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Analyse II – Corrigé de la Série 12

Exercice 1.

Soit F (x, y, z) = xz2 − 2x2y + y2z. En évaluant F au point (1, 1, z0) on a

F (1, 1, z0) = 0 ⇔ z20 − 2 + z0 = 0 ⇔ z0 = 1 ou z0 = −2 .

Selon le cours sur les fonctions implicites, l’équation du plan tangent à la surface F (x, y, z) = 0
au point (x0, y0, z0) est

〈∇F (x0, y0, z0), (r̄ − r̄0)〉 = 0, où r̄ = (x, y, z) et r̄0 = (x0, y0, z0).

Puisque
∇F = (∂xF, ∂yF, ∂zF ) =

(
z2 − 4xy, −2x2 + 2yz, 2xz + y2

)
,

on a pour le point (x0, y0, z0) = (1, 1, 1)

∇F (1, 1, 1) = (−3, 0, 3)

et l’équation du plan tangent estx− 1
y − 1
z − 1

 ·
−3

0
3

 = 0 ⇔ −3(x− 1) + 0(y − 1) + 3(z − 1) = 0 ⇔ x− z = 0 .

Pour (x0, y0, z0) = (1, 1,−2) on a

∇F (1, 1,−2) = (0,−6,−3)

et l’équation du plan tangent estx− 1
y − 1
z + 2

 ·
 0
−6
−3

 = 0 ⇔ 0(x− 1)− 6(y − 1)− 3(z + 2) = 0 ⇔ 2y + z = 0 .

Exercice 2.

i) On cherche les extremums de la fonction-objectif f(x, y) = x3 + y3 sous la contrainte
g(x, y) = x4 + y4 − 32 = 0 . Notons que ∇g(x, y) = (4x3, 4y3) = 0 ⇔ (x, y) = 0 mais que
g(0, 0) 6= 0 et donc ∇g(x, y) 6= 0 pour tout (x, y) satisfaisant g(x, y) = 0.
On cherche les solutions du système

3x2 − 4λx3 = x2(3− 4λx) = 0 (1)

3y2 − 4λy3 = y2(3− 4λy) = 0 (2)

−(x4 + y4 − 32) = 0 (3)

A partir de (1) et (2) on trouve plusieurs solutions :

(1) ⇒ x = 0 ou λx =
3

4
et (2) ⇒ y = 0 ou λy =

3

4
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• Si x = y = 0, (3) n’est pas satisfaite, donc impossible.

• Si x = 0, alors (3) implique que y = ± 4
√

32 = ±2 4
√

2. Il existe alors une valeur de λ pour
satisfaire (2).

• Si y = 0, alors x = ±2 4
√

2 et (1) peut être satisfaite.

• Si aucune des variables n’est nulle, alors x = y = 3
4λ

par (1) et (2). Par (3) il suit que
2 81

256λ4
= 32 ⇒ x = y = ±2.

Les solutions du système sont donc

(x, y) ∈
{

(0, 2
4
√

2), (0,−2
4
√

2), (2
4
√

2, 0), (−2
4
√

2, 0), (2, 2), (−2,−2)
}

et on a le tableau suivant

(x, y) (0, 2 4
√

2) (0,−2 4
√

2) (2 4
√

2, 0) (−2 4
√

2, 0) (2, 2) (−2,−2)

f(x, y) 8 · 23/4 −8 · 23/4 8 · 23/4 −8 · 23/4 16 −16

Puisque le sous-ensemble défini par la contrainte est compact et la fonction est continue, elle
atteint son minimum et maximum sous la contrainte. Comme 23/4 < 2, la valeur maximale
de f est 16, atteint en (2, 2), et la valeur minimale est −16, atteint en (−2,−2).

ii) On cherche les extremums de f sur l’ensemble Γ := {(x, y, z) : g1(x, y, z) = 0 et g2(x, y, z) =
0} avec g1(x, y, z) = x2+y2+z2−1 et g2(x, y, z) = x−y−1. Pour montrer que ∇g1(x, y, z) =
(2x, 2y, 2z) et ∇g2(x, y, z) = (1,−1, 0) sont linéairement indépendants sur Γ, supposons
que α∇g1(x, y, z) + β∇g2(x, y, z) = 0 . Du système

αx+ β = 0

αy − β = 0

αz = 0

il suit que si α = 0 alors β = 0. Si α 6= 0, alors z = 0 et la somme des deux premières
équations donne y = −x. Observons g2(x,−x, 0) = 2x− 1 = 0 implique x = 1

2
= −y mais(

1
2
,−1

2
, 0
)
/∈ Γ à cause de g1. Ainsi ∇g1 et ∇g2 sont linéairement indépendants sur Γ.

