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Analyse II — Corrigé de la Série 2

Exercice 1.

i) La fonction y(z) = 2 est solution de I’équation. Pour y # 2 on a

d d ~ ~
_y:y—2 = —y:dx = Inly—2|=2+4+C, CeR
dx y—2

= y—2=Ce", C+#0 = y==Ce" 4+ 2.

Avec C =0, on a y(x) = 2. Ainsi la solution générale est y(z) = Ce® 42 avec C' € R
pour x € R.

i) La fonction y(x) = 0 est une solution. Pour y # 0, on a
d d

dx Y

= y:C’e_%x2, C#0.

1 .
= —xdx = ln\y]:—§x2+0, CeR

EQ
Comme le cas C' = 0 correspond a y(z) = 0, la solution générale est y(z) = Ce™z avec

C € R pour z € R.
iii) La fonction y(x) = 0 est une solution pour x €] — 00, 0] et pour z €]0, 00[. Siz,y # 0 on a

dy _ 3y dy_ 3dw

= = Inly| = =3In|z| +C, CecR
dx x Y x

C C C

C

Comme C' = 0 meéne a y(x) = 0, la solution générale est y(z) = — avec C € R pour
T

x €] — 00, 0[ et pour z €]0, co].

Exercice 2.

d
i) On procede par séparation des variables. En écrivant y' = d—y I’équation devient
x

6(y — 1)*dy = 2(3x +4) dx,

d’ou, par intégration des deux fonctions polynomiales,

2y —1)% = 2% + 222 4 C, C eR.
La forme explicite de la solution y est donc

y(x)zl—l—ffl(:c?(%:v—i—l)—l—c*), rel, CeR, (1)
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i)

olt f~(u) est la fonction réciproque de f(x) = 23 et I est un intervalle ouvert & définir.
Comme f est bijective sur R, sa fonction réciproque f~! est aussi définie sur R, & savoir
par

FH(w) = sgn(u)|ul'?.

Cette fonction est continue sur R mais elle n’est pas dérivable en u = 0, ce qui fait que
I'équation différentielle a plusieurs solutions y(x) de la méme forme (1) qui sont définies
sur des intervalles ouverts différents. Ces intervalles I dépendent des racines réelles du
polynéome 2 (%x + 1) + C', chaque solution étant définie sur un intervalle ouvert sur lequel
ce polynome est du méme signe.

La condition initiale y(0) = 0 implique que 0 = 1 + sgn(C)|C|*/?, c’est-a-dire C' = —1.
On obtient donc la solution particuliere (maximale)

@) =1 = (1) 1P =1 iG] ) oo

oll £y > 0 est 'unique solution réelle de ’équation z? (%x + 1) —1=0.
(On peut voir que xq est 'unique solution et qu’elle est positive par une mini-étude de la
fonction g(z) = 22 (32 + 1) — 1.)

On applique la méme méthode:

yy — Vil g o ye_dey =e¥dx = —ée_y = _4_16_436 +C, CeR

2

1
= €_y:§€_4x+07 CeR = y2:—ln<—6_4m+0>, CeR

En fait, la constante C' ne peut pas prendre toutes les valeurs dans R parce que 32 > 0 et
le logarithme doit étre définie. Mais comme on ne s’intéresse pas a la solution générale ici,
il n’est pas nécessaire de trouver le domaine exact de (| il suffira de trouver la valeur de
C a partir de la condition initiale et puis le domaine de x en fonction.

La forme explicite de la solution y est alors

y(x) = :I:\/— In(ie~4* + C).
La condition initiale y(0) = /In(2) implique que le signe est positif, et, de plus,
In(2) = +y/—In(3 + O) = C=0.

La solution particuliere pour la condition initiale donnée est donc

y(z) = /42 + In(2)

2
qui est a priori définie pour z > —@. Or, y(x) = —————= n’est pas définie en
VA4 +1n(2)
T = —@. La solution maximale pour la condition initiale donnée est donc

y(z) = 4z + In(2), xe}—y,oo[.



iii) On note que y = 0 est une solution. Par la séparation de variables on obtient 'EDVS:

yfIyS =1 ol f(y) = y+1y3 et g(z) = I sont continues sur ] — 0o, 0[ et ]0, 0o[. On calcule
! 1 d d 1
y 3:— = yg:—x = /<—— y2)dy:ln’x‘+61,
y+y w y+y ow y 14y

