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Analyse II – Corrigé de la Série 8

Exercice 1

i) En appliquant directement la définition vue au cours on trouve

Df((0, 0), ē) = lim
t→0

f(t cos(ϕ), t sin(ϕ))− f(0, 0)

t
= lim

t→0

t2 cos(ϕ)2 t sin(ϕ)
t2

− 0

t

= lim
t→0

(
cos(ϕ)2 sin(ϕ)

)
= cos(ϕ)2 sin(ϕ) .

Les figures ci-dessous montrent le graphe de f (Fig. 1) et celui de la dérivée directionnelle
Df((0, 0), ē) en fonction de l’angle ϕ qui détermine la direction autour de l’origine (Fig. 2).
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ii) D’après i) pour ϕ = 0 et ϕ = π/2 on trouve ∂f
∂x

(0, 0) = Df((0, 0), (1, 0)) = 0

et ∂f
∂y

(0, 0) = Df((0, 0), (0, 1)) = 0. Donc si f était dérivable en (0, 0), on aurait

r(x, y) = f(x, y)− f(0, 0)− 〈∇f(0, 0), (x, y)〉 = f(x, y) =
x2y

x2 + y2

avec lim(x,y)→(0,0)
r(x,y)
||(x,y)|| = 0. Cependant on a

lim
k→∞

r( 1
k
, 1
k
)

||( 1
k
, 1
k
)||

= lim
k→∞

1
k3(

2
k2

)3/2 =
1

(2)3/2
.

Alors la limite lim(x,y)→(0,0)
r(x,y)
||(x,y)|| ne peut pas être nulle, donc la fonction n’est pas

dérivable en (0, 0) (voir notes de cours 14).
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Exercice 2.

On commence par étudier la continuité de f en (0, 0). Comme on a

lim
t→0

f(t2, t) = lim
t→0

t4

t4 + t4
= lim

t→0

1

2
=

1

2
6= 0 = f(0, 0) ,

f n’est pas continue en (0, 0). Ainsi f n’est pas dérivable en ce point et on doit appliquer la
définition pour calculer la dérivée directionnelle. Soit ē = (u, v) un vecteur unitaire. Alors on
a

Df((0, 0), ē) = lim
t→0

f(0 + tu, 0 + tv)− f(0, 0)

t
= lim

t→0

tut2v2

t2u2+t4v4
− 0

t

= lim
t→0

uv2

u2 + t2v4
=

{
v2

u
, u 6= 0

0 , u = 0

L’existence des dérivées directionnelles en un point dans toutes les directions n’est donc pas
suffisante pour qu’une fonction soit dérivable en ce point (voir aussi les notes du cours 13).

Exercice 3.

i) Pour une fonction f de classe C1, la dérivée directionnelle Df(p0, v̄) au point p0 suivant
le vecteur v̄ est donnée par

Df(p0, v̄) = 〈∇f(p0) , v̄〉 .

La fonction f donnée est bien C1 comme une fonction polynome. Puisque

∇f(x, y, z) = (yz, xz, xy) et ∇f(1,−1, 2) = (−2, 2,−1) ,

on obtient

Df((1,−1, 2), v̄) = 〈(−2, 2,−1) ,
1

3
(2,−1, 2)〉 = −8

3
.

ii) La pente de f en p0 dans la direction du vecteur unitaire ū est donnée par la dérivée
directionnelle dans cette direction, c’est-à-dire par

Df(p0, ū) = 〈∇f(p0) , ū〉 = 〈(−2, 2,−1) ,
(

sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)
)
〉

= 2 sin(θ)
(

sin(ϕ)− cos(ϕ)
)
− cos(θ) =: g(θ, ϕ) ,

où g : [0, π]× [0, 2π[⊂ R2 → R.

iii) On sait du cours qu’en un point où f est dérivable, la pente de la tangente au graphe est
maximale (minimale) dans la direction du gradient (opposée au gradient) et qu’elle est
égale à (l’opposée de) la norme du gradient. Au point p0 = (1,−1, 2), la pente maximale
(minimale) vaut donc

‖∇f(1,−1, 2)‖ = 3
(
− ‖∇f(1,−1, 2)‖ = −3

)
.

Les directions correspondantes sont ± ∇f(1,−1,2)
‖∇f(1,−1,2)‖ = ±1

3
(−2, 2,−1) . Pour trouver les

angles (θ, ϕ) donnant lieu à ces directions, on doit résoudresin(θ) cos(ϕ)
sin(θ) sin(ϕ)

cos(θ)

 =

∓2
3

±2
3

∓1
3

 ,
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c’est-à-dire

θ = arccos
(
∓1

3

)
⇒ sin(θ) =

√
1−

(
∓1

3

)2
=

2
√

2

3
⇒

{
cos(ϕ) = ∓ 1√

2

sin(ϕ) = ± 1√
2

⇒ ϕ =


3π
4

7π
4

⇒

 argmax g(θ, ϕ) =
(
arccos

(
−1

3

)
, 3π

4

)
argmin g(θ, ϕ) =

(
arccos

(
1
3

)
, 7π

4

)
La pente de f en p0 est donc maximale pour les angles (θ, ϕ) =

(
arccos

(
−1

3

)
, 3π

4

)
et

minimale pour (θ, ϕ) =
(
arccos

(
1
3

)
, 7π

4

)
.

