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Analyse II — Corrigé de la Série 12

Exercice 1.

Soit F(x,y,2) = xz? — 22y + y?2. En évaluant F au point (1,1, zy) on a
F(l,l,Zo):O p=— Zg—Q—I—ZO:O TN ZO:]- ou 202_2‘

Selon le cours sur les fonctions implicites, ’équation du plan tangent a la surface F'(z,y, z) = 0
au point (xg, Yo, 20) est

<VF(x07y07Z0)7 (f - 7:0)> = 07 ou r= (SL’,y, Z) et fO = (1507907 ZO)'

Puisque
VF = (0,F, 0,F, 0.F) = (22 — day, =22 + 2yz, 2wz + y2) ,

on a pour le point (xg, yo, 20) = (1,1,1)
VF(1,1,1) = (-3,0,3)

et I’équation du plan tangent est

r—1 -3
y—1]-10 | =0 & =3—-1)+0y—1)+3:—-1)=0 < z—-2=0.
z—1 3

Pour (z¢, 40, 20) = (1,1,—2) on a
VF(1,1,-2) = (0,—6,—3)

et I’équation du plan tangent est

x—1 0
y—1]1-1-6]=0 < O0x—-1)—-6(y—1)—3(2+2)=0 < 2y+2=0.
z+2 -3

Exercice 2.

i) On cherche les extremums de la fonction-objectif f(x,y) = 23 + y* sous la contrainte
g(z,y) = 2* +y* — 32 = 0. Notons que Vg(z,y) = (423,4y®) =0 & (z,y) = 0 mais que
9(0,0) # 0 et donc Vg(z,y) # 0 pour tout (z,y) satisfaisant g(z,y) = 0.

On cherche les solutions du systeme

322 — 4\2® = 2%(3 — 4 1) =0 (1)
3y” —4xy® = y*(3 — 4hy) = 0 (2)
—(z* +y*=32)=0 (3)

A partir de (1) et (2) on trouve plusieurs solutions:

3 3
() = x=0 ou )\x:Z et (2) = wy=0 ou )\y:Z



i)

e Siz =1y =0, (3) n’est pas satisfaite, donc impossible.

e Siz =0, alors (3) implique que y = +v/32 = £2+v/2. 1l existe alors une valeur de A pour
satisfaire (2).

Siy =0, alors x = +2v/2 et (1) peut étre satisfaite.

Si aucune des variables n’est nulle, alors # = y = % par (1) et (2). Par (3) il suit que

225%—1)\4:32 = Jl':y:iQ

Les solutions du systeme sont donc
(J?, y) S {(07 2\4/5)7 (07 _2%)7 (2\4/57 O)? (_2%7 0)7 (27 2)7 (_27 _2)}
et on a le tableau suivant

(l’,y) ‘(072\4/5) (07—2\4/5) (2@,0) (—2@,0) (272) (_27_2)
f(x,y)‘ §.23/4  _g.23/4 g.234 8.2 16 —-16

Puisque le sous-ensemble défini par la contrainte est compact et la fonction est continue, elle
atteint son minimum et maximum sous la contrainte. Comme 2%/* < 2. la valeur maximale
de f est 16, atteint en (2,2), et la valeur minimale est —16, atteint en (—2, —2).

On cherche les extremums de f sur 'ensemble I' := {(z,y, 2) : g1(z,y,2) = 0 et ga(x,y,2) =
0} avec g1 (x,y, 2) = 22 +y*+22—1 et go(x,y, 2) = r—y—1. Pour montrer que Vg, (z,y,z) =
(2x,2y,2z) et Vgo(z,y,2) = (1,—1,0) sont linéairement indépendants sur I, supposons
que aVgi(z,y,z)+ Vag(x,y,z) =0 . Du systeme

ar+ =0
ay—pF=0
az =10

il suit que si @ = 0 alors § = 0. Si a # 0, alors z = 0 et la somme des deux premieres
équations donne y = —z. Observons gs(z, —x,0) = 2z — 1 = 0 implique = = % = —y mais
(%, —%, 0) ¢ I" a cause de g;. Ainsi Vg; et Vgs sont linéairement indépendants sur I

On cherche les solutions du systeme

Vf(x,y,z) =AVa(z,y,2)+puVae(r,y,z)