On cherche les solutions du système

∇f(x, y, z) = λ∇g1(x, y, z) + µ∇g2(x, y, z)

g1(x, y, z) = 0

g2(x, y, z) = 0

On obtient 

1− 2λx− µ = 0 (1)

1− 2λy + µ = 0 (2)

1− 2λz = 0 (3)

x2 + y2 + z2 − 1 = 0 (4)

x− y − 1 = 0 (5)

Par (3) on sait que λ 6= 0 et donc z = 1
2λ

. Ensuite

(1) + (2) ⇒ 2− 2λ(x+ y) = 0 ⇒ x+ y =
1

λ
= 2z
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De plus (5) ⇒ y = x− 1 et donc z = x− 1
2

. On insère ces expressions dans (4)

x2 + (x− 1)2 +

(
x− 1

2

)2

− 1 = 3x2 − 3x+
1

4
= 0 ,

ce qui donne deux solutions :

x =
3±
√

6

6
=

1

2
± 1√

6
⇒ y = −1

2
± 1√

6
et z = ± 1√

6

et les solutions du système sont

(x, y, z) ∈
{(

1

6

(
3 +
√

6
)
,

1

6

(
− 3 +

√
6
)
,

1√
6

)
,

(
1

6

(
3−
√

6
)
,
1

6

(
− 3−

√
6
)
,− 1√

6

)}
.

Puisque le sous-ensemble défini par les contraintes est compact et la fonction est con-
tinue, elle atteint son minimum et maximum sous les contraintes. La fonction f ad-

met un maximum en
(

1
6

(
3 +
√

6
)
, 1
6

(
−3 +

√
6
)
, 1√

6

)
de valeur

√
3
2

et un minimum en(
1
6

(
3−
√

6
)
, 1
6

(
−3−

√
6
)
,− 1√

6

)
de valeur −

√
3
2
.

Exercice 3.

On cherche les extremums de f(x, y, z) = z sous la contrainte g(x, y, z) = 4x2+3y2+2yz+3z2−
4x−1 = 0 . Notons que∇g(x, y, z) = (8x−4, 6y+2z, 2y+6z) = (0, 0, 0) ⇔ (x, y, z) =

(
1
2
, 0, 0

)
mais g

(
1
2
, 0, 0

)
= −2 6= 0 et donc ∇g 6= 0 pour tout (x, y, z) tel que g(x, y, z) = 0. La condition

nécessaire pour f(x, y, z) d’avoir un extremum sous contrainte g(x, y, z) = 0 est

∇f(x, y, z) = λ∇g(x, y, z).

Il faut résoudre le système
λ(8x− 4) = 0 (1)

λ(6y + 2z) = 0 (2)

1− λ(2y + 6z) = 0 (3)

4x2 + 3y2 + 2yz + 3z2 − 4x− 1 = 0 (4)

Observons que λ 6= 0 à cause de (3). Par (1) on a alors x = 1
2

et par (2) on a z = −3y, qu’on
insère dans (3) pour obtenir y = − 1

16λ
. Tout cela inséré dans (4) donne

1 +
3

256λ2
− 6

256λ2
+

27

256λ2
− 2− 1 =

24

256λ2
− 2 = 0 ⇒ λ2 =

12

256
⇒ λ = ±2

√
3

16

⇒ y = ∓ 1

2
√

3
et z = ±

√
3

2
.

Ainsi les solutions du système sont

(x, y, z) ∈

{(
1

2
,−
√

3

6
,

√
3

2

)
,

(
1

2
,

√
3

6
,−
√

3

2

)}
.

Puisque le sous-ensemble défini par la contrainte est compact et la fonction est continue, elle
atteint son minimum et maximum sous la contrainte. Alors les valeurs maximale et minimale
de z sont

√
3
2

et −
√
3
2

; elles sont réalisées aux points
(

1
2
,−
√
3
6
,
√
3
2

)
et

(
1
2
,
√
3
6
,−
√
3
2

)
.

