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Analyse II
Résumé: Calcul différentiel des fonctions des plusieurs variables.

Dérivées partielles et directionnelles.

1. Soit E ⊂ Rn un sous-ensemble ouvert, f : E → R une fonction, ā = (a1, a2, . . . an) ∈ E.
On définit la fonction g(s) = f(a1, . . . , ak−1, s, ak+1, . . . , an). Alors si g est dérivable en
ak ∈ R, on dit que la k-ème dérivée partielle de f existe et est égale à g′(ak). On écrit

∂kf(ā) =
∂f

∂xk
(ā) = g′(ak) = lim

t→0

g(ak + t)− g(ak)

t
= lim

t→0

f(ā+ tēk)− f(ā)

t
.

Ici ēk est le k-ème vecteur de la base orthonormale de Rn.

2. Si toutes les dérivées partielles ∂f
∂x1

(ā), ∂f
∂x2

(ā), . . . ∂f
∂xn

(ā) existent en ā, alors on définit le
gradient de f en ā comme le vecteur

∇f(ā) =

(
∂f

∂x1

(ā),
∂f

∂x2

(ā), . . . ,
∂f

∂xn
(ā)

)
.

3. Soit E ⊂ Rn un sous-ensemble ouvert, f : E → R une fonction, ā = (a1, a2, . . . an) ∈ E,
v̄ ∈ Rn un vecteur tel que v̄ 6= 0̄. On définit la fonction g(s) = f(ā + tv̄). Alors si g
est dérivable en t = 0, on dit que la dérivée directionnelle de f en ā suivant le vecteur v̄
existe et est égale à g′(0). On écrit

Df(ā, v̄) = lim
t→0

g(t)− g(0)

t
= lim

t→0

f(ā+ tv̄)− f(ā)

t
.

4. (Propriétés des dérivées directionnelles)

(a) Si v̄ = ēk, le k-ème vecteur de la base orthonormale de Rn, alors Df(ā, ēk) = ∂kf(ā).

(b) Df(ā, λv̄) = λDf(ā, v̄) pour tout λ ∈ R, λ 6= 0, v̄ 6= 0̄.

Dérivabilité et la différentielle.

1. Soit E ⊂ Rn un sous-ensemble ouvert, f : E → R une fonction, ā ∈ E. On dit que f
est dérivable au point ā s’il existe une application linéaire Lā : Rn → Rn et une fonction
r : E → R telles que pour tout x̄ ∈ E

f(x̄) = f(ā) + Lā(x̄− ā) + r(x̄), lim
x̄→ā

r(x̄)

||x̄− ā||
= 0.

L’application linéaire Lā s’appelle la différentielle de f au point ā ∈ E.

2. Si f : E → R est dérivable en tout ā ∈ E, alors on dit que f est dérivalbe sur E ⊂ Rn.

1



3. (Propriétés des fonctions dérivables). Soit E ⊂ Rn, ā ∈ E et f : E → R telle que f est
dérivable en ā de différentielle Lā : Rn → Rn. Alors:

(a) f est continue en ā.

(b) Pour tout v̄ 6= 0̄, v̄ ∈ Rn, la dérivée directionnelle Df(ā, v̄) existe et Df(ā, v̄) =
Lā(v̄).

(c) En particulier, toutes les dérivées partielles existent et
∂f

∂xk
(ā) = Lā(ēk).

(d) Le graident de f existe en ā et ∇f(ā) = (Lā(ē1), Lā(ē2), . . . Lā(ēn)).

(e) Pour tout v̄ 6= 0̄, v̄ ∈ Rn, on a Df(ā, v̄) = 〈∇f(ā), v̄〉.
(f) Pour tout v̄ ∈ Rn, ||v̄|| = 1, on a Df(ā, v̄) ≤ ||∇f(ā)||. Le gradient donne la direction

de la plus grande pente de f en ā.