91($7?Jaz):0
92(x>y72)20
On obtient )
1-2\xr—pu=20 (1)
1 -2 \y+p=0 (2)
1 -2\ =0 (3)
P+ +22-1=0 (4)
r—y—1=0 (5)
Par (3) on sait que A # 0 et donc z = 5 . Ensuite
1
H+12) = 2-2\z+y) =0 = :(:—i-y:X:Zz



De plus (5) = y=x—1 et donc z=a — 5. On insere ces expressions dans (4)

1\° 1
I2+($—1)2—|—($—§) —1:3x2—3x+120,

ce qui donne deux solutions:

+ 1
:3\/6_jE

6 2

Sl

et les solutions du systeme sont

(z,9,2) € {(%(:H\/é), é(—3+¢6), %) : (%(3— \/6),%(—3— \/6),—%)}.

Puisque le sous-ensemble défini par les contraintes est compact et la fonction est con-
tinue, elle atteint son minimum et maximum sous les contraintes. La fonction f ad-

met un maximum en (% (3 + \/6) ,é ( 3++6 ) > de valeur \/g et un minimum en
((3-6) .1 (-3-v0), ) de valeur /3

Exercice 3.

On cherche les extremums de f(z,y, z) = z sous la contrainte g(z,y,2) = 4x?+3y*+2yz+32%*—
4x—1=0. Notons que Vg(z,y,2) = (8x—4,6y+2z,2y+62) = (0,0,0) & (z,y,2) = (%,0,0)
mais g (3,0,0) = —2 # 0 et donc Vg # 0 pour tout (z,y, z) tel que g(z,y, z) = 0. La condition
nécessaire pour f(z,y,z) d’avoir un extremum sous contrainte g(x,y, z) = 0 est

Vf(z,y,z) = AVg(z,y,2).

Il faut résoudre le systeme

A@Bz —4) = (1)
A6y +22) = (2)
1 - A2y +62) = (3)
4a® + 32 + 2z + 322 —40 —1=0 (4)
Observons que A # 0 & cause de (3). Par (1) on a alors # = ; et par (2) on a z = —3y, qu'on
insére dans (3) pour obtenir y = —355. Tout cela inséré dans (4) donne
3 6 27 24 12 2V/3
1 — —2—-1= 90 = M= 2 o =42V
95602~ 25602 | 25612 25612 256 16

1 3
= y=F——= et Z::|:£.

2V/3 2

Ainsi les solutions du systeme sont

e e )
Y 2" 62 ))\26 2 )

Puisque le sous-ensemble défini par la contrainte est compact et la fonction est continue, elle
atteint son minimum et maximum sous la contrainte, Alors les valeurs maximale et minimale

de z sont \/75 et —‘/75; elles sont réalisées aux points (% ‘Gf, ‘g) et (% %, ‘g)

Exercice 4.



)

i)

Cherchons d’abord les extremums de f & U'intérieur du domaine D = {(z,y) : 2?2 +y? < 32}.
Ils se trouvent parmi les points stationnaires de f:

fo = 42 — y — 6 =
fy = —x + 4y — 6 = 0

d’ou le seul point stationnaire z; = y; = 2.

Soit g(x,y) = 22 +y*—32. Alors Vg(x,y) = (22,2y) =0 & (z,y) = (0,0) mais g(0,0) # 0
et donc Vg # 0 sur le bord de D. On peut donc trouver les extremums de f sur le bord de D,
qui est un sous-ensemble compact de R?, par la méthode des multiplicateurs de Lagrange.
On écrit la condition nécessaire

Vf(z,y) = AVg(z,y)

ce qui donne le systeme d’équations

dr —y—6—2 =0 (1)
—x+4y—6—2\y=0 (2)
Byt —32=0 (3)
En faisant (1) — (2) on obtient (z —y)(5—2X) =0, c-a-d. y=2 ou A=3.
Si y = x, alors on obtient les solutions xs =y, =4 et x3 =y3 = —4 de (3).
Si A = 3, alors y = —(z + 6) par (1) et (3) devient 2? + 6z + 2 = 0, d’olt on trouve

:1:4:—3+\/7, y4:—3—\/7 et 335:—3—\/7, y5:—3—|—\/7.
Les valeurs maximale et minimale de f sur le domaine D sont réalisées parmi les points
(xi,y;) (1 =1,...,5). En évaluant f en ces cinq points, on trouve

flx, ) = =12, f(z2,92) =0, f(xs,y3) =96, f(og,ya) =98, f(xs5,95) = 98.

