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Analyse II – Corrigé de la Série 11

Dans ce corrigé les lettres Λ1,Λ2,Λ3 dénotent les mineurs principaux (déterminants partiels)
de la matrice Hessienne de taille 1× 1, 2× 2 et 3× 3 respectivement.
Exercice 1.

i) Le système {
fx(x, y) = − sin(x) = 0

fy(x, y) = 6y = 0

donne les point stationnaires (x, y) = (kπ, 0) avec k ∈ Z. Puisque

Λ2(x, y) = det

(
− cos(x) 0

0 6

)
= −6 cos(x) ,

on a

Λ2(kπ, 0) =

{
−6, k pair

6, k impair

Les points (kπ, 0) avec k pair sont donc des points selle avec f(kπ, 0) = 3 tandis que pour
k impair, l’égalité Λ1(kπ, 0) = − cos(kπ) = 1 > 0 implique que f admet des minimums
locaux aux points (kπ, 0) avec f(kπ, 0) = 1 (Fig. 1).
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Fig. 1

ii) Comme{
fx(x, y) = 3x2 + 2x+ 2y = 0

fy(x, y) = −3y2 + 2x+ 2y = 0
⇒ 3(x2 + y2) = 0 ⇒ (x, y) = (0, 0),

le seul point stationnaire de la fonction f est (0, 0). Puisque

Λ2(x, y) = det

(
6x+ 2 2

2 −6y + 2

)
= −36xy + 12x− 12y ,

on a Λ2(0, 0) = 0 ce qui ne permet pas de conclure sur la nature du point stationnaire.
Mais comme f(x,−x) = 2x3 et f(0, 0) = 0 , la fonction f prend dans tout voisinage de
(0, 0) des valeurs positives et négatives; elle admet donc un point selle en (0, 0), cf. Fig. 2.
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iii) On a {
fx(x, y) = −6x+ y2 = 0

fy(x, y) = 2y(x− 2y2) = 0
⇒ (x, y) = (0, 0),

et donc le seul point stationnaire de la fonction f est (0, 0). On trouve ensuite

Λ2(x, y) = det

(
−6 2y
2y 2x− 12y2

)
= 68y2 − 12x , d’où Λ2(0, 0) = 0 .

En isolant un carré parfait dans f(x, y), on obtient

f(x, y) = −3

(
x− y2

6

)2

− 11

12
y4 ou f(x, y) = −11

4
x2 −

(
y2 − x

2

)2
,

ce qui implique f(x, y) ≤ 0 pour tout (x, y) ∈ R2. Comme f(0, 0) = 0, la fonction f admet
un maximum local en (0, 0), cf. Fig. 3.

Remarque: Puisque f(x, y) = 0 ⇒ (x, y) = (0, 0), le maximum de f en (0, 0) est absolu.
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Exercice 2.

i) On résout le système 
fx(x, y, z) = −4x + 4y = 0
fy(x, y, z) = 4x − 10y + 2z = 0
fz(x, y, z) = 2y − 2z = 0

pour obtenir le seul point stationnaire (0, 0, 0). Ensuite on calcule le hessien et les mineurs
principaux dominants de la matrice hessienne:

Λ3(x, y, z) = det

−4 4 0
4 −10 2
0 2 −2

 , Λ2(x, y, z) = det

(
−4 4
4 −10

)
et Λ1(x, y, z) = −4.

En (0, 0, 0) on a

Λ1(0, 0, 0) = −4 < 0, Λ2(0, 0, 0) = 24 > 0 et Λ3(0, 0, 0) = −32 < 0,

et donc la fonction f admet un maximum local en (0, 0, 0) et f(0, 0, 0) = 2.
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ii) Pour trouver les points stationnaire, on doit résoudre le système
fx(x, y, z) = 4x− 3z2 = 0
fy(x, y, z) = 3y2 − 3 = 0
fz(x, y, z) = −6xz + 6z = 0

⇔


4x− 3z2 = 0
3(y2 − 1) = 0
−6z(x− 1) = 0

Donc y = ±1 et soit z = 0 (ce qui implique x = 0), soit x = 1 (ce qui implique z = ± 2√
3
).