1
y+y3

ou on a décomposé la fonction en fractions simples. Alors on obtient

1 ||
Iyl —=m1+¢*|=hz|+C;, = Ihnh———=mIClz|, C2 € R =
2 1+ 42 i
W o, er, = Y (o, Cew

N i

On peut résoudre cette equation pour y:

2
Y 2 2 2 2 2 2 2 Cx
ey y( ) V=i

Donc on a les solutions générales:

T selm1)0) 0] et y——2E
RV ool | SRV ool

On remarque que I'équation originale 21/ —y = y® admet la valeur x = 0 et que la fonction
obtenue est de classe C* sur |—1/|C|, 1/|C|[. Donc les solutions sur |—1/|C|,0[ et |0, 1/|C]
peuvent étre collées pour obtenir la solution générale de 1’équation originale (on se souvient
aussi de la solution y = 0):

ze10,1/|C[.

B Cx
Y V1= C2%2
La condition initiale implique
C JE—
V1-C?

La solution maximale pour la condition initiale donnée est donc

y(x) :—\/ﬁ, xe}—\/i\/i[.

z € |-1/|C|,1/|C|[ et y=0, zeR

y(1) = -1, = 1-C?2=—C = 20*°=1, C<0 = (C=-—

Nl

Exercice 3.

Dans cet exercice il s’agit d’équations différentielles linéaires du premier ordre ¢/ (z)+p(x)y(z) =
f(x). D’apres le cours toute solution y(z) de ce type d’équation s’écrit

y(a}) = yhom($) + ypart(m) s

ol Ynom () est la solution générale de 'équation homogene et ypar(z) est une solution partic-
uliere de I’équation initiale.



1)

i)

iii)

La solution générale de I’équation homogene s’obtient en séparant les variables (cf. cours).
On obtient

Ypom () = Ce Pz — = J(=sin@))de — Cg=cos@)  ayec O € R.

Pour trouver une solution particuliere de 1’équation complete ¥ — ysin(z) = 4 sin(x)e®®)

il faut calculer I'intégrale

C([L’) — /f(x)efp(z)dx _ /4Sin(x)€cos(x)ecos(x)dx _ _2/62cos(:r:)d(2 COS(J?)) _

_ —262 cos(x)

ou on a supprimé la constante puisque ’on cherche une primitive particuliere. Alors une
solution particuliere de ’équation avec second membre est

Ypart = C(x)e—fp(l‘)dz = _262(:05(90)6— cos(z) — —26C05($)a
et la solution générale est
y(x) = Yhom T Ypart = Ce™ cos(®) _ 2€cos(a:), Ce R, z € R.

La condition initiale y(g) = 1 implique que C' — 2 =1, d’'ou C' = 3. La solution pour la
condition initiale donnée est donc

y(x) — 3¢~ cos(z) Qecos(x)7 r e R.

A cause du logarithme dans ’équation, on a = > 0, et donc ’équation donnée est équi-
valente a

1
'~ —y=4In(x).
v-—y (z)
Comme solution de I’équation homogene, on trouve
Yhom (T) = Ce=J—zd2 — (@ — Cux, x>0, CeR.
Pour trouver une solution particuliere on calcule

c(x) = /41n(m)e‘ln(”)dx = /4ln(x)d—$ = 21n%(2),

T

ol on supprime toujours la constante. La solution générale de 1’équation complete est

Y(T) = Yhom + Ypart = C 7 + c(x)x = C x + 22 1n*(7), CeR, z€]0,00].
La solution pour la condition initiale y(1) = 1 est
y(z) = (14 2In(z)?) z, x €]0, 00l.
De maniere similaire aux points i) et i7) on trouve

Yhom(7) = Ce*,  avec C € R.

Pour trouver une solution particuliere de I’équation complete il faut calculer I'intégrale
c(x) = /(10 cos(z) + 2e*)e dr = 10/@3”” cos(x)dx +/2dx =
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iv)

= e ¥ (sin(x) — 3cos(x)) + 2z,

ol on supprime toujours la constante. Ici pour calculer Uintégrale [ e 3* cos(z)dx il faut
utiliser I'intégration par parties deux fois (voir Analyse I). Ainsi une solution particuliere

est

Ypart (T) = c(z)e*® = —3cos(x) + sin(z) + 2z € .

