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Sections IN, SC 10 avril 2025

Analyse II — Corrigé de la Série 8

Exercice 1

i) En appliquant directement la définition vue au cours on trouve

. t2 cos(p)? tsin(p)
(0.0, = g LEcolohtsne) —10.0) _, Etogena o
= lim (cos(¢)?sin(p)) = cos(ip)*sin(y) .

t—0

Les figures ci-dessous montrent le graphe de f (Fig. 1) et celui de la dérivée directionnelle
Df((0,0), ) en fonction de I'angle ¢ qui détermine la direction autour de l'origine (Fig. 2).
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it) D’apres i) pour ¢ =0 et ¢ = 7/2 on trouve %(0,0) = Df((0,0),(1,0)) =0
et %(O, 0) = Df((0,0),(0,1)) = 0. Donc si f était dérivable en (0,0), on aurait
2y

T(iﬁ,y) = f(xvy) - f(0,0) - <Vf(0,0), (l’,y)> = f(xvy) = m

avec limg 4)—(0,0) lr((;;j’))n = 0. Cependant on a

(5 3) L 1
Iim k2kZ o — im k = .
E=s00 ||(%, %)H k=00 (g 32 (2)3/2

Alors la limite lim, ) (0,0) % ne peut pas étre nulle, donc la fonction n’est pas

dérivable en (0,0) (voir notes de cours 14).
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Exercice 2.

On commence par étudier la continuité de f en (0,0). Comme on a

t* 1
2 4y _ — - =
g%f(t t= 11—r>%t4+t4_t1_>02 7&0 1(0.,0),
f n’est pas continue en (0,0). Ainsi f n’est pas dérivable en ce point et on doit appliquer la
définition pour calculer la dérivée directionnelle. Soit € = (u,v) un vecteur unitaire. Alors on

a

0+ tu,0+tv) — (0,0 M_O
DF(0,0),¢) = tim LOF 1004 00) = J0.0) _ o mitire =0
t—0 t t—0 t
lim v, w0

=lim—— =
0w+ 2t |0, w=0

L’existence des dérivées directionnelles en un point dans toutes les directions n’est donc pas
suffisante pour qu’une fonction soit dérivable en ce point (voir aussi les notes du cours 13).

Exercice 3.

i) Pour une fonction f de classe C', la dérivée directionnelle D f(pg,¥) au point py suivant
le vecteur v est donnée par

Df(po,v) = (Vf(po), v).
La fonction f donnée est bien C'* comme une fonction polynome. Puisque
Vi(@,y2) = (g2 050y) et V(1,-1,2) = (~2,2,-1),

on obtient
8

Df((1,-1,2),v) = ((—2,2,—1), %(2,—1,2)) =-3-

ii) La pente de f en py dans la direction du vecteur unitaire @ est donnée par la dérivée
directionnelle dans cette direction, c’est-a-dire par

Df(po,a) = (Vf(po), u) = (2,2, 1), (sin(6) cos(y), sin(¢ )Sln(w) cos(0)))
= 2sin(0) (sin(p) — cos(p)) — cos(d) =: (0, ¢),

ot g : [0,7] x [0,27[C R* = R.

iii) On sait du cours qu’en un point ou f est dérivable, la pente de la tangente au graphe est
maximale (minimale) dans la direction du gradient (opposée au gradient) et qu’elle est
égale a ('opposée de) la norme du gradient. Au point pg = (1, —1,2), la pente maximale
(minimale) vaut donc

va<17_172)|| =3 (_va(17_172)“ :_3)‘

Les directions correspondantes sont i% = i%(—2,2, —1). Pour trouver les

angles (6, p) donnant lieu a ces directions, on doit résoudre

sin () cos(yp) :Fé
sin(f) sin(p) | = j:§ :
cos(0) +3
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c’est-a-dire

cos 5
0 = arccos (F1) = sin(d) =4/1— (:F%)Q = —2\/5 = { _ ) = \1[
sin( j:T

3r
4
= p= =
o argmin g(0, p) = (arccos(3) , o)
La pente de f en py est donc maximale pour les angles (0,¢) = (arccos(—%) ,‘%) et

minimale pour (0, p) = (arccos(%) , %’r)
Exercice 4.
Pour (z,y) # (0,0) les dérivées partielles sont

