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Analyse II

Résumé: Calcul différentiel des fonctions des plusieurs variables.

Dérivées partielles et directionnelles.

1. Soit £ C R™ un sous-ensemble ouvert, f : E — R une fonction, a = (ay, as,...a,) € E.
On définit la fonction g(s) = f(a1,...,ax-1,S, k1, --,a,). Alors si g est dérivable en
ar € R, on dit que la k-eme dérivée partielle de f existe et est égale & ¢'(ax). On écrit

o of v glak+t) —glar) L fla+ter) — f(a)
O f(a) = a—xk(a) = g'(ax) = }g% ; = }g% ‘ :
Ici e, est le k-eme vecteur de la base orthonormale de R™.
2. Si toutes les dérivées partielles %(d), g—é(d), . 887’;(&) existent en a, alors on définit le

gradient de f en a comme le vecteur

viw= (L@@ @),

Oxy" " 0xy 7 Oxy,

3. Soit E C R™ un sous-ensemble ouvert, f : E — R une fonction, a = (a1, as,...a,) € E,
v € R" un vecteur tel que v # 0. On définit la fonction g(s) = f(a + tv). Alors si g
est dérivable en t = 0, on dit que la dérivée directionnelle de f en a suivant le vecteur v
existe et est égale a ¢’(0). On écrit

Dfas) — i 0 =90 o TGt~ @)

t—0 t t—0 t

4. (Propriétés des dérivées directionnelles)
(a) Sio = ey, le k-eme vecteur de la base orthonormale de R", alors D f(a, éx) = Ok f(a).
(b) Df(a,\v) = ADf(a,v) pour tout A € R, A # 0, v # 0.

Dérivabilité et la différentielle.

1. Soit £ C R™ un sous-ensemble ouvert, f : £ — R une fonction, a € F. On dit que f
est dérivable au point a s’il existe une application linéaire L; : R — R"™ et une fonction
r: E — R telles que pour tout z € £

f(z) = fla) + La(z — a) + r(z),  lim 7(Z)

2o ||T—al|

0.

L’application linéaire Lz s’appelle la différentielle de f au point a € E.

2. Si f: F — R est dérivable en tout a € F, alors on dit que f est dérivalbe sur £ C R".



3. (Propriétés des fonctions dérivables). Soit £ C R", a € E et f: E — R telle que f est
dérivable en a de différentielle Lz : R™ — R™. Alors:

(a) f est continue en a.
(b) Pour tout v # 0,0 € R", la dérivée directionnelle Df(a,v) existe et Df(a,v) =
L;(0).
o e : : of _
) En particulier, toutes les dérivées partielles existent et ——(a) = Lz(éx).
L
(d) Le graident de f existe en a et Vf(a) = (Ls(€1), La(€2), ... La(€y)).
(e) Pour tout v # 0,0 € R", on a Df(a,v) = (V f(a),v).
(f) Pour tout v € R, ||v|| =1, 0ona Df(a,v) < ||V f(a)||. Le gradient donne la direction
de la plus grande pente de f en a.

(c

=~

. (Plan tangent). Soit £ C R?, (x¢,y0) € E et f : E — R une fonction dérivable en (¢, y)-
Alors I’équation du plan tangent au graphique de f en point (o, Yo, f(Zo,%0)) est

z = f(zo,v0) + (Vf(xo,y0), (x — xo,y — Yo))-

(S8

0
. Soit f: E — R telle que la dérivée partielle a—f(:zc) existe en tout * € E. Si la fonction
T

—— admet a son tour une dérivée partielle par rapport a x; sur E, on obtient la dérivée

T
o (of\ = Of

partielle d’ordre 2
On peut définir ainsi les dérivées partielles d’ordre p > 1.

6. Soit £ C R™ sous-ensemble ouvert et p > 1 un nombre naturel. Une fonction f: F — R
est dite de classe CP dans F si toutes les dérivées partielles de f d’ordre 1,2, ... p existent
et sont continues dans F.

7. Soit £ C R” sous-ensemble ouvert, et p > 2 un nombre naturel. Alors f € CP(E)
implique f € C¥(E) pour tout k =1,2,...p— 1.

8. (Condition suffisante pour que la fonction soit dérivalbe a un point). Soit £ C R", a € F
et f . EF — R une fonction. Supposons qu’il existe o > 0 tel que toutes les dérivées
partielles de f existent dans une boule ouverte de centre a et de rayon ¢, et qu’elles
sont continues en a. Alors f est dérivalbe en a. En particulier, f € C*(F) implique la
dérivabilité de f dans F.

. (Théoreme de Schwarz). Soit E C R", a € E, et f: E — R telle que agiia];k et Bf;gxi
existent et sont continues au point a. Alors

©

*f 0*f

8$ia$k 4= al‘kal’z CL).

En particulier, f € C%(F) implique I’égalité des dérivées partielles secondes mixtes de f
dans F.
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Soit f : ' — R telle que toutes les dérivée partielle d’ordre 2 (a) existent en a € E.

