
EPFL Anna Lachowska
Sections IN, SC 1 mai 2025

Analyse II – Corrigé de la Série 10

Exercice 1.

Les développements limités d’ordre n pour une fonction de trois variables s’obtiennent de la
formule générale (voir notes du cours 17). Dans la suite on pose x̄ = (x, y, z) et ā := (x0, y0, z0)
pour simplifier la notation.

f(x̄) = F (0) + F ′(0) +
1

2
F ′′(0) + . . .+

1

p!
F (p)(0) + ε(||x̄− ā||p),

où

F : I → R, [0, 1] ⊂ I, F (t) = f(ā+t(x̄−ā)) = f(x0+t(x−x0), y0+t(y−y0), z0+t(z−z0))

et on a écrit le reste sous la forme ε(||x̄− ā||p) satisfaisant limx̄→ā
ε(||x̄−ā||p)
||x̄−ā||p = 0.

i) Pour trouver le développement linéaire de la fonction f(x̄) au voisinage de ā on calcul

F ′(t) =
∂f

∂x

∂x

∂t
+
∂f

∂y

∂y

∂t
+
∂f

∂z

∂z

∂t

F ′(0) = fx(ā)(x− x0) + fy(ā)(y − y0) + fz(ā)(z − z0).

Alors le développement linéaire de la fonction f(x, y, z) au voisinage de ā est

f(x̄) = f(ā) + fx(ā) (x− x0) + fy(ā) (y − y0) + fz(ā) (z − z0) + ε(||x̄− ā||) ,

ii) La dérivée seconde de F par rapport à t s’écrit sous la forme

F ′′(t) =
∂2f

∂x2

(
∂x

∂t

)2

+
∂2f

∂y2

(
∂y

∂t

)2

+
∂2f

∂z2

(
∂z

∂t

)2

+

+2
∂2f

∂x∂y

(
∂x

∂t

)(
∂y

∂t

)
+ 2

∂2f

∂x∂z

(
∂x

∂t

)(
∂z

∂t

)
+ 2

∂2f

∂y∂z

(
∂y

∂t

)(
∂z

∂t

)
.

Ici on a utilisé le Théorème de Schwarz: pour avoir le développement limité d’ordre 2, la
fonction f doit être de classe C2 dans un voisinage de ā, et donc ses dérivées partielles
secondes mixtes sont égales au voisinage de ā. On obtient

F ′′(0) = fxx(ā) (x− x0)2 + fyy(ā) (y − y0)2 + fzz(ā) (z − z0)2+

+2fxy(ā) (x− x0)(y − y0) + 2fxz(ā) (x− x0)(z − z0) + 2fyz(ā) (y − y0)(z − z0).

Alors le développement d’ordre 2 de la fonction f(x, y, z) au voisinage de ā est

f(x, y, z) = f(ā) + fx(ā) (x− x0) + fy(ā) (y − y0) + fz(ā) (z − z0)

+
1

2
fxx(ā) (x− x0)2 +

1

2
fyy(ā) (y − y0)2 +

1

2
fzz(ā) (z − z0)2

+ fxy(ā) (x− x0)(y − y0) + fxz(ā) (x− x0)(z − z0) + fyz(ā) (y − y0)(z − z0)

+ ε(||x̄− ā||2) .

(1)

1



Exercice 2. Pour référence on rappelle ici la formule de Taylor d’ordre 2 pour une fonction
de 2 variables au voisinage de ā = (x0, y0) (voir les notes du cours):

f(x, y) = f(ā) + fx(ā) (x− x0) + fy(ā) (y − y0)+

+
1

2
fxx(ā) (x− x0)2 +

1

2
fyy(ā) (y − y0)2 + fxy(ā) (x− x0)(y − y0)

+ ε(||x̄− ā||2) .

(2)

i) D’après la formule (2), le polynôme de Taylor p2(x, y) d’ordre 2 d’une fonction f(x, y) au
voisinage de l’origine est donné par

p2(x, y) = f(0, 0) + fx(0, 0)x+ fy(0, 0) y +
1

2
fxx(0, 0)x2 + fxy(0, 0)xy +

1

2
fyy(0, 0) y2.

