EPFL Anna Lachowska
Sections IN, SC 8 mai 2025

Analyse II — Corrigé de la Série 11

Dans ce corrigé les lettres A, Ay, A3 dénotent les mineurs principaux (déterminants partiels)
de la matrice Hessienne de taille 1 x 1, 2 X 2 et 3 X 3 respectivement.
Exercice 1.

i) Le systéme Fu(z,y) = —sin(z) = 0
fy<x7y) = 6y =0

donne les point stationnaires (z,y) = (km,0) avec k € Z. Puisque

Ao(a, y) = det(_c%s(x) 2) — —Geos(),

on a
—6, k pai
Aolm,0) =4 7 7P
6, k impair
Les points (km,0) avec k pair sont donc des points selle avec f(km,0) = 3 tandis que pour
k impair, I'égalité A;(km,0) = —cos(kw) = 1 > 0 implique que f admet des minimums
locaux aux points (km,0) avec f(k7,0) =1 (Fig. 1).

i) Comme

z\4ty :32 2 2:0
{f(gcy) 2?2z + 2y = 3@+ =0 = (x,9)=0,0),

fo(z,y) = =3y* + 22 +2y =0
le seul point stationnaire de la fonction f est (0,0). Puisque

6z + 2 2
Ao(z,y) = det< 5 6y + 2) = —36zy + 122 — 12y,

ona Ay(0,0) =0 ce qui ne permet pas de conclure sur la nature du point stationnaire.
Mais comme f(z,—z) =223 et f(0,0) =0, la fonction f prend dans tout voisinage de
(0,0) des valeurs positives et négatives; elle admet donc un point selle en (0,0), cf. Fig. 2.
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i) On a

{fw(W) e o = (z,y) = (0,0),

fy(z,y) =2y(x —2y*) =0

et donc le seul point stationnaire de la fonction f est (0,0). On trouve ensuite

_ —6 2y _ 2 . o
Ao(z,y) = det<2y op — 12y2> = 68y~ — 12z, d’ot A2(0,0) =0.

En isolant un carré parfait dans f(x,y), on obtient

2\ 2
f(af,y)z—i%(a:—%> L R

ce qui implique f(z,y) < 0 pour tout (z,y) € R?. Comme f(0,0) = 0, la fonction f admet
un maximum local en (0,0), cf. Fig. 3.

Remarque: Puisque f(z,y) =0 = (z,y) = (0,0), le maximum de f en (0,0) est absolu.

Exercice 2.

i) On résout le systeme

folz,y,2) = —do + 4y =0
fy(z,y,2) = 4oz — 10y + 2z =0
fZ(x7y7Z): 2y — 2z =0

pour obtenir le seul point stationnaire (0,0,0). Ensuite on calcule le hessien et les mineurs
principaux dominants de la matrice hessienne:

4 4 0 0
As(z,y,2z) =det| 4 =10 2 |, As(x,y, 2) = det
0 9 _9 4 10

et  A(z,y,2)=—4.
En (0,0,0) on a
A1(0,0,0) = -4 <0, A(0,0,0) =24>0 et A3(0,0,0) = —32 <0,

et donc la fonction f admet un maximum local en (0,0,0) et f(0,0,0) = 2.
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it) Pour trouver les points stationnaire, on doit résoudre le systéme

folz,y,2) = 4x—32> =0 dr —322=0
fy($ay>z): 3y2_3 =0 g 3(y2_1)20
fo(z,y,2) = —6xz+6z =0 —6z(z —1)=0

Donc y = £1 et soit z = 0 (ce qui implique z = 0), soit x = 1 (ce qui implique z = :I:\/lg)
Les points stationnaires de f sont alors

2 2 2
010 ©0.-10. (L1%). (L-1F). (L1-F) o (L-1-%).

Ensuite on a

4 0 —6z
As(z,y,2) =det He(z,y,2) =det| 0 6y 0 = —T72y(2(z — 1) + 32%),
—6z 0 —6(x—1)

4 0
As(z,y,z) = det <O Gy) =24y et Ai(z,y,2)=4.