Exercice 4.
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i) Cherchons d’abord les extremums de f à l’intérieur du domaine D = {(x, y) : x2 +y2 ≤ 32}.
Ils se trouvent parmi les points stationnaires de f :{

fx = 4x − y − 6 = 0
fy = −x + 4y − 6 = 0

d’où le seul point stationnaire x1 = y1 = 2.

Soit g(x, y) = x2+y2−32. Alors ∇g(x, y) = (2x, 2y) = 0 ⇔ (x, y) = (0, 0) mais g(0, 0) 6= 0
et donc∇g 6= 0 sur le bord de D. On peut donc trouver les extremums de f sur le bord de D,
qui est un sous-ensemble compact de R2, par la méthode des multiplicateurs de Lagrange.
On écrit la condition nécessaire

∇f(x, y) = λ∇g(x, y)

ce qui donne le système d’équations
4x− y − 6− 2λx = 0 (1)

−x+ 4y − 6− 2λy = 0 (2)

x2 + y2 − 32 = 0 (3)

En faisant (1)− (2) on obtient (x− y)(5− 2λ) = 0 , c.-à-d. y = x ou λ = 5
2
.

Si y = x , alors on obtient les solutions x2 = y2 = 4 et x3 = y3 = −4 de (3).

Si λ = 5
2
, alors y = −(x + 6) par (1) et (3) devient x2 + 6x + 2 = 0, d’où on trouve

x4 = −3 +
√

7, y4 = −3−
√

7 et x5 = −3−
√

7, y5 = −3 +
√

7.

Les valeurs maximale et minimale de f sur le domaine D sont réalisées parmi les points
(xi, yi) (i = 1, . . . , 5). En évaluant f en ces cinq points, on trouve

f(x1, y1) = −12, f(x2, y2) = 0, f(x3, y3) = 96, f(x4, y4) = 98, f(x5, y5) = 98.

Ainsi, la valeur minimale de f est −12, atteinte en (2, 2), et la valeur maximale est 98,
atteinte en

(
−3 +

√
7,−3−

√
7
)

et
(
−3−

√
7,−3 +

√
7
)
.

Dans l’Ex. 3 ii) de la Série 11 on a calculé les extremums de la même fonction f sur le
demi-disque positif du même rayon, noté ici par D+. Le minimum de f était atteint en
(2, 2) et le maximum en (−4

√
2, 0). Les extremums de f sur D doivent donc être au moins

aussi extrêmes que ceux sur D+. En l’occurrence, le minimum est le même, mais la fonction
f atteint des valeurs plus grandes sur le demi-cercle inférieur que sur D+ si bien que le
maximum a changé.

ii) Soit D = {(x, y, z) : x2 + y2 + z2 ≤ 4} la boule considérée. On commence par chercher les
extremums de f à l’intérieur de D. Les points stationnaires de f satisfont

fx = 2x− 2 = 0

fy = 2y + 2 = 0

fz = 2z − 1 = 0

⇒ (x, y, z) =

(
1,−1,

1

2

)
est le seul point stationnaire

qui est bien à l’intérieur de D car 12 + (−1)2 +
(
1
2

)2
= 9

4
≤ 4.

Pour trouver les extremums de f sur le bord de D, qui est un sous-ensemble compact
de R3, on définit g(x, y, z) = x2 + y2 + z2 − 4 en sorte que le bord de D est l’ensemble
{(x, y, z) : g(x, y, z) = 0}. Notons qu’on a ∇g(x, y, z) = (2x, 2y, 2z) = 0 ⇔ x = y = z = 0
mais g(0, 0, 0) = −4 6= 0 et donc ∇g 6= 0 sur le bord de D.

