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J’ai fait ce document pour mon usage, mais je me suis dit que des notes dactylographiées pouvaient
intéresser d’autres personnes. Ainsi, je l’ai partagé (à vous, si vous lisez ces lignes !) ; puisque cela ne
me coûtait rien. Je vous demande simplement de garder en tête qu’il y a des erreurs, c’est impossible
de ne pas en faire. Si vous en trouvez, n’hésitez pas à me les partager (les erreurs de grammaires et de
vocabulaires sont naturellement aussi bienvenues). Vous pouvez me contacter à l’adresse e-mail suivante :

joachim.favre@epfl.ch

Si vous n’avez pas obtenu ce document par le biais de mon repo GitHub, vous serez peut-être intéressé
par le fait que j’en ai un sur lequel je mets mes notes dactylographiées. Voici le lien (allez regarder dans la
section “Releases” pour trouver les documents compilés) :

https://github.com/JoachimFavre/EPFLNotesIN

Notez que le contenu ne m’appartient pas. J’ai fait quelques modifications de structure, j’ai reformulé
certains bouts, et j’ai ajouté quelques notes personnelles ; mais les formulations et les explications viennent
principalement de la personne qui nous a donné ce cours, et du livre dont elle s’est inspirée.
Je pense qu’il est intéressant de préciser que, pour avoir ces notes dactylographiées, j’ai pris mes notes
en LATEXpendant le cours, puis j’ai fait quelques corrections. Je ne pense pas que mettre au propre des
notes écrites à la main est faisable niveau quantité de travail. Pour prendre des notes en LATEX, je me suis
inspiré du lien suivant, écrit par Gilles Castel. Si vous voulez plus de détails, n’hésitez pas à me contacter
à mon adresse e-mail, mentionnée ci-dessus.

https://castel.dev/post/lecture-notes-1/

Je tiens aussi à préciser que les mots “trivial” et “simple” n’ont, dans ce cours, pas la définition que vous
trouvez dans un dictionnaire. Nous sommes à l’EPFL, rien de ce que nous faisons n’est trivial. Quelque
chose de trivial, c’est quelque chose que quelqu’un pris de manière aléatoire dans la rue serait capable de
faire. Dans notre contexte, comprenez plutôt ces mots comme “plus simple que le reste”. Aussi, ce n’est
pas grave si vous prenez du temps à comprendre quelque chose qui est dit trivial (surtout que j’adore
utiliser ce mot partout hihi).
Puisque vous lisez ces lignes, je vais me permettre de vous donner un petit conseil. Le sommeil est un
outil bien plus puissant que ce que vous pouvez imaginer, donc ne négligez jamais une bonne nuit de
sommeil au profit de vos révisions (particulièrement la veille de l’examen). Je vais aussi me permettre de
paraphraser mon enseignante de philosophie du gymnase, Ms. Marques, j’espère que vous vous amuserez
en faisant vos examens !

Version 2022–07–14
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Chapitre 1

Résumé par cours

Cours 1 : Le meilleur sujet — Lundi 21 février 2022 p. 15

• Définition des équations différentielles ordinaires.
• Explication d’un petit peu de terminologie autour de ces équations.
• Introduction au théorème de l’existence et de l’unicité d’une solution des EDVS.

Cours 2 : D’autres équations avec des différences, facile ! — Mercredi 23 février 2022 p. 19

• Fin des EDVS, et définition de leur solution maximale.
• Définition des EDL1.
• Définition des équation homogène associée, démonstration du principe de superposition des solutions,

explication de la méthode de la variation de la constante ; puis utilisation de tous ces principes pour
démontrer la méthode pour trouver la solution générale à une EDL1.

Cours 3 : Place aux exemples — Lundi 28 février 2022 p. 23

• Deux gros exemples de résolution d’EDL1.
• Exemple d’application d’équations différentielles pour modéliser des phénomènes physiques.

Cours 4 : On rajoute un prime — Mercredi 2 mars 2022 p. 26

• Définition des équations différentielles linéaires du second ordre.
• Résolution générale des EDL2 homogènes à coefficients constants.
• Explication de la méthode pour trouver une solution linéairement indépendante à partir d’une autre

solution à une EDL2 homogène.
• Explication de la méthode pour trouver une solution générale d’une EDL2 homogène à partir de deux

solutions linéairement indépendantes.

Cours 5 : Wronskien — Lundi 7 mars 2022 p. 31

• Définition du Wronskien, et preuve du théorème faisant le lien avec des solutions linéairement indépen-
dantes d’une EDL2 homogène.

• Démonstration de la forme des solutions aux EDL2 homogènes.
• Démonstration de la méthode de la variation de la constante pour résoudre les EDL2 complètes.
• Long exemple de résolution d’une EDL2 complète.
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Cours 6 : Fin des équations différentielles — Mercredi 9 mars 2022 p. 36

• Explication de la méthode des coefficients indéterminés.
• Résumé des méthodes pour résoudre les équations différentielles que nous avons vues.

Cours 7 : On introduit pleins de symboles marrants — Lundi 14 mars 2022 p. 41

• Définition des opérations, de la base canonique, du produit scalaire, de la norme Euclidienne et de la
distance dans Rn ; et démonstration de certaines de leurs propriétés.

• Introduction à la topologie dans Rn. Ainsi, définition d’une boule ouverte, d’un ensemble ouvert, d’un
point intérieur, de l’intérieur d’un ensemble, du complémentaire d’un ensemble et d’un ensemble fermé ;
et démonstration de certaines de leurs propriétés.

• Beaucoup d’exemple d’ensembles ouverts, fermés, et ni l’un ni l’autre.