Alors la matrice hessienne de f en a est
9%f (= %f (- 92f (-
Q_:ﬁ(a) Oxo0x1 ((l) Ctt OxpOxy (CL)
Hessg(a) = : : : :
R2f (- Pf (= O2f (=
0110y (a) 0x20Tn (a) ot @(CO

Soit £ C R"™ sous-ensemble ouvert et f: E — R. Alors on a:
fEC®E) = fecCP(E)Vp>1 = fec CYE) = f estderivable dans £ —>

_ 0
— Ve E,0eR"0v#0 IDf(z,0) = v1§k§n,er3£(az).
k

Aussi, on a
f est derivable dans ¥ = f est continue dans F.

Aucune implication n’est reversible.

Soit 2 C R™ sous-ensemble ouvert et f : £ — R. L’existence des dérivées directionnelles
Df(a,v) de toutes directions v € R™ v # 0 n’implique ni continuité ni dérivabilité de f
au point a. L’existence de toutes les dérivées partielles %(Fz), k =1,...n n’implique ni
continuité ni dérivabilité de f au point a.

Fonction a valeurs dans R et la matrice jacobienne.

. Soit ' C R"™ un sous-ensemble ouvert. Alors on peut considerer les applications f(z) :

E — R™ ou f(z) = (f1(Z), fo(T),... fm(Z))T. Si n = m, alors on dit que f(z) est un
champ vectoriel.

. Soit £ C R, f: E — R une fonction de classe C'. Le champ vectoriel (V f(Z))T est

orthogonal aux linges (hypersurfaces) de niveau de la fonction f(Z).

. Soit E C R" et f: E — R™ une fonction. La k-eme dérivée partielle de f en @ € E est

G_f(a) _ (%(a) %(@),... %(a)>T,

Oxy, Oxy, " " Oxy, " Oy,

si chacune des fonctions fi,... f,, admet une dérivée partielle 8;; au point a.

. La fonction f : E — R™, E C R" est dérivable en @ € F si et seulement si chaque

composante f; : E — R est dérivable en a pour tout ¢ =1...m.

. Soit E C R™ Si la fonction f : E — R™ est dérivable en @ € E, alors sa matrice

Jacobienne est définie par la formule:

%(a) %(a) %%;(&) Vfi(a)
Ji(a) = a(@) 2@ ... 32 | _| Vk(@ 7
Yn(a) on(a) ... 9=(a) V fin(@)

ou V f;(a) est le gradient de la fonction f; en a.

3
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Lorsque m = n, on définit le déterminant de Jacobi (le Jacobien) de f : E — R" en a
comme le determinant de la matrice Jacobienne.

La matrice Jacobienne du gradient d'une fonction f : R® — R de classe C? est égale a la
matrice Hessienne de f :
Jvpr(a) = Hessy(a).

Soit A C R", B C R?, et les fonctions g : A — Rpo: B — R? telles que (1) g(A) C B,
(2) g est dérivable en a € A, (3) f est dérivable en b = g(a) € B. Alors fo g est dérivable
en a et on a 1’égalité pour les matrices Jacobiennes

Jjog(@) = Jy(g(a)) - J5(a),
ol - est la multiplication matricielle. Par conséquence, on a aussi
det(Jrog(a)) = det(J(g(a))) - det(Jz(a)).

Soit £ C R™® et f: & — R une fonction de classe C2. Alors la fonction

0? 0? 0?
:a—];—i— f+...+—f
)

est appelée le Laplacien de f.

Soit £ C R" et g : E — R™ une fonction dérivable en a € E. Alors g est bijective dans
un voisinage de a si et seulement si det(J3(a)) # 0.

(Dérivée d’une intégrale qui dépend d’'un parametre). Soient g,h : I — R fonction

continument dérivables sur un intervalle I C R, et f(z,t) : J x I — R une fonction
g(t)

9 est continue sur 1. Alors la fonction F(t) = [ f(x,t)dx est continiment

telle que 3
h(t)

dérivable sur I et on a

Extrema des fonctions de plusieurs variables.

On dit que @ € £ C R™ est un point stationnaire de la fonction f : £ — R si Vf(a) = 0.

Soit £ C R™. On dit que f : £ — R admet un maximum (minimum) local au point
a € F s'il existe un voisinage U de a tel que f(z) < f(a) pour tout € U (respectivement
f(z) > f(a) pour tout z € U.)

(Condition nécessaire) Soit f : £ — R une fonction admettant un extremum local au
point a € E et telle que toutes les dérivées partielles de f existent en a. Alors a est un
point stationnaire.

(Points critiques). a € £ C R" est un point critique de f : £ — R si (1) @ est un point
stationnaire de f, ou (2) au moins une des dérivées partielles de f n’existe pas en a.



d.

10.

(Condition suffisante, cas général) Soit £ C R™ et f : E — R une fonction de classe C?
au voisinage de point a € E, telle que V f(a) = 0. Alors :

(1) Si toutes les valeurs propres de la matrice Hessienne de f sont positives, a est un
point de minimum local de f;

(2) Si toutes les valeurs propres de la matrice Hessienne de f sont negatives, a est un
point de maximum local de f;

(3) Si la matrice Hessienne possede des valeurs propres positives et negatives, alors a n’est
pas un point d’extremum local de f.

