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Analyse II – Corrigé de la Série 2

Exercice 1.

i) La fonction y(x) = 2 est solution de l’équation. Pour y 6= 2 on a

dy

dx
= y − 2 ⇒ dy

y − 2
= dx ⇒ ln |y − 2| = x + C̃, C̃ ∈ R

⇒ y − 2 = Cex, C 6= 0 ⇒ y = Cex + 2 .

Avec C = 0, on a y(x) = 2. Ainsi la solution générale est y(x) = Cex + 2 avec C ∈ R
pour x ∈ R.

ii) La fonction y(x) = 0 est une solution. Pour y 6= 0, on a

dy

dx
= −xy ⇒ dy

y
= −xdx ⇒ ln |y| = −1

2
x2 + C̃, C̃ ∈ R

⇒ y = Ce−
1
2
x2 , C 6= 0 .

Comme le cas C = 0 correspond à y(x) = 0, la solution générale est y(x) = Ce−
x2

2 avec
C ∈ R pour x ∈ R.

iii) La fonction y(x) = 0 est une solution pour x ∈]−∞, 0[ et pour x ∈]0,∞[. Si x, y 6= 0 on a

dy

dx
= −3y

x
⇒ dy

y
= −3dx

x
⇒ ln |y| = −3 ln |x|+ C̃, C̃ ∈ R

⇒ |y| = C

|x|3
, C > 0 ⇒ y = ± C

|x|3
⇒ y = ±C

x3
.

Comme C = 0 mène à y(x) = 0, la solution générale est y(x) =
C

x3
avec C ∈ R pour

x ∈]−∞, 0[ et pour x ∈]0,∞[.

Exercice 2.

i) On procède par séparation des variables. En écrivant y′ =
dy

dx
l’équation devient

6(y − 1)2 dy = x(3x + 4) dx ,

d’où, par intégration des deux fonctions polynomiales,

2(y − 1)3 = x3 + 2x2 + C̃, C̃ ∈ R.

La forme explicite de la solution y est donc

y(x) = 1 + f−1
(
x2
(
1
2
x + 1

)
+ C

)
, x ∈ I, C ∈ R, (1)
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où f−1(u) est la fonction réciproque de f(x) = x3 et I est un intervalle ouvert à définir.
Comme f est bijective sur R, sa fonction réciproque f−1 est aussi définie sur R, à savoir
par

f−1(u) = sgn(u)|u|1/3.

Cette fonction est continue sur R mais elle n’est pas dérivable en u = 0, ce qui fait que
l’équation différentielle a plusieurs solutions y(x) de la même forme (1) qui sont définies
sur des intervalles ouverts différents. Ces intervalles I dépendent des racines réelles du
polynôme x2

(
1
2
x + 1

)
+C , chaque solution étant définie sur un intervalle ouvert sur lequel

ce polynôme est du même signe.

La condition initiale y(0) = 0 implique que 0 = 1 + sgn(C)|C|1/3 , c’est-à-dire C = −1.
On obtient donc la solution particulière (maximale)

y(x) = 1−
∣∣x2
(
1
2
x + 1

)
− 1
∣∣1/3 = 1− 3

√
1− x2

(
1
2
x + 1

)
, x ∈ ]−∞, x0[ ,

où x0 > 0 est l’unique solution réelle de l’équation x2
(
1
2
x + 1

)
− 1 = 0.

(On peut voir que x0 est l’unique solution et qu’elle est positive par une mini-étude de la
fonction g(x) = x2

(
1
2
x + 1

)
− 1.)

ii) On applique la même méthode:

y y′ − ey
2−4x = 0 ⇒ y e−y

2

dy = e−4xdx ⇒ −1

2
e−y

2

= −1

4
e−4x + C̃, C̃ ∈ R

⇒ e−y
2

=
1

2
e−4x + C, C ∈ R ⇒ y2 = − ln

(
1

2
e−4x + C

)
, C ∈ R

En fait, la constante C ne peut pas prendre toutes les valeurs dans R parce que y2 ≥ 0 et
le logarithme doit être définie. Mais comme on ne s’intéresse pas à la solution générale ici,
il n’est pas nécessaire de trouver le domaine exact de C, il suffira de trouver la valeur de
C à partir de la condition initiale et puis le domaine de x en fonction.

