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Analyse II — Corrigé de la Série 3

Notation: Dans ce corrigé, I’équation quadratique en A qui est associée a I’équation différentielle
linéaire du second ordre est appelée 1’équation caractéristique de 1’équation différentielle corre-
spondante.

Exercice 1.

i) y(z) = 222 + Cro + Cy (intégration)

i) y(x) = C} cos(z) + Cysin(z) N+1=0 = \==4i)
i) y(x) = Cre* + Coe™ " (A2 — =  A=4l)
i) y(x) = Cre* + Cyze” (A=1)2= =  Aa2=1)

Remarque: Pour i7) et 4ii) il n’est pas nécessaire d’utiliser I’équation caractéristique. On
peut aussi constater que les fonctions cos(x),sin(z) pour i) et e=* pour i) sont des solutions
linéairement indépendantes de I’équation donnée. Ainsi la solution générale est une combinaison
linéaire des deux solutions linéairement indépendentes respectives.

Exercice 2.

Pour résoudre ces équations linéaires du second ordre homogenes il faut résoudre 1’équation
caractéristique associée.

i) L’équation caractéristique 3A* — 4\ +1 =0 admet les racines réelles \; = 1 et Ay = %,

d’ott la solution générale

y(x) = Cre” + 026%17 x,C,Cy e R .

i) L’équation caractéristique 3A\% — 4\ +2 = 0 admet les racines complexes conjuguées
Ao = % (2 + \/52), d’ou la solution générale

y(zr) = <01 COS(%) + O,y sin(@)) e%x, x,C1,C e R .

iii) L’équation caractéristique 3\% — 4\ + % = (0 admet la racine double A = \; = Ay = %,
d’ou la solution générale

y(z) = (Cy + Cox) e%“, x,C1,C e R .

Exercice 3.

Ces équations différentielles sont completes. La solution générale est donc la somme de la
solution générale de 'équation associée homogene (1 étape de résolution) et d’une solution
particuliere de 1’équation complete (2° étape).



i)

i)

iii)

L’équation caractéristique A\? +4 = 0 admet les racines complexes A;, = +2i si bien
que la solution générale de I'équation homogene associée est

Yhom (2) = C1 cos(2x) + Cysin(2z) .

Cherchons une solution particuliere par la méthode des coefficients indéterminés. Comme
q(x) = 3€*® , et A = 2 n’est pas une solution de I’équation caractéristique, on cherche une
solution particuliere de 'équation compléte de la forme ypa = Ae?*. Donc

Yurart + Wpart = 3e%” ZN (4A 4 4A)e** = 3e** |

3

cest-a-dire A =3 et ypar(v) = %eh. La solution générale est donc

Y(2) = Ynom () + Ypart(x) = Ci cos(2x) + Cysin(2z) + %e% , x,C1,Cy € R .

Comme au point i), on a Yhom(r) = Cjcos(2z) + Cysin(2x) . Le membre de droite
q(z) = Hcos(2z) est tel que A = £2i est une racine de ’équation caractéristique. On
cherche donc un solution particuliere de la forme

Ypart = Ax cos(2z) + Brsin(2z) .
En reportant cette expression dans I’équation complete, on obtient

Ypars T 4Ypart = 5 cos(2x) &
4(B — Ax) cos(2x) — 4(A + Bz)sin(2x) + 4Ax cos(2x) + 4Bz sin(2x) = 5 cos(2z)

& 4B cos(2x) — 4Asin(2z) = 5 cos(2z),
cest-d-dire A=0et B =2. Ainsi ypui(z) = Sz sin(2z) et la solution générale devient
Y(2) = Ynom () + Ypart (z) = Cy cos(2x) + Cysin(2z) 4 3w sin(2z), x,C1,Cy € R .