Ici on a

f(x, y) = x2y + 2xy + 3y2 − 5x+ 1 ,

fx(x, y) = 2xy + 2y − 5 , fy(x, y) = x2 + 2x+ 6y ,

fxx(x, y) = 2y , fxy(x, y) = 2x+ 2 , fyy(x, y) = 6 ,

d’où

f(0, 0) = 1, fx(0, 0) = −5, fy(0, 0) = 0, fxx(0, 0) = 0, fxy(0, 0) = 2, fyy(0, 0) = 6,

et donc

p2(x, y) = 1 + (−5) · x+ 0 · y +
1

2
· 0 · x2 + 2 · xy +

1

2
· 6 · y2 = 1− 5x+ 2xy + 3y2.

On remarque ici que le résultat est le polynôme donné avec les termes d’ordre plus grand que
n enlevés. On peut arriver plus vite au même résultat par la méthode des développements
limités (voir Notes du cours 17 et 18):

f(x, y) = x2y + 2xy + 3y2 − 5x+ 1 = 1 + (−5x+ 2xy + 3y2 + x2y) = 1 + s,

où s est petit. Donc il nous reste d’enlever le terme d’ordre 3 en x, y :

p2(x, y) = 1− 5x+ 2xy + 3y2.

ii) Soit f(x, y, z) = ex+y sinh(z). Par la méthode des développements limités il suffit d’utiliser
les polynômes de Taylor de la fonction ex d’ordre 2 et de la fonction sinh(z) d’ordre 1
(puisque le terme y sinh(z) contient déjà une puissance de y). On a ex = 1 + x+ 1

2
x2 + ...

et sinh(z) = ez−e−z

2
= z + .... Alors on obtient

p2(x, y) = 1 + x+
1

2
x2 + yz.

On peut trouver le même polynôme par la formule (1), vue à l’Ex. 2: le polynôme de Taylor
p2(x, y, z) d’ordre 2 d’une fonction f(x, y, z) de trois variables autour de l’origine est donné
par

p2(x, y, z) = f(0, 0, 0) + fx(0, 0, 0)x+ fy(0, 0, 0) y + fz(0, 0, 0) z+

1

2
fxx(0, 0, 0)x2 +

1

2
fyy(0, 0, 0) y2 +

1

2
fzz(0, 0, 0) z2+

fxy(0, 0, 0)xy + fxz(0, 0, 0)xz + fyz(0, 0, 0) yz
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Ici on a

f(x, y, z) = ex + y sinh(z) ,

fx(x, y, z) = ex , fy(x, y, z) = sinh(z) , fz(x, y, z) = y cosh(z) ,

fxx(x, y, z) = ex , fyy(x, y, z) = 0 , fzz(x, y, z) = y sinh(z) ,

fxy(x, y, z) = 0 , fxz(x, y, z) = 0 , fyz(x, y, z) = cosh(z) ,

d’où

f(0, 0, 0) = 1, fx(0, 0, 0) = 1, fy(0, 0, 0) = 0, fz(0, 0, 0) = 0, fxx(0, 0, 0) = 1,

fyy(0, 0, 0) = 0, fzz(0, 0, 0) = 0, fxy(0, 0, 0) = 0 = fxz(0, 0, 0), fyz(0, 0, 0) = 1,

et donc

fDL2(x, y, z) = 1 + 1 · x+ 0 · y + 0 · z +
1

2
· 1 · x2 +

1

2
· 0 · y2 +

1

2
· 0 · z2+

0 · xy + 0 · xz + 1 · yz

= 1 + x+
1

2
x2 + yz.

iii) La méthode de développements limités est avantageuse si la fonction donnée est un polynôme:
il nous reste de re-écrire le polynôme donné en forme de polynôme en (x− a) et (y− b) au
lieu de x et y, et puis enlever les termes d’ordre plus grand que n. Ici on a (a, b) = (1,−2)
et n = 1. On obtient dans ce cas:

3xy+x2−y+5x−3 = 3((x−1)+1)((y+2)−2)+((x−1)+1)2−((y+2)−2)+5((x−1)+1)−3 =

= 3(x−1)(y+2)+3(y+2)−6(x−1)−6+(x−1)2+2(x−1)+1−(y+2)+2+5(x−1)+5−3 =

= 3(x− 1)(y + 2) + (x− 1)2 + 2(y + 2) + (x− 1)− 1.