Cours 8 : J’ai failli ajouter un d à ce nom de théorème — Mercredi 16 mars 2022 p. 47

• Définition d’adhérence et de frontière.
• Définition des suites dans Rn, de leur convergence, et du concept de suite bornée.
• Explication du théorème de Bolzano-Weierstrass.
• Explication et preuve du théorème qui fait un lien entre les suites dans Rn et la topologie.
• Définition d’ensemble borné, d’ensemble compact, et de recouvrement.
• Explication du théorème de Heine-Borel-Lebesgue.

Cours 9 : Ça devient limite là — Lundi 21 mars 2022 p. 53

• Définition des fonctions réelles de plusieurs variables réelles.
• Définition de la notion de voisinage, de limite et de continuité pour les fonctions réelles à plusieurs

variables réelles.
• Démonstration du théorème de la caractérisation des limites à partir des suites convergentes.

Cours 10 : Le retour des gendarmes — Mercredi 23 mars 2022 p. 58

• Explication de la méthode de calcul de limites par changement de coordonnées vers le système polaire.
• Preuve du théorème des deux gendarmes.
• Explication de la méthode de calcul de limites par la continuité d’une fonction composée.
• Définition des minimum et maximum d’une fonction, et démonstration qu’une fonction continue sur un

sous-ensemble compact atteint son minimum et son maximum.

Cours 11 : Et le retour des différences maintenant ! , — Lundi 28 mars 2022 p. 65

• Définition des dérivées partielles.
• Définition du gradient.
• Définition des dérivées directionnelles.
• Définition de la dérivabilité.
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Cours 12 : Gros théorème très très utile — Mercredi 30 mars 2022 p. 70

• Démonstration du théorème qui fait le lien entre les dérivées partielles, le gradient, les dérivées
directionnelles et la différentielle d’une fonction.

• Démonstration que le gradient est toujours orthogonal à une courbe de niveau d’une fonction.
• Dérivation de la formule pour trouver le plan orthogonal au graphique d’une fonction.

Cours 13 : On monte en ordres — Lundi 4 avril 2022 p. 74

• Explication du théorème 2 sur la dérivabilité.
• Définition des dérivées partielles d’ordres supérieurs, et du concept de classe pour une fonction.
• Explication du théorème de Schwarz.
• Définition de la matrice Hessienne.
• Grand résumé, suivit d’un grand nombre d’exemples.

Cours 14 : Toujours plus d’exemples — Mercredi 6 avril 2022 p. 80

• Explication de comment démontrer qu’une fonction est dérivable, ou qu’elle ne l’est pas.
• Beaucoup d’exemples.

Cours 15 : Masterclass Jacob — Lundi 11 avril 2022 p. 85

• La référence du titre de ce cours est pas triviale, bien joué si vous l’avez (pour les autres, allez regarder
la La Recette #10 de Maskey).

• Définition des fonctions à valeurs dans Rm, et explication de pourquoi les concepts définis jusqu’à
présent fonctionnent de la même manière pour ces fonctions.

• Définition de la matrice Jacobienne, et du déterminant de Jacobi.
• Explication du théorème permettant de trouver la matrice Jacobienne d’une fonction composée.

Cours 16 : Retour aux intégrales — Mercredi 13 avril 2022 p. 90

• Explication de l’application du théorème du Jacobien pour les fonctions composées aux changements de
variables.

• Explication et preuve de comment calculer la dérivée partielle d’une intégrale selon une variable d’une
fonction de plusieurs variables.

Cours 17 : Méthode de physicien — Lundi 25 avril 2022 p. 96

• Définition du Laplacien.
• Preuve de la proposition permettant de calculer un Laplacien d’une fonction donnée en coordonnées

polaires.
• Définition des fonctions harmoniques.
• Définition de la formule de Taylor pour les fonctions de n variables.
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Cours 18 : Vous savez toujours calculer des valeurs propres ? — Mercredi 27 avril 2022 p. 101

• Explication de la méthode de calcul des polynômes de Taylor par ceux en une dimension.
• Définition d’un point stationnaire d’une fonction, et preuve que les extremums locaux d’une fonction

dérivable en ce point sont des points stationnaires.
• Définition d’un point critique d’une fonction, et preuve que les extremums locaux d’une fonction sont

des points critiques.
• Explication et justification de la condition suffisante pour un extremum local, passant par les valeurs

propres de la matrice Hessienne.

Cours 19 : Fin des études d’extremums — Lundi 2 mai 2022 p. 106

• Explication et preuve d’une proposition qui donne des hypothèses équivalentes pour le théorème de la
condition suffisante pour un extremum local quand n = 2.

• Explication d’un théorème similaire pour n = 3.
• Explication de la méthode pour trouver les minimums et maximums globaux sur un ensemble compact.
• Introduction aux fonctions implicites.

Cours 20 : Fonctions implicites — Mercredi 4 mai 2022 p. 112

• Définition de la notion de surface de niveau.
• Explication et démonstration du théorème des fonctions implicites.
• Application de ce théorème pour le calcul de l’hyperplan tangent.

Cours 21 : Lagrange à Laferme avec Lescochons — Mercredi 11 mai 2022 p. 118

• Démonstration du théorème de la méthode des multiplicateurs de Lagrange quand n = 2, et explication
de sa généralisation.

• Exemples de ce théorème.

Cours 22 : Mon intégrale elle est douce — Lundi 16 mai 2022 p. 123

• Parce que l’épilation intégrale (je sais pas si c’est la meilleure référence à avoir, mais elle est là (Cyprien
— L’école 2) !).

• Définition de pavé, de subdivision et de sommes de Darboux.
• Définition des fonctions intégrables, et preuve que les fonctions continues sont intégrables.
• Explication des propriétés de l’intégrale, et du théorème de Fubini.

