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Sections IN, SC 1 mai 2025

Analyse II — Corrigé de la Série 10

Exercice 1.

Les développements limités d’ordre n pour une fonction de trois variables s’obtiennent de la
formule générale (voir notes du cours 17). Dans la suite on pose T = (z,y, 2) et a := (zo, Yo, 20)
pour simplifier la notation.

(@) = FO) + F(0) + 3F"(0) ..+ 5 F(0) + =(|lo — "),
ou
F:I—-R, 0,1} C I, F(t) = f(a+t(z—a)) = f(xo+t(x—x0), Yo+t(y—yo), 20+t(z2—20))
et on a écrit le reste sous la forme e(||z — a||P) satisfaisant limz_,5 Eﬁ'g:{;"l:) = 0.

i) Pour trouver le développement linéaire de la fonction f(Z) au voisinage de a on calcul

_ofon ofoy  ofo:
CO0x Ot Oyot 0z 0t

F(0) = fo(@)(x — z0) + fy(@)(y — o) + f2(@)(z = 20).

Alors le développement linéaire de la fonction f(x,y, z) au voisinage de a est

f(x) = f(a) + fo(a) (z — x0) + fy(a) (y — vo) + [=(a) (z — 20) +(|]z —all) ,

(1)

it) La dérivée seconde de F' par rapport a t s’écrit sous la forme

, Of (0x\*  Of [oy\® O f [0z\°
=5 (5) +or (5) +52 (5) +

2 2 2
+2 O (9r) (% +2 OF (9r) (2= +2 O () (2= .
Ozxdy \ Ot ot 0xdz \ Ot ot Oyoz \ Ot ot

Ici on a utilisé le Théoreme de Schwarz: pour avoir le développement limité d’ordre 2, la
fonction f doit étre de classe C? dans un voisinage de @, et donc ses dérivées partielles
secondes mixtes sont égales au voisinage de a. On obtient

F"(0) = fa(a) (v — I0>2 + fy(@) (y — yO)2 + f.z(@) (2 — ZO)2+
+2fﬂfy(d) (‘IL‘ - 1'0)(y - yO) + Qfxz(d) (:L‘ - 1‘0)(2 - ZO) + nyz(&) (y - yo)(z — Zo).

Alors le développement d’ordre 2 de la fonction f(x,y, z) au voisinage de a est

[y, 2) = f@) + fe(a) (x = 20) + f,(a) (y — yo) + [2(@) (2 — 2)

1 _ 2 1 _ 2 1 — 2
+ §frx(a) (x —20)° + éfyy(a) (Y —yo)” + §fzz(a) (z — 20)

+ fxy(a) (ZE - xO)(y - yO) + fzz(a) (l’ - I‘O)(Z - ZO) + fyz(a) (y - yO)(Z - ZO)
+e(llz —al).

(1)



Exercice 2. Pour référence on rappelle ici la formule de Taylor d’ordre 2 pour une fonction
de 2 variables au voisinage de a = (g, yo) (voir les notes du cours):

i)

i)

f(x,y) = f(@) + fu(a) (x — x0) + fy(a) (y — yo)+
+ %fm(@) (z — x0)® + %fyy(d) (y = v0)* + fay(@) (x — x0)(y — %o) (2)

+e(lz—al).

D’apres la formule (2), le polynome de Taylor py(z,y) d’ordre 2 d’une fonction f(z,y) au
voisinage de l'origine est donné par

po(,9) = F(0,0) + £o(0,0) 2+ Fy(0,0)y+ 3 Fer(0,0) 4% + Fuy(0,0) 7y + 3 f1,(0,0) 7
Ici on a
flx,y) = 2%y + 22y + 39> — 5z + 1,
fal@,y) =20y + 2y — 5, fy(z,y) = 2% + 22 + 6y,
foa(,y) =2y, fay(z,y) =204 2, fyy(z,y) =6,
d’ott
f(0,0) =1, [f,(0,0)=-5, f,(0,0)=0, fur(0,0)=0, f2,(0,0)=2, [, (0,0) =6,

et donc

1 2 1 2 2
pg(m,y):1+(—5)~x+0-y+§-0-x +2-:vy+§-6-y =1— 5z + 2zy + 3y~.