4. (Plan tangent). Soit E ⊂ R2, (x0, y0) ∈ E et f : E → R une fonction dérivable en (x0, y0).
Alors l’équation du plan tangent au graphique de f en point (x0, y0, f(x0, y0)) est

z = f(x0, y0) + 〈∇f(x0, y0), (x− x0, y − y0)〉.

5. Soit f : E → R telle que la dérivée partielle
∂f

∂xk
(x̄) existe en tout x̄ ∈ E. Si la fonction

∂f

∂xk
admet à son tour une dérivée partielle par rapport à xi sur E, on obtient la dérivée

partielle d’ordre 2
∂

∂xi

(
∂f

∂xk

)
=

∂2f

∂xi∂xk
.

On peut définir ainsi les dérivées partielles d’ordre p ≥ 1.

6. Soit E ⊂ Rn sous-ensemble ouvert et p ≥ 1 un nombre naturel. Une fonction f : E → R
est dite de classe Cp dans E si toutes les dérivées partielles de f d’ordre 1, 2, . . . p existent
et sont continues dans E.

7. Soit E ⊂ Rn sous-ensemble ouvert, et p ≥ 2 un nombre naturel. Alors f ∈ Cp(E)
implique f ∈ Ck(E) pour tout k = 1, 2, . . . p− 1.

8. (Condition suffisante pour que la fonction soit dérivalbe à un point). Soit E ⊂ Rn, ā ∈ E
et f : E → R une fonction. Supposons qu’il existe δ > 0 tel que toutes les dérivées
partielles de f existent dans une boule ouverte de centre ā et de rayon δ, et qu’elles
sont continues en ā. Alors f est dérivalbe en ā. En particulier, f ∈ C1(E) implique la
dérivabilité de f dans E.

9. (Théorème de Schwarz). Soit E ⊂ Rn, ā ∈ E, et f : E → R telle que ∂2f
∂xi∂xk

et ∂2f
∂xk∂xi

existent et sont continues au point ā. Alors

∂2f

∂xi∂xk
(ā) =

∂2f

∂xk∂xi
(ā).

En particulier, f ∈ C2(E) implique l’égalité des dérivées partielles secondes mixtes de f
dans E.
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10. Soit f : E → R telle que toutes les dérivée partielle d’ordre 2 ∂2f
∂xk∂xi

(ā) existent en ā ∈ E.
Alors la matrice hessienne de f en ā est

Hessf (ā) =


∂2f
∂x2

1
(ā) ∂2f

∂x2∂x1
(ā) . . . ∂2f

∂xn∂x1
(ā)

...
...

...
...

∂2f
∂x1∂xn

(ā) ∂2f
∂x2∂xn

(ā) . . . ∂2f
∂x2

n
(ā)

 .

11. Soit E ⊂ Rn sous-ensemble ouvert et f : E → R. Alors on a:

f ∈ C∞(E) =⇒ f ∈ Cp(E) ∀p ≥ 1 =⇒ f ∈ C1(E) =⇒ f est derivable dans E =⇒

=⇒ ∀x̄ ∈ E, v̄ ∈ Rn, v̄ 6= 0̄ ∃ Df(x̄, v̄) =⇒ ∀1 ≤ k ≤ n, x̄ ∈ E ∃ ∂f

∂xk
(x̄).

Aussi, on a
f est derivable dans E =⇒ f est continue dans E.

Aucune implication n’est reversible.

12. Soit E ⊂ Rn sous-ensemble ouvert et f : E → R. L’existence des dérivées directionnelles
Df(ā, v̄) de toutes directions v̄ ∈ Rn, v̄ 6= 0̄ n’implique ni continuité ni dérivabilité de f
au point ā. L’existence de toutes les dérivées partielles ∂f

∂xk
(ā), k = 1, . . . n n’implique ni

continuité ni dérivabilité de f au point ā.

Fonction à valeurs dans Rm et la matrice jacobienne.