Ainsi, la valeur minimale de f est —12, atteinte en (2,2), et la valeur maximale est 98,
atteinte en (—3 + \/7, -3 — \/7) et (—3 — \/7, -3+ \/7)

Dans I'Ex. 3 i) de la Série 11 on a calculé les extremums de la méme fonction f sur le
demi-disque positif du méme rayon, noté ici par D*. Le minimum de f était atteint en
(2,2) et le maximum en (—4+/2,0). Les extremums de f sur D doivent donc étre au moins
aussi extrémes que ceux sur D. En I'occurrence, le minimum est le méme, mais la fonction
f atteint des valeurs plus grandes sur le demi-cercle inférieur que sur DT si bien que le
maximum a changé.

Soit D = {(x,y,2) : 22 + y* + 2? < 4} la boule considérée. On commence par chercher les
extremums de f a l'intérieur de D. Les points stationnaires de f satisfont

fe=2r—-2=0 )
fy=2y+2=0 = (x,y,2) = <1, -1, 5) est le seul point stationnaire
fr=22—-1=0

qui est bien & l'intérieur de D car 12 + (—1)? + (%)2 =92<4

Pour trouver les extremums de f sur le bord de D, qui est un sous-ensemble compact
de R3, on définit g(z,y,2) = 2% + y*> + 22 — 4 en sorte que le bord de D est I'ensemble
{(z,y,2) : g(x,y,z) = 0}. Notons qu'on a Vg(z,y,2) = (2x,2y,22) =0 & s =y=2=0
mais ¢(0,0,0) = —4 # 0 et donc Vg # 0 sur le bord de D.



On introduit la condition
Vf(r,y,2) = AVg(z,y, 2)

et on résout le systeme

2r—2—-2X\r=2(1-N)x—2=0 (1)
204+2—-2 y=21-Ny+2=0 (2)
2 1-2X:=2(1-XNz—1=0 (3)

Py —4=0 (4)

Comme A # 1 (sinon (1) a (3) ne sont pas satisfaites), on peut diviser par 1 — A pour obtenir
a partir de (1) a (3)
1 B 1 B 1
Tr = 1 . )\7 Yy = ) =

qu’on met ensuite dans (4) qui devient

2 |
TS AT ESE

—4=0 & 9—16(1-X)*=0

3 7 1
& 1—-A) ==£- & M=, d=—.
Ainsi on a
4 4 2 . 4 4 2
Ty =—= ==, z21=-—= e Ty = = =—=, Z=-.
1 3’ Y1 3’ 1 3 2= 3 Y2 3’ 2= 3
On calcule la valeur de f aux extremums potentiels sur D
(z,y,2) | (L-13) (=5.5-3) G—33)
7 35 13
[y, 2) . —3 T Ty
Ainsi le minimum de f sur D est —%, atteint en (1, —1, %), et le maximum est %, atteint
4.4 _2
en (=55 —3)-
Exercice 5.
zy

i) Soient z et y les longueurs des cathetes d'un triangle rectangle. Son aire est alors A = %

et I'hypothénuse est de longueur /z2 4+ y2. Pour simplifier, on définit une fonction-objectif
équivalente, c.-a-d. f(z,y) = 2% + y* qu'on veut minimiser sous la contrainte g(z,y) =
xy —2A =0.

Notons que Vg(z,y) = (y,z) = (0,0) < (z,y) = (0,0) mais que g(0,0) = —2A # 0. Donc
Vg(x,y) # 0 pour tout (z,y) satisfaisant g(z,y) = 0. La condition nécessaire pour avoir un
extremum de f sous la contrainte g(x,y) = 0 est

Vf(r,y) = AVg(z,y)

ce qui mene au systeme

20— Ay =0 (1)
2y — A =0 (2)
xy —2A=0. (3)

5



i)

De (1) on trouve z = 3y, d’ott (2 — £A?)y = 0 par (2). Si y =0, (3) ne peut étre satisfaite,
donc on a A\? = 4, ou encore A\ = £2. Ainsi # = 4y mais comme z, y sont les deux positifs,
on doit avoir x = y. Il découle alors de (3) que z =y = V/2A. Par conséquent le triangle
rectangle avec hypothénuse minimale est le triangle rectangle isocele dont chaque cathete

vaut v2A.