On remarque ici que le résultat est le polynome donné avec les termes d’ordre plus grand que
n enlevés. On peut arriver plus vite au méme résultat par la méthode des développements
limités (voir Notes du cours 17 et 18):

fla,y) = 2y + 20y + 3y® — 5o + 1 = 1+ (—5z + 20y + 3y + 2%y) = 1 + 5,

ol s est petit. Donc il nous reste d’enlever le terme d’ordre 3 en x,y :
po(2,y) = 1 — bz + 2xy + 3>

Soit f(x,y, z) = e*+ysinh(z). Par la méthode des développements limités il suffit d’utiliser
les polynomes de Taylor de la fonction e d’ordre 2 et de la fonction sinh(z) d’ordre 1
(puisque le terme ysinh(z) contient déja une puissance de y). On a e® =1+ + 322 + ...

z

et sinh(z) = €= = z + .... Alors on obtient
L,
pa(z,y) =1+ o+ 527 +y2

On peut trouver le méme polynome par la formule (1), vue a 'Ex. 2: le polynéme de Taylor
po(z,y, z) d’ordre 2 d’une fonction f(x,y, z) de trois variables autour de 'origine est donné
par

pa(z,y,2) = f(0,0,0) + f2(0,0,0) z + £,(0,0,0)y + f.(0,0,0) z +
1 1 1
5ﬁm(o, 0,0) 2% + §fyy(0, 0,0) % + 5fzz(o, 0,0) 2%+
f24(0,0,0) zy + £,.(0,0,0) zz + f,.(0,0,0) yz

2



iii)

Ici on a

f(x,y,2) = e” +ysinh(z),

felz,y,2) = €*, fy(x,y,2) =sinh(z), f2(z,y,2) = ycosh(z),
fmc(x7yaz) :ex’ fyy(xay7z) :O7 fzz(xayaz) :ySinh<Z)a
fay(z,y,2) =0, foz(x,y,2) =0, fy=(x,y,2) = cosh(z),

d’ou
£(0,0,0) =1, f,(0,0,0)=1, f,(0,0,0)=0, f.(0,0,0)=0, f.,(0,0,0)=1,
fyy(07070) :O, fzz(07070) :Oa fzy(oaoao) :O:fxz(07070)7 fyz(oaoao) =4

et donc

1 2 1 2 1 2
fDL2(x,y,z):1—|—1-a:—|—0-y—|—0-z+§-l-x +§-0-y +§-0-z—|—
O-2y4+0-22+1-yz

1
:1—|—x+§x2+yz.

La méthode de développements limités est avantageuse si la fonction donnée est un polynome:
il nous reste de re-écrire le polynome donné en forme de polynéme en (z —a) et (y — b) au
lieu de z et y, et puis enlever les termes d’ordre plus grand que n. Ici on a (a,b) = (1, —2)
et n = 1. On obtient dans ce cas:

3ey+a’—y+52—3 = 3((x—1)+1)((y+2)—2)+((z—1)+1)>—((y+2)—2)+5((x—1)+1)—3 =
=3(z—1)(y+2)+3(y+2)—6(x—1) =64 (z—1)*+2(x—1)+1—(y+2)+2+5(x—1)+5-3 =
=3x—-Dy+2)+@x—-1)0°+2y+2)+(xz—1)—1.
= mz,y) =2y+2)+(x—-1)—-1=a+2y+2.

On peut obtenir le méme résultat en utilisant la formule (2) de Taylor: Le polynéme
p1(z,y) d’ordre 1 de f(x,y) au voisinage de (1, —2) est donné par

pl(x7y> = f(17 _2) + fm(la _2) (ZL’ - 1) + fy(17 _2) (y + 2)

Comme

f(z,y) =32y +2* —y+ 52 —3,

fx($,y):3y+2$+5, fy(ﬂf,y):&fﬁ—l,
et donc

f(la _2) = _17 fx(L _2) = 17 fy(L _2> =2.
Ainsi

plz,y)=—1+(@x—-1)+2(y+2) =x+2y+2.



i) Dans ce cas I'application de la méthode des développements limités exige une analyse plus
fine. Il semble plus facile d’utiliser la formule de Taylor directement. On a

flay) = (cos(@)) ™" = exp((4 +sin(y)) In(cos(x)) )

fuolz,y) = —(% + sin(y)) (cos(x))sm(y) 2 sin(x),

fy(z,y) = In(cos(z)) (cos(z)) Fsin(y) cos(y) ,

d’ou
™ T T T \/— o \/_
Ge)=3  #G5-%  sEg=-Fue
Ainsi
oo = 3= (e-5) - w3
:%+@(1 (2)+4)_?x_§1 (@)

Pour lerreur dans i), on a
R(z,y) = f(x,y) — pa(z,y) = 2%y + 20y + 3y* — 52+ 1 — (1 — 5z + 2xy + 3y*) = 2%y

et donc, en utilisant les coordonnées polaires x = r cos(y), y = rsin(yp),

2, .
. R(z,y) _ (rcos(yp))”(rsin(p)) : ).
lim = lim = lim rcos sin =0,
(x,y)—>(070) TQ (Z’,y)—>(0,0) 7’2 (x7y)_>(070) (90) (90)

puisque | cos(¢)?sin(p)| < 1 quelque soit ¢ € [0, 27).

