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J’ai fait ce document pour mon usage, mais je me suis dit que des notes dactylographiées pouvaient
intéresser d’autres personnes. Ainsi, je l’ai partagé (à vous, si vous lisez ces lignes !) ; puisque cela ne
me coûtait rien. Je vous demande simplement de garder en tête qu’il y a des erreurs, c’est impossible
de ne pas en faire. Si vous en trouvez, n’hésitez pas à me les partager (les erreurs de grammaires et de
vocabulaires sont naturellement aussi bienvenues). Vous pouvez me contacter à l’adresse e-mail suivante :

joachim.favre@epfl.ch

Si vous n’avez pas obtenu ce document par le biais de mon repo GitHub, vous serez peut-être intéressé
par le fait que j’en ai un sur lequel je mets mes notes dactylographiées. Voici le lien (allez regarder dans la
section “Releases” pour trouver les documents compilés) :

https://github.com/JoachimFavre/EPFLNotesIN

Notez que le contenu ne m’appartient pas. J’ai fait quelques modifications de structure, j’ai reformulé
certains bouts, et j’ai ajouté quelques notes personnelles ; mais les formulations et les explications viennent
principalement de la personne qui nous a donné ce cours, et du livre dont elle s’est inspirée.
Je pense qu’il est intéressant de préciser que, pour avoir ces notes dactylographiées, j’ai pris mes notes
en LATEXpendant le cours, puis j’ai fait quelques corrections. Je ne pense pas que mettre au propre des
notes écrites à la main est faisable niveau quantité de travail. Pour prendre des notes en LATEX, je me suis
inspiré du lien suivant, écrit par Gilles Castel. Si vous voulez plus de détails, n’hésitez pas à me contacter
à mon adresse e-mail, mentionnée ci-dessus.

https://castel.dev/post/lecture-notes-1/

Je tiens aussi à préciser que les mots “trivial” et “simple” n’ont, dans ce cours, pas la définition que vous
trouvez dans un dictionnaire. Nous sommes à l’EPFL, rien de ce que nous faisons n’est trivial. Quelque
chose de trivial, c’est quelque chose que quelqu’un pris de manière aléatoire dans la rue serait capable de
faire. Dans notre contexte, comprenez plutôt ces mots comme “plus simple que le reste”. Aussi, ce n’est
pas grave si vous prenez du temps à comprendre quelque chose qui est dit trivial (surtout que j’adore
utiliser ce mot partout hihi).
Puisque vous lisez ces lignes, je vais me permettre de vous donner un petit conseil. Le sommeil est un
outil bien plus puissant que ce que vous pouvez imaginer, donc ne négligez jamais une bonne nuit de
sommeil au profit de vos révisions (particulièrement la veille de l’examen). Je vais aussi me permettre de
paraphraser mon enseignante de philosophie du gymnase, Ms. Marques, j’espère que vous vous amuserez
en faisant vos examens !

Version 2022–07–14

https://github.com/JoachimFavre/EPFLNotesIN
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Chapitre 1

Résumé par cours

Cours 1 : Un cours en deux documents — Lundi 21 février 2022 p. 21

• Introduction et définition des concepts de proposition, démonstration et axiomes.
• Explication de la méthode de démonstration dite de la démonstration directe, et celle dite du raisonne-

ment par contraposée.

Cours 3 : Dsiijonctions de cas — Lundi 28 février 2022 p. 23

• Explication de la méthode de démonstration par disjonctions de cas.
• Explication de la méthode de démonstration pour les preuves si et seulement si.

Cours 6 : Le meilleur mathématicien — Mercredi 9 mars 2022 p. 25

• Explication de la méthode de démonstration dite par l’absurde.

Cours 7 : Les tiroirs et les chaussettes — Lundi 14 mars 2022 p. 26

• Explication du principe des tiroirs et des chaussettes de Dirichlet.

Cours 11 : Récurrence — Lundi 28 mars 2022 p. 27

• Explication de la méthode de démonstration dite par récurrence.
• Explication de la méthode de démonstration dite par récurrence généralisée.

Cours 14 : Récurrence forte — Mercredi 6 avril 2022 p. 29

• Explication de la méthode dite de récurrence forte.
• Résumé des trois méthodes de récurrence que nous avons vues.
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Cours 17 : Récurrence sur deux variables — Lundi 25 avril 2022 p. 30

• Explication de la méthode de récurrence sur deux variable dite du carré.
• Explication de la méthode de récurrence sur deux variable dite de la diagonale.

Cours 21 : Résumé — Mercredi 11 mai 2022 p. 32

• Résumé des différentes méthodes que nous avons vues.
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Chapitre 2

Démonstrations à connaître

Théorème : Exis-
tence et unicité
d’une solution
des EDVS

Soit f : I 7→ R une fonction continue telle que f(y) ≠ 0 pour tout y ∈ I, et soit
g : J 7→ R une fonction continue.
Existence : Alors, pour tout couple (x0, b0) où x0 ∈ J et b0 ∈ I, l’équation

f(y)y′ = g(x)

admet une solution y : J ′ ⊂ J 7→ I vérifiant la condition initiale.
Unicité : Si y1 : J1 7→ I et y2 : J2 7→ I sont deux solutions telles que y1(x0) =
y2(x0) = b0, alors :

y1(x) = y2(x), ∀x ∈ J1 ∩ J2

Preuve Nous allons seulement montrer l’existence de la solution.
Soit la fonction suivante :

F (y) =
� y

b0

f(t)dt

On sait que F (y) est dérivable par le théorème fondamental du
calcul intégral. De plus, on sait que F ′(y) = f(y) ̸= 0 sur I, donc
f(y) ne change pas pas de signe et donc F (y) est monotone. Puisque
F (y) est continue et monotone, on sait qu’elle est inversible sur I.
Soit aussi la fonction suivante :

G(x) =
� x

x0

g(t)dt

Par le théorème fondamental du calcul intégral, on sait aussi que
G(x0) = 0 et que G est dérivable sur J .
Définissons aussi la fonction suivante dans un voisinage de x0 (on
sait que F est inversible sur I, et F −1(G(x0)) = b0 ∈ I) :

y(x) = F −1(G(x))

Nous allons démontrer que y(x) est une solution de l’équation
f(y)y′(x) = g(x) dans un voisinage de x0 ∈ J , et qu’elle satisfait
y(x0) = b0.
En manipulant notre définition, on obtient que, dans un voisinage
de x0 ∈ J :

F (y(x)) = G(x)
d

dx=⇒ F ′(y(x))y′(x) = G′(x) =⇒ f(y)y′(x) = g(x)

De plus, nous savons par la définition de G et F que G(x0) = 0 et
F (b0) = 0, donc :

y(x0) = F −1(G(x0)) = F −1(0) = b0

□

11



Analyse II — Démonstrations CHAPITRE 2. DÉMONSTRATIONS À CONNAÎTRE

Idée de la
preuve

Nous partons de notre équation :

g(y) dy

dx
= f(x)

Et, notre théorème nous dit que c’est plus ou moins équivalent à :
�

f(y)dy =
�

g(x)dx ⇐⇒ F (y) = G(x)

Proposition
pour les EDL1

Soient p, f : I 7→ R des fonctions continues. Supposons que v0 : I 7→ R est une
solution particulière de l’équation suivante :

y′(x) + p(x)y(x) = f(x)

Alors, la solution générale de cette équation est :

v(x) = v0(x) + Ce−P (x), ∀C ∈ R

où P (x) est une primitive de p(x) sur I.