4



On introduit la condition
∇f(x, y, z) = λ∇g(x, y, z)

et on résout le système
2x− 2− 2λx = 2(1− λ)x− 2 = 0 (1)

2y + 2− 2λy = 2(1− λ)y + 2 = 0 (2)

2z − 1− 2λz = 2(1− λ)z − 1 = 0 (3)

x2 + y2 + z2 − 4 = 0 (4)

Comme λ 6= 1 (sinon (1) à (3) ne sont pas satisfaites), on peut diviser par 1−λ pour obtenir
à partir de (1) à (3)

x =
1

1− λ
, y = − 1

1− λ
, z =

1

2(1− λ)

qu’on met ensuite dans (4) qui devient

2

(1− λ)2
+

1

4(1− λ)2
− 4 = 0 ⇔ 9− 16(1− λ)2 = 0

⇔ (1− λ) = ±3

4
⇔ λ1 =

7

4
, λ2 =

1

4
.

Ainsi on a

x1 = −4

3
, y1 =

4

3
, z1 = −2

3
et x2 =

4

3
, y2 = −4

3
, z2 =

2

3
.

On calcule la valeur de f aux extremums potentiels sur D

(x, y, z)
(
1,−1, 1

2

) (
−4

3
, 4
3
,−2

3

) (
4
3
,−4

3
, 2
3

)
f(x, y, z) −7

2
35
4

−13
4

Ainsi le minimum de f sur D est −7
2
, atteint en

(
1,−1, 1

2

)
, et le maximum est 35

4
, atteint

en
(
−4

3
, 4
3
,−2

3

)
.

Exercice 5.

i) Soient x et y les longueurs des cathètes d’un triangle rectangle. Son aire est alors A = xy
2

et l’hypothénuse est de longueur
√
x2 + y2. Pour simplifier, on définit une fonction-objectif

équivalente, c.-à-d. f(x, y) = x2 + y2 qu’on veut minimiser sous la contrainte g(x, y) =
xy − 2A = 0.

Notons que ∇g(x, y) = (y, x) = (0, 0) ⇔ (x, y) = (0, 0) mais que g(0, 0) = −2A 6= 0. Donc
∇g(x, y) 6= 0 pour tout (x, y) satisfaisant g(x, y) = 0. La condition nécessaire pour avoir un
extremum de f sous la contrainte g(x, y) = 0 est

∇f(x, y) = λ∇g(x, y)

ce qui mène au système 
2x− λy = 0 (1)

2y − λx = 0 (2)

xy − 2A = 0. (3)
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De (1) on trouve x = λ
2
y, d’où (2− 1

2
λ2)y = 0 par (2). Si y = 0, (3) ne peut être satisfaite,

donc on a λ2 = 4, ou encore λ = ±2. Ainsi x = ±y mais comme x, y sont les deux positifs,
on doit avoir x = y. Il découle alors de (3) que x = y =

√
2A. Par conséquent le triangle

rectangle avec hypothénuse minimale est le triangle rectangle isocèle dont chaque cathète
vaut

√
2A.

On peut vérifier que
√

2A est vraiment le minimum de f(x, y). En effet, la fonction à
minimaliser est la distance

√
x2 + y2 entre l’origine (0, 0) et le point (x, y) qui se trouve

sur la branche positive de la courbe hyperbolique xy = 2A. Cette distance est croissante
et tend vers l’infini lorsque x (ou y) tend vers l’infini. Donc la fonction

√
x2 + y2 n’atteint

pas son maximum sur la courbe xy = 2A qui n’est pas un sous-ensemble compact de R2.

ii) On cherche les extremums de la fonction-objectif f(x, y, z) = x2+y2+z2 (distance du point
(x, y, z) à l’origine au carré) sur l’ensemble Γ := {(x, y, z) : g1(x, y, z) = 0 et g2(x, y, z) = 0}
avec

g1(x, y, z) = x2 + y2 − z2 et g2(x, y, z) = x+ y − z + 1.

On peut alors montrer que ∇g1(x, y, z) = (2x, 2y,−2z) et ∇g2(x, y, z) = (1, 1,−1) sont
linéairement indépendants sur Γ par un argument similaire à celui à l’Ex. 1 ii).

La condition nécessaire est

∇f(x, y, z) = λ∇g1(x, y, z) + µ∇g2(x, y, z)

d’où le système 

2x− 2λx− µ = 2(1− λ)x− µ = 0 (1)

2y − 2λy − µ = 2(1− λ)y − µ = 0 (2)

2z + 2λz + µ = 2(1 + λ)z + µ = 0 (3)

x2 + y2 − z2 = 0 (4)

x+ y − z + 1 = 0 (5)

En faisant (1)− (2) on trouve 2(1− λ)(x− y) = 0 ⇒ λ = 1 ou x = y .