Les points stationnaires de f sont alors

(0, 1, 0), (0,−1, 0),
(

1, 1, 2√
3

)
,
(

1,−1, 2√
3

)
,
(

1, 1,− 2√
3

)
et

(
1,−1,− 2√

3

)
.

Ensuite on a

Λ3(x, y, z) = detHf (x, y, z) = det

 4 0 −6z
0 6y 0
−6z 0 −6(x− 1)

 = −72y
(
2(x− 1) + 3z2

)
,

Λ2(x, y, z) = det

(
4 0
0 6y

)
= 24y et Λ1(x, y, z) = 4 .

Evaluées aux points stationnaires ces expressions valent

Λ3(0, 1, 0) = 144 > 0, Λ2(0, 1, 0) = 24 > 0

Λ3(0,−1, 0) = −144 < 0, Λ2(0,−1, 0) = −24 < 0

Λ3

(
1, 1, 2√

3

)
= −288 < 0, Λ2

(
1, 1, 2√

3

)
= 24 > 0

Λ3

(
1,−1, 2√

3

)
= 288 > 0, Λ2

(
1,−1, 2√

3

)
= −24 < 0

Λ3

(
1, 1,− 2√

3

)
= −288 < 0, Λ2

(
1, 1,− 2√

3

)
= 24 > 0

Λ3

(
1,−1,− 2√

3

)
= 288 > 0, Λ2

(
1,−1,− 2√

3

)
= −24 < 0

Comme Λ1 > 0, f a un minimum local en (0, 1, 0) où f(0, 1, 0) = 2, et tous les autres points
stationnaires ne sont pas des points d’extremum local (voir théorème du cours, cas n = 3).

Exercice 3.

i) Comme la fonction f admet des dérivées partielles partout à l’intérieur du domaine D, ses
extremums absolus se trouvent parmi les points stationnaires à l’intérieur ou sur le bord de
D.

Points stationnaires à l’intérieur de D:{
fx(x, y) = 2x − y − 1 = 0
fy(x, y) = −x + 2y − 1 = 0

⇒ (x, y) = (1, 1).

Puisque

Λ2(x, y) = det

(
2 −1
−1 2

)
= 3 > 0 et Λ1(x, y) = 2 > 0 ,

le point (1, 1) est un minimum local de f . De plus on a f(1, 1) = −1.

Sur le bord de D on a:
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Notons d’abord que le bord de D est l’union des trois sous-ensembles suivants de R2:

{(x, 0) : 0 ≤ x ≤ 3} ∪ {(0, y) : 0 ≤ y ≤ 3} ∪ {(x, 3− x) : 0 ≤ x ≤ 3}.

L’évaluation de la fonction f sur le bord donne

f(x, 0) = x2 − x =

(
x− 1

2

)2

− 1

4
, 0 ≤ x ≤ 3 ,

f(0, y) = y2 − y =

(
y − 1

2

)2

− 1

4
, 0 ≤ y ≤ 3 ,

f(x, 3− x) = 3(x2 − 3x+ 2) = 3

[(
x− 3

2

)2

− 1

4

]
, 0 ≤ x ≤ 3 .

L’idée est maintenant de chercher les extremums de ces fonctions unidimensionnelles dans le
domaine précisé qui se trouvent soit aux points stationnaires soit aux extrémités du domaine
(cf. Analyse I). Notons d’abord g(x) = f(x, 0) . Alors g′(x) = 2

(
x− 1

2

)
= 0 ⇔ x = 1

2

et g
(
1
2

)
= −1

4
. Puisque g′′(x) = 2 > 0 , g a un minimum local en x = 1

2
. De plus on a

g(0) = 0 et g(3) = 6 . On a donc

max
0≤x≤3

f(x, 0) = f(3, 0) = 6 et min
0≤x≤3

f(x, 0) = f

(
1

2
, 0

)
= −1

4
.