Preuve Nous allons montrer que toute solution de cette équation est de la
forme v0(x) + Ce−P (x).
Soit v1(x) une solution de y′(x) + p(x)y(x) = f(x). On a aussi que
v0(x) est une solution de la même équation.
Alors, d’après le principe de superposition de solutions, la fonction
v1(x) − v0(x) est une solution de l’équation :

y′(x) + p(x)y(x) = f(x) − f(x) = 0

Ainsi, v1(x) − v0(x) est une solution de l’équation homogène :

y′(x) + p(x)y(x) = 0

Cependant, c’est une EDVS, donc nous savons que la solution
générale de cette équation homogène est :

v(x) = Ce−P (x), C ∈ R arbitraire

où P (x) est une primitive de p(x) sur I.
On en déduit qu’il existe une valeur de C ∈ R telle que v1(x) −
v0(x) = Ce−P (x). Ainsi, on obtient que la solution v1(x) est de la
forme :

v1(x) = v0(x) + Ce−P (x)

Puisque v1(x) était une solution arbitraire, nous obtenons que l’en-
semble de toutes les solutions de l’équation y′(x) + p(x)y(x) = f(x)
est :

v(x) = v0(x) + Ce−P (x), C ∈ R, x ∈ I

Donc, par définition, v(x) est la solution générale.

□

Proposition
pour le Wrons-
kien

Soient v1, v2 : I 7→ R deux solutions de l’équation y′′(x) + p(x)y′(x) + q(x)y(x) = 0
(EDL2 homogène).
v1(x) et v2(x) sont linéairement indépendants si et seulement si W [v1, v2](x) ̸= 0
pour tout x ∈ I.

Preuve ⇐=
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Démontrons ce point par la contraposée. Nous voulons donc montrer
que les solutions sont linéairement dépendantes implique qu’il existe
x ∈ I tel que W [v1, v2](x) = 0.
Puisque nos deux solutions sont linéairement dépendantes, nous
pouvons prendre sans perte de généralité qu’il existe c ∈ R tel
que v1(x) = cv2(x) (si plutôt v2(x) = cv1(x), nous pourrions juste
échanger les noms, d’où le “sans perte de généralité”).
Ainsi, nous avons :

W [v1, v2](x) = det
(

v1(x) cv1(x)
v′

1(x) cv′
1(x)

)
= cv1(x)v′

1(x) − cv1(x)v′
1(x)

= 0, ∀x ∈ I

Nous avons donc trouvé que le Wronskien est nul pour tout x sur
cet intervalle, donc il existe bien un x pour lequel il est égal à 0.

Preuve =⇒ Prouvons aussi cette affirmation par la contraposée. Nous voulons
donc montrer que, s’il existe x0 ∈ I tel que W [v1, v2](x0) = 0, alors
v1(x) et v2(x) sont linéairement dépendantes.
Puisqu’il existe un tel x0 ∈ I, nous savons que :

det
(

v1(x0) v2(x0)
v′

1(x0) v′
2(x0)

)
= 0

Ainsi, le kernel de cette matrice est est non-trivial (il n’est pas de
dimension 0), donc il existe un vecteur non nul

(
a
b

)
∈ R2 tel que :(

v1(x0) v2(x0)
v′

1(x0) v′
2(x0)

)(
a
b

)
=
(

0
0

)
Ainsi : {

av1(x0) + bv2(x0) = 0
av′

1(x0) + bv′
2(x0) = 0

Soit v(x) = av1(x)+bv2(x). Alors, v(x) est une solution de l’équation
donnée par la superposition des solutions. De plus, par le système
d’équations que nous venons de trouver, nous avons v(x0) = 0 et
v′(x0) = 0. Par le théorème de l’existence et unicité d’une solution
de l’équation y′′(x)+p(x)y′(x)+q(x)y(x) = 0, cette équation admet
une seule solution satisfaisant y(x0) = 0 et y′(x0) = 0. Puisque la
solution triviale y(x) = 0 ∀x ∈ I satisfait l’équation et les conditions
initiale, alors nécessairement :

v(x) = av1(x) + bv2(x) = 0, ∀x ∈ I

Puisque a et b ne sont pas les deux nuls, soit nous avons v1(x) =
−b
a v2(x) pour tout x ∈ I, soit nous avons v2(x) = − a

b v1(x) pour
tout x ∈ I (soit les deux).
Nous avons donc bien trouvé que v1(x) et v2(x) sont linéairement
dépendantes sur I.

□

Idée de la
preuve

On démontre que Q =⇒ P et P =⇒ Q par la contraposée car P
et Q sont des propositions “négatives” : il est beaucoup plus simple
d’avoir une fonction qui est parfois égale à 0, ou deux fonctions qui
sont linéairement dépendantes.
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Théorème :
Forme des solu-
tions aux EDL2
homogènes

Soient v1, v2 : I 7→ R deux solutions linéairement indépendantes de l’équation
y′′(x) + p(x)y′(x) + q(x)y(x) = 0.
Alors, la solution générale de cette équation est de la forme :

v(x) = C1v1(x) + C2v2(x), C1, C2 ∈ R, x ∈ I

Preuve Soit ṽ(x) une solution quelconque de l’équation donnée, et soit
x0 ∈ I. Soient aussi a0 ∈ R et b0 ∈ R tels que ṽ(x0) = a0 et
ṽ′(x0) = b0.
Par hypothèse, nous avons deux solutions linéairement indépen-
dantes v1, v2 : I 7→ R. Ainsi, par la caractérisation, nous sa-
vons que W [v1, v2](x) ̸= 0 pour tout x ∈ I, ce qui implique que
W [v1, v2](x0) ̸= 0.
Or, quand le déterminant d’une matrice est non-nul (la matrice est
dite non-dégénérée), nous savons qu’une équation l’utilisant a une
solution unique. Ainsi, nous savons qu’il existe d’uniques constantes
C1, C2 ∈ R telles que :{

C1v1(x0) + C2v2(x0) = a0

C1v′
1(x0) + C2v′

2(x0) = b0

Considérons la fonction v(x) = C1v1(x) + C2v2(x). Nous pouvons
voir deux informations. La première est que v(x) est une solution de
l’équation (puisque v1(x) et v2(x) sont des solutions). La deuxième
est que v(x0) = a0 et v′(x0) = b0.
Par le théorème de l’existence et unicité d’une solution des EDL2
homogènes satisfaisant des conditions initiales données v(x0) = a0
et v′(x0) = b0, on a ṽ(x) = v(x) pour tout x ∈ I. Nous avons donc
bien montré que notre solution de départ est de la bonne forme.

□

Proposition :
Inégalité de
Cauchy-Schwarz

Pour tout −→x , −→y ∈ Rn, nous avons :∣∣〈−→x , −→y
〉∣∣ ≤

∥∥−→x
∥∥ ·
∥∥−→y

∥∥
Preuve Soit λ ∈ R. Considérons la somme

∑n
i=1(λxi + yi)2.

Nous savons que
∑n

i=1(λxi + yi)2 ≥ 0, puisque c’est une somme de
termes positifs :

0 ≤
n∑

i=1
(λxi + yi)2 =

n∑
i=1

(
λ2x2

i + 2xiyi + y2
i

)
Et donc :

0 ≤

(
n∑

i=1
x2

i

)
︸ ︷︷ ︸

a

λ2 + 2
(

n∑
i=1

xiyi

)
︸ ︷︷ ︸

b

λ +
(

n∑
i=1

y2
i

)
︸ ︷︷ ︸

c

, ∀λ ∈ R

Nous avons obtenu une équation quadratique selon λ qui est toujours
positive. Ainsi, on remarque qu’il est impossible que cette équation
ait deux racines, sinon, par le théorèmes des valeurs intermédiaires,
elle serait négative en certains points. Nous savons donc qu’elle a
un discriminant négatif :

b2 − 4ac ≤ 0 =⇒ 4
(

n∑
i=1

xiyi

)2

︸ ︷︷ ︸
=⟨−→x ,−→y ⟩2

−4
(

n∑
i=1

x2
i

)
︸ ︷︷ ︸

=∥−→x ∥2

(
n∑

i=1
y2

i

)
︸ ︷︷ ︸

=∥−→y ∥2

≤ 0
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Ce qui implique que :∥∥−→x
∥∥2 ·

∥∥−→y
∥∥2 ≥

〈−→x , −→y
〉2 =⇒

∥∥−→x
∥∥ ·
∥∥−→y

∥∥ ≥
∣∣〈−→x , −→y

〉∣∣
Puisque

∥∥−→x
∥∥ et

∥∥−→y
∥∥ sont positifs, nous pouvons enlever leur valeur

absolue. Cependant, nous ne pouvons pas enlever celle du produit
scalaire, car elle peut être négative (enfin nous pourrions, puisque
|x| ≥ x, mais nous perdrions de l’information).

