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Jai fait ce document pour mon usage, mais je me suis dit que des notes dactylographiées pouvaient
intéresser d’autres personnes. Ainsi, je ’ai partagé (& vous, si vous lisez ces lignes!); puisque cela ne
me cofitait rien. Je vous demande simplement de garder en téte qu’il y a des erreurs, c’est impossible
de ne pas en faire. Si vous en trouvez, n’hésitez pas & me les partager (les erreurs de grammaires et de
vocabulaires sont naturellement aussi bienvenues). Vous pouvez me contacter a ’adresse e-mail suivante :

joachim.favre@epfl.ch

Si vous n’avez pas obtenu ce document par le biais de mon repo GitHub, vous serez peut-étre intéressé
par le fait que j’en ai un sur lequel je mets mes notes dactylographiées. Voici le lien (allez regarder dans la
section “Releases” pour trouver les documents compilés) :

https://github.com/JoachimFavre/EPFLNotesIN

Notez que le contenu ne m’appartient pas. J’ai fait quelques modifications de structure, j’ai reformulé
certains bouts, et j’ai ajouté quelques notes personnelles ; mais les formulations et les explications viennent
principalement de la personne qui nous a donné ce cours, et du livre dont elle s’est inspirée.

Je pense qu’il est intéressant de préciser que, pour avoir ces notes dactylographiées, j’ai pris mes notes
en W TEXpendant le cours, puis j’ai fait quelques corrections. Je ne pense pas que mettre au propre des
notes écrites a la main est faisable niveau quantité de travail. Pour prendre des notes en IXTEX, je me suis
inspiré du lien suivant, écrit par Gilles Castel. Si vous voulez plus de détails, n’hésitez pas a me contacter
a mon adresse e-mail, mentionnée ci-dessus.

https://castel.dev/post/lecture-notes-1/

Je tiens aussi a préciser que les mots “trivial” et “simple” n’ont, dans ce cours, pas la définition que vous
trouvez dans un dictionnaire. Nous sommes a 'EPFL, rien de ce que nous faisons n’est trivial. Quelque
chose de trivial, c’est quelque chose que quelqu’un pris de maniere aléatoire dans la rue serait capable de
faire. Dans notre contexte, comprenez plutot ces mots comme “plus simple que le reste”. Aussi, ce n’est
pas grave si vous prenez du temps a comprendre quelque chose qui est dit trivial (surtout que j’adore
utiliser ce mot partout hihi).

Puisque vous lisez ces lignes, je vais me permettre de vous donner un petit conseil. Le sommeil est un
outil bien plus puissant que ce que vous pouvez imaginer, donc ne négligez jamais une bonne nuit de
sommeil au profit de vos révisions (particulierement la veille de ’examen). Je vais aussi me permettre de
paraphraser mon enseignante de philosophie du gymnase, Ms. Marques, j’espere que vous vous amuserez
en faisant vos examens !
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Chapitre 2

Démonstrations a connaitre

Théoréme : Exis- Soit f : I — R une fonction continue telle que f(y) # 0 pour tout y € I, et soit

tence et unicité
d’une solution
des EDVS

g : J — R une fonction continue.
Existence : Alors, pour tout couple (xg,bo) ol zg € J et by € I, ’équation

fw)y' = g(x)

admet une solution y : J' C J + I vérifiant la condition initiale.
Unicité : Siy; : J1 — I et yo : Jo — I sont deux solutions telles que y (o) =
ya(xo) = bo, alors :

y1(z) =yo(x), VeeJinNd

Preuve Nous allons seulement montrer 'existence de la solution.
Soit la fonction suivante :

Fy) = byf(t)dt

On sait que F(y) est dérivable par le théoréme fondamental du
calcul intégral. De plus, on sait que F'(y) = f(y) # 0 sur I, donc
f(y) ne change pas pas de signe et donc F(y) est monotone. Puisque
F(y) est continue et monotone, on sait qu’elle est inversible sur I.

Soit aussi la fonction suivante :
z
G(x) = / g(t)dt
Zo
Par le théoreme fondamental du calcul intégral, on sait aussi que
G(x0) = 0 et que G est dérivable sur J.
Définissons aussi la fonction suivante dans un voisinage de zp (on
sait que F est inversible sur I, et F~1(G(zg)) =bo € I) :
-1
y(z) = F~(G(x))
Nous allons démontrer que y(z) est une solution de I’équation
f(W)y' () = g(z) dans un voisinage de zy € J, et qu’elle satisfait
y(xo) = bo.
En manipulant notre définition, on obtient que, dans un voisinage
de xg € J :

Fly(e) = Ga) 5 Fy)y'@) = @) = f@)y/(@) = go)

De plus, nous savons par la définition de G et F que G(zg) =0 et
F(bg) =0, donc :

y(zo) = F~H(G(x0)) = F71(0) = bo

11
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Proposition
pour les EDL1

Proposition
pour le Wrons-
kien

12

Idée de la Nous partons de notre équation :

preuve dy
g(y)% = f(x)

Et, notre théoréme nous dit que c’est plus ou moins équivalent & :

/ Fy)dy = / g(2)dz — F(y) = G(z)

Soient p, f : I — R des fonctions continues. Supposons que vg : I — R est une
solution particuliere de I’équation suivante :

y'(z) + p(x)y(z) = f(z)
Alors, la solution générale de cette équation est :
v(z) = vo(x) + Ce P@ VO eR
ou P(z) est une primitive de p(z) sur I.

Preuve Nous allons montrer que toute solution de cette équation est de la
forme vg(z) + Ce P,
Soit vy (x) une solution de y'(x) + p(z)y(z) = f(x). On a aussi que
vo(z) est une solution de la méme équation.
Alors, d’apres le principe de superposition de solutions, la fonction
v1(x) — vo(x) est une solution de I’équation :

Y (@) + p(z)y(z) = f(x) - f(z) =0
Ainsi, v1(z) — vo(x) est une solution de 1’équation homogene :
y'(x) + p(x)y(r) = 0

Cependant, c’est une EDVS, donc nous savons que la solution
générale de cette équation homogene est :

v(z) = Ce P@ e R arbitraire

ot P(x) est une primitive de p(z) sur I.
On en déduit qu’il existe une valeur de C' € R telle que vy (z) —
vo(z) = Ce~P*) Ainsi, on obtient que la solution v, () est de la
forme :

v1(x) = vo(x) + Ce™ P@

Puisque v (z) était une solution arbitraire, nous obtenons que l'en-
semble de toutes les solutions de I'équation y'(z) + p(z)y(z) = f(z)
est :

v(z) =vo(z) + Ce @ CeRzel

Donc, par définition, v(z) est la solution générale.