1. Soit E ⊂ Rn un sous-ensemble ouvert. Alors on peut considerer les applications f̄(x̄) :
E → Rm, où f̄(x̄) = (f1(x̄), f2(x̄), . . . fm(x̄))T . Si n = m, alors on dit que f̄(x̄) est un
champ vectoriel.

2. Soit E ⊂ Rn, f : E → R une fonction de classe C1. Le champ vectoriel (∇f(x̄))T est
orthogonal aux linges (hypersurfaces) de niveau de la fonction f(x̄).

3. Soit E ⊂ Rn et f̄ : E → Rm une fonction. La k-eme dérivée partielle de f̄ en ā ∈ E est

∂f̄

∂xk
(ā) =

(
∂f1

∂xk
(ā),

∂f2

∂xk
(ā), . . . ,

∂fm
∂xk

(ā)

)T

,

si chacune des fonctions f1, . . . fm admet une dérivée partielle ∂
∂xk

au point ā.

4. La fonction f̄ : E → Rm, E ⊂ Rn est dérivable en ā ∈ E si et seulement si chaque
composante fi : E → R est dérivable en ā pour tout i = 1 . . .m.

5. Soit E ⊂ Rn. Si la fonction f̄ : E → Rm est dérivable en ā ∈ E, alors sa matrice
Jacobienne est définie par la formule:

Jf̄ (ā) =


∂f1
∂x1

(ā) ∂f1
∂x2

(ā) . . . ∂f1
∂xn

(ā)
∂f2
∂x1

(ā) ∂f2
∂x2

(ā) . . . ∂f2
∂xn

(ā)

. . . . . . . . . . . .
∂fm
∂x1

(ā) ∂fm
∂x2

(ā) . . . ∂fm
∂xn

(ā)

 =


∇f1(ā)
∇f2(ā)
. . .

∇fm(ā)

 ,

où ∇fi(ā) est le gradient de la fonction fi en ā.
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6. Lorsque m = n, on définit le déterminant de Jacobi (le Jacobien) de f̄ : E → Rn en ā
comme le determinant de la matrice Jacobienne.

7. La matrice Jacobienne du gradient d’une fonction f : Rn → R de classe C2 est égale à la
matrice Hessienne de f :

J(∇f)T (ā) = Hessf (ā).

8. Soit A ⊂ Rn, B ⊂ Rp, et les fonctions ḡ : A → Rp, f̄ : B → Rq telles que (1) ḡ(A) ⊂ B,
(2) ḡ est dérivable en ā ∈ A, (3) f̄ est dérivable en b̄ = ḡ(ā) ∈ B. Alors f̄ ◦ ḡ est dérivable
en ā et on a l’égalité pour les matrices Jacobiennes

Jf̄◦ḡ(ā) = Jf̄ (ḡ(ā)) · Jḡ(ā),

où · est la multiplication matricielle. Par conséquence, on a aussi

det(Jf̄◦ḡ(ā)) = det(Jf̄ (ḡ(ā))) · det(Jḡ(ā)).

9. Soit E ⊂ Rn et f : E → R une fonction de classe C2. Alors la fonction

∆f : E → R, ∆f(x̄) =
∂2f

∂x2
1

+
∂2f

∂x2
2

+ . . .+
∂2f

∂x2
n

est appelée le Laplacien de f .

10. Soit E ⊂ Rn et ḡ : E → Rn une fonction dérivable en ā ∈ E. Alors ḡ est bijective dans
un voisinage de ā si et seulement si det(Jḡ(ā)) 6= 0.

11. (Dérivée d’une intégrale qui dépend d’un paramètre). Soient g, h : I → R fonction
continûment dérivables sur un intervalle I ⊂ R, et f(x, t) : J × I → R une fonction

telle que ∂f
∂t

est continue sur I. Alors la fonction F (t) =
g(t)∫
h(t)

f(x, t) dx est continûment

dérivable sur I et on a

F ′(t) = f(g(t), t)g′(t)− f(h(t), t)h′(t) +

g(t)∫
h(t)

∂f

∂t
(x, t) dx.