Evaluées aux points stationnaires ces expressions valent

As(0,1,0) = 144 > 0, A5(0,1,0) =24 > 0
As(0,—1,0) = —144 < 0, As(0,-1,0) = —24 < 0
<,1,%>:—288<0, (,1,%): 24> 0
( 1,\%):288>O, ( 1,%) 924 <0
( %) — 9288 < 0, A2(1,1,—%) 24> 0
A3<, —7§>:288>0, A2<,—,—%)=—24<0

Comme A; > 0, f a un minimum local en (0, 1,0) ou f(0,1,0) = 2, et tous les autres points
stationnaires ne sont pas des points d’extremum local (voir théoreme du cours, cas n = 3).

Exercice 3.

i) Comme la fonction f admet des dérivées partielles partout a l'intérieur du domaine D, ses
extremums absolus se trouvent parmi les points stationnaires a l'intérieur ou sur le bord de

D.
Points stationnaires a l'intérieur de D:

e e Al ed SR A TR

Puisque

Ao(z,y) = det (_21 _21) =3>0 et Ai(z,y) =2>0,

le point (1,1) est un minimum local de f. De plus on a f(1,1) = —1.
Sur le bord de D on a:




Notons d’abord que le bord de D est I'union des trois sous-ensembles suivants de R?:
{(,0): 0 <2 <3}U{(0,y) :0<y <3}U{(x,3—2x):0<x<3}.

L’évaluation de la fonction f sur le bord donne

1\* 1

f(z,0) =2 —x <:1: 2) 1 0<xz<3,
1\* 1

2

fOy)=y" —y=(y—5] —~, 0<y<3,

2 4
) 3\ 1
f(z,3—xz)=3(z"—-32x+2)=3 z=5) =7l 0<z<3.

1’idée est maintenant de chercher les extremums de ces fonctions unidimensionnelles dans le

domaine précisé qui se trouvent soit aux points stationnaires soit aux extrémités du domaine
(cf. Analyse I). Notons d’abord g(z) = f(z,0). Alors ¢'(z) =2(z—3) =0 & z =3
et g (%) = —i. Puisque ¢”(z) =2 > 0, ¢ a un minimum local en = = % De plus on a

g(0) =0 et ¢g(3)=6. On a donc

max f(z,0) = f(3,0) =6 et min f(z,0) = f (1 0) = —1.

0<z<3 0<z<3 2’ 4

De méme, on cherche les extremums des fonctions h(y) = f(0,y) et k(z) = f(x,3 — z). La
fonction h a exactement le méme comportement que g et pour k on a

M@ =61 -0 & o=l kQ)--1
K'(z) =6 >0 (= minimum local), k(0) = k(3) = 6,
si bien qu’on obtient
max f(0,y) = f(0,3) =6, Ain £(0,y) =f(0,3) =—1,
max f(r,3—w) = f(3,0)= f(0.3) =6,  min f(z,3-2)=[(33)=-%
1 s’en suit que f admet un minimum absolu en (1, 1) de valeur f(1,1) = —1 et des maximums

absolus en (3,0) et en (0,3) de valeur f(3,0) = f(0,3) = 6, voir Fig. 4.

i1) Comme f est de classe C? sur D, ses extremums absolus se trouvent soit en un point
stationnaire a l'intérieur de D, soit sur le bord de D.

Points stationnaires a U'intérieur de D:

fm(I,y)z dr — y — 6=0 B
{fy(%y)z —z + 4y — 6=0 = (z,)=(22).

Puisque
4

As(,y) = det<

le point (2,2) est un minimum local de f. De plus on a f(2,2) = —12.
Sur le bord de D on a:

1_41):15>0 et A(z,y) =4>0,
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Fig. 4

Le bord de D est 'union des deux sous-ensembles suivants de R?:
{(2,0): —4v2 <2 <4V2} U {(2, V32 —22) : —4V2 < 2 < 4V2}.