(Condition suffisante, cas n = 2). Soit E C R? et f : E — R une fonction de classe C?
au voisinage de point a € F, telle que V f(a) = 0. Alors :
(1) Si det(Hessg(a)) > 0 et %(d) > 0, alors a est un point de minimum local de f;

(2) Si det(Hessg(a)) > 0 et %(d) < 0, alors a est un point de maximum local de f;
(3) Si det(Hessg(a)) < 0, alors @ n’est pas un point d’extremum local de f.

(Formule de Taylor). Soit E C R" et f: E — R de classe CP™! au voisinage de a € F.
Alors il existe un voisinage U de a tel que pour tout £ € U il existe unt € R, 0 <t < 1
tel que

1

(p+1)!

f(z) = F(0) + F'(0) + %F”(O) .o+ z% FP(0) + Fet (1)

Y

ou F(t) est la fonction F(t) = f(a+t(Z — a)).

(Formule de Taylor d’ordre 2, cas n = 2). Soit £ C R? et f : E — R de classe C? au
voisinage de (a,b) € E. Alors il existe un voisinage U de (a, b) tel que pour tout (z,y) € U

flo) = fad) + G =)+ Sy -+
10? o? 102
@ @ 5@ )y = ) 55 = b el )+ (g - B,

ot £(t) : R — R est une fonction telle que lim;_,o E(t—t) = 0.

(Théoreme des fonctions implicites). Soit £ C R™ et F': E — R une fonction de classe
C' au voisinage de a = (a1, as,...a,) € F telle que F(a) = 0 et gc—i(d) # 0. Alors il
existe un voisinage U de @ = (a1, as, - . . a,—1) € R"™! et une fonction implicite f : U — R
telle que :

(1) ap = flay,a9,...a,_1);

(2) F(xy,29,..., f(x1,22,...20-1)) = 0 pour tout (z1,22,...0,-1) €U ;

(3) De plus, f est de classe C'! dans U et on a

0 (1, Tp_1) = g_ﬂi(zl’x%"-af(flfl,xz,...xn_l))
—(T1,Z9,...Zp_1) = — |
8$p y L2, n %($17$27...,f(l’1,$2,...l’n_1))

(Théoreme des fonctions implicites, cas n = 2). Soit E C R? et F': E — R une fonction
de classe C' au voisinage de (a,b) € E telle que F(a,b) = 0 et %—5(@, b) # 0. Alors il
existe un voisinage U de a € R et une fonction implicite f : U — R telle que :

(1) b= f(a);
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(2) F(z, f(z)) = 0 pour tout z € U ;
(3) De plus, f est de classe C! dans U et on a

(Théoreme des fonctions implicites, cas n = 3). Soit £ C R3 et F': E — R une fonction
de classe C'!' au voisinage de (a,b,c) € E telle que F(a,b,c) =0 et %—’:(a, b,c) # 0. Alors
il existe un voisinage U de (a,b) € R? et une fonction implicite f : U — R telle que :

(1) ¢ = f(a,b);

(2) F(z,y, f(z,y)) = 0 pour tout (z,y) € U ;

(3) De plus, f est de classe C' dans U et on a

__@):_%@wj@w) of . gy f@y)
oz 9Lz, y, f(x,y)) dy O (2,y, f(z,y)

(Multiplicateurs de Lagrange: condition nécessaire pour un extremum sous contraintes).
Soit £ C R™, m < n—1 et les fonctions f, g1, ..., gm : £ — R de classe C*. Supposons que
a € F est un point d’extremum de f(z) sous les contraintes g, (Z) = ¢g2(z) = ... = 0. Sup-
posons aussi que les vecteurs Vgi(a), Vga(a), ... Vg (a) sont linéarement indépendents.
Alors il existe un vecteur A = (A1, Ag, ... A\p) € R™ tel que

Vf(a) = Z \iVgi(a).

(Multiplicateurs de Lagrange: condition nécessaire pour un extremum sous une seule
contrainte). Soit E C R", n > 2 et les fonctions f,g : £ — R de classe C'. Supposons
que (@) € E est un point d’extremum de f(Z) sous la contrainte g(Z) = 0. Supposons
aussi que Vg(a) # 0. Alors il existe A € R tel que

Vf(a) = AVy(a).

(Extrema absoluts). Soit £ C R™ un sous-ensemble ouvert, D C F compact, et f: £ — R
une fonction continue sur £. Une fonction continue sur un ensemble compact atteint son
minimum et son maximum. Pour trouver le maximum et le minimum de f sur D il faut :
(1) Trouver les points critiques {¢;} de f dans Dintérieur D et calculer les valeurs {f(c;)}.
(2) Trouver les points critiques {d;} de f sur la frontiere 0D, soit directement, soit par
le théoreme des multiplicateurs de Lagrange, et calculer les valeurs {f(d;)}.

(3) Choisir le minimum et le maximum de 'ensemble {f(c;), f(d;)}.