8f( ) 0 2?2 — ¢ 4y N 2% — 2
—(r,y) == (= =z
2o T e\ e y(x2+y2)2 Yy

8f( ) 0 x? —9? —4a%y N % —y?
Y ay Y 72 + y2 Yy (.’Z’2 + y2)2 72 + ,y2

Pour (z,y) = (0,0), on utilise la définition de la dérivée partielle:

Of o oy _ i S(h0) = £(0,0) . 0-0 _
9500 = Jim h = =0
of . f(0,n) = f(0,0) .. 0—-0
A A A = R

Pour calculer les deuxiemes dérivées partielles mixtes en (0,0), on doit encore une fois utiliser
cette définition. On a

e uf(0.R) =0, f(0,0) =l —0 . (=h)—0 _
0,0 (0.0) = lim ; = lim —— = lim o — = 1,

9, f(h0) =8, f(0,0) . B —0  h-0
%:0u710,0) = iy h ST T T

On constate que 0,0, f # 0,0, f en (0,0).

Par le Théoréeme de Schwarz, si f est de classe C? sur E, les deuxiémes dérivées mixtes sont
égales en tout point de E. Donc dans ce cas, la fonction n’est pas de classe C? sur R2.
D’un autre coté, on constate que la fonction est de classe C* sur R\ {(0,0)} comme une
fonction rationnelle sur son domaine de définition, et alors on a par le Théoreme de Schwarz
0y0.f(x,y) = 0,0, f(x,y) := g(z,y) pour tout (z,y) € R*\ {(0,0)}. On peut vérifier directe-
ment que la fonction g(z,y) n’admet pas de prolongement par continuité en (0, 0).

Remarque: Dans un cas comme ici ou les dérivées partielles mixtes ne sont pas égales, il faut
faire attention a la notation qui n’est malheureusement pas vraiment standardisée. Lorsqu’on
a d’abord dérivé par rapport a x et ensuite par rapport a ¥y, on écrit dans ce cours

9 (ﬁ) _ T b8,
dy

ox Oyox
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Dans la littérature on voit pourtant aussi I'inverse (i.e. x et y échangé). Vive donc les fonctions
suffisamment régulieres ou ce probleme ne se pose pas. . .

Exercice 5.

i) On a que f(t) = e®)sin(®) et donc

1

)= f(t)- <m . % -sin(t) + In(In(t)) - cos(t)>
1

_ (In(t))™® lntt) = sin(t) + (1n(6) " In(in(?)) - cos()

— (In(t))n0)- 1% sin(t) + (In(£)) ™ On(In(t)) - cos(t) .

i) On a h :]1,+oo[— (RT x R), h(t) = (In(¢),sin(t)) et g : (RT x R) — RT, g(z,y) = a¥.
Alors la fonction composée (g o h) :]1, +oo[— R* est bien définie. On utilise la formule

D(g o h)(t) = [Vg(hi(t), ha(t))] - [4 (1), By (1],

ce qui est un produit matriciel entre une matrice (1 x 2) et une matrice (2 x 1). On
obtient

4, ()] = [ cos(r)]”
Vg(z,y) = [yxy_l,xy ln(x)} —
— Vyg(hi(t), ha(t)) = [sin(t)(ln(t))sm(t)_l, (ln(t))sm(t) ln(ln(t))].