De même, on cherche les extremums des fonctions h(y) = f(0, y) et k(x) = f(x, 3− x). La
fonction h a exactement le même comportement que g et pour k on a

k′(x) = 6
(
x− 3

2

)
= 0 ⇔ x = 3

2
, k

(
3
2

)
= −3

4
,

k′′(x) = 6 > 0 (⇒ minimum local), k(0) = k(3) = 6,

si bien qu’on obtient

max
0≤y≤3

f(0, y) = f(0, 3) = 6 , min
0≤y≤3

f(0, y) = f
(
0, 1

2

)
= −1

4
,

max
0≤x≤3

f(x, 3− x) = f(3, 0) = f(0, 3) = 6 , min
0≤x≤3

f(x, 3− x) = f
(
3
2
, 3
2

)
= −3

4
.

Il s’en suit que f admet un minimum absolu en (1, 1) de valeur f(1, 1) = −1 et des maximums
absolus en (3, 0) et en (0, 3) de valeur f(3, 0) = f(0, 3) = 6, voir Fig. 4.

ii) Comme f est de classe C2 sur D, ses extremums absolus se trouvent soit en un point
stationnaire à l’intérieur de D, soit sur le bord de D.

Points stationnaires à l’intérieur de D:{
fx(x, y) = 4x − y − 6 = 0
fy(x, y) = −x + 4y − 6 = 0

⇒ (x, y) = (2, 2).

Puisque

Λ2(x, y) = det

(
4 −1
−1 4

)
= 15 > 0 et Λ1(x, y) = 4 > 0 ,

le point (2, 2) est un minimum local de f . De plus on a f(2, 2) = −12.

Sur le bord de D on a:
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Le bord de D est l’union des deux sous-ensembles suivants de R2:{
(x, 0) : −4

√
2 ≤ x ≤ 4

√
2
}
∪
{

(x,
√

32− x2) : −4
√

2 ≤ x ≤ 4
√

2
}
.

L’évaluation de la fonction f sur le bord donne

f(x, 0) = 2x2 − 6x = 2

(
x− 3

2

)2

− 9

2
, −4

√
2 ≤ x ≤ 4

√
2 ,

f(x,
√

32− x2) = 64− 6x− (x+ 6)
√

32− x2 , −4
√

2 ≤ x ≤ 4
√

2 .

Sur la première partie du bord (le segment de l’axe x), f atteint son minimum en x = 3
2

où

f
(
3
2
, 0
)

= −9
2

et son maximum en x = −4
√

2 où f
(
−4
√

2, 0
)

= 8(8+3
√

2). L’autre extrémité

x = 4
√

2 n’est pas candidat pour le maximum global de f parce que f(4
√

2) < f(−4
√

2).

Pour la deuxième partie (le demi-cercle), soit g : [−4
√

2, 4
√

2]→ R définie par

g(x) = 64− 6x− (x+ 6)
√

32− x2.

Alors g est dérivable sur ]− 4
√

2, 4
√

2[ , où sa dérivée vaut

g′(x) = −6−
√

32− x2 +
x(x+ 6)√

32− x2
=
−6
√

32− x2 − 32 + 2x2 + 6x√
32− x2

.

Ainsi

g′(x) = 0 ⇒ x2 + 3x− 16 = 3
√

32− x2 ⇒ (x2 + 3x− 16)2 = 9(32− x2)

⇒ x4 + 6x3 − 14x2 − 96x− 32 = 0 (1)

Par l’indication on sait que ce polynôme a des racines entières qui sont en fait x1 = 4 et
x2 = −4 (trouvé en essayant). Pour trouver les autres racines, on peut diviser le polynôme
obtenu par (x− 4)(x+ 4) = x2 − 16. On obtient:

x4 + 6x3 − 14x2 − 96x− 32 = (x2 − 16)(x2 + 6x+ 2).