Si λ = 1, alors µ = 0 et par (3) on a z = 0. Par (4) il suit que x = y = 0. Mais (0, 0, 0) ne
satisfait pas (5), donc ce n’est pas une solution.

Si x = y, alors z = 2x+ 1 par (5). Pour un point de la forme (x, x, 2x+ 1), (4) s’écrit

2x2 + 4x+ 1 = 0 ⇒ x = −1±
√

2

2
= y et z = −1±

√
2 .

Il reste alors à vérifier que ces valeurs de (x, y, z) sont compatibles avec les équations (1) et
(3). Pour ceci, insérons les valeurs obtenues dans (1) et (3) et écrivons le tout sous forme

matricielle A

(
λ
µ

)
= b: 2(1− λ)

(
−1±

√
2
2

)
− µ = 0

2(1 + λ)
(
−1±

√
2
)

+ µ = 0
⇔

(
−2±

√
2 1

−2± 2
√

2 1

)(
λ
µ

)
=

(
−2±

√
2

2∓ 2
√

2

)

Comme det(A) = ±
√

2 ∓ 2
√

2 = ∓
√

2 6= 0, il existe des solutions pour λ et µ (qu’on n’a
pas besoin de chercher).
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Ainsi les solutions du système ∇F = 0 sont

p1 =

(
−1 +

√
2

2
,−1 +

√
2

2
,−1 +

√
2

)
et p2 =

(
−1−

√
2

2
,−1−

√
2

2
,−1−

√
2

)
.

et

f
(
−1±

√
2
2
,−1±

√
2
2
,−1±

√
2
)

= 2
(
−1±

√
2
2

)2
+
(
−1±

√
2
)2

= 6∓ 4
√

2

Les deux valeurs p1 et p2 réalisent les minima locaux de la fonction f(x, y, z) sur la courbe.
Notamment, il est facile à voir que les contraintes impliquent

(1 + x+ y)2 = x2 + y2 =⇒ 1 + 2x+ 2y + 2xy = 0 =⇒ (1 + x)(1 + y) = −1

2
,

ce qui est une courbe hyperbolique, et donc la distance entre l’origine et un point sur la
courbe {x, 1

2(x+1)
− 1, x + 1

2(x+1)
} est croissante et tend vers l’infini lorsque x tend vers

l’infini. Ainsi la distance de l’origine n’atteint pas son maximum sur la courbe définie par
les contraintes, qui n’est pas un sous-ensemble compact de R3.

Alors p1 réalise la distance minimale 6− 4
√

2 entre l’origine et la courbe.

Exercice 6.

Observons d’abord que les deux axes de l’ellipse sont les droites qui passent par le centre et les
deux points sur l’ellipse dont la distance au centre est maximale respectivement minimale. On
cherche donc les extremums de la distance au centre.
Comme l’axe du cylindre x2 + y2 = 4 est l’axe z, le centre de l’ellipse se trouve aussi sur l’axe
z, i.e. il est de la forme (0, 0, z). De plus, l’ellipse est dans le plan x+ y + 2z = 2, et donc son
centre est (0, 0, 1). On cherche donc les droites qui contiennent les extremums de la fonction
f : R3 → R définie par

f(x, y, z) = x2 + y2 + (z − 1)2,

sur Γ = {(x, y, z) : g1(x, y, z) = 0 et g2(x, y, z) = 0}, où g1(x, y, z) = x2 + y2 − 4 et
g2(x, y, z) = x+y+ 2z−2 . On note que puisque le plan donné n’est pas vertical, l’intersection
est bien un ellipse qui est un sous-ensemble compact de R3. Donc la fonction distance de (0, 0, 1)
atteint en effet son minimum et maximum sur cet ensemble.
Or, ∇g1(x, y, z) = (2x, 2y, 0) et ∇g2(x, y, z) = (1, 1, 2) sont linéairement dépendants seule-
ment en des points (0, 0, z) qui ne sont pas contenus dans le cylindre.
En écrivant ∇f(x, y, z) = λ∇ g1(x, y, z) + µ∇ g2(x, y, z) on obtient le système suivant :

2x− 2λx− µ = 0 (1)