=⇒ p1(x, y) = 2(y + 2) + (x− 1)− 1 = x+ 2y + 2.

On peut obtenir le même résultat en utilisant la formule (2) de Taylor: Le polynôme
p1(x, y) d’ordre 1 de f(x, y) au voisinage de (1,−2) est donné par

p1(x, y) = f(1,−2) + fx(1,−2) (x− 1) + fy(1,−2) (y + 2).

Comme

f(x, y) = 3xy + x2 − y + 5x− 3 ,

fx(x, y) = 3y + 2x+ 5 , fy(x, y) = 3x− 1 ,

et donc
f(1,−2) = −1, fx(1,−2) = 1, fy(1,−2) = 2 .

Ainsi
p1(x, y) = −1 + (x− 1) + 2(y + 2) = x+ 2y + 2 .
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iv) Dans ce cas l’application de la méthode des développements limités exige une analyse plus
fine. Il semble plus facile d’utiliser la formule de Taylor directement. On a

f(x, y) =
(

cos(x)
) 1

2
+sin(y)

= exp
((

1
2

+ sin(y)
)

ln
(
cos(x)

))
,

fx(x, y) = −
(

1
2

+ sin(y)
)(

cos(x)
)sin(y)− 1

2 sin(x) ,

fy(x, y) = ln
(
cos(x)

)(
cos(x)

) 1
2

+sin(y)
cos(y) ,

d’où

f
(π

3
,
π

6

)
=

1

2
, fx

(π
3
,
π

6

)
= −
√

3

2
, fy

(π
3
,
π

6

)
= −
√

3

4
ln(2) .

Ainsi

p1(x, y) =
1

2
−
√

3

2

(
x− π

3

)
−
√

3

4
ln(2)

(
y − π

6

)
=

1

2
+

√
3π

24
(ln(2) + 4)−

√
3

2
x−
√

3

4
ln(2) y .

Pour l’erreur dans i), on a

R(x, y) = f(x, y)− p2(x, y) = x2y + 2xy + 3y2 − 5x+ 1− (1− 5x+ 2xy + 3y2) = x2y

et donc, en utilisant les coordonnées polaires x = r cos(ϕ), y = r sin(ϕ),

lim
(x,y)→(0,0)

R(x, y)

r2
= lim

(x,y)→(0,0)

(
r cos(ϕ)

)2(
r sin(ϕ)

)
r2

= lim
(x,y)→(0,0)

r cos(ϕ)2 sin(ϕ) = 0,

puisque | cos(ϕ)2 sin(ϕ)| ≤ 1 quelque soit ϕ ∈ [0, 2π).

Exercice 3.

i) Méthode 1 : Les dérivées partielles de la fonction f(x, y, z) sont

fx(x, y, z) = 2z e2xz+y, fy(x, y, z) = e2xz+y, fz(x, y, z) = 2x e2xz+y

fxx(x, y, z) = 4z2 e2xz+y, fyy(x, y, z) = e2xz+y, fzz(x, y, z) = 4x2 e2xz+y

fxy(x, y, z) = 2z e2xz+y, fxz(x, y, z) = (2 + 4xz) e2xz+y, fyz(x, y, z) = 2x e2xz+y

et on a

fx(0, 0, 0) = 0, fy(0, 0, 0) = 1, fz(0, 0, 0) = 0

fxx(0, 0, 0) = 0, fyy(0, 0, 0) = 1, fzz(0, 0, 0) = 0

fxy(0, 0, 0) = 0, fxz(0, 0, 0) = 2, fyz(0, 0, 0) = 0

Ainsi en utilisant la formule (1) le polynôme de Taylor p2(x, y, z) d’ordre 2 est

p2(x, y, z) = 1 + y +
y2

2
+ 2xz .

4



Méthode 2 : On a f(x, y, z) = g(h(x, y, z)) avec g(u) = eu et h(x, y, z) = 2xz+y . Puisque
h(0, 0, 0) = 0, on doit utiliser le développement limité (DL) de g en u = 0, c’est-à-dire

eu = 1 + u+
u2

2
+ ε(u2).