Les racines du polynôme x2 + 6x + 2 sont x3 = −3 −
√

7 et x4 = −3 +
√

7. Comme on a
bien g′(x1) = 0, x1 = 4 est un point stationnaire de g, mais g′(−4) = −12, donc ce n’est
pas un point stationnaire. Il est facile à voir que g′(−3±

√
7) < 0 et donc les points x3, x4
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ne sont pas des points stationnaires de g. (En fait, on a obtenu des racines “artificielles”
parce qu’on a pris le carré).

La valeur de g en son point stationnaire est g(4) = 0. De plus, les points où g′ n’existe pas
sont aussi des candidats pour les extremums de g. On a g(−4

√
2) = 64 + 24

√
2 ≈ 97.9 et

g(4
√

2) = 64− 24
√

2 ≈ 30.1 .

Ainsi le minimum global de f est atteint en (2, 2) et vaut f(2, 2) = −12 et le maximum
global est atteint en (−4

√
2, 0) et vaut f(−4

√
2, 0) = 8(8 + 3

√
2).

Exercice 4.

Comme les dérivées partielles de f sont continues sur tout le domaine D, les extremums absolus
sont atteints aux points stationnaires à l’intérieur ou sur le bord de D. Puisque ∂f

∂y
= −1 ne

s’annule jamais sur D, la fonction f n’admet aucun point stationnaire.
Puisque le domaine D est un parallélépipède rectangle parallèle aux axes, on peut déterminer
le comportement de f sur le bord de D en examinant ses dérivées partielles. Pour (x, y, z) ∈ D
on a :

∂f

∂x
= z + 1 > 0 ⇒ f est croissante dans la direction x et donc maximal en x = a

et minimal en x = 0.

∂f

∂y
= −1 < 0 ⇒ f est décroissante dans la direction y et donc maximal en y = 0

et minimal en y = b.

∂f

∂z
= x+ 2 > 0 ⇒ f est croissante dans la direction z et donc maximal en z = c

et minimal en z = 0.

La fonction f a donc son maximum absolu en (a, 0, c) et son minimum absolu en (0, b, 0).
Afin de calculer les valeurs extrémales de f , on doit trouver son expression. A partir des
dérivées partielles données, on obtient successivement

∂yf(x, y, z) = −1 ⇒ f(x, y, z) = −y + g(x, z) ⇒ ∂xf(x, y, z) = ∂xg(x, z) = z + 1

⇒ g(x, z) = (z + 1)x+ h(z) ⇒ ∂zf(x, y, z) = x+ h′(z) = x+ 2

⇒ h(z) = 2z + C, C ∈ R ⇒ g(x, z) = (z + 1)x+ 2z + C

⇒ f(x, y, z) = −y + (z + 1)x+ 2z + C

La condition f(0, 0, 0) = 3 implique alors que C = 3 et f(x, y, z) = (z + 1)x − y + 2z + 3.
Ainsi le maximum absolu de f est f(a, 0, c) = a(c + 1) + 2c + 3 et son minimum absolu est
f(0, b, 0) = 3− b .
Remarque: On aurait aussi pu calculer l’expression de f dès le départ mais l’approche prise ici
est plus instructive.

Exercice 5.

Soit d la distance entre le point P = (x, y) et la droite x+ y = a (a > 0). Puisque la distance
entre un point et une droite est mesurée dans la direction perpendiculaire à la droite, le point

(x, y) + d
(

1√
2
, 1√

2

)
est sur la droite et vérifie donc(

x+
d√
2

)
+

(
y +

d√
2

)
= a ⇒ d =

√
2

2
(a− x− y).
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Les distances de P aux droites x = 0 et y = 0 sont respectivement x et y. Par conséquent
le produit des distances de P aux trois droites est donnée par la fonction

f(x, y) =

√
2

2
xy(a− x− y), D(f) = {(x, y) : x, y ≥ 0 et x+ y ≤ a}.