Par conséquent
Y(2) = Ynom () + Ypart (z) = Ce** — 3cos(w) + sin(z) + 27 €, CeR, reR.
De plus on a C' = 3 pour la condition initiale y(0) = 0. Donc la solution est
y(x) = 3¢ — 3cos(z) + sin(z) + 27 €, z eR

On a yhom(z) = Ce ™ avec C' € R. Pour trouver ypa,, on cherche la fonction
c(x) = /x?’exd:p = x3ex—3/x26xdx = 1‘36$—3$26$+6/$6$dl‘ = r3e"—31%e"+-6re” —6e".
(la constante est toujours supprimée). Par conséquent la solution générale est

y(r) = Ce ™™ +c(x)e ™ = Ce ™ + 2° — 32 + 61 — 6, CeR, zeR.
Pour la condition initiale y(0) = —2, on obtient C' = 4 si bien que la solution est

y(r) = 4e” " + 2* — 32° + 62 — 6, x e R.

On a z # 0. On a pour la solution générale de I’équation homogene

yhom<$> = O€_I% = C@—lnlr\ — g

, CeR, x#0.
|z

C
Ainsi ypom(x) = - pour tout  # 0. Pour trouver ypa,, on cherche la fonction

1., e’ x>0
_ =z ln|z| . )
c(x) /x@e da:—{_ex <0

Par conséquent la solution particuliere est

Ypart (T) = ( 1)
—e*(—==), 2<0

1
ce qui nous donne Ypat(r) = —€® pour tout z # 0. Alors la solution générale de 1'équation
x

complete est

c e
y(x):yhom+ypart:;+? CGR, $7é0
Pour la condition initiale y(1) = 0 on obtient C' = —e, si bien que la solution est
e’ —e
y(x) = ) x 6]07 Oo[~

T

Ici on a choisi 'intervalle maximale qui contient x = 1 (pour satisfaire la condition initiale)
et tel que la fonction y(x) est de classe C.
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Exercice 4.

Observons d’abord que les fonctions constantes y(x) = 0 et y(z) = 1 sont des solutions pour
x € R.
Siz,y+#0etaxy+#1, I'équation différentielle donnée s’écrit

dy ~ dx

yly—1)  a(x-1)°
puis, en décomposant chaque terme en éléments simples:

1 1 1 1
(e Y (e Y
y y—1 z x—1

En intégrant les deux cotés on obtient

—Inly| +In|y — 1| = —=In|z| +In|z — 1| +1n(C), C >0,
-1 —1 ~ ~
s | ‘_mx +In(C) € >0,
Yy T
-1 ~ e —1 ~
& ‘y— |t ‘ C >0, (2)
Yy T
L’équation (2) est équivalente a
-1 -1
zg_zcxx, C eR\ {0}, (3)

car, si un couple (x,y) satisfait I’équation (2) pour un certain C, il satisfait aussi 'équation
(3) avec C' = C ou C = —C, et si un couple (x,y) satisfait 'équation (3) pour un certain C, il
satisfait aussi ’équation (2) pour C' = |C|.

A partir de (3) on trouve l'expression explicite de y en fonction de z,

x

)= —— .
U Al Ty s
Pour C' # 0 et C # 1 la fonction y(z) définit deux solutions, une sur Uintervalle | —oo, %[ et
une sur 'intervalle | %, oo[. (Le dénominateur de y s’annule en z = % dans ce cas.)

Pour C' =0, ona y(x) =1 et pour C =1, 0n a y(z) =xz. Tout comme la solution triviale
y(x) = 0, ces deux solutions sont définies pour z € R. La solution générale de 1’équation

donnée est donc

Cyle—1)=z(y —1) = y(Cor—C—x)=—x =

x
y(x):m7 C eR\{0,1}, xe]—oo,%[ouxe]%,oo[,
y(x) =1, C=0, z €R,
y(x) =z, c=1, r e R,
y<$):0, - z € R.

Pour trouver les solutions particulieres pour les conditions initiales y(zy) = yo données, on met
la condition initiale dans la solution générale et on résout pour C. Les solutions sont:

9= —1, yo = —1 = Cc=1 = Yy =z, relR
xo=—1,yp=1 = C=0 = y=1, reR

2o =2, Yo =4 = Cc=3 = Y=z, r €] — o0, 3[*
To =2, yp= —4 = C:g = y:53§)x, xe]g,oo[*

*On a choisi I'intervalle qui contient .



Voici le graphique des solutions (les points correspondent aux conditions initiales):