O

Soient vy, vs : I — R deux solutions de I'équation y"(z) + p(x)y' (z) + q(z)y(z) =0
(EDL2 homogene).

v1(x) et va(z) sont linéairement indépendants si et seulement si Wvy, va](x) # 0
pour tout z € I.

Preuve <—



Preuve —>

Idée de la

prevve

Notes par Joachim Favre

Démontrons ce point par la contraposée. Nous voulons donc montrer
que les solutions sont linéairement dépendantes implique qu’il existe
z € I tel que W{vy,ve](z) = 0.
Puisque nos deux solutions sont linéairement dépendantes, nous
pouvons prendre sans perte de généralité qu’il existe ¢ € R tel
que v1(x) = cva(x) (si plutdt ve(z) = cvi(x), nous pourrions juste
échanger les noms, d’ot le “sans perte de généralité”).
Ainsi, nous avons :
V1T cu1(x
Wion, v)(z) = det (qu% o ExD
= cvi(z)vy(z) — cvr(z)vy ()
=0, Vexel

Nous avons donc trouvé que le Wronskien est nul pour tout x sur
cet intervalle, donc il existe bien un = pour lequel il est égal a 0.

Prouvons aussi cette affirmation par la contraposée. Nous voulons
donc montrer que, s'il existe zg € I tel que Wlvy, v2](xo) = 0, alors
v1(z) et va(x) sont linéairement dépendantes.

Puisqu’il existe un tel xg € I, nous savons que :

dot (Z’i(%) Uz(xo)) _0

(zo) wa(wo)

Ainsi, le kernel de cette matrice est est non-trivial (il n’est pas de
dimension 0), donc il existe un vecteur non nul (Z) € R? tel que :

() N ()= (6)

{ avy (xg) + bug(xg) =

Ainsi :

avi(zo) + bvh(xg) =

Soit v(z) = avy (x)+bve(x). Alors, v(x) est une solution de ’équation
donnée par la superposition des solutions. De plus, par le systeme
d’équations que nous venons de trouver, nous avons v(xg) = 0 et
v'(z0) = 0. Par le théoréme de 'existence et unicité d’une solution
de léquation y” (z) +p(x)y’' () +q(z)y(x) = 0, cette équation admet
une seule solution satisfaisant y(xg) = 0 et y'(x¢) = 0. Puisque la
solution triviale y(x) = 0 Vz € I satisfait I’équation et les conditions
initiale, alors nécessairement :

v(x) = avy(x) + bva(z) =0, Ve el

Puisque a et b ne sont pas les deux nuls, soit nous avons v;(x) =

=byy(z) pour tout z € I, soit nous avons ve(z) = —%v;(z) pour

tout = € I (soit les deux).

Nous avons donc bien trouvé que vi(x) et va(z) sont linéairement
dépendantes sur 1.

O

On démontre que @ = P et P — ( par la contraposée car P
et @ sont des propositions “négatives” : il est beaucoup plus simple
d’avoir une fonction qui est parfois égale a 0, ou deux fonctions qui
sont linéairement dépendantes.
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Théoréme :
Forme des solu-
tions aux EDL2
homogénes

Proposition :
Inégalité de
Cauchy-Schwarz
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CHAPITRE 2. DEMONSTRATIONS A CONNAITRE

Soient vy,vy : I — R deux solutions linéairement indépendantes de 1’équation

Preuve

¥ (@) + p()y' (z) + q(x)y(x) = 0.
Alors, la solution générale de cette équation est de la forme :

v(x) = Clvl(x) + CQUQ(QS‘), 01,02 € R,l‘ el

Soit v(z) une solution quelconque de I’équation donnée, et soit
xg € I. Soient aussi ag € R et by € R tels que v(zg) = ag et
7[7’(1'0) = bo.

Par hypothése, nous avons deux solutions linéairement indépen-
dantes vy,vo : I — R. Ainsi, par la caractérisation, nous sa-
vons que Wlvy,vs](x) # 0 pour tout = € I, ce qui implique que
W[’Ul, UQ](xo) 75 0.

Or, quand le déterminant d’une matrice est non-nul (la matrice est
dite non-dégénérée), nous savons qu’une équation 1'utilisant a une
solution unique. Ainsi, nous savons qu’il existe d’uniques constantes
C1,Cs € R telles que :

Crvi(zg) + Cava(z0) = ao
Cl'l}ll (mo) + CQ’U/Q(JJ()) = by

Considérons la fonction v(z) = Civy(z) + Cavs(x). Nous pouvons
voir deux informations. La premiére est que v(z) est une solution de
Iéquation (puisque v1(z) et va(x) sont des solutions). La deuxiéme
est que v(zg) = ag et v'(xg) = bo.

Par le théoréme de I'existence et unicité d’une solution des EDL2
homogenes satisfaisant des conditions initiales données v(xg) = ag
et v'(zg) = by, on a v(x) = v(x) pour tout x € I. Nous avons donc
bien montré que notre solution de départ est de la bonne forme.

O

Pour tout 7, 7 € R™, nous avons :

Preuve

(@) <2 I7]

Soit A € R. Considérons la somme Y ., (Az; + i)’

Nous savons que > ., (Az; + yi)2 > 0, puisque c’est une somme de
termes positifs :

0< Y i +u)* = (Na? + 2my; +v7)
=1

i=1

Et donc :
0< (Zﬁ) A2+2<inyi> A+ <Zy§>, YAER

a b c

Nous avons obtenu une équation quadratique selon A qui est toujours
positive. Ainsi, on remarque qu’il est impossible que cette équation
ait deux racines, sinon, par le théorémes des valeurs intermédiaires,
elle serait négative en certains points. Nous savons donc qu’elle a
un discriminant négatif :

n 2 n n
b —dac <0 = 4 (Zx1y2> —4 (Zl’?> (Z%Q) <0
=1 i=1

i=1

2 2 2
=(@.%) =IZI" =¥l



Notes par Joachim Favre

Ce qui implique que :
1211717 = (@ 9)° = 12|V = (Z.7)

Puisque H?H et H?H sont positifs, nous pouvons enlever leur valeur
absolue. Cependant, nous ne pouvons pas enlever celle du produit
scalaire, car elle peut étre négative (enfin nous pourrions, puisque
|z| > x, mais nous perdrions de I'information).

O

Théoréme : Lien Un sous-ensemble non-vide £ C R est fermé si et seulement si toute suite {ac_;Z} CFE
entre les suites d’éléments de E qui converge a pour limite un élément de F.

dans R"™ et la
topologie

Preuwve —>

Preuve <=

Nous supposons que E C R™ est fermé.