Exercice 4.

Pour (x, y) 6= (0, 0) les dérivées partielles sont

∂f

∂x
(x, y) =

∂

∂x

(
xy

x2 − y2

x2 + y2

)
= xy

4xy2

(x2 + y2)2
+ y

x2 − y2

x2 + y2
,

∂f

∂y
(x, y) =

∂

∂y

(
xy

x2 − y2

x2 + y2

)
= xy

−4x2y

(x2 + y2)2
+ x

x2 − y2

x2 + y2
.

Pour (x, y) = (0, 0), on utilise la définition de la dérivée partielle :

∂f

∂x
(0, 0) = lim

h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

0− 0

h
= 0 ,

∂f

∂y
(0, 0) = lim

h→0

f(0, h)− f(0, 0)

h
= lim

h→0

0− 0

h
= 0 .

Pour calculer les deuxièmes dérivées partielles mixtes en (0, 0), on doit encore une fois utiliser
cette définition. On a

∂y∂xf(0, 0) = lim
h→0

∂xf(0, h)− ∂xf(0, 0)

h
= lim

h→0

−h3

h2
− 0

h
= lim

h→0

(−h)− 0

h
= −1 ,

∂x∂yf(0, 0) = lim
h→0

∂yf(h, 0)− ∂yf(0, 0)

h
= lim

h→0

h3

h2
− 0

h
= lim

h→0

h− 0

h
= +1.

On constate que ∂y∂xf 6= ∂x∂yf en (0, 0).

Par le Théorème de Schwarz, si f est de classe C2 sur E, les deuxièmes dérivées mixtes sont
égales en tout point de E. Donc dans ce cas, la fonction n’est pas de classe C2 sur R2.
D’un autre coté, on constate que la fonction est de classe C2 sur R \ {(0, 0)} comme une
fonction rationnelle sur son domaine de définition, et alors on a par le Théorème de Schwarz
∂y∂xf(x, y) = ∂x∂yf(x, y) := g(x, y) pour tout (x, y) ∈ R2 \ {(0, 0)}. On peut vérifier directe-
ment que la fonction g(x, y) n’admet pas de prolongement par continuité en (0, 0).
Remarque: Dans un cas comme ici où les dérivées partielles mixtes ne sont pas égales, il faut
faire attention à la notation qui n’est malheureusement pas vraiment standardisée. Lorsqu’on
a d’abord dérivé par rapport à x et ensuite par rapport à y, on écrit dans ce cours

∂

∂y

(
∂f

∂x

)
=

∂2f

∂y∂x
= ∂y∂xf .

3



Dans la littérature on voit pourtant aussi l’inverse (i.e. x et y échangé). Vive donc les fonctions
suffisamment régulières où ce problème ne se pose pas. . .

Exercice 5.

i) On a que f(t) = eln(ln(t))·sin(t) et donc

f ′(t) = f(t) ·
(

1

ln(t)
· 1

t
· sin(t) + ln(ln(t)) · cos(t)

)
= (ln(t))sin(t)

1

ln(t)
· 1

t
· sin(t) + (ln(t))sin(t)ln(ln(t)) · cos(t)

= (ln(t))sin(t)−1
1

t
· sin(t) + (ln(t))sin(t)ln(ln(t)) · cos(t) .

ii) On a h :]1,+∞[→ (R+ × R), h(t) = (ln(t), sin(t)) et g : (R+ × R) → R+, g(x, y) = xy.
Alors la fonction composée (g ◦ h) :]1,+∞[→ R+ est bien définie. On utilise la formule

D(g ◦ h)(t) =
[
∇g(h1(t), h2(t))

]
·
[
h′1(t), h

′
2(t)
]T
,

ce qui est un produit matriciel entre une matrice (1 × 2) et une matrice (2 × 1). On
obtient [

h′1(t), h
′
2(t)
]T

=
[1
t
, cos(t)

]T
,

∇g(x, y) =
[
yxy−1, xy ln(x)

]
=⇒

=⇒ ∇g(h1(t), h2(t)) =
[

sin(t)(ln(t))sin(t)−1, (ln(t))sin(t) ln(ln(t))
]
.