□

Théorème : Lien
entre les suites
dans Rn et la
topologie

Un sous-ensemble non-vide E ⊂ Rn est fermé si et seulement si toute suite
{−→xk

}
⊂ E

d’éléments de E qui converge a pour limite un élément de E.

Preuve =⇒ Nous supposons que E ⊂ Rn est fermé.
Supposons par l’absurde qu’il existe une suite

{−→xk

}
⊂ E d’éléments

de E qui converge et qui a pour limite −→x ̸∈ E. Ainsi, on sait que
−→x ∈ CE, qui est un ensemble ouvert dans Rn (puisque E est fermé
par hypothèse). Puisque cet ensemble est ouvert nous savons, par
définition, que ∃δ > 0 tel que :

B
(−→x , δ

)
⊂ CE

Or, cela implique que :{−→xk ∀k ∈ N
}︸ ︷︷ ︸

⊂E

∩ B
(−→x , δ

)︸ ︷︷ ︸
⊂CE

= ø

En d’autres mots, aucun élément de la suite ne fait partie de cette
boule ouverte.
De l’autre côté, puisque limk→∞

−→xk = −→x , nous avons qu’il existe
un k0 ∈ N tel que pour tout k ≥ k0 :

−→xk ∈ B

(
−→x ,

δ

2

)
⊂ B

(−→x , δ
)

En d’autres mots, pour k ≥ k0, −→xk fait partie de notre boule ouverte.
Ceci entre en contradiction avec ce que nous avions vu ci-dessus.

□

Preuve ⇐= Nous allons démontrer notre proposition par la contraposée : nous
voulons montrer que si E ⊂ Rn n’est pas fermé, alors il existe une
suite

{−→xk ⊂ E
}

d’éléments de E qui converge et qui a pour un
limite un élément qui n’est pas dans E.
Puisque nous savons que E n’est pas fermé, nous savons que CE
n’est pas ouvert. Ainsi, ∃−→y ∈ CE tel que, pour tout ε > 0 :

B
(−→y , ε

)
∩ E ̸= ø

Plus précisément, on peut prendre ε = 1
k , ce qui nous donne :

∀k ∈ N+, B

(
−→y ,

1
k

)
∩ E ̸= ø

Ceci implique que, pour tout k, on sait qu’il existe un −→yk tel que
−→yk ∈ B

(−→y , 1
k

)
et −→yk ∈ E. Ceci nous donne une suite

{−→yk

}
k∈N+

⊂ E

telle que limk→∞
−→yk = −→y ∈ CE, et donc −→y ̸∈ E.
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□

Théorème : Ca-
ractérisation
des limites à
partir des suites
convergentes

Une fonction f : E 7→ R définie au voisinage de −→x0 admet pour limite ℓ ∈
R lorsque −→x → −→x0 si et seulement si pour toute suite d’éléments

{−→ak

}
de{−→x ∈ E tel que −→x ̸= −→x0

}
, qui converge vers −→x0, la suite

{
f
(−→ak

)}
converge vers ℓ.

En d’autres mots :(
lim−→x →−→x0

f
(−→x ) = ℓ

)
⇐⇒

(
lim

k→∞
f
(−→ak

)
= ℓ, ∀

{−→ak

}
⊂ E \

{−→x0
}

telle que lim
k→∞

−→ak = −→x0

)
Preuve =⇒ Nous savons par hypothèse que lim−→x →−→x0

f
(−→x ) = ℓ. Ainsi, par la

définition de la limite, on sait que, pour tout ε > 0, il existe δ > 0
tel que :

0 <
∥∥−→x − −→x0

∥∥ ≤ δ =⇒
∣∣f(−→x )− ℓ

∣∣ ≤ ε

Soit une suite arbitraire
{−→ak

}
⊂ E\

{−→x0
}

telle que limk→∞
−→ak = −→x0.

Puisque la définition des limites pour les suites marche pour tout ε̃,
nous pouvons prendre ε̃ = δ. Ainsi, par définition, pour ε̃ = δ > 0,
nous savons que ∃k0 tel que, pour tout k ≥ k0, on a :∥∥−→ak − −→x0

∥∥ ≤ δ

Or, puisque
{−→ak

}
⊂ E \

{−→x 0
}

, nous savons que −→ak −−→x0 ̸= 0. Ainsi,
pour tout k ≥ k0, 0 <

∥∥−→ak − −→x0
∥∥ ≤ δ. Cependant, cela implique

par la première implication que :∣∣f(−→ak

)
− ℓ
∣∣ ≤ ε

Ainsi, nous avons démontré que pour tout ε > 0, il existe k0 tel
que pour tout k ≥ k0 on a

∣∣f(−→ak

)
− ℓ
∣∣ ≤ ε. En d’autres mots, nous

avons montré que :
lim

k→∞
f
(−→ak

)
= ℓ

Preuve ⇐= Nous allons faire cette preuve par la contraposée. Ainsi, nous sup-
posons par hypothèse que lim−→x →−→x0

f
(−→x ) ̸= ℓ.

Par la définition de la limite, on obtient que ∃ε > 0 tel que ∀δ > 0,
∃−→xδ tel que : ∥∥−→xδ − −→x0

∥∥ ≤ δ et
∣∣f(−→xδ

)
− ℓ
∣∣ > ε

Puisque c’est vrai pour tout δ, alors c’est aussi vrai pour le cas
particulier où δ = 1

k , k ∈ N+. Ainsi, pour le ε dont nous connaissons
l’existence, pour tout k ∈ N+, il existe −→xk ∈ E tel que :∥∥−→xk − −→x0

∥∥ ≤ 1
k

et
∣∣f(−→xk

)
− ℓ
∣∣ > ε

On obtient la suite
{−→xk

}∞
k=1 qui est telle que, par la définition,

limk→∞
−→xk = −→x0. Cependant, cette suite est aussi telle que

∣∣f(−→xk

)
− ℓ
∣∣ >

ε pour tout k ∈ N+, ce qui implique que :

lim
k→∞

f
(−→xk

)
̸= ℓ

□

Théorème du
min et du max
sur un compact

Une fonction continue sur un sous-ensemble compact E ⊂ R2 atteint son maximum
et son minimum, i.e. :

∃ max−→x ∈E
f
(−→x ), ∃ min−→x ∈E

f
(−→x )
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Preuve f(E)
est borné

Nous voulons commencer par montrer que
{

f
(−→x )}−→x ∈E

est borné.
Supposons par l’absurde que f(E) n’est pas borné, c’est à dire que
pour tout k ≥ 0, il existe un −→xk ∈ E tel que

∣∣f(−→xk

)∣∣ ≥ k. Ceci nous
donne une suite

{−→xk

}
∈ E.

Puisque E est un ensemble compact, nous savons qu’il est borné, et
donc

{−→xk

}
est bornée. Ainsi, par le théorème de Bolzano-Weierstrass,

nous pouvons trouver une sous suite convergente
{−→xkp

}
, qui a pour

limite un vecteur −→x0 ∈ Rn. Puisque E est compact (et donc fermé),
nous savons que −→x0 ∈ E.
Puisque f est continue, nous savons que :

lim
p→∞

f
(−→xkp

)
= f

(−→x0
)

∈ R

Mais, par construction,
∣∣f(−→xk

)∣∣ ≥ k pour tout k ∈ N, ce qui est
notre contradiction. Nous en concluons que f est bornée sur E.