Supposons par I’absurde qu’il existe une suite {a?;:} C E d’éléments
de E qui converge et qui a pour limite z ¢ E. Ainsi, on sait que
T cCE , qui est un ensemble ouvert dans R™ (puisque E est fermé
par hypotheése). Puisque cet ensemble est ouvert nous savons, par
définition, que 39 > 0 tel que :

B(@,5) c CE
Or, cela implique que :

{zi Vk e N} NB(Z,8) =0
———— —
CE cCE

En d’autres mots, aucun élément de la suite ne fait partie de cette
boule ouverte.

De Pautre coté, puisque limy_, o ?k = ?, nous avons qu’il existe
un kg € N tel que pour tout k > kg :

T e B(?g) c B(7.9)

En d’autres mots, pour k > ko, 9?1: fait partie de notre boule ouverte.
Ceci entre en contradiction avec ce que nous avions vu ci-dessus.

O

Nous allons démontrer notre proposition par la contraposée : nous
voulons montrer que si £ C R™ n’est pas fermé, alors il existe une
suite {aTk) CFE } d’éléments de E qui converge et qui a pour un
limite un élément qui n’est pas dans FE.

Puisque nous savons que E n’est pas fermé, nous savons que CE
n’est pas ouvert. Ainsi, 37 € CFE tel que, pour tout ¢ > 0 :

B (7, 5) NE#o
Plus précisément, on peut prendre € = %, ce qui nous donne :
1
VkeN,, B 7,% NE+g¢
Ceci implique que, pour tout k, on sait qu’il existe un EZ tel que
ﬂ € B(?, %) et E: € FE. Ceci nous donne une suite {E")}kel\u cCFE

telle que limg o0 ﬁ = 7 € CFE, et donc 7 ¢ FE.
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\ d
Théoréme : Ca-  Une foncti . E — R défini de Tp ad limite ¢
ne fonction f : — efinie au voisinage de xg admet pour limite £ €
ractérisation R lorsque @ — T si et seulement si pour toute suite d’éléments {(T)k} de
des limites a {7 € E tel que @ # 37)0}, qui converge vers T4, la suite {f(ch))} converge vers £.
partir des suites Ep d’autres mots :
convergentes

( lim f(?) = E) — (klim f(ch)) =/, V{(T;Z} CE\ {:FO)} telle que klim ai = :1:_6)

Ea T

Preuve = Nous savons par hypothese que limz _, > f (?) = /. Ainsi, par la
définition de la limite, on sait que, pour tout € > 0, il existe § > 0
tel que :

0< |-l <5 — [F(@) -t <e

Soit une suite arbitraire {c?k} C E\{ES} telle que limy_ o cT,: = aTS.
Puisque la définition des limites pour les suites marche pour tout &,
nous pouvons prendre € = §. Ainsi, par définition, pour € = § > 0,
nous savons que dkg tel que, pour tout k > kg, on a :

@k — ®|| <6

Or, puisque {CT]:} C E\ {?0}, nous savons que a_>k - 375 # 0. Ainsi,
pour tout k > kg, 0 < H‘Tk) - :FSH < 4. Cependant, cela implique
par la premiere implication que :

|f(@k) — | <e

Ainsi, nous avons démontré que pour tout ¢ > 0, il existe kg tel
que pour tout k > kg on a }f(ch)) - €| < e. En d’autres mots, nous
avons montré que :

lim f(ag) =/¢

k—o0

Preuve <= Nous allons faire cette preuve par la contraposée. Ainsi, nous sup-
posons par hypothese que lim_, z» f(?) #£ 4.
Par la définition de la limite, on obtient que 3¢ > 0 tel que Vd > 0,
375 tel que :

&% - <o e 5@ o>

Puisque c’est vrai pour tout ¢, alors c’est aussi vrai pour le cas
particulier ou § = %, k € N. Ainsi, pour le € dont nous connaissons
I’existence, pour tout k € N, il existe aTk) € F tel que :

|7k — @8] < 5 et [F(@K) 1t >e

On obtient la suite {a:_k) }Zil qui est telle que, par la définition,
limp o0 aT)k = aT)o. Cependant, cette suite est aussi telle que ’f(m_,Z) — €| >
€ pour tout k € N, ce qui implique que :

i S #1

|
Théoréme du Une fonction continue sur un sous-ensemble compact £ C R? atteint son maximum
min et du max et son minimum, i.e. :
sur un compact I max f(?), 3 min f(?)

xEE ZEE

16



Proposition :
Hypothéses équi-
valentes pour le
théoréme de la
condition suffi-
sante pour un
extremum local
quand n = 2

Preuve f(E)

est borné

Preuve f at-
teint ses extre-

mum

Notes par Joachim Favre

Nous voulons commencer par montrer que { f (?) }? cp st borné.

Supposons par 'absurde que f(FE) n’est pas borné, c’est & dire que
pour tout k > 0, il existe un a?,: € F tel que ‘f(:?k))’ > k. Ceci nous
donne une suite {a?k} € k.

Puisque F est un ensemble compact, nous savons qu’il est borné, et
donc {Z,} est bornée. Ainsi, par le théoréme de Bolzano-Weierstrass,
nous pouvons trouver une sous suite convergente {Zx. }, qui a pour
limite un vecteur zg € R™. Puisque FE est compact (et donc fermé),
nous savons que z$ € E.

Puisque f est continue, nous savons que :

lim 1 (@) = (%) < R

p—o

Mais, par construction, |f(37k))’ > k pour tout k € N, ce qui est
notre contradiction. Nous en concluons que f est bornée sur FE.

Nous voulons montrer que f atteint son minimum et son maximum
sur F.

Par ce que nous venons de démontrer, nous savons que f(E) est un
sous-ensemble borné. Ainsi :

IM =sup{f(@), @ € E}, Im=if{f(T) @ c E}

Par la définition du supremum et de I'infimum, nous pouvons nous
en rapprocher arbitrairement, donc cela implique qu’il existe deux

_>
suites {CT,Z}, {bk} € E telles que :

lim f(@) =m, lim f(b_,Z) —M

k—o0 k—o0

_>
Or, puisque {ch)}, {bk} € E (qui est borné), ce sont des suites
bornées, et donc il existe des sous-suites convergentes. En d’autres

mots :
— = ,
ar, -+ @ €R", by, — b €R"

De plus, puisque FE est compact (et donc fermé), nous savons que
@ cEet b €E. Ainsi, par la continuité de f :

m= Jim f(@) = lm f(@’) = £(@)

= () = o 1(52) ()

k—o0
. s -
Ainsi, nous savons qu’il existe 77 b € F tels que :

F(@) =m = min f()

Dans le cas ou n = 2, nous pouvons réécrire les conditions de notre théoreme.
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CHAPITRE 2. DEMONSTRATIONS A CONNAITRE

Notre matrice Hessienne est donnée par :

i ros
2
Hess; (@) = o W) = (s t>

Ox0y dy?