Cours 23 : Fubini on steroids — Mercredi 18 mai 2022 p. 129

• Définition de l’intégrale d’une fonction sur un ensemble qui n’est pas un pavé fermé.
• Explication du théorème de Fubini pour les domaines à frontière régulière de type 1 et 2.
• Explication de la méthode pour calculer l’intégrale de fonctions sur des domaines à frontières régulières

qui ne sont ni de type 1 ni de type 2.
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Cours 24 : Changements de variables — Lundi 23 mai 2022 p. 134

• Explication du théorème de Fubini pour les intégrales triples.
• Explication du théorème disant comment faire un changement de variable pour une intégrale multiple.
• Application du changement de variable pour les coordonnées polaires.

Cours 25 : π apparaît de nulle part — Mercredi 25 mai 2022 p. 139

• Explication du changement de variables en coordonnées sphériques.
• Explication de la méthode pour calculer la masse d’un objet donc on connait la masse volumique en

tout point.

Cours 26 : Toutes les bonnes choses ont une fin — Lundi 30 mai 2022 p. 143

• Définition du changement de variable cylindrique.
• Beaucoup d’exemples.
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Lundi 21 février 2022 — Cours 1 : Le meilleur sujet

Chapitre 2

Équations différentielles ordinaires

2.1 Définitions et exemples

Exemple 1 Supposons qu’on a une fonction y(x) = y, où x ∈ R. De plus, disons que nous savons
que :

y′ = 0, ∀x ∈ R

On remarque alors que y(x) = 2 est une solution sur R. De plus, on peut même
obtenir une solution plus générale :

y(x) = C, où C ∈ R,∀x ∈ R

On verra plus tard que c’est la solution générale à cette équation.

Définition Une équation différentielle ordinaire est une expression :

E
(
x, y, y′, . . . , y(n)

)
= 0

où E est une expression fonctionnelle, n ∈ N0, et y = y(x) est une fonction inconnue
de x.
On cherche un intervalle ouvert I ⊂ R et une fonction y : I 7→ R de classe Cn telle
que l’équation donnée est satisfaite ∀x ∈ I.

Remarque
personnelle

Cette définition peut paraître très formelle, mais l’idée c’est qu’une
équation différentielle ordinaire est une équation où on a une fonction,
ses dérivées, et la variable x. Cela permet de faire une opposition
avec les équations intégrales comme la Rendering Equation (où Li
est liée à Lo, ce qui fait que c’est bien une équation et non une
formule) :

Lo(x,−→ω ) = Le(x,−→ω ) +
�

Ω
Li(x,−→ω ′)fr(−→ω , x,−→ω ′) cos(θ)d−→ω ′

Cela permet aussi de faire une différence avec les équations à dérivées
partielles, comme l’équation de la chaleur :

∂T (x, t)
∂t

− k
∂2T (x, t)
∂x2 = 0

Exemple 2 Considérons l’équation différentielle ordinaire suivante :

y′′ = 0
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On remarque déjà que, nécessairement, y′ = C1 ∈ R pour tout x ∈ R. Ainsi, pour
finir, on obtient :

y = C1x+ C2, ∀C1, C2 ∈ R,∀x ∈ R

Exemple 3 Prenons maintenant l’équation suivante :

y + y′ = 0 ⇐⇒ y′ = −y

On sait que f(x) = ex est telle que f ′(x) = f(x). Il nous suffit donc de la modifier
légèrement pour obtenir une solution à notre équation :

y = e−x, ∀x ∈ R

On peut finalement en déduire la solution générale :

y(x) = Ce−x, ∀C ∈ R, x ∈ R

Équation la plus
simple

On remarque que l’exemple 1 et l’exemple 2 sont de la forme :

y(n) = f(x)

où f(x) est une fonction connue et continue sur I.
Dans ce cas là, nous pouvons résoudre cette équation par intégration.

Équation à va-
riables séparées

On appelle le troisième exemple une équation à variables séparées. En effet, on
peut écrire :

dy

dx
= y′ =⇒ dy

dx
= −y y ̸= 0=⇒ dy

y
= −dx

Ainsi, nos variables sont séparées : nous avons y d’un côté et x de l’autre. Ceci
nous permet d’obtenir une dépendance entre le changement infinitésimal en y et le
changement infinitésimal en x. Puisque c’est vrai pour tout x sur notre intervalle,
on peut intégrer en préservant l’égalité :

�
dy

y
= −

�
dx =⇒ log|y| = −x+ C1

pour un C1 ∈ R arbitraire.
On peut continuer notre équation :

|y| = e−x eC1︸︷︷︸
C2>0

=⇒ y = ±C2e
−x

Finalement, on peut aussi remarquer que y = 0 est une solution. Tout ceci nous
permet d’obtenir la solution générale à notre équation :

y(x) = Ce−x, C ∈ R, x ∈ R

Terminologie On appelle E
(
X, y, . . . , y(n)) = 0 une équation différentielle (ED).

Ordre Un nombre naturel n ∈ N∗ est l’ordre d’une équation différentielle
si n est l’ordre maximal de dérivée de y(x) dans l’équation.

Équation li-
néaire

Si notre équation différentielle est un polynôme linéaire en y, y′, . . . , y(n),
alors l’équation est dite linéaire.

Équation auto-
nome

Si l’expression ne contient pas de x, l’équation est dite autonome.
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2.2. EDVS Notes par Joachim Favre

Solution géné-
rale

La solution générale d’une équation différentielle est l’ensemble
de toutes les solutions de l’équation.

Exemple 4 Considérons les équations suivantes :
1. y + y′ = 5x+ 1
2. 2x2y + y′′′ = 0
3. y′ + 3y′′ = 0

On peut voir les propriétés suivantes :
1. Équation différentielle linéaire d’ordre 1 qui n’est pas autonome.
2. ED linéaire d’ordre 3 qui n’est pas autonome.
3. ED linéaire d’ordre 2 autonome.