Preuve f at-
teint ses extre-
mum

Nous voulons montrer que f atteint son minimum et son maximum
sur E.
Par ce que nous venons de démontrer, nous savons que f(E) est un
sous-ensemble borné. Ainsi :

∃M = sup
{

f
(−→x ), −→x ∈ E

}
, ∃m = inf

{
f
(−→x ), −→x ∈ E

}
Par la définition du supremum et de l’infimum, nous pouvons nous
en rapprocher arbitrairement, donc cela implique qu’il existe deux
suites

{−→ak

}
,
{−→

bk

}
∈ E telles que :

lim
k→∞

f
(−→ak

)
= m, lim

k→∞
f
(−→

bk

)
= M

Or, puisque
{−→ak

}
,
{−→

bk

}
∈ E (qui est borné), ce sont des suites

bornées, et donc il existe des sous-suites convergentes. En d’autres
mots :

−→akp → −→a ∈ Rn,
−→
bkp →

−→
b ∈ Rn

De plus, puisque E est compact (et donc fermé), nous savons que
−→a ∈ E et

−→
b ∈ E. Ainsi, par la continuité de f :

m = lim
k→∞

f
(−→ak

)
= lim

p→∞
f
(−→akp

)
= f

(−→a )
M = lim

k→∞
f
(−→

bk

)
= lim

p→∞
f
(−→

bkp

)
= f

(−→
b
)

Ainsi, nous savons qu’il existe −→a ,
−→
b ∈ E tels que :

f
(−→a ) = m = min−→x ∈E

f
(−→x )

f
(−→

b
)

= M = max−→x ∈E
f
(−→x )

□

Proposition :
Hypothèses équi-
valentes pour le
théorème de la
condition suffi-
sante pour un
extremum local
quand n = 2

Dans le cas où n = 2, nous pouvons réécrire les conditions de notre théorème.
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Notre matrice Hessienne est donnée par :

Hessf

(−→a ) =
(

∂2f
∂x2

∂2f
∂y∂x

∂2f
∂x∂y

∂2f
∂y2

)
=
(

r s
s t

)
Nous avons les équivalences suivantes :

1. λ1 > 0, λ2 > 0 ⇐⇒ det Hessf

(−→a ) > 0 et r > 0
2. λ1 < 0, λ2 < 0 ⇐⇒ det Hessf

(−→a ) > 0 et r < 0
3. λ1 > 0, λ2 < 0 ou λ1 < 0, λ2 > 0 ⇐⇒ det Hessf

(−→a ) < 0

Preuve Pour commencer, nous savons que le déterminant et la trace d’une
matrice sont des invariants de conjugaisons. Ainsi, si on a :

O

(
r s
s t

)
O−1 =

(
λ1 0
0 λ2

)
⇐⇒

(
r s
s t

)
= O−1

(
λ1 0
0 λ2

)
O

Alors, on obtient :

rt − s2 = det Hessf

(−→a ) = det(O)λ1λ2 det
(
O−1) = λ1λ2

r+t = Tr Hessf

(−→a ) = Tr
(
ODO−1) = Tr

(
O−1OD

)
= Tr(D) = λ1+λ2

Preuve point 1
=⇒

Commençons par montrer la direction =⇒ . Ainsi, nous supposons
que λ1 > 0, λ2 > 0.
Alors, clairement, det Hessf

(−→a ) = λ1λ2 > 0. Aussi, nous voyons
que :

λ1λ2 = rt − s2 > 0 =⇒ rt > s2 ≥ 0 =⇒ rt > 0

donc r et t sont de même signe.
Nous pouvons aussi voir que :

Tr Hessf

(−→a ) = λ1︸︷︷︸
>0

+ λ2︸︷︷︸
>0

= r + t > 0

donc r et t doivent être les deux strictement positifs, puisqu’ils ont
le même signe.
Nous en déduisons bien que det Hessf

(−→a ) > 0 et r > 0.

Preuve point 1
⇐=

Supposons que det Hessf

(−→a ) > 0 et r > 0.
Alors, puisque det Hessf

(−→a ) = λ1λ2 > 0, nous en déduisons que
λ1 et λ2 sont de même signe. De plus, nous voyons aussi que rt >
s2 ≥ 0 =⇒ rt > 0.
Ainsi, puisque rt > 0 et r > 0, nous obtenons que t > 0. De plus,
cela implique que :

Tr Hessf

(−→a ) = λ1 + λ2 = r︸︷︷︸
>0

+ t︸︷︷︸
>0

> 0

Puisque λ1 et λ2 sont de mêmes signes, et λ1 + λ2 > 0, nous en
déduisons bien que λ1 > 0 et λ2 > 0.

Preuve point 2
=⇒

Commençons par montrer la direction =⇒ . Ainsi, nous supposons
que λ1 < 0, λ2 < 0.
Alors, clairement, det Hessf

(−→a ) = λ1λ2 > 0. Aussi, nous voyons
que :

λ1λ2 = rt − s2 > 0 =⇒ rt > s2 ≥ 0 =⇒ rt > 0
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donc r et t sont de même signe.
Nous pouvons aussi voir que :

Tr Hessf

(−→a ) = λ1︸︷︷︸
<0

+ λ2︸︷︷︸
<0

= r + t < 0

donc r et t doivent être les deux strictement négatifs, puisqu’ils ont
le même signe.
Nous en déduisons bien que det Hessf

(−→a ) > 0 et r < 0.

Preuve point 2
⇐=

Supposons que det Hessf

(−→a ) > 0 et r < 0.
Alors, puisque det Hessf

(−→a ) = λ1λ2 > 0, nous en déduisons que
λ1 et λ2 sont de même signe. De plus, nous voyons aussi que rt >
s2 ≥ 0 =⇒ rt > 0.
Ainsi, puisque rt > 0 et r < 0, nous obtenons que t < 0. De plus,
cela implique que :

Tr Hessf

(−→a ) = λ1 + λ2 = r︸︷︷︸
<0

+ t︸︷︷︸
<0

< 0

Puisque λ1 et λ2 sont de mêmes signes, et λ1 + λ2 < 0, nous en
déduisons bien que λ1 < 0 et λ2 < 0.

Preuve point 3 Nous voyons que :

det Hessf

(−→a ) < 0 ⇐⇒ λ1λ2 < 0 ⇐⇒ λ1 et λ2 sont de signes opposés

Note person-
nelle

La démonstration de ce théorème peut sembler très longue et com-
pliquée, mais elle ne l’est pas ! À partir du moment où on sait que
le déterminant est donné par ad − bc et que la trace est donnée par
la somme des éléments diagonaux, il suffit de poser nos hypothèses
et de simplement voir ce que nous pouvons en déduire, en gardant
en tête où nous voulons aller.

Théorème :
Condition né-
cessaire pour
un extremum
sous contrainte
quand n = 2

Soit l’ensemble E ⊂ R2 et soient les fonctions f, g : E 7→ R de classe C1. Supposons
que f(x, y) admette un extremum en (a, b) ∈ E sous la contrainte g(x, y) = 0, et
que ∇g(a, b) ̸= −→0 .
Alors, il existe λ ∈ R, appelé le multiplicateur de Lagrange, tel que :

∇f(a, b) = λ∇g(a, b)

Preuve Nous savons que ∇g(a, b) ̸= −→0 , donc au moins l’une des dérivées
partielles est non-nulle. Supposons que ∂g

∂y (a, b) ̸= 0 (le cas ∂g
∂x (a, b) ≠

0 est similaire).
Nous avons g(a, b) = 0 puisque (a, b) satisfait la contrainte g(x, y) =
0. Ainsi, par le TFI, il existe une fonction y = h(x) de classe C1 au
voisinage de x = a telle que :

h′(x) = −
∂g
∂x (x, h(x))
∂g
∂y (x, h(x))