Nous avons les équivalences suivantes :

1. A1 >0, >0 <= detHessf(ﬁ) >0etr >0
2. M1 <0, <0 < detHessf(ﬁ) >0etr <0
3. M >0,M <0ou) <0,)\ >0 <= detHess;(d@) <0

Preuve

Preuve point 1
=

Preuve point 1
—

Preuve point 2
=

Pour commencer, nous savons que le déterminant et la trace d’une
matrice sont des invariants de conjugaisons. Ainsi, si on a :

r s\ -1 _ (A1 O r s\ _ -1f{M O
of; o=(5 %) = ( D=07(s 2o

Alors, on obtient :
rt — 5% = det Hess (@) = det(O) A\ Ao det (O71) = Ao

r+t = TrHess; (@) = Tr(ODO™') = Tr(0~'0D) = Tr(D) = A +Xs

Commencons par montrer la direction = . Ainsi, nous supposons
que A1 > 0,2 > 0.

Alors, clairement, det Hessy (7) = A1A2 > 0. Aussi, nous voyons
que :

Ma=rt—s2>0 = rt>s>2>0 = rt>0

donc r et t sont de méme signe.
Nous pouvons aussi voir que :

TrHessf(7)= A+ X =r+t>0
Y X0

donc 7 et ¢ doivent étre les deux strictement positifs, puisqu’ils ont
le méme signe.

Nous en déduisons bien que det Hessy (7) >0etr>0.

Supposons que det Hess¢ (7) >0etr>0.

Alors, puisque det Hessy (7) = A1 A2 > 0, nous en déduisons que
A1 et A9 sont de méme signe. De plus, nous voyons aussi que 7t >
$2>0 = rt>0.

Ainsi, puisque rt > 0 et > 0, nous obtenons que ¢t > 0. De plus,
cela implique que :

TrHeSSf(7)2A1+)\2: r + t >0
>0 >0

Puisque A1 et Ay sont de mémes signes, et A\ + Ay > 0, nous en
déduisons bien que A; > 0 et Ay > 0.

Commengons par montrer la direction = . Ainsi, nous supposons
que A\ < 0,5 < 0.

Alors, clairement, det Hessy (7) = A1 A2 > 0. Aussi, nous voyons
que :

Mlbo=rt—852>0 = 1t>8>0 = rt>0



Théoréme :
Condition né-
cessaire pour
un extremum
sous contrainte
quand n = 2

Notes par Joachim Favre

donc r et t sont de méme signe.

Nous pouvons aussi voir que :

TrHessf(ﬁ): M+ A =r+t<0
%

donc r et ¢t doivent étre les deux strictement négatifs, puisqu’ils ont
le méme signe.

Nous en déduisons bien que det Hessy (7) >0etr<O.

Preuve point 2 Supposons que det Hessy (7) >0etr<0.

= Alors, puisque det Hessy (7) = A1 A2 > 0, nous en déduisons que

A1 et A9 sont de méme signe. De plus, nous voyons aussi que rt >
$2>0 = rt>0.
Ainsi, puisque rt > 0 et r < 0, nous obtenons que ¢t < 0. De plus,
cela implique que :

TrHessf(7)=A1+)\2: r + t <0
<0 <0

Puisque A\; et A2 sont de mémes signes, et A\; + Ay < 0, nous en
déduisons bien que A1 < 0 et Ay <O0.

Preuve point 3 Nous voyons que :

det Hess ¢ (7) <0 <= A2 <0 <= )\ et Ay sont de signes opposés

Note person-  La démonstration de ce théoréeme peut sembler treés longue et com-
nelle pliquée, mais elle ne l'est pas! A partir du moment ol on sait que
le déterminant est donné par ad — bc et que la trace est donnée par
la somme des éléments diagonaux, il suffit de poser nos hypotheses
et de simplement voir ce que nous pouvons en déduire, en gardant

en téte ou nous voulons aller.

Soit 'ensemble E C R? et soient les fonctions f,g : E — R de classe C'. Supposons
que f(z,y) admette un extremum en (a,b) € E sous la contrainte g(z,y) = 0, et
que Vg(a,b) # 0.

Alors, il existe A € R, appelé le multiplicateur de Lagrange, tel que :

Vf(av b) = )‘VQ(av b)

— . e s
Preuve Nous savons que Vg(a,b) # 0, donc au moins 'une des dérivées

partielles est non-nulle. Supposons que g—g(a, b) # 0 (le cas %(m b) #
0 est similaire).

Nous avons g(a, b) = 0 puisque (a, b) satisfait la contrainte g(z,y) =
0. Ainsi, par le TFI, il existe une fonction y = h(x) de classe C! au
voisinage de x = a telle que :

o 5w k(@) _
B (x) = —m, avec g(x,h(z)) =0

dy
Aussi, pour (z,y) satisfaisant notre contrainte g(z,y) = 0, nous
pouvons remplacer y = h(x) dans Pexpression f(z,y) pour obtenir
une fonction d’une seule variable :

F,y) "L 70 f b))
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Nous savons que les extrema de cette fonction, respectent :

of of oy —
= 5, (@ h(2) + 67/(% h(z))h () =0

[z, h(x))
Par hypotheése, (a,b) est un point d’extremum, et il respecte la
contrainte g(a,b) = 0, donc les hypotheses de I’équation que nous
venons d’obtenir sont bien respectées, ce qui nous permet de trouver

que :
O (a,) = —%m,wh’(a)

Pour résumer, nous avons trouvé jusque la que :

of of , TR 92(a,b)
—(a,b) = —=(a,b)h'(a), h'(a) = —L&—=
g (0) = g, @D @), K g
Ceci implique que :
Ul
of of @(%b)
=2 (a,b) = 2 (a,b) JE——
Ox oy dg
—— a—y(a,b)
1 Vo
ug;éO

Séparons notre preuve en différents cas. Si u; = 0, alors v; = 0
et donc Vf(a,b) = (0,v2) et Vg(a,b) = (0,uz). Ceci implique bien
qu’il existe un A € R tel que vo = A uy et donc :

—~—

#0
Vf(a,b) = AVg(a,b)

2 = X\ € R, nous

Sinon (si u; # 0), alors, en définissant - =
Ul U2

trouvons :
(Ula UQ) = )‘(u17u2) <~ Vf(a, b) = >‘v9(aa b)
O

Nous trouvons f(z,y) sous la forme d’une fonction d’une seule
variable et la dérivons, puis nous utilisons le théoréme des fonctions
implicites, ce qui nous permet de trouver un lien entre les dérivées
de f et celles de g.