Comme on cherche P à l’intérieur du triangle ABC et que la fonction f admet des dérivées
partielles en chaque point de D(f), le maximum cherché est atteint en un point stationnaire
de f à l’intérieur du domaine.

On résout donc le système
fx(x, y) =

1√
2

(ay − 2xy − y2) = 0 (1)

fy(x, y) =
1√
2

(ax− 2xy − x2) = 0 (2)

en calculant d’abord
√

2 ·
(
(1)− (2)

)
:

x2 − y2 − a(x− y) = (x− y)(x+ y − a) = 0 ⇒
x+y<a

x− y = 0 ⇒ x = y.

En insérant x = y dans (1), on obtient ax− 3x2 = x(a− 3x) = 0 ⇒ x = y = 1
3
a car on

cherche un point à l’intérieur de D(f) (i.e. x > 0).

Il reste à vérifier que f atteint un maximum au point
(
1
3
a, 1

3
a
)
. Le hessien de f est

Λ2(x, y) = det

(
−
√

2y a√
2
−
√

2(x+ y)
a√
2
−
√

2(x+ y) −
√

2x

)
= 2xy −

(
a√
2
−
√

2(x+ y)

)2

= −2x2 − 2y2 − 2xy + 2a(x+ y)− a2

2

et donc Λ2

(
1
3
a, 1

3
a
)

= 1
6
a2 > 0 et Λ1

(
1
3
a, 1

3
a
)

= −
√
2
3
a < 0 .

La fonction f atteint donc son maximum au point
(
1
3
a, 1

3
a
)

et on a f
(
1
3
a, 1

3
a
)

=
√
2

54
a3.

Exercice 6.

i) Comme on veut utiliser le théorème des fonctions implicites, il faut vérifier que toutes ses
hypothèses sont satisfaites. On commence par calculer les dérivées partielles de F . On a

Fx = ∂xF = 6x2 − 2xy4 + 3 et Fy = ∂yF = −4x2y3 + 6y2 ,

qui sont continues sur R2 et donc F est de classe C1. Comme on veut trouver une fonction
définie au voisinage de 0, on pose x0 = 0. L’équation F (0, y0) = 2y30 − 2 = 0 implique alors
que y0 = 1. De plus Fy(0, 1) = 6 6= 0.

On peut donc appliquer le théorème des fonctions implicites qui nous dit que l’équation
F (x, y) = 0 définit une fonction implicite y = f(x) dans un voisinage de 0 telle que
F (x, f(x)) = 0 et f(0) = 1. De plus on a

f ′(x) = −Fx(x, f(x))

Fy(x, f(x))
=

6x2 − 2xf(x)4 + 3

4x2f(x)3 − 6f(x)2

et ainsi f ′(0) = −1
2

. Le graphe de la fonction f se trouve à la Fig. 5.
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ii) Les dérivées partielles de F sont

Fx = ey + y ex et Fy = ex + x ey ,

qui sont continues sur R2 et donc F est de classe C1. On a de nouveau x0 = 0 et F (0, y0) =
y0+2 = 0 ⇒ y0 = −2 . Comme en plus, Fy(0,−2) = 1 6= 0 , on peut appliquer le théorème
des fonctions implicites. Ainsi il existe une fonction y = f(x) définie implicitement par
l’équation F (x, y) = 0 dans un voisinage de 0 telle que F (x, f(x)) = 0 et f(0) = −2. De
plus on a

f ′(x) = −Fx(x, f(x))

Fy(x, f(x))
= −e

f(x) + f(x)ex

ex + xef(x)
,

et ainsi f ′(0) = 2− 1
e2
≈ 1.865 . Pour le graphe de f , voir Fig. 6.
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