, avec g(x, h(x)) = 0

Aussi, pour (x, y) satisfaisant notre contrainte g(x, y) = 0, nous
pouvons remplacer y = h(x) dans l’expression f(x, y) pour obtenir
une fonction d’une seule variable :

f(x, y) si g(x, y) = 0= f(x, h(x))
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Nous savons que les extrema de cette fonction, respectent :

f ′(x, h(x)) = ∂f

∂x
(x, h(x)) + ∂f

∂y
(x, h(x))h′(x) = 0

Par hypothèse, (a, b) est un point d’extremum, et il respecte la
contrainte g(a, b) = 0, donc les hypothèses de l’équation que nous
venons d’obtenir sont bien respectées, ce qui nous permet de trouver
que :

∂f

∂x
(a, b) = −∂f

∂y
(a, b)h′(a)

Pour résumer, nous avons trouvé jusque là que :

∂f

∂x
(a, b) = −∂f

∂y
(a, b)h′(a), h′(a) TFI= −

∂g
∂x (a, b)
∂g
∂y (a, b)

Ceci implique que :

∂f

∂x
(a, b)︸ ︷︷ ︸
v1

= ∂f

∂y
(a, b)︸ ︷︷ ︸
v2

u1︷ ︸︸ ︷
∂g

∂x
(a, b)

∂g

∂y
(a, b)︸ ︷︷ ︸

u2 ̸=0

Séparons notre preuve en différents cas. Si u1 = 0, alors v1 = 0
et donc ∇f(a, b) = (0, v2) et ∇g(a, b) = (0, u2). Ceci implique bien
qu’il existe un λ ∈ R tel que v2 = λ u2︸︷︷︸

̸=0

et donc :

∇f(a, b) = λ∇g(a, b)

Sinon (si u1 ̸= 0), alors, en définissant v1
u1

= v2
u2

:= λ ∈ R, nous
trouvons :

(v1, v2) = λ(u1, u2) ⇐⇒ ∇f(a, b) = λ∇g(a, b)

□

Intuition de la
preuve

Nous trouvons f(x, y) sous la forme d’une fonction d’une seule
variable et la dérivons, puis nous utilisons le théorème des fonctions
implicites, ce qui nous permet de trouver un lien entre les dérivées
de f et celles de g.
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Lundi 21 février 2022 — Cours 1 : Un cours en deux documents

Chapitre 3

Méthodes de démonstration et
raisonnement mathématique

3.1 Introduction

Définition de
proposition

Une proposition est un énoncé qui est vrai ou faux.

Exemple Considérons les phrases suivantes :
1. Il existe une infinité de nombres premiers.
2. cos(0) = 0
3. Ouvrez la porte !

On a alors :
1. C’est une proposition vraie, démontrée par Euclid (et j’aime

beaucoup sa preuve).
2. C’est une proposition fausse (on sait tous que cos(x) = 1, ∀x ∈

R).
3. Ce n’est pas une proposition.

Définition de
démonstration

Une démonstration est une suite d’implications logiques qui sert à dériver la
proposition en question à partir des axiomes (propositions admises comme vraies)
et des propositions préalablement obtenues.

Exemple 1 Soient a, b ∈ R, a, b ≥ 0. Alors :

a + b

2 ≥
√

ab

Notez que ceci est l’inégalité AM-GM, et elle est très puissante.

Démonstration Partons de ce que nous voulons démonter :
a + b

2 ≥
√

ab =⇒ a + b ≥ 2
√

ab =⇒ (a + b)2 ≥ 4ab

Ce qui implique que :

a2 + 2ab + b2 ≥ 4ab =⇒ a2 − 2ab + b2 ≥ 0 =⇒ (a − b)2 ≥ 0

Or, nous savons que pour tout x ∈ R, nous avons x2 ≥ 0, donc
notre proposition est vraie.
Cependant, ceci n’est pas une vraie preuve, nous avons utilisé un
argument frauduleux ce qui la rend fallacieuse. En effet, si P et Q
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sont deux propositions sont telles que P =⇒ Q, et si nous savons
que Q est vraie, alors cela n’implique pas nécessairement que P soit
vraie. Nous allons voir un exemple d’utilisation de cet argument à
tort après la vraie démonstration de ce théorème.

Vraie démons-
tration

Tout ce qu’on a fait n’est cependant pas à jeter, nous pouvons, dans
notre cas, faire le chemin dans l’autre sens.
Soient a, b ∈ R où a, b ≥ 0. Nous avons que (a − b)2 ≥ 0 puisque
x2 ≥ 0 pour tout x ∈ R. Alors :

(a − b)2 ≥ 0 =⇒ a2 − 2ab + b2 ≥ 0 =⇒ a2 + 2ab + b2 ≥ 4ab

Ce qui implique que :

(a + b)2 ≥ 4ab
a, b ≥ 0=⇒ (a + b) ≥ 2

√
ab =⇒ a + b

2 ≥
√

ab

□

Note person-
nelle

Je préfère personnellement faire cette preuve en commençant par(√
a −

√
b
)2

≥ 0, mais l’argument est le même.

Exemple Disons que nous voulons montrer que −5 = 0. Ceci est clairement faux, mais utilisons
le même argument fallacieux :

−5 = 0 ·0=⇒ 0 = 0

Note person-
nelle

Le problème est que nous voulons non pas montrer que −5 = 0 =⇒
0 = 0, mais 0 = 0 =⇒ −5 = 0. Cependant, même si partir de là où
on veut arriver peut nous donner un chemin, il faut refaire ce chemin
dans l’autre sens pour avoir une preuve formelle. Parfois, nous ne
pouvons pas faire ce chemin dans l’autre sens, comme dans ce cas
puisqu’il nous faudrait diviser par 0. Il faut aussi faire attention
quand on met les deux côté de notre équation au carré puisqu’on la
fonction f(x) = x2 n’est pas bijective, donc :

a = b =⇒ a2 = b2

alors que l’inverse ne tient pas. Si nous voulons que les deux sens
fonctionnent, alors nous avons besoin de valeurs absolues :

|a| = |b| ⇐⇒ a2 = b2

3.2 Méthodes de démonstration

Méthode 1 :
Démonstration
directe

Nous partons de nos conditions données P , nous utilisons des implications logiques,
des axiomes et des propositions connues, puis nous arrivons à notre proposition
désirée Q.

Méthode 2 : Rai-
sonnement par
contraposée

On utilise que P =⇒ Q est équivalent à ¬Q =⇒ ¬P (où ¬ veut dire “non”).

Exemple Disons que nous voulons montrer que si r ∈ R est irrationnel (P ), alors
√

r est aussi
irrationnel (Q).
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Démonstration Nous voulons montrer ça par la contraposée. La contraposée de notre
proposition est que si

√
r est rationnel (¬Q), alors r est rationnel

(¬P ).
Ainsi, puisque

√
r est rationnel, on sait que :

√
r = p

q
, où p, q ∈ N, q ̸= 0

On sait que
√

r > 0, donc on a bien que p, q ≥ 0.
Continuous notre démonstration :

√
r = p

q
=⇒ r = p2

q2

qui est rationnel puisque p2, q2 ∈ N, q2 ̸= 0.
Par contraposée, cela implique donc que, si r ∈ R+ est irrationnel,
alors

√
r l’est aussi.

□

Preuve fraudu-
leuse

Nous cherchons l’erreur dans l’argument suivant :

3 > 2 ⇐⇒ 3 ln
(

1
2

)
> 2 ln

(
1
2

)
⇐⇒ ln

((
1
2

)2
)

> ln
((

1
2

)3
)

⇐⇒ 1
8 >

1
4

L’erreur est courante lorsqu’on manipule des inégalités : il faut changer le signe de
l’implication quand on multiplie par un nombre négatif. Or, on sait que :

ln(x) < 0, ∀x ∈ ]0, 1[ =⇒ ln
(

1
2

)
< 0

Lundi 28 février 2022 — Cours 3 : Dsiijonctions de cas

Méthode 3 : Rai-
sonnement par
disjonction des
cas

Soient P, Q deux propositions. Pour montrer que P =⇒ Q, on sépare l’hypothèse
de P de départ en différents cas possibles et on montre l’implication est vraie dans
chacun des cas. Il est très important de considérer tous les cas possibles.