Lundi 21 février 2022 — Cours 1 : Un cours en deux documents

Chapitre 3

Méthodes de démonstration et
raisonnement mathématique

3.1 Introduction

Définition de
proposition

Définition de
démonstration

Exemple 1

Une proposition est un énoncé qui est vrai ou faux.

Ezemple Considérons les phrases suivantes :
1. II existe une infinité de nombres premiers.

2. cos(0) =0
3. Ouvrez la porte!
On a alors :

1. C’est une proposition vraie, démontrée par Euclid (et j’aime
beaucoup sa preuve).

2. C’est une proposition fausse (on sait tous que cos(z) = 1,Vz €
R).

3. Ce n’est pas une proposition.

Une démonstration est une suite d’implications logiques qui sert a dériver la
proposition en question & partir des axiomes (propositions admises comme vraies)
et des propositions préalablement obtenues.

Soient a,b € R, a,b > 0. Alors :

“;bz@

Notez que ceci est I'inégalité AM-GM, et elle est tres puissante.

Démonstration  Partons de ce que nous voulons démonter :

a+b

>Vab = a+b>2Vab = (a+b)* > 4ab

Ce qui implique que :
a’® +2ab+ b > 4dab = a®> —2ab+ b >0 = (a—b)2 >0

Or, nous savons que pour tout ¢ € R, nous avons =2 > 0, donc
notre proposition est vraie.

Cependant, ceci n’est pas une vraie preuve, nous avons utilisé un
argument frauduleux ce qui la rend fallacieuse. En effet, si P et @
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sont deux propositions sont telles que P =—> (), et si nous savons
que @ est vraie, alors cela n'implique pas nécessairement que P soit
vraie. Nous allons voir un exemple d’utilisation de cet argument a
tort apres la vraie démonstration de ce théoréme.

Vraie démons-  Tout ce qu’on a fait n’est cependant pas a jeter, nous pouvons, dans
tration notre cas, faire le chemin dans l'autre sens.

Soient a,b € R ot a,b > 0. Nous avons que (a — b)2 > 0 puisque
22 > 0 pour tout z € R. Alors :

(a—b)2>0 = a®>—2ab+b* >0 = a®+ 2ab+b> > 4ab

Ce qui implique que :

atb)? > dab 220 (a1 b >2vah — 2T vap
2

|
Note person- Je préfere personnellement faire cette preuve en commencant par
2

nelle (\f — \/B) > 0, mais 'argument est le méme.

Exemple Disons que nous voulons montrer que —5 = 0. Ceci est clairement faux, mais utilisons
le méme argument fallacieux :
0
—-5=0= 0=0

Note person-  Le probleme est que nous voulons non pas montrer que —5 =0 =
nelle 0 =0, mais 0 =0 = —5 = 0. Cependant, méme si partir de la ou

on veut arriver peut nous donner un chemin, il faut refaire ce chemin
dans 'autre sens pour avoir une preuve formelle. Parfois, nous ne
pouvons pas faire ce chemin dans l'autre sens, comme dans ce cas
puisqu’il nous faudrait diviser par 0. Il faut aussi faire attention
quand on met les deux c6té de notre équation au carré puisqu’on la
fonction f(z) = 22 n’est pas bijective, donc :

a=b = a’® =1

alors que l'inverse ne tient pas. Si nous voulons que les deux sens
fonctionnent, alors nous avons besoin de valeurs absolues :

la| = |b| <= a® = b*

3.2 Meéthodes de démonstration

Méthode 1 : Nous partons de nos conditions données P, nous utilisons des implications logiques,
Démonstration des axiomes et des propositions connues, puis nous arrivons a notre proposition
directe désirée Q).

Méthode 2 : Rai- On utilise que P = @ est équivalent & =@ = —P (ou — veut dire “non”).
sonnement par
contraposée

Exemple Disons que nous voulons montrer que si r € R est irrationnel (P), alors /7 est aussi
irrationnel (Q).
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Preuve fraudu-
leuse

Démonstration  Nous voulons montrer ¢a par la contraposée. La contraposée de notre
proposition est que si /T est rationnel (=Q), alors r est rationnel
(—=P).
Ainsi, puisque /7 est rationnel, on sait que :

Vi=L oupgeNg#0
q
On sait que /7 > 0, donc on a bien que p,q > 0.

Continuous notre démonstration :

2
Y
q q
qui est rationnel puisque p?, ¢? € N, ¢% # 0.
Par contraposée, cela implique donc que, si r € Ry est irrationnel,
alors /r Pest aussi.

O

Nous cherchons l'erreur dans 'argument suivant :

3>2<:>311>211 — 1 12>1 13<:>1>1
"2 "2 2 2 87 4
L’erreur est courante lorsqu’on manipule des inégalités : il faut changer le signe de
I'implication quand on multiplie par un nombre négatif. Or, on sait que :

1
In(x) < 0,Vz €10,1] = ln<2> <0

Méthode 3 : Rai-
sonnement par
disjonction des
cas

Exemple 1

Lundi 28 février 2022 — Cours 3 : Dsiijonctions de cas

Soient P, ) deux propositions. Pour montrer que P = (@, on sépare ’hypothese
de P de départ en différents cas possibles et on montre I'implication est vraie dans
chacun des cas. Il est trés important de considérer tous les cas possibles.

Soit n € Z. Alors, n? > n.

Preuve Nous savons que :
2
n“>n <= nn-1>0

Nous pouvons donc démontrer la deuxiéme propriété pour démontrer
la premiere.

Premieérement, considérons n > 1. Alors.

n (n—1)>0

~—
>0 35

Deuxiemement, prenons n < 0 :

n (n—1)>0
<0 >

Or, on sait bien que :

Z={n€Z:n>1}U{neZ:n<0}
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Tout ceci nous permet de conclure que notre inégalité est vraie pour

tout n € Z.
O
Exemple 2 Soit n,m € Z. Alors :
. nm(n —m)(n+m) ez
3
Preuve 1. On remarque que pour n = 3k, k € Z, on voit clairement que
teZ.

2. De maniere similaire, si m = 3k, k € Z, alors t € Z.
3. Nous considérons que ni m ni n n’est divisible par 3. Nous
pouvons maintenant considérer deux sous cas :
(a) Supposons que m et n ont les méme restes de division par
3. Alors, n —m = 3k, donc t € Z.
(b) Supposons que les restes de division par 3 de n m sont
différents. Alors, n +m = 3k, k € Z donc t € Z.