La forme explicite de la solution y est alors

y(x) = ±
√
− ln

(
1
2
e−4x + C

)
.

La condition initiale y(0) =
√

ln(2) implique que le signe est positif, et, de plus,√
ln(2) = +

√
− ln

(
1
2

+ C
)

⇒ C = 0.

La solution particulière pour la condition initiale donnée est donc

y(x) =
√

4x + ln(2)

qui est à priori définie pour x ≥ − ln(2)
4

. Or, y′(x) =
2√

4x + ln(2)
n’est pas définie en

x = − ln(2)
4

. La solution maximale pour la condition initiale donnée est donc

y(x) =
√

4x + ln(2), x ∈
]
− ln(2)

4
,∞
[
.
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iii) On note que y = 0 est une solution. Par la séparation de variables on obtient l’EDVS:
y′

y+y3
= 1

x
, où f(y) = 1

y+y3
et g(x) = 1

x
sont continues sur ]−∞, 0[ et ]0,∞[. On calcule

y′

y + y3
=

1

x
⇒ dy

y + y3
=

dx

x
⇒

∫ (
1

y
− y

1 + y2

)
dy = ln |x|+ C1,

où on a décomposé la fonction 1
y+y3

en fractions simples. Alors on obtient

ln |y| − 1

2
ln |1 + y2| = ln |x|+ C1, ⇒ ln

|y|√
1 + y2

= lnC2|x|, C2 ∈ R∗+ ⇒

⇒ |y|√
1 + y2

= C2|x|, C2 ∈ R∗+, ⇒ y√
1 + y2

= Cx, C ∈ R∗

On peut résoudre cette equation pour y:

y2

1 + y2
= C2x2 ⇒ y2(1− C2x2) = C2x2 ⇒ y =

Cx√
1− C2x2

.

Donc on a les solutions générales:

y =
Cx√

1− C2x2
, x ∈ ]−1/|C|, 0[ et y =

Cx√
1− C2x2

, x ∈ ]0, 1/|C|[ .

On remarque que l’équation originale xy′− y = y3 admet la valeur x = 0 et que la fonction
obtenue est de classe C∞ sur ]−1/|C|, 1/|C|[. Donc les solutions sur ]−1/|C|, 0[ et ]0, 1/|C|[
peuvent être collées pour obtenir la solution générale de l’équation originale (on se souvient
aussi de la solution y = 0):

y =
Cx√

1− C2x2
, x ∈ ]−1/|C|, 1/|C|[ et y = 0, x ∈ R.

La condition initiale implique

y(1) =
C√

1− C2
= −1, ⇒

√
1− C2 = −C ⇒ 2C2 = 1, C < 0 ⇒ C = − 1√

2
.

La solution maximale pour la condition initiale donnée est donc

y(x) = − x√
2− x2

, x ∈
]
−
√

2,
√

2
[
.

Exercice 3.

Dans cet exercice il s’agit d’équations différentielles linéaires du premier ordre y′(x)+p(x)y(x) =
f(x). D’après le cours toute solution y(x) de ce type d’équation s’écrit

y(x) = yhom(x) + ypart(x) ,

où yhom(x) est la solution générale de l’équation homogène et ypart(x) est une solution partic-
ulière de l’équation initiale.
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i) La solution générale de l’équation homogène s’obtient en séparant les variables (cf. cours).
On obtient

yhom(x) = Ce−
∫
p(x)dx = Ce−

∫
(− sin(x))dx = Ce− cos(x) avec C ∈ R.