Définition du
problème de
Cauchy

Résoudre le problème de Cauchy (équation différentielle avec des conditions
initiales) pour l’équation E

(
x, y, y′, . . . , y(n)) = 0 consiste à trouver l’intervalle ouvert

I ⊂ R et une fonction y : I 7→ R de classe Cn(I) telle que E
(
x, y, . . . , y(n)) = 0 sur

I et pour laquelle des conditions initiales sont satisfaites :

y(x0) = b0, y(x1) = b1, y
′(x2) = b2, . . .

Le nombre des conditions initiales dépend du type de l’équation différentielle.

Retour à
l’exemple 2

Nous avions trouvé :

y′′ = 0 =⇒ y(x) = C1x+ C2, ∀C1, C2 ∈ R, x ∈ R

Résolvons maintenant le problème de Cauchy pour y′′ = 0 avec les conditions
initiales :

y(0) = 1, y(2) = 4

Nous pouvons mettre ces conditions initiales dans notre solution générale :

1 = y(0) = C1 · 0 + C2 = C2 =⇒ C2 = 1

4 = y(2) = C1 · 2 + C2 = 2C1 + 1 =⇒ C1 = 3
2

On obtient ainsi la solution particulière satisfaisant les conditions initiales :

y(x) = 3
2x+ 1

2.2 Équations différentielles à variables séparées

Définition On appelle une équation différentielle à variables séparées (EDVS) une équation
sous la forme :

f(y) · y′ = g(x)

où f : I 7→ R est une fonction continue sur I ⊂ R et g : J 7→ R est une fonction
continue sur J ∈ R.
Une fonction y : J ′ ⊂ J 7→ I de classe C1 satisfaisant l’équation f(y)y′ = g(x) est
une solution.

Explication Nous pouvons manipuler notre équation de la manière suivante :

f(y)dy
dx

= g(x) en gros=⇒
�
f(y)dy =

�
g(x)dx

Nous verrons pourquoi ceci marche et pourquoi cette méthode est
formelle à l’aide d’un théorème ci-après.
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Exemple Par exemple, y′ = −y est une EDVS :

y′ = −y ⇐⇒ 1
y
y′ = −1 =⇒ f(y) = 1

y
, g(x) = −1

Théorème : Exis-
tence et unicité
d’une solution
des EDVS

Soit f : I 7→ R une fonction continue telle que f(y) ≠ 0 pour tout y ∈ I, et soit
g : J 7→ R une fonction continue.
Existence : Alors, pour tout couple (x0, b0) où x0 ∈ J et b0 ∈ I, l’équation

f(y)y′ = g(x)

admet une solution y : J ′ ⊂ J 7→ I vérifiant la condition initiale.
Unicité : Si y1 : J1 7→ I et y2 : J2 7→ I sont deux solutions telles que y1(x0) =
y2(x0) = b0, alors :

y1(x) = y2(x), ∀x ∈ J1 ∩ J2

La démonstration de ce théorème doit être connue pour l’examen.

Note person-
nelle

Ce théorème implique que si nous pouvons écrire la solution générale
à une EDVS de manière complètement générale avec des constantes,
alors il y a une et exactement une constante. Par exemple, les
ensembles de fonctions suivants ne pourraient pas être les solutions
générales d’une EDVS :

f(x) = C1 sin(x) + C2 cos(x), g(x) = x2

où C1, C2,∈ R et x ∈ R.
Cependant, comme on l’a vu plus tôt, l’ensemble de fonctions suivant
est la solution générale à l’EDVS y′ = −y :

y(x) = Ce−x, où C ∈ R, x ∈ R

Preuve Nous allons seulement montrer l’existence de la solution.
Soit la fonction suivante :

F (y) =
� y

b0

f(t)dt

On sait que F (y) est dérivable par le théorème fondamental du
calcul intégral. De plus, on sait que F ′(y) = f(y) ̸= 0 sur I, donc
f(y) ne change pas pas de signe et donc F (y) est monotone. Puisque
F (y) est continue et monotone, on sait qu’elle est inversible sur I.
Soit aussi la fonction suivante :

G(x) =
� x

x0

g(t)dt

Par le théorème fondamental du calcul intégral, on sait aussi que
G(x0) = 0 et que G est dérivable sur J .
Définissons aussi la fonction suivante dans un voisinage de x0 (on
sait que F est inversible sur I, et F−1(G(x0)) = b0 ∈ I) :

y(x) = F−1(G(x))

Nous allons démontrer que y(x) est une solution de l’équation
f(y)y′(x) = g(x) dans un voisinage de x0 ∈ J , et qu’elle satisfait
y(x0) = b0.

18



2.2. EDVS Notes par Joachim Favre

En manipulant notre définition, on obtient que, dans un voisinage
de x0 ∈ J :

F (y(x)) = G(x)
d

dx=⇒ F ′(y(x))y′(x) = G′(x) =⇒ f(y)y′(x) = g(x)

De plus, nous savons par la définition de G et F que G(x0) = 0 et
F (b0) = 0, donc :

y(x0) = F−1(G(x0)) = F−1(0) = b0

□

Idée de la
preuve

Nous partons de notre équation :

g(y)dy
dx

= f(x)

Et, notre théorème nous dit que c’est plus ou moins équivalent à :
�
f(y)dy =

�
g(x)dx ⇐⇒ F (y) = G(x)

Mercredi 23 février 2022 — Cours 2 : D’autres équations avec des différences, facile !

Résumé pour les
EDVS

Pour résoudre une EDVS, donc une équation sous la forme f(y)y′ = g(x) où
f : I 7→ R et g : J 7→ R sont continues, on pose l’équation :

�
f(y)dy =

�
g(x)dx

Puisqu’on a une constante des deux côtés, il nous suffit de prendre une seule
constante.