Exemple 1 Soit n ∈ Z. Alors, n2 ≥ n.

Preuve Nous savons que :

n2 ≥ n ⇐⇒ n(n − 1) ≥ 0

Nous pouvons donc démontrer la deuxième propriété pour démontrer
la première.
Premièrement, considérons n ≥ 1. Alors.

n︸︷︷︸
>0

(n − 1)︸ ︷︷ ︸
≥0

≥ 0

Deuxièmement, prenons n ≤ 0 :

n︸︷︷︸
≤0

(n − 1)︸ ︷︷ ︸
<0

≥ 0

Or, on sait bien que :

Z = {n ∈ Z : n ≥ 1} ∪ {n ∈ Z : n ≤ 0}
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Tout ceci nous permet de conclure que notre inégalité est vraie pour
tout n ∈ Z.

□

Exemple 2 Soit n, m ∈ Z. Alors :
t = nm(n − m)(n + m)

3 ∈ Z

Preuve 1. On remarque que pour n = 3k, k ∈ Z, on voit clairement que
t ∈ Z.

2. De manière similaire, si m = 3k, k ∈ Z, alors t ∈ Z.
3. Nous considérons que ni m ni n n’est divisible par 3. Nous

pouvons maintenant considérer deux sous cas :
(a) Supposons que m et n ont les même restes de division par

3. Alors, n − m = 3k, donc t ∈ Z.
(b) Supposons que les restes de division par 3 de n m sont

différents. Alors, n + m = 3k, k ∈ Z donc t ∈ Z.
Nous avons démontré tous nos cas, ce qui conclut notre preuve.

□

Méthode 4 : Dé-
monstrations
ssi

Nous cherchons à démontrer les propositions de la forme :

P ⇐⇒ Q

La première méthode consiste à démontrer que :

P =⇒ Q et Q =⇒ P

Plus rarement, on peut aussi faire une suite d’équivalences entre P et Q :

P ⇐⇒ R1 ⇐⇒ . . . ⇐⇒ Rn ⇐⇒ Q

Pour cette deuxième méthode, il faut faire attention au fait que chaque implication
est une équivalence.

Exemple 1 Soient a, b ∈ N. Alors :

ab + 1 = c2, c ∈ N∗ ⇐⇒ a = b ± 2

Preuve Regardons la suite d’équivalence suivante :

ab + 1 = c2 ⇐⇒ ab = c2 − 1 ⇐⇒ ab = (c − 1)(c + 1)

Ce qui est équivalent à soit a = c − 1 et b = c + 1, soit l’inverse.
Dans le premier cas, a = b − 2, dans le deuxième a = b + 2.

En fait, cette dernière phrase est fausse, on pourrait avoir ab = 4 · 9
avec a = 2 et b = 18. En fait, l’affirmation que nous voulions montrer
est uniquement vraie pour ⇐= . On peut par exemple trouver le
contre-exemple a = 3 et b = 8.

Preuve cor-
recte

Nous voulons montrer que :

a = b ± 2 =⇒ ab + 1 = c2, c ∈ N
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Partons du début de notre implication :

a = b ± 2 ∈ N

=⇒ ab + 1 = b(b ± 2) + 1 = b2 ± 2b + 1 = (b ± 1)2 = c2

=⇒ c = b ± 1 ∈ N

□

Exemple 2 Soient z = ρeiφ ∈ C∗. Nous prenons les propositions suivantes :

P :
{

z2 ∈ R∗}, Q :
{

φ = πk

2 , k ∈ Z
}

Nous nous demandons quelle proposition implique laquelle. Nous allons montrer que
c’est un si et seulement si.

Preuve ⇐= Soit z = ρeiφ où φ = kπ
2 . Ainsi :

z2 = ρ2e2i kπ
2 = ρ2eiπk = ρ2(cos(πk) + i sin(πk)) = ρ2(±1) ∈ R∗

Preuve =⇒ Soit z = ρeiφ tel que z2 ∈ R∗. Alors :

z2 = ρ2e2iφ = ρ2

cos(2φ) + i sin(2φ)︸ ︷︷ ︸
=0

 ∈ R∗

La partie imaginaire, le sinus, est nulle par hypothèse. Ainsi :

sin(2φ) = 0 =⇒ 2φ = kπ =⇒ φ = kπ

2

où k ∈ Z.

□

Mercredi 9 mars 2022 — Cours 6 : Le meilleur mathématicien

Méthode 5 : Dé-
monstration par
l’absurde

Pour démontrer une proposition P , on essaie de démontrer que ¬P implique une
proposition fausse bien connue F . En d’autres mots, on obtient ¬P =⇒ F qui est
contradictoire aux axiomes, ou aux propositions vraies préalablement établies.

Comparaison
avec la contra-
posée

Par la contraposée, on démontre que ¬Q =⇒ ¬P , qui est équivalent
à P =⇒ Q.
Par l’absurde, on démontre qu’une proposition P est fausse, en
montrant que ¬P =⇒ F est évidemment fausse. Notez que, pour
une démonstration par l’absurde, nous n’avons pas besoin d’avoir
un théorème sous la forme d’une implication P =⇒ Q.

Exemple 1 Il existe une infinité de nombres premiers.
La démonstration qui suit a été imaginée par Euclid (le best).

Preuve Supposons par l’absurde qu’il existe seulement un nombre fini n ∈ N
de nombres premiers : p1, . . . , pn.
Considérons le nombre K = p1p2 · · · pn+1. On remarque que K > pi

pour tout pi ∈ {p1, . . . , pn}, ainsi K ̸= pi pour tout i = 1, . . . , n.
Nous pouvons déduire de ce fait que K n’est pas un nombre premier
car il est plus grand que 1 par construction, et ne fait pas partie de
la liste. Ainsi, par définition des nombres premiers, cela implique
que K est divisible par un nombre premier, disons pi.
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Clairement, p1p2 · · · pn est aussi divisible par pi. Ainsi, K−p1p2 · · · pn

est aussi divisible par pi. Cependant, K − p1p2 · · · pn = 1, mais 1
n’est divisible par aucun nombre premier, ce qui est notre contra-
diction.

□

Exemple 2 √
3 est irrationnel.

La démonstration qui suit a aussi été imaginée par Euclid (le best, ça change pas).

Preuve Supposons par l’absurde que
√

3 = p
q ∈ Q où p, q ∈ N, q ̸= 0, tel que

q est le plus petit possible (on utilise l’axiome de bon ordre : tout
sous-ensemble non-vide de N possède un plus petit élément, ici les
dénominateur des fractions forment un sous-ensemble, donc nous
pouvons appliquer ce principe ici).
Alors, on obtient que :

3 = p2

q2

=⇒ 3q2 = p2

=⇒ p2 est divisible par 3
†=⇒ p est divisible par 3

L’implication † est démontrée dans le sous-paragraphe suivant.
Puisque p est divisible par 3, nous pouvons écrire p = 3m où m ∈ N,
et donc :

3q2 = (3m)2 = 9m2 =⇒ q2 = 3m2

Ainsi, par le même argument, q est divisible par 3. Nous trouvons
donc que q = 3n, pour n ∈ N∗. Cela nous donne que :

p

q
= 3m

3n
= m

n
, où n < q

Cependant, c’est une contradiction au principe de bon ordre.

□

Implication † Soit p = 3k + r, où r ∈ {1, 2}. Alors, nous avons :

p2 = (3k + r)2 = 9k2 + 6kr + r2, où r2 ∈ {1, 4}

Ainsi, on obtient que p n’est pas divisible par 3 implique que p2

n’est pas divisible par 3. Par la contraposée, cela veut dire que p2

est divisible par 3 implique que p est divisible par 3.

