

∫ 2

1

u2

2v
du dv =

∫ 4

1

1

2v

[
1

3
u3

]u=2

u=1

dv =

∫ 4

1

7

6

1

v
dv

=
7

6

[
ln(v)

]4

1
=

7

6
ln(4) =

7

3
ln(2) .

Exercice 3.

i) ∫ 3

0

dx

∫ 1

1− 1
3
x

f(x, y) dy =

∫ 1

0

dy

∫ 3

3−3y

f(x, y) dx.

Le domaine d’intégration est représenté à la Fig. ??.

D = {(x, y) ∈ R2 : 0 < x < 3, 1−1

3
x < y < 1} = {(x, y) ∈ R2 : 0 < y < 1, 3−3y < x < 3}.

Fig. 3

ii) ∫ 1

0

dx

∫ 1
2
x+ 1

2

1
2

f(x, y) dy +

∫ 2

1

dx

∫ 1
x

1
2

f(x, y) dy =

∫ 1

1
2

dy

∫ 1
y

2y−1

f(x, y) dx.

Le domaine d’intégration est représenté à la Fig. ??.

D = {(x, y) ∈ R2 : 0 < x < 1,
1

2
< y <

1

2
x+

1

2
}∪{(x, y) ∈ R2 : 1 < x < 2,

1

2
< y <

1

x
} =

= {(x, y) ∈ R2 :
1

2
< y < 1, 2y − 1 < x <

1

y
}.
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Fig. 4

iii) ∫ 0

−1

dy

∫ ey

− 2
e
y− 1

e

f(x, y) dx =

∫ 1
e

− 1
e

dx

∫ 0

− 1
2
− e

2
x

f(x, y) dy +

∫ 1

1
e

dx

∫ 0

ln(x)

f(x, y) dy.

Le domaine d’intégration est représenté à la Fig. ??.

D = {(x, y) ∈ R2 : −1 < y < 0, −2

e
y − 1

e
< x < ey} =

= {(x, y) ∈ R2 : −1

e
< x <

1

e
, −e

2
x−1

2
< y < 0}∪{(x, y) ∈ R2 :

1

e
< x < 1, ln(x) < y < 0}.

Fig. 5

Exercice 4.

Le volume cherché V est donné par une intégrale triple sur le domaine représenté à la Fig. ??
ci-dessous. Observons que le domaine est défini par les inégalités suivantes :

x2 + z2 ≤ 1 , x+ y + z ≥ 1 , 2y − z ≤ 6 et z ≥ 0 .

A partir de ces contraintes (et en regardant la Fig. ??), on trouve que les bornes de l’intégrale
triple sont

−1 ≤ x ≤ 1, 0 ≤ z ≤
√

1− x2 et 1− x− z ≤ y ≤ 3 +
z

2
.
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On a donc

V =

∫ 1

−1

∫ √1−x2

0

∫ 3+ z
2

1−x−z
dy dz dx =

∫ 1

−1

∫ √1−x2

0

(
3 +

z

2
− (1− x− z)

)
dz dx

=

∫ 1

−1

∫ √1−x2

0

(
2 + x+

3

2
z

)
dz dx =

∫ 1

−1

[
(2 + x)z +

3

4
z2

]√1−x2

0

dx

=

∫ 1

−1

(
(2 + x)

√
1− x2 +

3

4
(1− x2)

)
dx = 2

∫ 1

−1

√
1− x2 dx+

3

4

∫ 1

−1

(1− x2) dx ,

où la dernière égalité est justifiée par le fait que la fonction x
√

1− x2 est impaire et donc son
intégrale entre −1 et 1 est nulle.
Pour la première intégrale, on pose le changement de variable x = ϕ(t) = sin(t) si bien que
ϕ′(t) = cos(t) et la nouvelle variable t varie entre −π

2
et π

2
. On trouve alors∫ 1

−1

√
1− x2 dx =

∫ π
2

−π
2

√
1− ϕ(t)2 · ϕ′(t) dt =

∫ π
2

−π
2

cos(t)2 dt

qu’on intègre par parties avec f ′(t) = g(t) = cos(t) :∫ π
2

−π
2

cos(t)2 dt =
[

sin(t) cos(t)
]π

2

−π
2

+

∫ π
2

−π
2

sin(t)2 dt = 0 +

∫ π
2

−π
2

(
1− cos(t)2

)
dt

= π −
∫ π

2

−π
2

cos(t)2 dt .

Il s’en suit que ∫ π
2

−π
2

cos(t)2 dt =
π

2

et donc

V = 2 · π
2

+
3

4

∫ 1

−1

(1− x2) dx = π +
3

4

[
x− 1

3
x3

]1

−1

= π +
3

4
· 4

3
= π + 1 .

Exercice 5.