Exemple Résolvons l’équation suivante :
y′(x)
y2(x) = 1

C’est une EDVS, car f(y) = 1
y2 est continue sur R∗

+ ou sur R∗
−, donc on peut

considérer chaque intervalle séparément, et g(x) = 1 : R 7→ R.
Posons nos intégrales :�

dy

y2 =
�
dx =⇒ −1

y
= x+ C, ∀C ∈ R

Ainsi, on peut résoudre notre équation pour obtenir :

y = − 1
x+ C

, ∀C ∈ R

C’est la solution générale sur ]−∞,−C[ et ]−C,+∞[ (y n’est pas continue en −C,
donc elle n’est clairement pas dérivable). Il ne faut pas oublier qu’une solution
générale est une fonction et un intervalle.
Supposons maintenant qu’on cherche une solution telle que y(0) = b0 ∈ R∗ :

y(0) = − 1
C

= b0 =⇒ C = − 1
b0

Ainsi :
y(x) = − 1

x− 1
b0

= b0

1 − xb0

Si b0 > 0 =⇒ 1
b0
> 0, notre solution particulière est :

y(x) = − 1
x− 1

b0

sur
]
−∞,

1
b0

[
∋ 0
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Si b0 < 0, notre solution particulière est donnée par :

y(x) = − 1
x− 1

b0

sur
]

1
b0
,+∞

[
∋ 0

On choisit l’intervalle de manière à ce que 0 soit dedans.

Définition : Solu-
tion maximale

Une solution maximale d’une EDVS avec la condition initiale y(x0) = b0 où x0 ∈ J
et b0 ∈ I est une fonction y(x) de classe C1 satisfaisant l’équation, la condition
initiale, et qui est définie sur le plus grand intervalle possible.
Le théorème des EDVS nous dit que si f(y) ̸= 0 sur I, alors il existe une unique
solution maximale. Toute solution avec la même condition initiale est une restriction
de la solution maximale.

Remarque Dans l’exemple ci-dessus, nous avons trouvé les solutions maximales
pour les conditions initiales x0 = 0 et b0 ∈ R∗, b0 > 0 ou b0 < 0.

2.3 Équations différentielles linéaires du premier ordre

Définition :
EDL1

Soit I ⊂ R un intervalle ouvert. Nous appelons équation différentielle linéaire
du premier ordre (EDL1) une équation de la forme suivante :

y′(x) + p(x)y(x) = f(x)

où p, f : I 7→ R sont continues.
Une solution est une fonction y : I 7→ R de classe C1 satisfaisant l’équation.

Équation homo-
gène associée

Commençons par considérer l’équation suivante (qui est plus facile) :

y′(x) + p(x)y(x) = 0

Cette équation s’appelle l’équation homogène associée à l’EDL1 y′(x) +
p(x)y(x) = f(x).
Nous avons deux cas. Soit y(x) = 0 ∀x ∈ R, soit y′(x)

y(x) = −p(x) (qui est une EDVS).
Continuous à travailler sur le deuxième cas :

�
dy

y
= −

�
p(x)dx =⇒ log|y| = −P (x) + C1, C1 ∈ R

où P (x) est une primitive de p(x).
Ainsi :

|y| = e−P (x)+C1 = eC1︸︷︷︸
C2>0

e−P (x) =⇒ y(x) = C2e
−P (x), C2 ∈ R∗

Cependant, puisque y(x) = 0 est aussi une solution, on obtient que la solution
générale de l’équation homogène associée sur I ⊂ R est :

y(x) = Ce−P (x), ∀x ∈ I, ∀C ∈ R

Principe de su-
perposition de
solutions

Soit I ⊂ R un intervalle ouvert, et p, f1, f2 : I 7→ R des fonction continues.
Supposons que v1 : I 7→ R de classe C1 est une solution de l’équation :

y′ + p(x)y = f1(x)

Supposons aussi que v2 : I 7→ R de classe C1 est une solution de l’équation :

y′ + p(x)y = f2(x)
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Alors, pour tout couple C1, C2 ∈ R, la fonction v(x) = C1v1(x) + C2v2(x) est une
solution de l’équation :

y′ + p(x)y = C1f1(x) + C2f2(x)

Vérification Nous pouvons facilement vérifier notre équation :

v′(x) + p(x)v(x) = C1v
′
1(x) + C2v

′
2(x) + p(x)(C1v1(x) + C2v2(x))

= C1(v′
1(x) + p(x)v1(x)) + C2(v′

2(x) + p(x)v2(x))
= C1f1(x) + C2f2(x)

Ce qui termine notre démonstration.

□

Méthode de
la variation de
constante

Nous cherchons une solution particulière de y′(x) + p(x)y(x) = f(x) où p, f : I 7→ R
sont des fonctions continues, sous la forme suivante :

v(x) = C(x)e−P (x)

où P (x) est une primitive de p(x) sur I et C(x) est une fonction inconnue de x.
Nous appelons ceci un Ansatz. On suppose que notre solution est d’une certaine
forme et on espère que ça nous amène à une solution (en l’occurrence, on prend une
solution similaire à celle qu’on avait trouvée pour les équations homogènes associées).
Si v(x) est une solution de l’équation, alors :

v′(x)+p(x)v(x) = f(x) =⇒ C ′(x)e−P (x)+C(x)e−P (x)(−p(x))+p(x)C(x)e−P (x) = f(x)

Ceci nous permet donc d’obtenir que :

C ′(x)e−P (x) = f(x) =⇒ C ′(x) = f(x)eP (x) =⇒ C(x) =
�
f(x)eP (x)dx

Nous avons donc trouvé une solution particulière de l’équation, qui est :

v(x) =
(�

f(x)eP (x)dx

)
e−P (x)

où P (x) est une primitive de p(x) sur I.