L’évaluation de la fonction f sur le bord donne

2
f(a:,O):2x2—6x:2<:c—g) —g, —4V2 <z < 4V2,

fx, V32 —22) =64 — 62 — (x+6)V32—a2, —4V2<z<4V2.

Sur la premiere partie du bord (le segment de 'axe z), f atteint son minimum en x = % ou
f(3,0) = — et son maximum en z = —4v/2 ot f(—4v/2,0) = 8(8+3v/2). L’autre extrémité

29
x = 4v/2 n’est pas candidat pour le maximum global de f parce que f(4v/2) < f(—4v/2).
Pour la deuxiéme partie (le demi-cercle), soit g: [~4v/2,41/2] — R définie par

g(x) =64 — 6 — (v + 6)V32 — 2.

Alors g est dérivable sur | — 42, 40/2 [, ou sa dérivée vaut

—6v/32 — 2% — 32 + 222
g(r) =632 — a2+ p(@+6) _ —6V32—a? 3242+ 62
V32 —a? ey

Ainsi
Jdx)=0 = 2*+32-16=3V32—122 = (2*+3z—-16)*=9(32—2?)
= 24+ 62° — 142 — 96x — 32 =0 (1)

Par 'indication on sait que ce polynome a des racines entieres qui sont en fait xy = 4 et
x9 = —4 (trouvé en essayant). Pour trouver les autres racines, on peut diviser le polynéme
obtenu par (z — 4)(z + 4) = 2 — 16. On obtient:

z* + 62 — 142 — 962 — 32 = (2% — 16)(2* + 62 + 2).
Les racines du polynéme 22 + 6z + 2 sont x5 = —3 — /7 et 24 = —3 + /7. Comme on a

bien ¢'(z1) = 0, 21 = 4 est un point stationnaire de g, mais ¢'(—4) = —12, donc ce n’est
pas un point stationnaire. Il est facile a voir que ¢'(—3 £ VT ) < 0 et donc les points 3, x4
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ne sont pas des points stationnaires de ¢g. (En fait, on a obtenu des racines “artificielles”
parce qu’on a pris le carré).

La valeur de g en son point stationnaire est g(4) = 0. De plus, les points ou ¢’ n’existe pas
sont aussi des candidats pour les extremums de g. On a g(—4\/§) =64+ 242~ 97.9 et
g(4v/2) = 64 — 24+/2 =~ 30.1.

Ainsi le minimum global de f est atteint en (2,2) et vaut f(2,2) = —12 et le maximum
global est atteint en (—44/2,0) et vaut f(—4v/2,0) = 8(8 + 3v/2).

Exercice 4.

Comme les dérivées partielles de f sont continues sur tout le domaine D, les extremums absolus
sont atteints aux points stationnaires a l'intérieur ou sur le bord de D. Puisque g—g = —1 ne
s’annule jamais sur D, la fonction f n’admet aucun point stationnaire.

Puisque le domaine D est un parallélépipede rectangle parallele aux axes, on peut déterminer
le comportement de f sur le bord de D en examinant ses dérivées partielles. Pour (x,y,z) € D
on a:

of

Fel z4+1>0 = f est croissante dans la direction x et donc maximal en x = a
x
et minimal en x = 0.
of - o .
9= -1<0 = f est décroissante dans la direction y et donc maximal en y = 0
Y
et minimal en y = b.
of : o :
5 = r+2>0 = f est croissante dans la direction z et donc maximal en z = ¢
2z

et minimal en z = 0.

La fonction f a donc son maximum absolu en (a, 0, ¢) et son minimum absolu en (0, b, 0).
Afin de calculer les valeurs extrémales de f, on doit trouver son expression. A partir des
dérivées partielles données, on obtient successivement

Of(x,y,2)=-1 = [flry2)=-y+ygl@z) = 0f(r,y2) =0yl z)=2+1
= g(r,2)=(C+Dr+hz) = Of(r,y2)=c+h(z)=x+2
= h(z)=2z+C, CeR = g(z,2) = (z+ 1)z +22+C
= flr,y,2)=—-y+(E=+1)z+22+C

La condition f(0,0,0) = 3 implique alors que C' = 3 et f(z,y,2) = (z + 1)z —y + 22 + 3.
Ainsi le maximum absolu de f est f(a,0,¢) = a(c+ 1) + 2¢ + 3 et son minimum absolu est
£(0,0,0)=3 b

Remarque: On aurait aussi pu calculer 'expression de f des le départ mais I’approche prise ici
est plus instructive.