On peut vérifier que v/2A4 est vraiment le minimum de f (z,y). En effet, la fonction a
minimaliser est la distance \/x2 4 y? entre l'origine (0,0) et le point (z,y) qui se trouve
sur la branche positive de la courbe hyperbolique xy = 2A. Cette distance est croissante
et tend vers I'infini lorsque z (ou y) tend vers 'infini. Donc la fonction /22 + y? n’atteint
pas son maximum sur la courbe xy = 2A qui n’est pas un sous-ensemble compact de R2.

On cherche les extremums de la fonction-objectif f(z,y,z) = 2?+y*+2% (distance du point
(x,y, z) a lorigine au carré) sur I'ensemble I' := {(z,y, 2) : g1(z,y,2) = 0 et go(z,y,2) = 0}
avec

gz, y, 2) =22 +9° — 22 et gz, y,2)=c+y—2z+ 1

On peut alors montrer que Vg, (z,y,2) = (2x,2y,—2z) et Vga(z,y,2) = (1,1,—1) sont
linéairement indépendants sur I par un argument similaire a celui a 'Ex. 147).

La condition nécessaire est
Vf(l’, Y, Z) = )‘Vgl(xa Y, Z) + /‘LV.QQ(xa Y, Z)

d’ou le systeme

(22— 22 —p=20—- Nz —p=0 (1)
2y =20y —p=21-ANy—p=0 (2)
224202 +pu=2(14+Nz+pu=0 (3)

Pyt —22=0 (4)
THy—z+1=0 (5)

\
En faisant (1) — (2) on trouve 2(1—=A)(z —y)=0 = A=1ou z=y.

Si A =1, alors p =0 et par (3) on a z = 0. Par (4) il suit que = y = 0. Mais (0,0,0) ne
satisfait pas (5), donc ce n’est pas une solution.

Si z =y, alors z = 2x + 1 par (5). Pour un point de la forme (z,z,2z + 1), (4) s’écrit
2
20 +4r+1=0 = x:—li\/?_:y et z=-1++2.

Il reste alors a vérifier que ces valeurs de (x,y, z) sont compatibles avec les équations (1) et
(3). Pour ceci, insérons les valeurs obtenues dans (1) et (3) et écrivons le tout sous forme

matricielle A 2 =b:

_ _ V2 o, —
T e (A0

Comme det(A) = £v/2 F 2v/2 = F/2 # 0, il existe des solutions pour A et p (qu'on n’a
pas besoin de chercher).



Ainsi les solutions du systeme VF = 0 sont

p1:<—1 g,—w\/g,—w\/ﬁ) et p2:<—1—ﬁ—1—£—1—\/§>.

et
2 2
P12 162 14 v3) =2 (14 2) + (-1£V2) =654V2

Les deux valeurs p; et py réalisent les minima locaux de la fonction f(z,y, z) sur la courbe.
Notamment, il est facile a voir que les contraintes impliquent

1
Q4+a+y)i=2>+y" = 1+22+2y+22y=0 = (1+x)(1+y):—§,

ce qui est une courbe hyperbolique, et donc la distance entre 1'origine et un point sur la

courbe {z, m -1,z + 2;} est croissante et tend vers l'infini lorsque z tend vers

(z+1)
I'infini. Ainsi la distance de l'origine n’atteint pas son maximum sur la courbe définie par

les contraintes, qui n’est pas un sous-ensemble compact de R3.

Alors p; réalise la distance minimale 6 — 4+/2 entre I’'origine et la courbe.

Exercice 6.

Observons d’abord que les deux axes de 'ellipse sont les droites qui passent par le centre et les
deux points sur l'ellipse dont la distance au centre est maximale respectivement minimale. On
cherche donc les extremums de la distance au centre.