Exemple Résolvons l’équation différentielle suivante :

y′ + y = 5x+ 1

C’est une EDL1 avec p(x) = 1 et f(x) = 5x+ 1, où p, f : R 7→ R sont continues. On
trouve que P (x) = x est une primitive (quelconque, donc sans constante) de p(x).
Nous savons que la solution générale de l’équation homogène associée y′ + y = 0 est :

y(x) = Ce−P (x) = Ce−x, ∀x ∈ R,∀C ∈ R

Pour trouver une solution particulière de l’équation y′ + y = 5x+ 1 on calcule :

C(x) =
�
f(x)eP (x)dx =

�
(5x+ 1)exdx = 5

�
xexdx+

�
exdx

Nous pouvons calculer la première intégrale par partie :

C(x) = 5xex − 5
�
exdx+

�
exdx = 5xex − 4ex

On peut prendre une constante arbitraire, donc nous prenons C = 0.
Ainsi, on a trouvé une solution particulière de y′ + y = 5x+ 1 :

v(x) = (5xex − 4ex)e−x = 5x− 4
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Nous pouvons vérifier que c’est bien une solution :

v′(x) + v(x) = 5 + 5x− 4 = 5x+ 1

comme attendu.

Proposition
pour les EDL1

Soient p, f : I 7→ R des fonctions continues. Supposons que v0 : I 7→ R est une
solution particulière de l’équation suivante :

y′(x) + p(x)y(x) = f(x)

Alors, la solution générale de cette équation est :

v(x) = v0(x) + Ce−P (x), ∀C ∈ R

où P (x) est une primitive de p(x) sur I.

La démonstration de ce théorème doit être connue pour l’examen.

Preuve Nous allons montrer que toute solution de cette équation est de la
forme v0(x) + Ce−P (x).
Soit v1(x) une solution de y′(x) + p(x)y(x) = f(x). On a aussi que
v0(x) est une solution de la même équation.
Alors, d’après le principe de superposition de solutions, la fonction
v1(x) − v0(x) est une solution de l’équation :

y′(x) + p(x)y(x) = f(x) − f(x) = 0

Ainsi, v1(x) − v0(x) est une solution de l’équation homogène :

y′(x) + p(x)y(x) = 0

Cependant, c’est une EDVS, donc nous savons que la solution
générale de cette équation homogène est :

v(x) = Ce−P (x), C ∈ R arbitraire

où P (x) est une primitive de p(x) sur I.
On en déduit qu’il existe une valeur de C ∈ R telle que v1(x) −
v0(x) = Ce−P (x). Ainsi, on obtient que la solution v1(x) est de la
forme :

v1(x) = v0(x) + Ce−P (x)

Puisque v1(x) était une solution arbitraire, nous obtenons que l’en-
semble de toutes les solutions de l’équation y′(x) + p(x)y(x) = f(x)
est :

v(x) = v0(x) + Ce−P (x), C ∈ R, x ∈ I

Donc, par définition, v(x) est la solution générale.

□

Résumé En mettant tout en commun, on obtient que la solution générale d’une EDL1 est :

y(x) = Ce−P (x) +
(�

f(x)eP (x)dx

)
e−P (x), ∀C ∈ R, x ∈ I
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Lundi 28 février 2022 — Cours 3 : Place aux exemples

Types d’équa-
tions

Regardons les équations différentielles suivantes :
1. exy′ = y3 + y
2.
(
1 + sin2 x

)
y2y′ = cos(x)

3. 2y′ − 2x = y
4. y′ = (3x+ y)2

Étudions le type de ces équations :
1. Puisqu’il y a un y3, elle n’est clairement pas linéaire. Cependant, c’est une

EDVS car elle est équivalente à :

dy

y3 + y
= e−xdx

Il ne faut oublier non plus que y = 0 est une solution, puisqu’on a divisé par
y.

2. Cela ne peut non plus pas être une équation linéaire puisqu’on a y2. Cependant,
elle est équivalente à :

y2dy = cos(x)dx
1 + sin2(x)

3. C’est une EDL1, et il est impossible de l’écrire sous la forme d’une équation
différentielle à variable séparée.

y′ − 1
2y = x, p(x) = −1

2 , f(x) = x

4. Cela ne peut pas être linéaire car il y a un carré. Il semble aussi compliqué
de séparer les variables. Cependant, en prenant z = 3x+ y =⇒ z′ = y′ + 3,
notre équation devient :

z′ − 3 = z2 =⇒ dz

z2 + 3 = dx

On arrive donc bien à une équation différentielle à variable séparée.

Exemple 1 Prenons l’équation différentielle linéaire d’ordre 1 suivante :

y′ − 2
x
y = x

2 , p(x) = − 2
x
, f(x) = x

2

On remarque que p est continue sur ]−∞, 0[ ou sur ]0,+∞[, et f est continue sur R.

Équation ho-
mogène

Premièrement, on cherche la solution générale de l’équation homo-
gène associée :

y′ − 2
x
y = 0, sur ]−∞, 0[ et ]0,∞[

Pour cela, on cherche une primitive de p(x) :

P (x) =
�

− 2
x
dx = −2 log|x| = − log

(
x2), x ̸= 0

Ainsi, la solution de notre équation homogène est :

yhom(x) = Ce−P (x) = Ce−(− log(x2)) = Cx2

sur ]−∞, 0[ et ]0,∞[.
On peut facilement vérifier que notre solution fonctionne bien.
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Solution parti-
culière

Deuxièmement, nous cherchons une solution particulière de l’équa-
tion complète :

y′ − 2
x
y = x

2
Calculons l’intégrale suivante :
�
f(x)eP (x)dx = −

�
x

2 e
− log(x2)dx =

�
x

2
1
x2 dx =

�
dx

2x = 1
2 log|x|

où x ̸= 0.
On obtient que la solution particulière à notre équation est donnée
par :

ypart(x) = 1
2 log|x|elog(x2) = 1

2x
2 log|x|, x ̸= 0

On peut vérifier que notre solution fonctionne bien, prenons x ∈
]−∞, 0[ par exemple. Sur cet ensemble, notre solution est :

ypart(x) = 1
2x

2 log(−x)

Et donc :

y′ − 2
x
y =

(
x2

2 log(−x)
)′

− 2
x

(
x2

2 log(−x)
)

= x log(−x) + x2

2
1

−x
(−1) − x log(−x)

= x

2

Nous pouvons aussi vérifier que cela fonctionne sur ]0,+∞[ de
manière similaire.