Finalement on obtient

D(g ◦ h)(t) =
[

sin(t)(ln(t))sin(t)−1, (ln(t))sin(t) ln(ln(t))
]
·
[1
t
, cos(t)

]T
=

=
1

t
sin(t)(ln(t))sin(t)−1 + cos(t)(ln(t))sin(t)ln(ln(t)),

le même résultat qu’on a obtenu dans i).

Exercice 6.

i) On utilise la formule pour la matrice jacobienne de la fonction composée: Jf◦f (x, y) =
Jf (f(x, y)) · Jf (x, y). On calcule tout d’abord la matrice Jf (x, y):

Jf (x, y) =


∂f1
∂x

(x, y)
∂f1
∂y

(x, y)

∂f2
∂x

(x, y)
∂f2
∂y

(x, y)

 =

 y x

1 −1

 .
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Pour trouver la matrice Jf (f(x, y)) on calcule les dérivées partielles des composantes de
f par rapport à x et y comme avant, mais après on remplace x par f1(x, y) = xy et y par
f2(x, y) = x− y:

Jf (x, y) =


∂f1
∂x

(f1(x, y), f2(x, y))
∂f1
∂y

(f1(x, y), f2(x, y))

∂f2
∂x

(f1(x, y), f2(x, y))
∂f2
∂y

(f1(x, y), f2(x, y))

 =

 x− y xy

1 −1

 .

Finalement on trouve

Jf◦f (x, y) = Jf (f(x, y)) · Jf (x, y) =

 x− y xy

1 −1

 ·
 y x

1 −1

 =

=

 2xy − y2 x2 − 2xy

y − 1 x+ 1

 .

ii) Comme avant on utilise la formule pour la matrice jacobienne de les fonctions composées
h ◦ g : R2 → R2 et g ◦ h : R3 → R3, où g(x, y) = (yex, xey, sin(x − y))T et h(u, v, w) =
uw, w2 − v)T . Notamment on a Jh◦g(x, y) = Jh(g(x, y)) · Jg(x, y) et Jg◦h(u, v, w) =
Jg(h(u, v, w)) ·Jh(u, v, w). On commence par le calcul des matrices Jg(x, y) et Jh(u, v, w):

Jg(x, y) =


yex ex

ey xey

cos(x− y) − cos(x− y)



Jh(u, v, w) =

 w 0 u

0 −1 2w

 .

Maintenant pour obtenir la matrice Jh(g(x, y) il faut remplacer u = g1(x, y) = yex,
v = g2(x, y) = xey et w = g3(x, y) = sin(x− y):

Jh(g(x, y)) =

 sin(x− y) 0 yex

0 −1 2 sin(x− y)

 .

Donc la matrice jacobienne de la fonction composée g ◦ h est donnée par

Jh◦g(x, y) = Jh(g(x, y)) · Jg(x, y) =

=

 sin(x− y) 0 yex

0 −1 2 sin(x− y)

 ·


yex ex

ey xey

cos(x− y) − cos(x− y)

 =

=

 yex(sin(x− y) + cos(x− y)) ex(sin(x− y)− y cos(x− y))

−ey + 2 sin(x− y) cos(x− y) −xey − 2 sin(x− y) cos(x− y)

 .
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Pour obtenir la matrice jacobienne Jg(h(u, v, w)) il faut remplacer x = h1(u, v, w) = uw
et y = h2(u, v, w) = w2 − v:

Jg(h(u, v, w)) =


(w2 − v)euw euw

ew
2−v uwew

2−v

cos(uw − w2 + v) − cos(uw − w2 + v)

 .

Donc la matrice jacobienne de la fonction composée h ◦ g est donnée par

Jg◦h(u, v, w) = Jg(h(u, v, w)) · Jh(u, v, w) =
(w2 − v)euw euw

ew
2−v uwew

2−v

cos(uw − w2 + v) − cos(uw − w2 + v)

 ·
 w 0 u

0 −1 2w

 =


w(w2 − v)euw −euw euw(u(w2 − v) + 2w)

wew
2−v −uwew2−v ew

2−v(u+ 2uw2)

w cos(uw − w2 + v) cos(uw − w2 + v) (u− 2w) cos(uw − w2 + v)

 .

Dans les deux cas le calcul peut être vérifié directement par le calcul des dérivée partielles
des fonctions donnée, par exemple h ◦ g(x, y) = (yex sin(x− y), sin2(x− y)− xey)T .

Comme la matrice Jg◦h est le produit des matrices 3 × 2 et 2 × 3, elle représente la
composition d’une transformation linéaire Jh : R3 → R2 et la transformation linéaire
Jg : R2 → R3. Donc le rang d’une telle matrice est au plus 2, et son déterminant est égal
à zéro pour tout (u, v, w). Vous pouvez aussi le vérifier directement :-)
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