On remplace u = 2xz + y :

f(x, y, z) = 1 + 2xz + y +
(2xz + y)2

2
+ ε((2xz + y)2) = 1 + 2xz + y +

y2

2
+ ε(d2) ,

où d =
√
x2 + y2 + z2. On a donc bien retrouvé

p2(x, y, z) = 1 + y +
y2

2
+ 2xz .

ii) Méthode 1 : Les dérivées partielles de f sont

fx(x, y) = 2 cos(2x+ y2), fy(x, y) = 2y cos(2x+ y2),

fxx(x, y) = −4 sin(2x+ y2), fyy(x, y) = 2 cos(2x+ y2)− 4y2 sin(2x+ y2),

fxy(x, y) = −4y sin(2x+ y2)

et on a

fx(1, 1) = 2 cos(3), fy(1, 1) = 2 cos(3),

fxx(1, 1) = −4 sin(3), fyy(1, 1) = 2 cos(3)− 4 sin(3), fxy(1, 1) = −4 sin(3).

Par la formule (2) on obtient alors pour le polynôme de Taylor p2(x, y) d’ordre 2

p2(x, y) = sin(3) + 2 cos(3) (x− 1) + 2 cos(3) (y − 1) +
1

2
(−4 sin(3)) (x− 1)2

+
1

2

(
2 cos(3)− 4 sin(3)

)
(y − 1)2 + (−4 sin(3)) (x− 1)(y − 1)

= sin(3) + 2 cos(3) (x− 1) + 2 cos(3) (y − 1)− 2 sin(3) (x− 1)2

+
(

cos(3)− 2 sin(3)
)

(y − 1)2 − 4 sin(3) (x− 1)(y − 1)

Méthode 2 : Puisque le point donné (1, 1) est différent de l’origine, il nous faut réécrire la
fonction donnée en forme d’expression en (x− 1) et (y − 1) au lieu de x et y. On a

sin(2x+y2) = sin(2((x−1)+1)+((y−1)+1)2) = sin(2(x−1)+2+(y−1)2 +2(y−1)+1) =

= sin(3 + 2(x− 1) + 2(y − 1) + (y − 1)2).

On a f(x, y) = g(l(x, y)) avec g(u) = sin(3+u) et u = 2(x−1)+2(y−1)+(y−1)2. Pour
pouvoir utiliser les développements limités connus, on applique la formule trigonométrique:

sin(3 + u) = sin(3) cos(u) + cos(3) sin(u).

On utilise alors les DL de sin(u) et cos(u) d’ordre 2 autour de u = 0:

sin(u) = u+ ε(u2), cos(u) = 1− 1

2
u2 + ε(u2).
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On remplace u = 2(x− 1) + 2(y− 1) + (y− 1)2 et retient seulement les termes d’ordre ≤ 2:

p2(x, y) = sin(3)(1− 1

2
(2(x−1)+2(y−1)+(y−1)2)2)+cos(3)(2(x−1)+2(y−1)+(y−1)2) =

= sin(3) + 2 cos(3) (x− 1) + 2 cos(3) (y − 1)− 2 sin(3) (x− 1)2

+
(

cos(3)− 2 sin(3)
)

(y − 1)2 − 4 sin(3) (x− 1)(y − 1).

Ce résultat correspond bien à celui de la méthode 1.

Exercice 4.

Pour les cas i)− iv) on peut utiliser la matrice hessienne H en (0, 0) qui est diagonale. On a :

i) detH = 22 > 0 et H11 = 2 > 0 ⇒ le point (0, 0) est un minimum (en fait global);

ii) detH = 2 · (−2) < 0 ⇒ la fonction n’a pas d’extremum local en (0, 0);

iii) detH = (−2) · 2 < 0 ⇒ la fonction n’a pas d’extremum local en (0, 0);

iv) detH = (−2)2 > 0 et H11 = −2 < 0 ⇒ le point (0, 0) est un maximum (en fait global).

Pour les cas v)− viii) on ne peut pas utiliser la matrice hessienne parce que celle-ci est nulle.

v) Comme f(x, y) = x4 + y4 > 0 = f(0, 0) pour tout (x, y) 6= (0, 0), le point (0, 0) est le
minimum global.

vi) Soit ε > 0. Alors f(ε, 0) = ε4 > 0 = f(0, 0) > f(0, ε) = −ε4, donc (0, 0) n’est pas un
point d’extremum local (dans tout voisinage de (0, 0) il existent des points x̄1 et x̄2 tels
que f(x̄1) < f(0, 0) < f(x̄2)).

vii) Ce n’est pas un point d’extremum local: f(−ε, 0) = −ε3 < 0 = f(0, 0) < f(ε, 0) = ε3

pour tout ε > 0.

viii) f(x, y) = −(x4 + y4) < 0 pour tout (x, y) 6= (0, 0), donc (0, 0) est le maximum global
de f .