On utilise les coordonnées cylindriques (r, ϕ, z) définies par G : D̄ → D telle que

(x, y, z) = G(r, ϕ, z) =
(
r cos(ϕ), r sin(ϕ), z

)
.
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Le Jacobien est donc

JG(r, ϕ, z) = det

cos(ϕ) −r sin(ϕ) 0
sin(ϕ) r cos(ϕ) 0

0 0 1

 = r .

Les équations du cône x2 + y2 =
(

1
2
z − 3

)2
et de la sphère x2 + y2 + (z− 1)2 = 25 s’écrivent

en coordonnées cylindriques comme r2 =
(

1
2
z − 3

)2
et r2 + (z − 1)2 = 25 . A l’extérieur

du cône on a alors r2 ≥
(

1
2
z − 3

)2
et à l’intérieur de la sphère on a r2 + (z − 1)2 ≤ 25. En

combinant ces deux équations on obtient(
1

2
z − 3

)2

+ (z− 1)2 ≤ 25 ⇔ 1

4
z2− 3z+ 9 + z2− 2z+ 1 ≤ 25 ⇔ 5

4
z2− 5z− 15 ≤ 0

⇔ z2 − 4z − 12 ≤ 0 ⇔ (z + 2)(z − 6) ≤ 0 ⇔ z ≥ −2 et z ≤ 6 .

Ainsi

D̄ =
{

(r, ϕ, z) : 0 ≤ ϕ ≤ 2π , 3− 1
2
z ≤ r ≤

√
25− (z − 1)2 , − 2 ≤ z ≤ 6

}
et le volume est donc∫∫∫

D

dx dy dz =

∫∫∫
D̄

|JG(r, ϕ, z)| dr dϕ dz =

∫ 6

−2

∫ √25−(z−1)2

z
2
−3

∫ 2π

0

r dϕ dr dz

= 2π

∫ 6

−2

[
1

2
r2

]√25−(z−1)2

z
2
−3

dz = π

∫ 6

−2

(
15 + 5z − 5

4
z2

)
dz

= 5π

[
3z +

1

2
z2 − 1

12
z3

]6

−2

= 5π

(
24 + 16− 56

3

)
=

320π

3
.

Comme illustration, l’intersection de D avec le plan x = 0 est représentée à la Fig. ??.
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Exercice 6.

La masse totale du domaine D est donnée par l’intégrale triple

I =

∫∫∫
D

ρ(x, y, z) dx dy dz .
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Le domaine est donné par les inégalités

0 ≤ x ≤ 1 , x2 ≤ y ≤ 1 et y ≤ z ≤ 1 ,

et l’intégrale triple peut donc être exprimée par des intégrales itérées

I =

∫ 1

0

(∫ 1

x2

(∫ 1

y

z7/2 e−y
3/2z3/2 dz

)
dy

)
dx .

Pour faciliter l’intégration, on change l’ordre d’intégration. Il faut donc récrire les inégalités en
changeant le sens de parcours des régions définies par les deux dernières inégalités (cf. Fig. ??).

x2 ≤ y ≤ 1 y ≤ z ≤ 1

x

y

0 1

0

1

y � x2

y Î Ax2, 1E

x Î B0, y F

y

z

0 1

0

1

z � y
y Î @z, 1D

z Î @0, yD

Fig. 8

Les nouvelles inégalités décrivant le domaine D sont

0 ≤ z ≤ 1 , 0 ≤ y ≤ z et 0 ≤ x ≤ √y .

L’intégrale triple peut donc aussi être exprimée en terme des intégrales itérées suivantes :

I =

∫ 1

0

(∫ z

0

(∫ √y
0

z7/2 e−y
3/2z3/2 dx

)
dy

)
dz .

On a successivement

I =

∫ 1

0

∫ z

0

[
z7/2 e−y

3/2z3/2x
]x=

√
y

x=0
dy dz =

∫ 1

0

∫ z

0

z7/2 e−y
3/2z3/2√y dy dz

I =

∫ 1

0

∫ z

0

z7/2

(
−2

3

1

z3/2

)
·
(
−3

2
z3/2y1/2

)
e−y

3/2z3/2︸ ︷︷ ︸
=ϕ′(y) exp(ϕ(y))

dy dz

=

∫ 1

0

[
−2

3

1

z3/2

(
z7/2 e−y

3/2z3/2
)]y=z

y=0

dz = −2

3

∫ 1

0

[
z2 e−y

3/2z3/2
]y=z

y=0

dz

= −2

3

∫ 1

0

(
z2 e−z

3 − z2
)
dz

et donc

I = −2

3

∫ 1

0

(
z2 e−z

3 − z2
)
dz = −2

3

[
−1

3
e−z

3 − 1

3
z3

]1

0

= −2

3

(
−1

3
e−1 − 1

3
+

1

3

)
=

2

9e
.
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