Solution géné-
rale

Troisièmement, on sait que la solution générale de l’EDL1 est donnée
par :

y(x) = yhom(x) + ypart(x)

On trouve donc que :

y(x) =


Cx2 + x2

2 log(x), x ∈ ]0,∞[, C ∈ R

Cx2 + x2

2 log(−x), x ∈ ]−∞, 0[, C ∈ R

Exemple 2 Prenons l’EDL1 suivante :

y′ − tan(x)︸ ︷︷ ︸
p(x)

y = cos(x)︸ ︷︷ ︸
f(x)

Nous voulons trouver la solution maximale avec la condition initiale y(0) = 3.
Cette information est importante, car cela nous dit que 0 doit être dans l’intervalle
(il y a une infinité d’intervalles où tangente est continue). Nous allons donc considérer
cette équation sur

]−π
2 , π2

[
. En d’autres mots, on prend p, f :

]−π
2 , π2

[
7→ R.

Équation ho-
mogène

Premièrement, nous cherchons la solution générale de l’équation
homogène associée :

y′ − tan(x)y = 0
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Calculons une primitive de p(x) :

P (x) = −
�

tan(x)dx = −
� sin(x)

cos(x)dx

Nous pouvons remarque que sin(x) est la dérivée de cos(x) à une
constante près, et donc nous pouvons prendre un changement de
variable :

P (x) =
�
d(cosx)
cos(x) = log|cos(x)| = log(cos(x))

Nous pouvons bien enlever la valeur absolue car, sur
]−π

2 , π2
[
, cos(x)

est positif.
On obtient donc que la solution à l’équation homogène est :

yhom(x) = Ce−P (x) = Ce− log(cos(x)) = C

cos(x) , x ∈
]

−π
2 ,

π

2

[
, C ∈ R

Solution parti-
culière

Deuxièmement, nous cherchons une solution particulière de l’équa-
tion complète. Calculons l’intégrale suivante :

�
f(x)eP (x)dx =

�
cos(x)elog(cos(x))dx =

�
cos2(x)dx

On sait que cos(2x) = cos2(x) − sin2(x), donc notre intégrale est
donnée par :

�
f(x)eP (x)dx =

� 1
2(1 + cos(2x))dx = 1

2x+ 1
4 sin(2x)

Ce qui nous permet d’obtenir une solution particulière à notre
équation :

ypart(x) =
(

1
2x+ 1

4 sin(2x)
)
e−P (x)

=
(

1
2x+ 1

4x sin(2x)
)

1
cos(x)

= x

2 cos(x) + sin(x)
2

puisque sin(2x) = 2 sin(x) cos(x).

Solution géné-
rale

Troisièmement, nous obtenons la solution générale :

y(x) = yhom + ypart = C

cos(x) + x

2 cos(x) + sin(x)
2 , x ∈

]
−π

2 ,
π

2

[
pour C ∈ R, une constante arbitraire.

Condition ini-
tiale

Quatrièmement, nous devons mettre notre condition initiale dans
notre solution :

y(0) = 3 =⇒ 3 = y(0) = C + 0 + 0 = C =⇒ C = 3

On obtient donc que la solution maximale satisfaisant la condition
initiale est :

y(x) = 3
cos(x) + x

2 cos(x) + 1
2 sin(x) , x ∈

]
−π
2 ,

π

2

[

25



Analyse II CHAPITRE 2. ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES

Application des
EDVS

Les équations différentielles permettent typiquement de décrire des phénomènes
physiques. Un exemple commun est que la croissance ou la décroissance de quelque
chose est proportionnel à la taille de ce quelque chose. En d’autres mots :

y′(t) = ky(t), k ∈ R

Une population de bactérie avec de la nourriture et de la place infinie ou la masse
d’un objet subissant une désintégration radioactive suivent typiquement cette loi.
La première a k > 0, alors que la deuxième a k < 0. D’autres phénomènes, comme
la propagation d’un virus au sein d’une population, suivent cette loi sur un temps
restreint.
Résolvons notre équation différentielle. On remarque que y = 0. De plus, c’est une
EDVS, donc :
�
dy

y
=
�
kdt =⇒ log|y| = kt+C1 =⇒ |y| = eC1︸︷︷︸

>0

ekt =⇒ y(t) = Cekt, C ∈ R

Supposons que nous savons que y(0) = y0 > 0, alors :

y0 = y(0) = Cek·0 = C

On obtient donc que la solution maximale satisfaisant la condition initiale y(0) = y0
est :

y(t) = y0e
kt

Ce qui est cohérent avec ce à quoi nous pouvions nous attendre.

Mercredi 2 mars 2022 — Cours 4 : On rajoute un prime

2.4 Équations différentielles linéaires du second ordre

Définition :
EDL2

Soit I un intervalle ouvert. On appelle équation différentielle linéaire du second
ordre (EDL2) une équation de la forme :

y′′(x) + p(x)y′(x) + q(x)y(x) = f(x)

où p, q, f : I 7→ R sont des fonctions continues.
Nous appelons EDL2 homogène une équation de la forme suivante :

y′′(x) + p(x)y′(x) + q(x)y(x) = 0

Nous cherchons une solution de cette équation de classe C2(I,R).