2y − 2λy − µ = 0 (2)

2z − 2− 2µ = 0 (3)

x2 + y2 − 4 = 0 (4)

x+ y + 2z − 2 = 0 (5)

De (1) et (2) on obtient x = µ
2(1−λ) = y . Supposons donc pour l’instant que λ 6= 1, le cas

λ = 1 sera traité après. Par (3) on a

z = µ+ 1 et donc x = y =
z − 1

2(1− λ)
. (6)
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En récrivant (5) en fonction de z, on a

z − 1

1− λ
+ 2z − 2 =

(
2 +

1

1− λ

)
(z − 1) = 0 ⇒ z = 1 ou λ =

3

2
.

Quand z = 1, il suit de (6) que x = y = 0. Mais le point (0, 0, 1) ne satisfait pas (4), donc ce
n’est pas une solution.
Quand λ = 3

2
, (6) implique que x = y = 1− z et si bien que (4) devient

2(1− z)2 − 4 = 2(z2 − 2z − 1) = 0 ⇒ z = 1±
√

2

et donc x = y = ∓
√

2.
Lorsque λ = 1, on a µ = 0 par (1) et (2), d’où il suit par (3) que z = 1. De (5) on tire que
x = −y, qui, inséré dans (4), donne

2y2 = 4 ⇒ y = ±
√

2 ⇒ x = ∓
√

2.

Les solutions du système sont donc

(x, y, z) ∈
{

(−
√

2,−
√

2, 1 +
√

2), (
√

2,
√

2, 1−
√

2), (−
√

2,
√

2, 1), (
√

2,−
√

2, 1)
}

et on a

f(−
√

2,−
√

2, 1+
√

2) = f(
√

2,
√

2, 1−
√

2) = 6 et f(−
√

2,
√

2, 1) = f(
√

2,−
√

2, 1) = 4.

Ainsi le grand axe de l’ellipse est sur la droite d1 et le petit axe sur la droite d2 définies par

d1 = {(x, y, z) ∈ R3 : x = t, y = t, z = 1− t, t ∈ R}

d2 = {(x, y, z) ∈ R3 : x = s, y = −s, z = 1, s ∈ R}.

Noter qu’on a utilisé le centre (0, 0, 1) de l’ellipse comme point de référence.

Exercice 7.

La surface du cylindre est S = 2πr2 + 2πrh et son volume est V = πr2h. On veut donc
maximiser la fonction f(r, h) = πr2h sous la contrainte g(r, h) = 2πr2 + 2πrh − S = 0. Dans
ce cas il n’est pas nécessaire d’appliquer la méthode des multiplicateurs de Lagrange puisqu’on
peut utiliser la contrainte pour éliminer une des deux variables dans f(r, h). Toutefois, on
présente ci-dessous une solution par la méthode de Lagrange ainsi qu’une solution univariée.

Méthode 1: On utilise l’expression de S pour éliminer une des deux variables. En effet,

h(r) =
S − 2πr2

2πr
=

S

2πr
− r ,

et donc

V (r) = f(r, h(r)) = πr2
(

S

2πr
− r
)

=
S

2
r − πr3 ⇒ V ′(r) =

S

2
− 3πr2

et V ′(r) = 0 ⇒ r =

√
S

6π
. Comme V ′′(r) = −6πr < 0 , le cylindre ainsi obtenu a bien le

volume maximal pour la surface donnée.
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Méthode 2: Puisque f(r, h) = πr2h et g(r, h) = 2πr2 + 2πrh − S sont de classe C1 sur leur
domaine, et ∇g(r, h) = (4πr + 2πh, 2πr) 6= (0, 0), on applique le théorème de Lagrange: il
existe λ ∈ R tel que

∇f(r, h) = λ∇g(r, h)

et on obtient les équations 2πrh
πr2

2πr2 + 2πrh− S

 =

λ(4πr + 2πh)
λ(2πr)

0

 ⇔


rh− 2λr − λh = 0 (1)

r2 − 2λr = 0 (2)

2πr2 + 2πrh− S = 0 (3)

Comme r > 0, on a

(2) ⇒ λ =
r

2

(1)⇒ rh

2
− r2 = 0 ⇒ h = 2r

(3)⇒ 6πr2 = S ⇒ r =

√
S

6π
.
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