Extrema des fonctions de plusieurs variables.

1. On dit que ā ∈ E ⊂ Rn est un point stationnaire de la fonction f : E → R si ∇f(ā) = 0.

2. Soit E ⊂ Rn. On dit que f : E → R admet un maximum (minimum) local au point
ā ∈ E s’il existe un voisinage U de ā tel que f(x̄) ≤ f(ā) pour tout x̄ ∈ U (respectivement
f(x̄) ≥ f(ā) pour tout x̄ ∈ U .)

3. (Condition nécessaire) Soit f : E → R une fonction admettant un extremum local au
point ā ∈ E et telle que toutes les dérivées partielles de f existent en ā. Alors ā est un
point stationnaire.

4. (Points critiques). ā ∈ E ⊂ Rn est un point critique de f : E → R si (1) ā est un point
stationnaire de f , ou (2) au moins une des dérivées partielles de f n’existe pas en ā.
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5. (Condition suffisante, cas général) Soit E ⊂ Rn et f : E → R une fonction de classe C2

au voisinage de point ā ∈ E, telle que ∇f(ā) = 0. Alors :
(1) Si toutes les valeurs propres de la matrice Hessienne de f sont positives, ā est un
point de minimum local de f ;
(2) Si toutes les valeurs propres de la matrice Hessienne de f sont negatives, ā est un
point de maximum local de f ;
(3) Si la matrice Hessienne possède des valeurs propres positives et negatives, alors ā n’est
pas un point d’extremum local de f .

6. (Condition suffisante, cas n = 2). Soit E ⊂ R2 et f : E → R une fonction de classe C2

au voisinage de point ā ∈ E, telle que ∇f(ā) = 0. Alors :

(1) Si det(Hessf (ā)) > 0 et ∂2f
∂x2 (ā) > 0, alors ā est un point de minimum local de f ;

(2) Si det(Hessf (ā)) > 0 et ∂2f
∂x2 (ā) < 0, alors ā est un point de maximum local de f ;

(3) Si det(Hessf (ā)) < 0, alors ā n’est pas un point d’extremum local de f .

7. (Formule de Taylor). Soit E ⊂ Rn et f : E → R de classe Cp+1 au voisinage de ā ∈ E.
Alors il existe un voisinage U de ā tel que pour tout x̄ ∈ U il existe un t ∈ R, 0 < t < 1
tel que

f(x̄) = F (0) + F ′(0) +
1

2
F ′′(0) + . . .+

1

p!
f (p)(0) +

1

(p+ 1)!
F (p+1)(t),

où F (t) est la fonction F (t) = f(ā+ t(x̄− ā)).

8. (Formule de Taylor d’ordre 2, cas n = 2). Soit E ⊂ R2 et f : E → R de classe C3 au
voisinage de (a, b) ∈ E. Alors il existe un voisinage U de (a, b) tel que pour tout (x, y) ∈ U

f(x, y) = f(a, b) +
∂f

∂x
(x− a) +

∂f

∂y
(y − b)+

+
1

2

∂2f

∂x2
(x− a)2 +

∂2f

∂x∂y
(x− a)(y − b) +

1

2

∂2f

∂y2
(y − b)2 + ε((x− a)2 + (y − b)2),

où ε(t) : R→ R est une fonction telle que limt→0
ε(t)
t

= 0.