Lundi 14 mars 2022 — Cours 7 : Les tiroirs et les chaussettes

Méthode 6 :
Principe des
tiroirs et des
chaussettes de
Dirichlet

Si (n + 1) objets sont placé dans n tiroirs, alors au moins un tiroir contient 2 objets
ou plus.
Plus généralement, si n objets sont placés dans k tiroirs, alors au moins un tiroir
contient

⌈
n
k

⌉
objets, ou plus.

Définition :
Fonction pla-
fond

La fonction plafond est simplement un arrondi vers le haut, mais
nous pouvons la définir formellement comme :⌈n

k

⌉
déf= min

{
m ∈ N tel que m ≥ n

k

}
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Exemple 1 Soient a1, a2, a3, a4 des nombres entiers. Alors, il existe 2 d’entre eux tels que leur
différence est divisible par 3.

Preuve Soient r1, r2, r3, r4 les restes de division de a1, a2, a3, a4 par 3. Nous
savons que r1, r2, r3, r4 ∈ {0, 1, 2}. Alors, nous savons qu’il existe
i, j avec i ̸= j pour lequel ri = rj , par le principe des tiroirs et des
chaussettes de Dirichlet. Or, puisque ai et aj ont le même reste,
nous savons que ai − aj est divisible par 3. En effet, ai = 3m + r et
aj = 3n + r où m, n ∈ Z et r ∈ {0, 1, 2}, donc :

ai − aj = 3m + r − (3n + r) = 3(m − n)

□

Exemple 2 Dans un groupe de n personnes, où n ≥ 2, il existe au moins 2 personnes avec le
même nombre de connaissances dans le groupe.

Preuve Utilisions la disjonction de cas.
1. Supposons qu’il y a quelqu’un qui ne connait personne dans le

groupe.
Alors, clairement, il n’existe personne qui connait tout le monde.
On obtient donc que le nombre K de connaissances pour chacun
est entre 0 et (n − 2), ce qui représente (n − 1) possibilités. Par
le principe des tiroirs de Dirichlet, puisqu’il y a n personnes et
(n − 1) possibilités, il existe au moins 2 personnes avec le même
nombre de connaissances.

2. Supposons maintenant que tout le monde connait au moins
quelqu’un dans le groupe.
Puisque personne ne connait personne, nous savons que 1 ≤ K ≤
n − 1. Ainsi, nous avons à nouveau (n − 1) possibilités pour n
personnes, et donc, par le principe des tiroirs, il existe au moins
2 personnes avec le même nombre de connaissances.

□

Lundi 28 mars 2022 — Cours 11 : Récurrence

Méthode 7 :
Récurrence

Soit P (n) une proposition qui dépend de n ∈ N, où n ≥ n0. Supposons que :
1. P (n0) est vraie.
2. P (n) implique que P (n + 1) pour tous n ≥ n0 naturels.

Alors P (n) est vraie pour tous n ≥ n0.

Remarque Cette méthode de démonstration découle directement de l’axiome
suivant (le principe fondamental de la récurrence) :
Soit S ⊂ N. Si ce sous-ensemble est tel que 0 ∈ N et pour tout n ∈ S
on a (n + 1) ∈ S, alors, S = N.

Exemple L’inégalité suivante tient pour tout n ≥ 1 naturels :

1 + 1
22 + . . . + 1

n2 ≤ 2 − 1
n

Preuve Puisque nous voulons montrer ceci pour tout n, alors c’est intéressant
de le faire par récurrence.
À l’examen, il est important de dire quelle est la proposition que
nous essayons de démontrer, ainsi, nous voulons montrer P (n), où :

P (n) : 1 + 1
22 + . . . + 1

n2 ≤ 2 − 1
n
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1. Commençons par l’initialisation. P (1) est bien vraie car :

1 ≤ 2 − 1
1 = 1

2. Faisons maintenant l’hérédité. Nous supposons que P (n) est
vraie (hypothèse de récurrence, HR), et nous voulons en déduire
P (n + 1). Commençons par le côté gauche de P (n + 1) :

1 + 1
22 + . . . + 1

n2 + 1
(n + 1)2

HR
≤ 2 − 1

n
+ 1

(n + 1)2

= 2 − n2 + n + 1
n(n + 1)2

= 2 − n(n + 1)
n(n + 1)2 − 1

n(n + 1)2︸ ︷︷ ︸
>0

≤ 2 − 1
n + 1

Nous avons donc aussi montré P (n + 1).
3. Pour finir, il ne faut pas oublier la conclusion, qui est aussi

importante. Puisque P (1) est vraie et P (n) =⇒ P (n + 1), nous
avons montré que P (n) est vraie pour tout n ≥ 1, où n ∈ N.

□

Récurrence
généralisée

Soit P (n) une proposition qui dépend de n ∈ N, où n ≥ n0. Supposons qu’il existe
un k ∈ N tel que :

1. P (n0), . . . , P (n0 + k) sont vraies.
2. {P (n), . . . , P (n + k)} impliquent P (n + k + 1) pour tout n ≥ n0.

Alors, P (n) est vraie pour tout n ≥ n0, où n ∈ N.

Définition :
Suite de Fibo-
nacci

La suite de Fibonacci (fn) est définie telle que :

f1 = 1, f2 = 1, fn+2=fn+fn+1

Les premiers termes de cette suite sont :

1, 1, 2, 3, 5, 8, 13, 21, . . .

Exemple Pour tout n ≥ 3, nous avons :

3fn = fn+2 + fn−2

Preuve Notre proposition P (n) est définie comme :

P (n) : 3fn = fn+2 + fn−2, ∀n ≥ 3

1. Faisons la base. P (3) fonctionne car :

3 · 2 = 5 + 1

De plus, P (4) tient aussi :

3 · 3 = 8 + 1

2. Passons maintenant à l’hérédité. Puisque nous utilisons le principe
de la récurrence généralisée, nous supposons que P (n) et P (n + 1)
sont vraies (HR), pour un n ≥ 3. Nous voulons démontrer que
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P (n + 2) est vraie :

3fn+2
déf= 3fn + 3fn+1
HR= (fn+2 + fn−2) + (fn+3 + fn−1)
= fn+2 + fn+3︸ ︷︷ ︸

=fn+4

+ fn−2 + fn−1︸ ︷︷ ︸
=fn

= fn+4 + fn

Ce qui montre bien que P (n + 2) est vraie.
3. Pour conclure, nous avons montrer que P (3) et P (4) sont vraies,

puis que P (n) ∧ P (n + 1) =⇒ P (n + 2). Ainsi, par récurrence
généralisée, nous avons montré que P (n) est vraie pour tout
n ≥ 3, où n ∈ N.

□

Mercredi 6 avril 2022 — Cours 14 : Récurrence forte

Récurrence forte Soit n0 ∈ N et P (n) une proposition qui dépend de n ∈ N, où n ≥ n0.
Supposons que :

1. P (n0) est vraie.
2. {P (n0), P (n0 + 1), . . . , P (n)} impliquent P (n + 1), pour tout n ≥ n0, n ∈ N.

Alors, P (n) est vraie pour tout n ≥ n0, où n ∈ N.

Exemple Pour tout n ≥ 2, où n ∈ N, n est un produit de facteurs premiers.

Preuve Nous faisons notre démonstration par récurrence forte.
1. Nous voulons montrer P (2). Nous savons que 2 est premier, donc

nous pouvons écrire :
2 = 2

Ce qui montre qu’elle est vraie.
2. Nous considérons que {P (2), . . . , P (n)} sont vraies, et nous vou-

lons montrer que P (n + 1) est vraie.
Considérons (n + 1) ∈ N. S’il est premier, alors, par le même
argument que pour la base, P (n + 1) est vraie.
Sinon, nous savons que (n + 1) = m · k où m, k ∈ N sont tels que
2 ≤ m, k < n+1. Par notre hypothèse de récurrence, nous savons
que P (m) et P (k) sont vraies, donc m et k sont des produits de
facteurs premiers. Ceci implique que (n + 1) = m · k est aussi un
produit de facteurs premiers. Ainsi, P (n + 1) est vraie.