Nous avons démontré tous nos cas, ce qui conclut notre preuve.

|

Méthode 4 : Dé- Nous cherchons a démontrer les propositions de la forme :
monstrations
ssi P = Q@

La premieére méthode consiste a démontrer que :

P=@Q e Q=P
Plus rarement, on peut aussi faire une suite d’équivalences entre P et @ :
P <— R <— ... <= R, < Q@

Pour cette deuxieme méthode, il faut faire attention au fait que chaque implication

est une équivalence.
Exemple 1 Soient a,b € N. Alors :

ab+1=c?ceN < a=b+2
Preuve Regardons la suite d’équivalence suivante :
ab+1=c® <= ab=c*—1 <= ab=(c—1)(c+1)

Ce qui est équivalent a soit a = ¢ — 1 et b = ¢+ 1, soit I'inverse.
Dans le premier cas, a = b — 2, dans le deuxiéme a = b + 2.

En fait, cette derniére phrase est fausse, on pourrait avoir ab=4-9
avec a = 2 et b = 18. En fait, 'affirmation que nous voulions montrer
est uniquement vraie pour <= . On peut par exemple trouver le
contre-exemple a = 3 et b = 8.

Preuve cor- Nous voulons montrer que :

recte

a=b+t2 = ab+1=c%ceN
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Exemple 2

Partons du début de notre implication :

a=b+2eN
— ab+1=bb+2)+1=0+2b+1=(b+1)*=¢
—c=bx1eN

Soient z = pe'¥ € C*. Nous prenons les propositions suivantes :
2 * Tk
P:{z ER}, Q: <p:7,k€Z

Nous nous demandons quelle proposition implique laquelle. Nous allons montrer que
c’est un si et seulement si.

Preuve <= Soit z = peW’ ol ¢ = g—ﬂ Ainsi :

22 = p262ik7w = p2e'™ = p?(cos(mk) + isin(nk)) = p*(£1) € R*

Preuve = Soit z = pe'® tel que 22 € R*. Alors :

22 = p2e?% = p? | cos(2¢) +isin(2¢p) | € R*
——

=0
La partie imaginaire, le sinus, est nulle par hypothese. Ainsi :

k
sin(2¢) =0 = 2p =k = 90:%

ou k € Z.

]

Mercredi 9 mars 2022 Cours 6 : Le meilleur mathématicien

Méthode 5 : Dé-
monstration par
I’absurde

Exemple 1

Pour démontrer une proposition P, on essaie de démontrer que =P implique une
proposition fausse bien connue F. En d’autres mots, on obtient P =— F qui est
contradictoire aux axiomes, ou aux propositions vraies préalablement établies.

Comparaison  Par la contraposée, on démontre que ~() = — P, qui est équivalent
avec la contra- & P —> Q

posée Par ’absurde, on démontre qu’une proposition P est fausse, en
montrant que -P = F est évidemment fausse. Notez que, pour
une démonstration par ’absurde, nous n’avons pas besoin d’avoir
un théoréme sous la forme d’une implication P — Q.

Il existe une infinité de nombres premiers.
La démonstration qui suit a été imaginée par Euclid (le best).

Preuve Supposons par ’absurde qu’il existe seulement un nombre fini n € N
de nombres premiers : p1,...,Pn.

Considérons le nombre K = p1ps - - - p, +1. On remarque que K > p;
pour tout p; € {p1,...,pn}, ainsi K # p; pour tout ¢ = 1,...,n.
Nous pouvons déduire de ce fait que K n’est pas un nombre premier
car il est plus grand que 1 par construction, et ne fait pas partie de
la liste. Ainsi, par définition des nombres premiers, cela implique
que K est divisible par un nombre premier, disons p;.
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Exemple 2

Clairement, p1ps - - - p,, est aussi divisible par p;. Ainsi, K—p1ps -« - pp,
est aussi divisible par p;. Cependant, K — pips---p, = 1, mais 1
n’est divisible par aucun nombre premier, ce qui est notre contra-
diction.

O

V/3 est irrationnel.
La démonstration qui suit a aussi été imaginée par Euclid (le best, ¢a change pas).

Preuve Supposons par absurde que v/3 = % € Qoup,q e N, q#0, tel que
q est le plus petit possible (on utilise axiome de bon ordre : tout
sous-ensemble non-vide de N possede un plus petit élément, ici les
dénominateur des fractions forment un sous-ensemble, donc nous
pouvons appliquer ce principe ici).

Alors, on obtient que :
2
3=L
q
= 3¢*> = p?
— p? est divisible par 3

N p est divisible par 3

L’implication T est démontrée dans le sous-paragraphe suivant.

Puisque p est divisible par 3, nous pouvons écrire p = 3m ou m € N,
et donc :
3¢2 = (3m)® = 9Im? = ¢% = 3m?
Ainsi, par le méme argument, ¢ est divisible par 3. Nous trouvons
donc que ¢ = 3n, pour n € N*. Cela nous donne que :
p_3m _m
q

—37:%, 0f1n<q

Cependant, c’est une contradiction au principe de bon ordre.

Implication ¥ Soit p = 3k +r, ou r € {1,2}. Alors, nous avons :
p? = (Bk+7)" =9k +6kr 4+ 72, our? e {1,4}
Ainsi, on obtient que p n’est pas divisible par 3 implique que p?

n’est pas divisible par 3. Par la contraposée, cela veut dire que p?
est divisible par 3 implique que p est divisible par 3.

Lundi 14 mars 2022 — Cours 7 : Les tiroirs et les chaussettes

Meéthode 6 :
Principe des
tiroirs et des
chaussettes de
Dirichlet

26

Si (n + 1) objets sont placé dans n tiroirs, alors au moins un tiroir contient 2 objets
ou plus.

Plus généralement, si n objets sont placés dans k tiroirs, alors au moins un tiroir
contient [%W objets, ou plus.

Définition : La fonction plafond est simplement un arrondi vers le haut, mais
Fonction pla-  nous pouvons la définir formellement comme :
fond I n

[E—‘ = min{m € N tel que m > E}
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Exemple 1

Exemple 2

Soient aq, as, as, ay des nombres entiers. Alors, il existe 2 d’entre eux tels que leur
différence est divisible par 3.

Preuve Soient 71, 12,73, 74 les restes de division de aq, as, a3, aq par 3. Nous
savons que r1,79,r3,74 € {0,1,2}. Alors, nous savons qu’il existe
i,7 avec i # j pour lequel r; = r;, par le principe des tiroirs et des
chaussettes de Dirichlet. Or, puisque a; et a; ont le méme reste,
nous savons que a; — a; est divisible par 3. En effet, a; = 3m + 1 et
a; =3n+roum,necZetre{0,1,2}, donc:

a,—a;j=3m+r—38n+r)=3(m—n)

O

Dans un groupe de n personnes, ou n > 2, il existe au moins 2 personnes avec le
méme nombre de connaissances dans le groupe.