Exercice 5.

Soit d la distance entre le point P = (x,y) et la droite x+y =a (a > 0). Puisque la distance
entre un point et une droite est mesurée dans la direction perpendiculaire a la droite, le point

(x,y)+d <%, \%) est sur la droite et vérifie donc

(x+%)+(y+%):a = d:?(a—m—y).
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Les distances de P aux droites * =0 et y = 0 sont respectivement x et y. Par conséquent
le produit des distances de P aux trois droites est donnée par la fonction

V2

f(x,y)zTIy(a—x—y), D(f) ={(z,y) 12,y >0 et v +y < a}.

Comme on cherche P a l'intérieur du triangle ABC et que la fonction f admet des dérivées
partielles en chaque point de D(f), le maximum cherché est atteint en un point stationnaire
de f a l'intérieur du domaine.

On résout donc le systeme

folz,y) = —=(ay — 22y — y*) = 0 (1)

fy(x,y) = —=(ax — 20y —2%) = 0 (2)

Sl sl

en calculant d’abord v2 - ((1) — (2)):

-y —alz—y)=(@@—y)(r+y—a)=0 H:y><a r—y=0 = r=y.

En insérant « = y dans (1), on obtient ax —32? =x(a —3z) =0 = a2 =y=3ia caron
cherche un point a l'intérieur de D(f) (i.e. z > 0).

Il reste a vérifier que f atteint un maximum au point (% a, % a). Le hessien de f est

_ —V2y V2 +y)\ a ?
Az(x,y)det<%_\/§(x+y) V2 2 >2xy—(ﬁ—\/§(x+y)>

2

a
= 207 — 29— 2ay + 2a(z +y) -

et donc As(ja,5a)=ga>0 et Ai(30,50) =—Fa<0

La fonction f atteint donc son maximum au point (%a, %a et on a f (%a, %a) \5/75 a3

Exercice 6.
i) Comme on veut utiliser le théoreme des fonctions implicites, il faut vérifier que toutes ses
hypotheses sont satisfaites. On commence par calculer les dérivées partielles de F'. On a

F, = 0,F = 62> — 2zy* + 3 et F,=0,F = —4z2y3 + 612,

qui sont continues sur R? et donc F est de classe C'. Comme on veut trouver une fonction
définie au voisinage de 0, on pose zy = 0. L’équation F(0,yy) = 2y — 2 = 0 implique alors
que yo = 1. De plus F,(0,1) =6 # 0.

On peut donc appliquer le théoreme des fonctions implicites qui nous dit que ’équation
F(z,y) = 0 définit une fonction implicite y = f(z) dans un voisinage de 0 telle que
F(z, f(x)) =0 et f(0) =1. De plus on a
R f() 60— 20(2) +3

Fy(z, f(z))  422f(x)® - 6f(2)?

et ainsi f’(0) = —3 . Le graphe de la fonction f se trouve & la Fig. 5.

f'(x) =
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i) Les dérivées partielles de F' sont
F,=¢e"+ye" et Fy=¢e"+axe¥,

qui sont continues sur R? et donc F est de classe C*. On a de nouveau zo = 0 et F(0,y) =
Y+2=0 = yo = —2. Comme en plus, F,(0,—2) =1+ 0, on peut appliquer le théoreme
des fonctions implicites. Ainsi il existe une fonction y = f(x) définie implicitement par
I'équation F(x,y) =0 dans un voisinage de 0 telle que F(z, f(z)) =0 et f(0) = —2. De

plus on a

o R f@) O fa)e
T = " h @) = e raee

et ainsi f/(0) =2 — % ~ 1.865. Pour le graphe de f, voir Fig. 6.

-10

Fig. 6