3. Puisque la base et l’hérédité tiennent, nous avons démontré par
récurrence forte P (n) pour tout n ≥ 2, où n ∈ N.

□

Résumé : Récur-
rence

Nos trois méthodes nous permettent de démontrer que P (n) est vraie pour tout
n ≥ n0.

Récurrence
simple

1. P (n0) est vraie.
2. P (n) =⇒ P (n + 1) pour tout n ≥ n0.

Récurrence
généralisée

Soit k ≥ 1.
1. P (n0), . . . , P (n0 + k) sont vraies.
2. {P (n), . . . , P (n + k)} =⇒ P (n + k + 1) pour tout n ≥ n0.
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Récurrence
forte

1. P (n0) est vraie.
2. {P (n0), . . . , P (n)} =⇒ P (n + 1) pour tout n ≥ n0.

Lundi 25 avril 2022 — Cours 17 : Récurrence sur deux variables

Récurrence sur
deux variables

Soit P (n, m) une proposition, où n, m ≥ 0.
Nous pouvons utiliser différentes méthodes pour la démontrer par récurrence sur
deux variables.

Méthode du
carré

1. P (0, 0) est vraie.
2. ∀n ≥ 0, P (n, 0) =⇒ P (n + 1, 0)
3. ∀m, n, P (n, m) =⇒ P (n, m + 1)
Notez que, à la place du deuxième point, il est parfois plus simple
de démontrer que, pour tout m, n ≥ 0, P (n, m) =⇒ P (n + 1, m).

Méthode de la
diagonale

1. P (0, 0) est vraie
2. ∀n ≥ 0, P (n, 0) =⇒ P (n + 1, 0)
3. ∀m, n, P (n + 1, m) =⇒ P (n, m + 1)

Les deux méthode nous permettent de conclure que P (n, m) est vraie ∀n, m ∈ N.

Exemple :
Nombres de
Fibonacci

Soit la proposition P (n, m) suivante :

fnfm+1 − fmfn+1 = (−1)m
fn−m,

Nous allons montrer P (n, m) pour tous n, m où 0 ≤ m ≤ n.

Preuve Nous allons suivre le schéma suivant, avec la base en verte, et
l’hérédité en rouge et en bleue :
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1. Base :
P (0, 0) : f0f1 − f0f1 = 0 = (−1)0

f0

P (1, 0) : f1f1 − f0f2 = 1 − 0 = 1 = (−1)0
f1

Puisque n ≥ m, P (0, 1) n’existe pas. Cependant, nous aurons
aussi besoin de montrer P (1, 1) :

P (1, 1) : f1f2 − f1f2 = 0 = (−1)1
f0

2. Hérédité : Nous remarquons que P (n, 0) est vraie pour tout n ≥ 0
(sans récurrence) ;

fnf1 − f0fn+1 = fn − 0 = fn = (−1)0
fn

Nous pouvons aussi démontrer que P (n, 1) est vraie pour tout
n ≥ 1 (sans récurrence)

fnf2 − f1fn+1 = fn − fn+1 = fn − (fn + fn−1) = (−1)1
fn−1

Maintenant, nous supposons que P (n, m) et P (n, m + 1) sont
vraies, et nous voulons démontrer que cela implique que P (n, m + 2)
est aussi vraie ∀n ≥ m + 2 :

fnfm+3 − fm+2fn+1

= fn(fm+1 + fm+2) − (fm + fm+1)fn+1

= (fnfm+1 − fmfn+1)︸ ︷︷ ︸
(−1)mfn−m

+ (fnfm+2 − fm+1fn+1)︸ ︷︷ ︸
(−1)m+1fn−m−1

= (−1)m(fn−m − fn−m−1)
= (−1)m

fn−m−2

= (−1)m+2
fn−m−2

comme attendu.
3. Nous avons démontré que P (n, 0) ∀n ≥ 0, P (n, 1) ∀n ≥ 1, et

{P (n, m), P (n, m + 1)} =⇒ P (n, m + 2).
Ainsi, nous avons démontré par récurrence sur deux variables
que la proposition P (n, m) est vraie pour tout n, m tels que
0 ≤ m ≤ n.

31



Analyse II — Démonstrations CHAPITRE 3. MÉTHODES DE DÉMONSTRATION

Mercredi 11 mai 2022 — Cours 21 : Résumé

3.3 Résumé
Résumé Démonstration

directe
Nous partons des conditions données ou de faits connus, Q, et nous
faisons des implications logiques pour obtenir notre proposition
désirée, P :

Q =⇒ . . . =⇒ P

Par contrapo-
sée

Pour montrer P =⇒ Q, nous montrons que ¬Q =⇒ ¬P .

Disjonctions
de cas

Nous séparons P en plusieurs sous-cas, puis démontrons chaque cas
séparément.

”Si et seule-
ment si”

Pour démontrer P ⇐⇒ Q, nous pouvons soit démontrer que
P =⇒ Q et Q =⇒ P , soit faire une suite d’équivalence entre P
et Q :

P ⇐⇒ . . . ⇐⇒ Q

Par absurde Pour démontrer P , nous démontrons que ¬P =⇒ Q, où Q est une
proposition connue d’être fausse.

Par le principe
des tiroirs

Si nous avons n objets distribués dans k tirons, alors au moins un
tiroir contient

⌈
n
k

⌉
objets.

Par récurrence
simple

Pour démontrer P (n) pour tout n ≥ n0, nous démontrons que P (n0)
est vraie, et que P (n) =⇒ P (n + 1) pour tout n ≥ n0.

Par récurrence
généralisée

Pour démontrer P (n) pour tout n ≥ n0, nous démontrons P (n0), . . . , P (n0 + k)
et {P (n), . . . , P (n + k)} =⇒ P (n + k + 1) pour tout n ≥ n0, pour
un k ≥ 1 fixé.

Par récurrence
forte

Pour démontrer P (n) pour tout n ≥ n0, nous démontrons P (n0),
et {P (n0), . . . , P (n)} =⇒ P (n + 1) pour tout n ≥ n0.

Par récur-
rence sur deux
variables, mé-
thode du carré

Pour démontrer P (n, m) pour tout m, n ≥ 0, nous démontrons
P (0, 0), P (m, 0) =⇒ P (m + 1, 0) pour tout m et P (m, n) =⇒
P (m, n + 1) pour tout m, n.

Par récur-
rence sur deux
variables, mé-
thode de la
diagonale

Pour démontrer P (n, m) pour tout m, n ≥ 0, nous démontrons
P (m, 0) =⇒ P (m + 1, 0) pour tout m et P (m + 1, n) =⇒
P (m, n + 1) pour tout m, n.

Exemple Il est parfois dur de trouver la méthode de démonstration à utiliser. Prenons les
propositions suivantes en tant qu’exemples :
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1. Dans une classe de 210 étudiants, il existe au moins 9 personnes avec la même
initiale de prénoms.

2. Il n’existe pas de nombres entiers a, b ∈ Z tels que 63a = 81 − 21b.
3. Pour tout n ≥ 2 naturel, nous avons :

n∏
k=2

(
1 − 1

k2

)
= n + 1

2n

4. Si f : E 7→ R, où E ⊂ Rn, est dérivable en −→x = −→a ∈ E, alors elle est
continue en −→x = −→a .

5. Pour tout n ≥ 1, nous avons :
n∑

k=1

1
k(k + 1) = n

n + 1

6. Pour tout couple a, b ∈ Z, le nombre (7a + 4b)(a − 3b)(2a + b) est pair.

La meilleure méthode pour les démontrer est probablement :
1. Par le principe des tiroirs et des chaussettes.
2. Par l’absurde.
3. Par récurrence simple.
4. Par démonstration directe.
5. Par démonstration directe (en voyant que c’est une série télescopique) ou par

récurrence.
6. Par disjonctions de cas : si a est pair, si b est pair, et si a et b sont impairs.

Faire ces démonstrations est un bon exercice.
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