Preuve Utilisions la disjonction de cas.

1. Supposons qu’il y a quelqu’un qui ne connait personne dans le
groupe.
Alors, clairement, il n’existe personne qui connait tout le monde.
On obtient donc que le nombre K de connaissances pour chacun
est entre 0 et (n — 2), ce qui représente (n — 1) possibilités. Par
le principe des tiroirs de Dirichlet, puisqu’il y a n personnes et
(n — 1) possibilités, il existe au moins 2 personnes avec le méme
nombre de connaissances.

2. Supposons maintenant que tout le monde connait au moins
quelqu’un dans le groupe.
Puisque personne ne connait personne, nous savons que 1 < K <
n — 1. Ainsi, nous avons & nouveau (n — 1) possibilités pour n
personnes, et donc, par le principe des tiroirs, il existe au moins
2 personnes avec le méme nombre de connaissances.

O

Lundi 28 mars 2022 — Cours 11 : Récurrence

Méthode 7 :

Récurrence

Exemple

Soit P(n) une proposition qui dépend de n € N, ott n > ng. Supposons que :
1. P(ng) est vraie.
2. P(n) implique que P(n + 1) pour tous n > ng naturels.

Alors P(n) est vraie pour tous n > ny.

Remarque Cette méthode de démonstration découle directement de ’axiome
suivant (le principe fondamental de la récurrence) :

Soit S C N. Si ce sous-ensemble est tel que 0 € N et pour tout n € S
ona(n+1)eS, alors, S=N.

L’inégalité suivante tient pour tout n > 1 naturels :

1+ ! +...+ ! <2 !
22 T p2— n
Preuve Puisque nous voulons montrer ceci pour tout n, alors c’est intéressant

de le faire par récurrence.

A T'examen, il est important de dire quelle est la proposition que
nous essayons de démontrer, ainsi, nous voulons montrer P(n), ol :

1 1 1
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généralisée

Définition :
Suite de Fibo-

nacci

Exemple
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1. Commencons par 'initialisation. P(1) est bien vraie car :

1
1<2—-—-=1
1
2. Faisons maintenant I'hérédité. Nous supposons que P(n) est
vraie (hypothese de récurrence, HR), et nous voulons en déduire
P(n + 1). Commencons par le c6té gauche de P(n +1) :

R S B OIS S U
22 n2 (n+1)2 - n (n+1)2
. n?+n+1
B _n(n+1)2
nn+1) 1
o n(n+ 1) - n(n+ 1)
——
>0
=7 n41

Nous avons donc aussi montré P(n + 1).

3. Pour finir, il ne faut pas oublier la conclusion, qui est aussi
importante. Puisque P(1) est vraie et P(n) = P(n + 1), nous
avons montré que P(n) est vraie pour tout n > 1, ou n € N.

O

Soit P(n) une proposition qui dépend de n € N, ot n > ngy. Supposons qu’il existe
un k € N tel que :

1. P(ng),...,P(ng + k) sont vraies.

2. {P(n),...,P(n+k)} impliquent P(n + k 4+ 1) pour tout n > ny.
Alors, P(n) est vraie pour tout n > ng, ou n € N.

La suite de Fibonacci (f,,) est définie telle que :
f]. = 17 f2 = 17

Les premiers termes de cette suite sont :

fn+2:fn+fn+1

1, 1, 2, 3, 5 8 13, 21,

3

Pour tout n > 3, nous avons :
3fn - fn+2 + fn—2

Preuve Notre proposition P(n) est définie comme :

Pn):3fn = fos2+ fn_2, Yn>3
1. Faisons la base. P(3) fonctionne car :
3-2=5+1
De plus, P(4) tient aussi :
3-3=8+1

2. Passons maintenant a ’hérédité. Puisque nous utilisons le principe
de la récurrence généralisée, nous supposons que P(n) et P(n + 1)
sont vraies (HR), pour un n > 3. Nous voulons démontrer que
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P(n + 2) est vraie :

déf
3fn+2 = 3fn + 3fn+1

H:R (fn+2 + fn72) + (fn+3 + fnfl)
= fn+2 + fn+3 + fn—2 + fn—l
=fn+a =fn

- fn+4 + fn

Ce qui montre bien que P(n + 2) est vraie.

3. Pour conclure, nous avons montrer que P(3) et P(4) sont vraies,
puis que P(n) A P(n+1) = P(n + 2). Ainsi, par récurrence
généralisée, nous avons montré que P(n) est vraie pour tout
n>3,ouné€N.

]

Mercredi 6 avril 2022 Cours 14 : Récurrence forte

Récurrence forte Soit ng € N et P(n) une proposition qui dépend de n € N, ot n > nyg.

Exemple

rence

Supposons que :

1. P(ng) est vraie.

2. {P(ng), P(no +1),...,P(n)} impliquent P(n + 1), pour tout n > ng, n € N.
Alors, P(n) est vraie pour tout n > ng, ou n € N.

Pour tout n > 2, ou n € N, n est un produit de facteurs premiers.

Preuve Nous faisons notre démonstration par récurrence forte.
1. Nous voulons montrer P(2). Nous savons que 2 est premier, donc
nous pouvons écrire :
2=2

Ce qui montre qu’elle est vraie.

2. Nous considérons que {P(2),...,P(n)} sont vraies, et nous vou-
lons montrer que P(n + 1) est vraie.
Counsidérons (n + 1) € N. S’il est premier, alors, par le méme
argument que pour la base, P(n + 1) est vraie.
Sinon, nous savons que (n+ 1) =m -k ot m, k € N sont tels que
2 < m,k < n+1. Par notre hypotheése de récurrence, nous savons
que P(m) et P(k) sont vraies, donc m et k sont des produits de
facteurs premiers. Ceci implique que (n + 1) = m - k est aussi un
produit de facteurs premiers. Ainsi, P(n + 1) est vraie.

3. Puisque la base et 'hérédité tiennent, nous avons démontré par
récurrence forte P(n) pour tout n > 2, o n € N.

O
Résumé : Récur- Nos trois méthodes nous permettent de démontrer que P(n) est vraie pour tout
n > ng.

Récurrence 1. P(ng) est vraie.

simple 2. P(n) = P(n+ 1) pour tout n > ny.

Récurrence Soit k > 1.

généralisée 1. P(ng),...,P(no+ k) sont vraies.

2. {P(n),...,P(n+k)} = P(n+k+1) pour tout n > ny.