Pour trouver une solution particulière de l’équation complète y′− y sin(x) = 4 sin(x)ecos(x)

il faut calculer l’intégrale

c(x) =

∫
f(x)e

∫
p(x)dx =

∫
4 sin(x)ecos(x)ecos(x)dx = −2

∫
e2 cos(x)d(2 cos(x)) =

= −2e2 cos(x)

où on a supprimé la constante puisque l’on cherche une primitive particulière. Alors une
solution particulière de l’équation avec second membre est

ypart = c(x)e−
∫
p(x)dx = −2e2 cos(x)e− cos(x) = −2ecos(x),

et la solution générale est

y(x) = yhom + ypart = Ce− cos(x) − 2ecos(x), C ∈ R, x ∈ R.

La condition initiale y
(
π
2

)
= 1 implique que C − 2 = 1, d’où C = 3. La solution pour la

condition initiale donnée est donc

y(x) = 3e− cos(x) − 2ecos(x), x ∈ R.

ii) A cause du logarithme dans l’équation, on a x > 0, et donc l’équation donnée est équi-
valente à

y′ − 1

x
y = 4 ln(x) .

Comme solution de l’équation homogène, on trouve

yhom(x) = Ce−
∫
− 1

x
dx = Celn(x) = C x , x > 0, C ∈ R.

Pour trouver une solution particulière on calcule

c(x) =

∫
4 ln(x)e− ln(x)dx =

∫
4 ln(x)

dx

x
= 2 ln2(x),

où on supprime toujours la constante. La solution générale de l’équation complète est

y(x) = yhom + ypart = C x + c(x)x = C x + 2x ln2(x), C ∈ R, x ∈]0,∞[.

La solution pour la condition initiale y(1) = 1 est

y(x) =
(
1 + 2 ln(x)2

)
x , x ∈]0,∞[.

iii) De manière similaire aux points i) et ii) on trouve

yhom(x) = Ce3x, avec C ∈ R.

Pour trouver une solution particulière de l’équation complète il faut calculer l’intégrale

c(x) =

∫
(10 cos(x) + 2e3x)e−3xdx = 10

∫
e−3x cos(x)dx +

∫
2dx =
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= e−3x(sin(x)− 3 cos(x)) + 2x,

où on supprime toujours la constante. Ici pour calculer l’intégrale
∫
e−3x cos(x)dx il faut

utiliser l’intégration par parties deux fois (voir Analyse I). Ainsi une solution particulière
est

ypart(x) = c(x)e3x = −3 cos(x) + sin(x) + 2x e3x .

Par conséquent

y(x) = yhom(x) + ypart(x) = Ce3x − 3 cos(x) + sin(x) + 2x e3x, C ∈ R, x ∈ R.

De plus on a C = 3 pour la condition initiale y(0) = 0. Donc la solution est

y(x) = 3e3x − 3 cos(x) + sin(x) + 2x e3x, x ∈ R.

iv) On a yhom(x) = Ce−x avec C ∈ R. Pour trouver ypart, on cherche la fonction

c(x) =

∫
x3exdx = x3ex−3

∫
x2exdx = x3ex−3x2ex+6

∫
xexdx = x3ex−3x2ex+6xex−6ex.

(la constante est toujours supprimée). Par conséquent la solution générale est

y(x) = Ce−x + c(x)e−x = Ce−x + x3 − 3x2 + 6x− 6, C ∈ R, x ∈ R.

Pour la condition initiale y(0) = −2, on obtient C = 4 si bien que la solution est

y(x) = 4e−x + x3 − 3x2 + 6x− 6, x ∈ R.

v) On a x 6= 0. On a pour la solution générale de l’équation homogène

yhom(x) = Ce−
∫

dx
x = Ce− ln |x| =

C

|x|
, C ∈ R, x 6= 0.