Finalement on obtient

D(g o (1) = [sin(t)(In(6)™ O~ (n()™ n(in(0)] - [1, cos(r)]” =

- %sin(t)(ln(t))sm(t)_l + cos(t)(In(t) ™D n(In(t)),

le méme résultat qu’on a obtenu dans 7).
Exercice 6.

i) On utilise la formule pour la matrice jacobienne de la fonction composée: Jyor(x,y) =
Ji(f(z,y)) - Jp(x,y). On calcule tout d’abord la matrice Jy(x,y):

of of
o @Y 5, @) y
Je(2,y) = -
r(2,9) %<x | %(x | .
oz Y Dy Y



Pour trouver la matrice J;(f(z,y)) on calcule les dérivées partielles des composantes de
f par rapport a x et y comme avant, mais apres on remplace x par fi(x,y) = xy et y par
fa(z,y) =2 —y:

8 1 a 1
Lt pew) Lo nen Lo, o,
=\ y -
G o) Bey) FR(h ), fole,y) b
Finalement on trouve
r—y Ty y x
Jror(x,y) = Jy(f(@,y)) - Jp(x,y) = : =
1 -1 1 -1

2ay — y? 2? — 2y

y—1 r+1

i1) Comme avant on utilise la formule pour la matrice jacobienne de les fonctions composées
hog:R? 5 R?et goh:R3— R3 ou g(z,y) = (ye*, ze¥, sin(z —y))T et h(u,v,w) =
uw, w? —v)'. Notamment on a Juoy(z,y) = Ju(9(z,vy)) - Jy(z,y) et Jyon(u,v,w) =

Jy(h(u,v,w))- Jp(u,v, w). On commence par le calcul des matrices J,(x,y) et Jy(u, v, w):

cos(r —y) —cos(x —y)

w 0 wu
Ip(u, v, w) =
0 —1 2w
Maintenant pour obtenir la matrice Jy,(g(z,y) il faut remplacer v = gi(x,y) = ye*,

v = go(x,y) = xe¥ et w = g3(x,y) = sin(z — y):

T

sin(z—y) 0 ye
Tn(g(z,y)) =
0 —1 2sin(xz —y)

Donc la matrice jacobienne de la fonction composée g o h est donnée par

Ihog(2,y) = Jn(g(z,y)) - Jy(x,y) =

0 —1 2sin(z —y)
cos(x —y) —cos(z —y)
ye*(sin(z —y) +cos(z —y))  e’(sin(z —y) —ycos(z —y))

—e¥ + 2sin(z — y) cos(z —y) —we¥ — 2sin(x — y) cos(z — y)
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Pour obtenir la matrice jacobienne J,(h(u,v,w)) il faut remplacer x = hy(u,v,w) = vw

et y = ho(u,v,w) = w? —v:

w2 — v)etw euw

( )

Jg(h(u,v,w)) = ew = uwe? v
cos(uw — w? +v) — cos(uw — w? + v)

Donc la matrice jacobienne de la fonction composée h o g est donnée par

Jgon(u, v, w) = Jy(h(u,v,w)) - Jp(u,v, w) =

2 uw uw

(w* —wv)e e

w 0 u
'LU2_'U wz_U —
e uwe : =

0 -1 2w

cos(uw — w? +v) — cos(uw — w? + v)
w(w? —v)e"™ —euw e (u(w? — v) + 2w)
we? v —uwe® ¥ Y (u + 2uw?)

wcos(uw — w? +v) cos(uw —w? +v) (u—2w) cos(uw — w* +v)

Dans les deux cas le calcul peut étre vérifié directement par le calcul des dérivée partielles

des fonctions donnée, par exemple h o g(x,y) = (ye®sin(x — y), sin®(z —y) — xe¥)T.

Comme la matrice Jyo, est le produit des matrices 3 x 2 et 2 x 3, elle représente la
composition d'une transformation linéaire J, : R® — R? et la transformation linéaire
J, : R? = R3. Donc le rang d’une telle matrice est au plus 2, et son déterminant est égal
a zéro pour tout (u,v,w). Vous pouvez aussi le vérifier directement :-)