29



Analyse IT — Démonstrations CHAPITRE 3. METHODES DE DEMONSTRATION

Récurrence 1. P(ng) est vraie.
forte 2. {P(ng),...,P(n)} = P(n+ 1) pour tout n > ny.

Lundi 25 avril 2022 — Cours 17 : Récurrence sur deux variables

Récurrence sur
deux variables

Exemple :
Nombres de
Fibonacci

30

Soit P(n,m) une proposition, ot n,m > 0.
Nous pouvons utiliser différentes méthodes pour la démontrer par récurrence sur
deux variables.

Méthode du 1. P(0,0) est vraie.
carré 2. ¥n >0, P(n,0) = P(n+1,0)
3. Vm,n, P(n,m) = P(n,m+1)

Notez que, a la place du deuxiéme point, il est parfois plus simple
de démontrer que, pour tout m,n >0, P(n,m) = P(n+1,m).

N

J
1]
9

S =—

< 1
&<

|
<<t g——\]/

<

Meéthode de la 1. P(0,0) est vraie
diagonale 2. ¥n >0, P(n,0) = P(n+1,0)
3. Vm,n, P(n+1,m) = P(n,m+1)

W, o 1 2
N

/ / .

7

J

Les deux méthode nous permettent de conclure que P(n,m) est vraie Vn,m € N.
Soit la proposition P(n,m) suivante :
fnfm+1 - fmfn+1 = (_l)mfn—'rm

Nous allons montrer P(n,m) pour tous n,m ot 0 < m < n.

Preuve Nous allons suivre le schéma suivant, avec la base en verte, et
I’hérédité en rouge et en bleue :



3.2. METHODES DE DEMONSTRATION Notes par Joachim Favre

N

o LNV e
1 T

-
|
<~

1. Base :
P(0,0):  fofi — fofi=0=(-1)"fo
P(1,0): fifi—fofo=1-0=1=(-1)"f

Puisque n > m, P(0,1) n’existe pas. Cependant, nous aurons
aussi besoin de montrer P(1,1) :

P(L1): fifo—fifo=0=(-1)'f

2. Hérédité : Nous remarquons que P(n,0) est vraie pour tout n > 0
(sans récurrence) ;

fnfl - fOfn+1 = fn -0= fn = (*1)Ofn

Nous pouvons aussi démontrer que P(n, 1) est vraie pour tout
n > 1 (sans récurrence)

Fafo = Fifasr = o= fasr = fo = (fa+ fa1) = (1) fua

Maintenant, nous supposons que P(n,m) et P(n,m + 1) sont
vraies, et nous voulons démontrer que cela implique que P(n, m + 2)
est aussi vraie Vn > m + 2 :

fnfm+3 - fm+2fn+1
= fn(fm+1 + fm+2) - (fm + fm+1)fn+1
= (fnfm-H - fmfn-i-l) + (fnfm+2 - fm-i-lfn-i-l)
(=D frm 1) frmoy
(=1)"(fa-m = fa-m-1)
(_1)mfn—m—2

(_1)m+2fn—m—2

comme attendu.

3. Nous avons démontré que P(n,0) Vn > 0, P(n,1) Vn > 1, et
{P(n,m),P(n,m+1)} = P(n,m+ 2).
Ainsi, nous avons démontré par récurrence sur deux variables
que la proposition P(n,m) est vraie pour tout m,m tels que
0<m<n.
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Mercredi 11 mai 2022 — Cours 21 : Résumé

3.3 Résumé

Résumé

Exemple

32

Démonstration

directe

Par contrapo-

sée

Disjonctions

de cas

7Si et seule-

ment si”

Par absurde

Par le principe

des tiroirs

Par récurrence

simple

Par récurrence

généralisée

Par récurrence
forte

Par récur-
rence sur deur
variables, mé-

thode du carré

Par récur-
rence sur deur
variables, mé-
thode de la

diagonale

Nous partons des conditions données ou de faits connus, @), et nous
faisons des implications logiques pour obtenir notre proposition
désirée, P :

Q= ...=P

Pour montrer P = (@, nous montrons que -(Q — —P.

Nous séparons P en plusieurs sous-cas, puis démontrons chaque cas
séparément.

Pour démontrer P <= (), nous pouvons soit démontrer que
P — Qet Q = P, soit faire une suite d’équivalence entre P
et Q :

P .. <= Q

Pour démontrer P, nous démontrons que =P = (@, ou @ est une
proposition connue d’étre fausse.

Si nous avons n objets distribués dans k tirons, alors au moins un
tiroir contient [%] objets.

Pour démontrer P(n) pour tout n > ng, nous démontrons que P(ng)
est vraie, et que P(n) = P(n + 1) pour tout n > ng.

Pour démontrer P(n) pour tout n > ng, nous démontrons P(ng), ..., P(ng + k)

et {P(n),...,P(n+k)} = P(n+k+ 1) pour tout n > ng, pour
un k > 1 fixé.

Pour démontrer P(n) pour tout n > ng, nous démontrons P(ng),
et {P(ng),...,P(n)} = P(n+ 1) pour tout n > ny.

Pour démontrer P(n,m) pour tout m,n > 0, nous démontrons
P(0,0), P(m,0) = P(m+1,0) pour tout m et P(m,n) —
P(m,n + 1) pour tout m,n.

Pour démontrer P(n,m) pour tout m,n > 0, nous démontrons
P(m,0) = P(m+1,0) pour tout m et P(m+1,n) =
P(m,n + 1) pour tout m,n.

Il est parfois dur de trouver la méthode de démonstration a utiliser. Prenons les
propositions suivantes en tant qu’exemples :



3.3. RESUME

6.

Notes par Joachim Favre

Dans une classe de 210 étudiants, il existe au moins 9 personnes avec la méme
initiale de prénoms.

Il n’existe pas de nombres entiers a,b € Z tels que 63a = 81 — 21b.

Pour tout n > 2 naturel, nous avons :

- 1 n+1

[{1-5) ==

k=2

Si f:E— R, ouE CR" est dérivable en T =d € E, alors elle est

continue en =
Pour tout n > 1, nous avons :

- 1 n

E(k+1) n+1

k=1

Pour tout couple a,b € Z, le nombre (7a + 4b)(a — 3b)(2a + b) est pair.

La meilleure méthode pour les démontrer est probablement :

1.

Gt

6.

Par le principe des tiroirs et des chaussettes.

Par ’absurde.

Par récurrence simple.

Par démonstration directe.

Par démonstration directe (en voyant que c¢’est une série télescopique) ou par
récurrence.

Par disjonctions de cas : si a est pair, si b est pair, et si a et b sont impairs.

Faire ces démonstrations est un bon exercice.
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