Exercice 5.

i) Comme la matrice A est symétrique, il existe une matrice orthogonale O de vecteurs
propres de A telle que A = ODOT , où D est la matrice diagonale contenant les valeurs
propres de A. On a

det(A− λI) = (6− λ)(3− λ)− 4 = λ2 − 9λ+ 14 = 0 ⇔ λ1 = 7 et λ2 = 2 .

Les vecteurs propres satisfont alors

Av1 = λ1v1 ⇒
{

6v11 − 2v21 = 7v11

−2v11 + 3v21 = 7v21

⇒ v1 =

(
−2
1

)
et

Av2 = λ2v2 ⇒
{

6v12 − 2v22 = 2v12

−2v12 + 3v22 = 2v22

⇒ v2 =

(
1
2

)
Pour construire la matrice orthogonale O il faut normer les vecteurs propres. Comme

‖v1‖ = ‖v2‖ =
√

5 , on a O =

(
− 2√

5
1√
5

1√
5

2√
5

)
et donc

A = ODOT =

(
− 2√

5
1√
5

1√
5

2√
5

)(
7 0
0 2

)(− 2√
5

1√
5

1√
5

2√
5

)
.

6



ii) On a pour le gradient de la fonction f(x, y) = 3x2 − 2xy + 3
2
y2

∇f = (6x− 2y, 3y − 2x) = (0, 0) =⇒ (x, y) = (0, 0),

donc le point (0, 0) est le seul point stationnaire de f .

Pour la matrice hessienne de f à (0, 0) on trouve

∂2f

∂x2
= 6,

∂2f

∂x∂y
= −2,

∂2f

∂y2
= 3,

et donc Hessf (0, 0) =

(
6 −2
−2 3

)
= A.

Puisqu’on a det(A) = 18−4 = 14 > 0 et A11 = 6 > 0, le point (0, 0) est un minimum local
de f . Autrement, car les valeurs propres de A calculées dans i) sont λ1 = 7 et λ2 = 2, on
peut conclure que (0, 0) est un point de minimum local.

iii) Soit (u, v)T = OT (x, y)T le changement de variables effectué par la matrice O, alors
(x, y)T = O(u, v)T est le changement de variables réciproque. On obtient(

x
y

)
=

(
− 2√

5
1√
5

1√
5

2√
5

)(
u
v

)
=

(
1√
5
(−2u+ v)

1√
5
(u+ 2v)

)

En remplaçant les valeurs x = 1√
5
(2u−v) et y = 1√

5
(u+2v) dans la formule pour f(x, y) =

f̃(u, v) on obtient

f̃(u, v) =
3

5
(−2u+ v)2 − 2

5
(−2u+ v)(u+ 2v) +

3

10
(u+ 2v)2 =

=
u2

10
(24 + 8 + 3) +

uv

10
(24− 12− 12) +

v2

10
(6− 8 + 12) =

1

2
(7u2 + 2v2).

La nature du point stationnaire est claire après le changement de variables: c’est un
minimum local.

iv) L’unique point stationnaire de f est (0, 0) et on a Hessf (0, 0) =

(
0 4
4 0

)
qui a les valeurs

propres λ1 = 4 et λ2 = −4. La matrice des vecteurs propres correspondants est

O =
1√
2

(
1 1
1 −1

)
et donc (

u
v

)
= OT

(
x
y

)
=

1√
2

(
1 1
1 −1

)(
x
y

)
=

1√
2

(
x+ y
x− y

)
.

Il suit que

f(x, y) =
1

2

(
4u2 − 4v2

)
= 2

((
x+ y√

2

)2

−
(
x− y√

2

)2
)

= (x+ y)2 − (x− y)2

et à partir de cette expression, il est facile à voir que (0, 0) n’est pas un point d’un extremum
local de f .
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