9. (Théorème des fonctions implicites). Soit E ⊂ Rn et F : E → R une fonction de classe
C1 au voisinage de ā = (a1, a2, . . . an) ∈ E telle que F (ā) = 0 et ∂F

∂xn
(ā) 6= 0. Alors il

existe un voisinage U de ǎ = (a1, a2, . . . an−1) ∈ Rn−1 et une fonction implicite f : U → R
telle que :
(1) an = f(a1, a2, . . . an−1);
(2) F (x1, x2, . . . , f(x1, x2, . . . xn−1)) = 0 pour tout (x1, x2, . . . xn−1) ∈ U ;
(3) De plus, f est de classe C1 dans U et on a

∂f

∂xp
(x1, x2, . . . xn−1) = −

∂F
∂xp

(x1, x2, . . . , f(x1, x2, . . . xn−1))

∂F
∂xn

(x1, x2, . . . , f(x1, x2, . . . xn−1))
.

10. (Théorème des fonctions implicites, cas n = 2). Soit E ⊂ R2 et F : E → R une fonction
de classe C1 au voisinage de (a, b) ∈ E telle que F (a, b) = 0 et ∂F

∂y
(a, b) 6= 0. Alors il

existe un voisinage U de a ∈ R et une fonction implicite f : U → R telle que :
(1) b = f(a);
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(2) F (x, f(x)) = 0 pour tout x ∈ U ;
(3) De plus, f est de classe C1 dans U et on a

f ′(x) = −
∂F
∂x

(x, f(x))
∂F
∂y

(x, f(x))
.

11. (Théorème des fonctions implicites, cas n = 3). Soit E ⊂ R3 et F : E → R une fonction
de classe C1 au voisinage de (a, b, c) ∈ E telle que F (a, b, c) = 0 et ∂F

∂z
(a, b, c) 6= 0. Alors

il existe un voisinage U de (a, b) ∈ R2 et une fonction implicite f : U → R telle que :
(1) c = f(a, b);
(2) F (x, y, f(x, y)) = 0 pour tout (x, y) ∈ U ;
(3) De plus, f est de classe C1 dans U et on a

∂f

∂x
(x, y) = −

∂F
∂x

(x, y, f(x, y))
∂F
∂z

(x, y, f(x, y))
;

∂f

∂y
(x, y) = −

∂F
∂y

(x, y, f(x, y))
∂F
∂z

(x, y, f(x, y))
.

12. (Multiplicateurs de Lagrange: condition nécessaire pour un extremum sous contraintes).
Soit E ⊂ Rn, m ≤ n−1 et les fonctions f, g1, . . . , gm : E → R de classe C1. Supposons que
ā ∈ E est un point d’extremum de f(x̄) sous les contraintes g1(x̄) = g2(x̄) = . . . = 0. Sup-
posons aussi que les vecteurs ∇g1(ā),∇g2(ā), . . .∇gm(ā) sont linéarement indépendents.
Alors il existe un vecteur λ̄ = (λ1, λ2, . . . λm) ∈ Rm tel que

∇f(ā) =
m∑
i=1

λi∇gi(ā).

13. (Multiplicateurs de Lagrange: condition nécessaire pour un extremum sous une seule
contrainte). Soit E ⊂ Rn, n ≥ 2 et les fonctions f, g : E → R de classe C1. Supposons
que (ā) ∈ E est un point d’extremum de f(x̄) sous la contrainte g(x̄) = 0. Supposons
aussi que ∇g(ā) 6= 0̄. Alors il existe λ ∈ R tel que

∇f(ā) = λ∇g(ā).

14. (Extrema absoluts). Soit E ⊂ Rn un sous-ensemble ouvert, D ⊂ E compact, et f : E → R
une fonction continue sur E. Une fonction continue sur un ensemble compact atteint son
minimum et son maximum. Pour trouver le maximum et le minimum de f sur D il faut :
(1) Trouver les points critiques {ci} de f dans l’intérieur D̊ et calculer les valeurs {f(ci)}.
(2) Trouver les points critiques {dj} de f sur la frontière ∂D, soit directement, soit par
le théorème des multiplicateurs de Lagrange, et calculer les valeurs {f(dj)}.
(3) Choisir le minimum et le maximum de l’ensemble {f(ci), f(dj)}.
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