Comme I'axe du cylindre 2?2 + 3? = 4 est I'axe z, le centre de Dellipse se trouve aussi sur I’axe
z, i.e. il est de la forme (0,0, z). De plus, l'ellipse est dans le plan = + y + 22 = 2, et donc son
centre est (0,0,1). On cherche donc les droites qui contiennent les extremums de la fonction
f: R3 — R définie par

f(l',y,2> =1 +y2 + (Z_ 1)27

sur I' = {(z,y,2) : gi(w,y,2) = 0 et go(z,y,2) = 0}, o gi(z,y,2) = 22 +¢y*> — 4 et
g2(x,y,2) = z+y+22z—2. On note que puisque le plan donné n’est pas vertical, I'intersection
est bien un ellipse qui est un sous-ensemble compact de R3. Donc la fonction distance de (0,0, 1)
atteint en effet son minimum et maximum sur cet ensemble.

Or, Vgi(x,y,2) = (22,2y,0) et Vga(x,y,z) = (1,1,2) sont linéairement dépendants seule-
ment en des points (0,0, z) qui ne sont pas contenus dans le cylindre.

En écrivant V f(z,y,2) = AV g1(x,y, 2) + uV g2(x,y, 2) on obtient le systéme suivant :

(20— 2\ —p=0 (1)
20 —2\y — =20 (2)
22—2—-24=0 (3)
2’ + 1y —4=0 (4)

|z +y+2:-2=0 (5)

De (1) et (2) on obtient x = ﬁ = y . Supposons donc pour l'instant que A\ # 1, le cas
A =1 sera traité apres. Par (3) on a

2=+ et donc r=y TN (6)



En récrivant (5) en fonction de z, on a

z—1

1—-A

1 3
+2z—2:(2+m)(2—1):0 =z=1 ou /\:5

Quand z = 1, il suit de (6) que x = y = 0. Mais le point (0,0, 1) ne satisfait pas (4), donc ce
n’est pas une solution.
Quand A = %7 (6) implique que z =y = 1 — z et si bien que (4) devient

201 —2)2-4=2(:*-2:-1)=0 =  z=1+2

et donc x =y = :F\/§.
Lorsque A = 1, on a u = 0 par (1) et (2), d’ou il suit par (3) que z = 1. De (5) on tire que
r = —y, qui, inséré dans (4), donne

2y? =4 = y=+v2 = T =TV2.

Les solutions du systeme sont donc
(v,9,2) € {(-V2,~V2 1+ V2), (V2 V2.1 = V2), (-V2,v2,1), (V2 —v2,1) |
et on a
F(=V2,—V2,14V2) = f(V2,V/2,1-V2) =6 et f(=V2,V2,1) = f(V2,—V2,1) = 4.
Ainsi le grand axe de lellipse est sur la droite d; et le petit axe sur la droite dy définies par
dy={(z,y,2) ER* o =ty=t,z=1—t1tcR}

dy ={(2,9,2) ER* .2 =5,y =—s,2=1,5 € R}.

Noter qu’on a utilisé le centre (0,0, 1) de I'ellipse comme point de référence.

Exercice 7.

La surface du cylindre est S = 2772 + 27rh et son volume est V = wr?h. On veut donc
maximiser la fonction f(r,h) = mr?h sous la contrainte g(r,h) = 27r? + 2mrh — S = 0. Dans
ce cas il n’est pas nécessaire d’appliquer la méthode des multiplicateurs de Lagrange puisqu’on
peut utiliser la contrainte pour éliminer une des deux variables dans f(r,h). Toutefois, on
présente ci-dessous une solution par la méthode de Lagrange ainsi qu'une solution univariée.

Méthode 1: On utilise I'expression de S pour éliminer une des deux variables. En effet,

9.2
h(r):S 27r _ S -
2rr 27r
et donc
V(r) = f(r,h(r)) = 7r? (i - 7’) = §T —r? = V'(r) = 5 3mr?
27r 2 2

/S
et V'(r)=0 = r= 6 Comme V”(r) = —6mr < 0, le cylindre ainsi obtenu a bien le
T

volume maximal pour la surface donnée.



Méthode 2: Puisque f(r,h) = 7r?h et g(r,h) = 27r? + 27rh — S sont de classe C! sur leur
domaine, et Vg(r,h) = (4mr + 27h,27r) # (0,0), on applique le théoreme de Lagrange: il
existe A € R tel que

Vf(r,h) = AVg(r,h)

et on obtient les équations

27rh A(4mr 4 2mh) rh —2Ar — Ah =0 (1)
wr? = A(27r) & 72 —2\r =0 (2)
21r? 4+ 27rh — S 0 2mr? +2mrh — S =0 (3)

Comme r > 0, on a