Comme M?+1 =0 admet les racines A1 2 = 44, on trouve Yuom(x) = C; cos(x)+Cysin(z) .
Puisque le membre de droite ¢(z) = $ n’est pas de forme polynomiale, exponentielle
ou trigonométrique, la méthode des coeﬂ%ments indéterminés ne marche pas. Cherchons
une solution particuliere de I’équation par la méthode de la variation des constantes:

Ypart = C1(x) cos(x) + Cy(x) sin(x) .
Selon le cours, les dérivées C] et C) satisfont le systeme linéaire

C7 cos(x) + Chsin(z) =0

1
' si c! —
1 sin(x) + CY cos(x) Sn(7)
dont les solutions sont C] = —1 et C} = Z?If((;j)) . En intégrant ces expressions, on obtient
C) = —x et Cy = In(|sin(x)|) et ainsi Ypart(x) = —x cos(z) + sin(x) In (| sin(z)|).

La solution générale est donc (pour x €]0, 7| puisque il nous faut choisir un intervalle ou

L soit continue):
sin(z)

Y(2) = Ynom () + Ypart () = Cy cos(z) + Cysin(x) — x cos(z) + sin(z) In (] sin(z)|) ,
x €l0,n[, C,Co€R.



Exercice 4.

i) L’équation caractéristique de cette équation est A* + 2\ —3 = 0 qui admet les racines
)\1 - 1, )\2 - —3

Ainsi la solution générale de ’équation donnée est

Ynom () = Cre” + Che ™37 .

i) Méthode 1: Coefficients indéterminés

Le membre de droite est ¢(x) = 5sin(3z), et A = £3i n’est pas une racine de I’équation
caractéristique. On cherche donc une solution particuliere de la forme

Ypart = Asin(3z) + B cos(3z) .
En reportant yp, dans I’équation différentielle on a
Ypart T 2Ypart — SYpart = (—12A — 6B)sin(3z) + (6A — 12B) cos(3x) = 5sin(3x) .
Les solutions du systeme linéaire

—12A—-6B =5
6A—12B =0

sont A=—-1 et B=-1

3 5 » et la solution particuliere de I’équation donnée est donc

1 1
Ypart (T) = —3 sin(3x) — A cos(3x) .

Meéthode 2: Variation des constantes

On pose
Ypars = C1(7) € + Cy(x) e

D’apres le cours, les fonctions C et Cy satisfont le systeme

C’ll(x)ex + 02/(13)6_31‘ =0
Cy/(x)e* — 30y (z)e™3* = 5sin(3x)

qui a comme solution
Cy'(z)\ _ [e* e - 0 I € 0
Co'(z))  \e* —3e 3 5sin(3z)) 4 e’ —e” ) \5sin(32)
_ 9 (e "sin(3x)
4 \—€e*sin(3x) )

/em sin(3x) dz et Cy(x) = —Z /egz sin(3zx) dx . (1)

Ainsi

Cl (%) =

W~ | Ot

On calcule / sin(3z)e® dx en intégrant deux fois par parties:

a a

1 1
/sin(?)x)e“x dx = — e*sin(3zx) — — /3(308(3:13)6‘”C dx

I 3 3 : ax
=-e sin(3x) — ke cos(3x) — pes /3SIH(3£IZ')€ dx ,



d’ou, en isolant 'intégrale,

9 . axr 1 axr _: 3 ax
(1 + §> /sm(?)x)e dx = . e sin(3x) — = e cos(3x) ,

et finalement
axr

a?+9

/sin(3x)e‘” dx =

En combinant (?7?) et (?7), on trouve

(a sin(3z) — 3cos(3x)> . (2)

Ci(z) = —é e " (sin(3z) + 3 cos(3z)) (a=-1)

Cy(x) = —% ** (sin(3z) — cos(3x)) (a=3)

et la solution particuliere est donc

1
Ypart(T) = —3 sin(3z) — g cos(3x) .

iii) La solution générale de I’équation complete est donc

1 1
Y(2) = Ynom () + Ypart(z) = Cre” + Che 3% — 3 sin(3z) — 8 cos(3z) z,C,Cy e R .

Pour satisfaire les conditions initiales on doit avoir

1
y(0)=C, +C _6:1

1
y/(O) = Cl — 302 —1= —5
Les solutions de ce systeme sont C; =1 et Oy = % si bien que
T 1 —3z 1 : 1
y(x) =e* + g€ 3 sin(3z) — 5 cos(3z) , reR.