Ainsi yhom(x) =
C

x
pour tout x 6= 0. Pour trouver ypart, on cherche la fonction

c(x) =

∫
1

x
exeln |x|dx =

[
ex, x > 0
−ex x < 0

Par conséquent la solution particulière est

ypart(x) =

 ex
1

x
, x > 0

−ex
(
−1

x

)
, x < 0

ce qui nous donne ypart(x) =
1

x
ex pour tout x 6= 0. Alors la solution générale de l’équation

complète est

y(x) = yhom + ypart =
C

x
+

ex

x
C ∈ R, x 6= 0.

Pour la condition initiale y(1) = 0 on obtient C = −e, si bien que la solution est

y(x) =
ex − e

x
, x ∈]0,∞[.

Ici on a choisi l’intervalle maximale qui contient x = 1 (pour satisfaire la condition initiale)
et tel que la fonction y(x) est de classe C1.
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Exercice 4.

Observons d’abord que les fonctions constantes y(x) = 0 et y(x) = 1 sont des solutions pour
x ∈ R.
Si x, y 6= 0 et x, y 6= 1, l’équation différentielle donnée s’écrit

dy

y(y − 1)
=

dx

x(x− 1)
,

puis, en décomposant chaque terme en éléments simples:(
−1

y
+

1

y − 1

)
dy =

(
−1

x
+

1

x− 1

)
dx .

En intégrant les deux côtés on obtient

− ln |y|+ ln |y − 1| = − ln |x|+ ln |x− 1|+ ln(C̃), C̃ > 0,

⇔ ln

∣∣∣∣y − 1

y

∣∣∣∣ = ln

∣∣∣∣x− 1

x

∣∣∣∣+ ln(C̃) C̃ > 0,

⇔
∣∣∣∣y − 1

y

∣∣∣∣ = C̃

∣∣∣∣x− 1

x

∣∣∣∣ C̃ > 0, (2)

L’équation (2) est équivalente à

y − 1

y
= C

x− 1

x
, C ∈ R \ {0} , (3)

car, si un couple (x, y) satisfait l’équation (2) pour un certain C̃, il satisfait aussi l’équation
(3) avec C = C̃ ou C = −C̃, et si un couple (x, y) satisfait l’équation (3) pour un certain C, il
satisfait aussi l’équation (2) pour C̃ = |C|.
A partir de (3) on trouve l’expression explicite de y en fonction de x,

Cy(x− 1) = x(y − 1) ⇒ y(Cx− C − x) = −x ⇒ y(x) =
x

(1− C)x + C
.

Pour C 6= 0 et C 6= 1 la fonction y(x) définit deux solutions, une sur l’intervalle
]
−∞, C

C−1

[
et

une sur l’intervalle
]

C
C−1 ,∞

[
. (Le dénominateur de y s’annule en x = C

C−1 dans ce cas.)

Pour C = 0, on a y(x) = 1 et pour C = 1, on a y(x) = x . Tout comme la solution triviale
y(x) = 0 , ces deux solutions sont définies pour x ∈ R. La solution générale de l’équation
donnée est donc

y(x) =
x

(1− C)x + C
, C ∈ R \ {0, 1} , x ∈

]
−∞, C

C−1

[
ou x ∈

]
C
C−1 ,∞

[
,

y(x) = 1 , C = 0 , x ∈ R,

y(x) = x , C = 1 , x ∈ R,

y(x) = 0 , - x ∈ R.

Pour trouver les solutions particulières pour les conditions initiales y(x0) = y0 données, on met
la condition initiale dans la solution générale et on résout pour C. Les solutions sont:

x0 = −1, y0 = −1 ⇒ C = 1 ⇒ y = x, x ∈ R

x0 = −1, y0 = 1 ⇒ C = 0 ⇒ y = 1, x ∈ R

x0 = 2, y0 = 4 ⇒ C = 3
2

⇒ y = 2x
3−x , x ∈]−∞, 3[ ∗

x0 = 2, y0 = −4 ⇒ C = 5
2

⇒ y = 2x
5−3x , x ∈]5

3
,∞[ ∗

∗On a choisi l’intervalle qui contient x0.
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Voici le graphique des solutions (les points correspondent aux conditions initiales):
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