Exercice 3.

i) Méthode 1: Les dérivées partielles de la fonction f(x,y, z) sont

fa:a:(xa Y, Z) = 422 6222+y7 fyy(x7 Y, Z) = €2xz+y’ fzz(xa Y, Z) = 4'752 eszer
fxy(x7ya Z) = 2Z€2x2+y7 f:(:z(xaya Z) = (2+4$Z) e2:cz+y7 fyz<x7yaz) = 2z ¥V
et on a
f2(0,0,0) =0, f,(0,0,0) =1, f:(0,0,0) =0
fxm(ovOaO) :()7 fyy(()’ovo) = ]-7 fZZ((]?O’ O) :O
f:vy<07070> 207 f$2<07070) :27 fyz(O;O; 0) :O

Ainsi en utilisant la formule (1) le polynome de Taylor ps(z,y, z) d’ordre 2 est

2

pg(:v,y,z):1+y—l-y7+2xz.



i)

Méthode 2: On a f(z,y,z) = g(h(x,y,z)) avec g(u) = e" et h(x,y,z) = 2zxz+y. Puisque

h(0,0,0) = 0, on doit utiliser le développement limité (DL) de g en u = 0, c’est-a-dire
w2
e’ = 1+u—|—?+5(u2).

On remplace u = 2xz + y:

2 2 2
W—l—a((%z%—y)%:1—|—2:cz+y+y—+5(d2),

2
ou d = \/x% + y% + z2. On a donc bien retrouvé
2

pg(a:,y,z)zl—i-y—i—%—i-sz.

flz,y,2) =1+ 2224y +

M¢éthode 1: Les dérivées partielles de f sont
fo(,y) = 2cos(2z + y*), fyz.y) = 2y cos(2z +y?),
fou(z,y) = —4sin(2z + 3?), fou(7,y) = 2cos(2z + y?) — 4y* sin(2x + y?),
foy(T,y) = —4ysin(2z + y?)
et on a

fz(1,1) = 2cos(3), fy(1,1) = 2cos(3),
fez(1,1) = —4sin(3), fyy(1,1) = 2cos(3) — 4sin(3), fay(1,1) = —45sin(3).

Par la formule (2) on obtient alors pour le polynome de Taylor ps(x,y) d’ordre 2
pa(z,y) = sin(3) +2cos(3) (x — 1) +2cos(3) (y — 1) + %(—4 sin(3)) (z — 1)
+ 5 (2c05(8) — 4sin(3)) (y — 17 + (~4sin(3)) (z — 1)y — 1)
=sin(3) +2cos(3) (z — 1) +2cos(3) (y — 1) — 2sin(3) (z — 1)?
+ (cos(3) — 2sin(3)) (y — 1)* — 4sin(3) (z — 1)(y — 1)

Meéthode 2: Puisque le point donné (1, 1) est différent de l'origine, il nous faut réécrire la
fonction donnée en forme d’expression en (x — 1) et (y — 1) au lieu de z et y. On a

sin(2r+y%) =sin2((x— 1)+ 1D+ ((y—1)+1)?) =sin(2(z—1)+2+(y—1)?+2(y—1)+1) =

=sin(3+2(z — 1) +2(y — 1) + (y — 1)?).
Ona f(z,y)=g(l(z,y)) avec g(u) =sin(3+u) etu=2(x—1)+2(y—1)+(y—1)%. Pour
pouvoir utiliser les développements limités connus, on applique la formule trigonométrique:

sin(3 + u) = sin(3) cos(u) + cos(3) sin(u).

On utilise alors les DL de sin(u) et cos(u) d’ordre 2 autour de u = 0:

sin(u) = u + e(u?), cos(u) =1 — %ug + e(u?).



On remplace u = 2(z — 1) +2(y — 1) + (y — 1)? et retient seulement les termes d’ordre < 2:
) 1
pa(w,y) = sin(3)(1=35 2z =1)+2(y—1)+(y—1)*)*) +cos(3) 2z — ) +2(y—1)+(y—1)*) =

= sin(3) + 2cos(3) (z — 1) + 2cos(3) (y — 1) — 2sin(3) (z — 1)°
+(cos(3) — 2sin(3)) (y — 1)* — 4sin(3) (z — 1)(y — 1).