Exercice 5.

1. 4) (b), i) (d), i) (a),iv) (c),v) (a), vi) (d), vii) (a), viii) (b), iz) (c), ) (d).

2. ii) C’est une équation de la forme v’ + p(x)y = q(z)y®, o a € R est tel que aw # 0, o # 1.
Une équation de cette forme s’appelle I’équation de Bernoulli (Voir DZ, 12.2.7). Le changement
des variables z = y'~® la transforme en équation linéaire du premier ordre, type (b) dans la
liste (dans notre cas le changement de variable est z = y~!).

vi) Cette équation ce transforme en équation a variables séparées (type (a) dans la liste) par
le changement des variables z = y + .

x) C’est une équation de la forme y' = h (%) Le changement des variables z = Y 1a transforme
x

en équation a variables séparées (type (a) dans la liste).



Exercice 6.

i) Comme y et y; sont des solutions de ’équation donnée, on a

1\’ 1\? 1
<y1+—> :a(y1+—) —|—b(y1+—>—|—c
u u u

u 1 1
& yi——:a(yf+2%+ﬁ)+by1+ba+c

’LL2
u n a b /
& - ="+ —+- & U+ 2y t+bu=—a.
u u u u

ii) La méthode de i) permet de trouver la solution générale de I’équation différentielle de

Riccati
! _i 2 + i
¥ = 3xy 3x

a partir d’'une solution particuliere trouvée en tatonnant. Il est facile de chercher une
solution constante; en 'occurrence on trouve la solution particuliere y; = 1.

Posons donc y = y; + % =1+ % Alors u satisfait 'EDL1

8 4
!/
Zu=— 3
“ 3xu 3x (3)
L’équation homogene associée est a variables séparées:
d d 8 ~ ~ - .

%:52 & Il =ghlel+ (@), C>0 & Ju=ClPP &>0

& u==xClz]?? C>0 < u=Clz? CeR\{0} (4)

Pour C' = 0, on obtient la fonction triviale qui est aussi solution de I’équation homogene
associée a (?77?) si bien que C' € R dans (77).

En observant que tpae = —% est une solution particuliere de (?7), on a finalement
3 1
W(T) = Unom () + Upart(T) = Clax|* — Y CeR, z€]—00,0[ ouz€]0,00[. (5

Pour C' # 0, la solution y de I'équation de Riccati s'écrit
1 _ClPity PP tgn oPiec
u(@)  Clafs -1 (e -k 2B -C7

y(z) =1+ C#0, (6)
Cette fonction n’est pas définie lorsque |z[%/® — C' = 0, ce qui peut seulement arriver quand
C > 0 (cf. résumé ci-dessous).

Pour C' = 0 dans (??), on a y(z) = 1 + ﬁ = 1—2 = —1. La solution particuliere

y1(x) = 1 est obtenue de (??7) avec C' = 0.

En remarquant que contrairement a (?7), ’équation de Riccati est aussi définie pour x = 0,
et que la fonction |z|%/? est dérivable en = 0, on résume ses solutions:

|2[8/3 + C

y(z) = PEEEYe C>0 x€]—o00,—C% ou x¢c]—C% C ou x€|C8 o0]
12|33 + C

y(x) =1, reR



Remarque. En fait, ’équation donnée est une EDVS:
3zy =4 — 4y

On note d’abord les solutions constantes y(z) = £1, x € R. Autrement, on a

1/ dy 1 [da
41—y 3) =z

1 1 1 1
S —— )y =21 InC
8/(1—y+1—|—y> Y 3n]x\—|—n ,

ou C' > 0. Alors on obtient par intégration

1 1
gln ‘%‘ = In(C|z|"/?).
1 .
Sty 0|3,
L=y
ce qui donne la méme solution qu’avant, notamment si on pose B = —% e R*,
y(z :M B>0 x €] — o0, —B¥%[ ou x €] — B B3 ou z €]B%5 o0
‘:Uyg/g _ B’ Y Y Y )
_ |z]¥?+B
y(l’)—mg/g—_B, B <0, reR
y(x) =1, reR
y(x) = —1, reR