Ce résultat correspond bien a celui de la méthode 1.

Exercice 4.
Pour les cas i) — 4v) on peut utiliser la matrice hessienne H en (0,0) qui est diagonale. On a:
i) det H=2>>0et H; =2>0 = le point (0,0) est un minimum (en fait global);
i) det H=2-(—2) <0 = la fonction n’a pas d’extremum local en (0,0);
iii) det H =(—2)-2 <0 = la fonction n’a pas d’extremum local en (0, 0);
w) det H=(-2)>>0et H; =—-2<0 = le point (0,0) est un maximum (en fait global).
Pour les cas v) — viii) on ne peut pas utiliser la matrice hessienne parce que celle-ci est nulle.

v) Comme f(z,y) = z* +y* > 0 = f(0,0) pour tout (x,y) # (0,0), le point (0,0) est le
minimum global.

vi) Soit € > 0. Alors f(g,0) = &* > 0 = f(0,0) > f(0,e) = —&*, donc (0,0) n’est pas un
point d’extremum local (dans tout voisinage de (0,0) il existent des points Z; et Z tels
que £(z1) < £(0,0) < f(2)).

vit) Ce n'est pas un point d’extremum local: f(—¢,0) = —¢3 < 0 = f(0,0) < f(&,0) = &
pour tout € > 0.

viii) f(x,y) = —(z* +y*) < 0 pour tout (x,y) # (0,0), donc (0,0) est le maximum global
de f.

Exercice 5.

i) Comme la matrice A est symétrique, il existe une matrice orthogonale O de vecteurs
propres de A telle que A = ODO?T, ott D est la matrice diagonale contenant les valeurs
propres de A. On a

det(A— M) =(6-N)B—-X)—4=X-9\+14=0 & M=T7 et N=2.

Les vecteurs propres satisfont alors

6v11 — 2091 =7 _
Avy = Moy N { U11 V21 V11 N vy — ( 2)

—2U11 + 3@21 = 77}21 1
et
6’012 — 2?)22 == 2’012 1
Avy = \v = = Vo =
2 2v2 { —2v12 + 3v = 209 2 (2)

Pour construire la matrice orthogonale O il faut normer les vecteurs propres. Comme

2
||'01H:H’Uz||=\/5,0na02< 1\/5 f) et donc
Vi V5
SR T Ny A I
T V5 V5 NS
A=0DO :<L l)(@ 2)(L ;>
V5 VB V5 VB



i)

)

iv)

On a pour le gradient de la fonction f(x,y) = 3z% — 22y + %yg
Vf=(6x—2y,3y—2x)=(0,0) = (z,y) = (0,0),

donc le point (0, 0) est le seul point stationnaire de f.

Pour la matrice hessienne de f a (0,0) on trouve

2 2 2
LA S N
0x? 0xdy 0y?

-2 3

Puisqu’on a det(A) =18 —4 =14 > 0 et A;; = 6 > 0, le point (0,0) est un minimum local
de f. Autrement, car les valeurs propres de A calculées dans i) sont A\ = 7 et Ay = 2, on
peut conclure que (0,0) est un point de minimum local.

et donc Hess((0,0) = < 6 2 > = A.

Soit (u,v)T = OT(z,y)T le changement de variables effectué par la matrice O, alors
(z,y)T = O(u,v)T est le changement de variables réciproque. On obtient

2 1
(5)-(F H0)-(3)
- 1 2 -l L
y = = v (u+ 2v)
En remplagant les valeurs z = \/LE(QU— v) ety = \%(u—i—%) dans la formule pour f(x,y) =

f(u,v) on obtient

S

flu,v) = g(—Zu +v)? — %(—Qu +v)(u+ 2v) + %(u +20)% =

2 2

o uv v I P 9
_10(24+8+3)+10(24 12 12)+10(6 8+12)—2(7u + 20v7).

La nature du point stationnaire est claire apres le changement de variables: c’est un
minimum local.

4 0

propres A1 = 4 et \y = —4. La matrice des vecteurs propres correspondants est

-5t 4

()-0() -0 ) 0) =05
11 suit que

flay) = % (4u® —4?) =2 <(x—j;)2 - <I\;§y>2> = (z+y)* = (z—y)’

et a partir de cette expression, il est facile a voir que (0, 0) n’est pas un point d’un extremum
local de f.

L’unique point stationnaire de f est (0,0) et on a Hess;(0,0) = (O 4) qui a les valeurs

et donc