Exemple Prenons l’EDL2 homgène suivante :

y′′ = 0

En intégrant deux fois, on trouve que :

y(x) = C1x+ C2, C1, C2 ∈ R,∀x ∈ R

EDL2 homogène
à coefficients
constants

Considérons les EDL2 homogène à coefficients constants. En d’autres mots,
soit l’équation différentielle suivante :

y′′(x) + py′(x) + qy(x) = 0, p, q ∈ R

Construisons un polynôme λ2 + pλ + q = 0. Par le théorème fondamental de
l’algèbre, on sait qu’il existe deux solutions complexes a et b tel que λ2 + pλ+ q =
(λ− a)(λ− b) = λ2 − (a+ b)λ+ ab. On obtient donc que p = −(a+ b) et q = ab, ce
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qu’on peut remplacer dans notre équation :

y′′(x) − (a+ b)y′(x) + aby(x) = 0, a, b ∈ C

Nous pouvons voir que notre équation est équivalente à :

(y′(x) − ay(x))′ − b(y′(x) − ay(x)) = 0

Ainsi, nous pouvons prendre le changement de variable z(x) = y′(x) − ay(x), ce qui
nous donne une EDL1 homogène :

z′(x) − bz(x) = 0 =⇒ z(x) = C1e
bx, x ∈ R, C arbitraire

Puisque z(x) = y′(x) − ay(x), on obtient une EDL1 pour y :

y′(x) −a︸︷︷︸
p(x)

y(x) = C1e
bx︸ ︷︷ ︸

f(x)

Résolution de
l’EDL1

Nous pouvons trouver une primitive de p(x) :

P (x) =
�

−adx = −ax

Ainsi, cela nous donne la solution à l’équation homogène associée :

yhom(x) = C2e
ax

Nous pouvons utiliser la méthode de la variation de la constante :

C(x) =
�
f(x)eP (x)dx =

�
C1e

bxe−axdx = C1

�
e(b−a)xdx

Nous avons deux possibilitiés :

C(x) =


1

b− a
C1e

(b−a)x, si b ̸= a

C1x, si b = a

On obtient donc une solution particulière à notre équation :

ypart(x) =
{
C1e

(b−a)xeax = C1e
bx, si b ̸= a

C1xe
ax, si b = a

Solution géné-
rale

Tout ceci nous permet d’obtenir la solution générale à notre équa-
tion :

y(x) =
{
C2e

ax + C1e
bx, si a ̸= b

C2e
ax + C1xe

ax, si a = b

où C1 et C2 sont deux constantes arbitraires, et a et b sont des
racines de l’équation caractéristique λ2 + pλ+ q = 0, ∀x ∈ R.
Il nous reste un problème, c’est que nous faisons de l’analyse réelle,
mais C1 et C2 sont des constantes complexes arbitraires et a et b
sont potentielle complexes. Il faut donc encore qu’on traite cette
question.
Si a ̸= b sont des racines complexes, telles que a, b ̸∈ R, alors nous
savons que a = b. De plus, prenons C1 = C et C2 = C afin d’obtenir
une solution réelle :

y(x) = Ceax + Ceax
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Nous pouvons prendre a = α + iβ où α, β ∈ R et β ̸= 0. De plus,
prenons C = 1

2 (C3 − iC4). Ceci nous donne :

y(x) = Ceax + Ceax

= 1
2(C3 − iC4)eαxeiβx + 1

2(C3 + iC4)eαxe−iβx

= C3e
αx e

iβx + e−iβx

2 + C4e
αx e

iβx − e−iβx

2i
= C3e

αx cos(βx) + C4e
αx sin(βx), où C3, C4 ∈ R, x ∈ R

puisque −i = 1
i .

C’est la solution générale réelle de l’équation si b = a ̸∈ R.

Résumé Nous commençons avec une équation de la forme :

y′′(x) + py′(x) + qy(x) = 0, p, q ∈ R

Soient a, b ∈ C les racines de l’équation λ2 + pλ+ q = 0. Alors, la
solution générale est :

y(x) =


C1e

ax + C2e
bx, si a, b ∈ R, a ̸= b

C1e
ax + C2xe

ax, si a = b

C1e
αx cos(βx) + C2e

αx sin(βx), si a = α+ iβ = b ̸∈ R

pour des constantes arbitraires C1, C2 ∈ R et pour tout x ∈ R.

Note person-
nelle : Intui-
tion

Il peut paraitre très bizarre de cherchez les racines du polynôme
au départ. Cela fonctionne, mais il est aussi intéressant de savoir
comment est-ce que les mathématiciens l’ont deviné aux premiers
abords.
Nous avons donc l’équation suivante :

y′′(x) + py′(x) + qy(x) = 0, p, q ∈ R

Nous savons que l’exponentielle est très pratique, donc faisons
l’Ansatz y(x) = eλx. Cela nous donne :

λ2eλx + pλeλx + qeλx = 0 =⇒ eλx
(
λ2 + pλ+ q

)
= 0

Or, puisque l’exponentielle est non-nulle pour tout x, nécessairement,
λ2 + pλ+ q = 0. Les deux solutions à cette équation nous donnent
deux solutions linéairement indépendantes (nous allons définir ce
concept juste après) à notre équation différentielle, sauf si a = b.
Dans le cas où les solutions sont réelles, nous avons terminé, dans
le cas où elles sont complexes nous pouvons les modifier de manière
à obtenir un sinus et un cosinus.
Notes que l’équation du mouvement d’un oscillateur harmonique
amorti (un pendule avec des frottements de l’air, par exemple).
Les trois possibilités de solutions correspondent aux trois régimes
des oscillateurs harmoniques amortis : overdamped, underdamped et
critically damped.

Exemple Considérons l’équation différentielle suivante :

y′′ + 2y′ + y = 0

C’est une EDL2 homogène, donc nous cherchons les racines de l’équation caractéris-
tique :

λ2 + 2λ+ 1 = 0 =⇒ (λ+ 1)2 = 0 =⇒ a = b = −1
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On trouve alors que las solution générale est donnée par :

y(x) = C1e
−x + C2xe

−x, ∀x ∈ R,∀x ∈ R

EDL2 homogène Considérons l’équation suivante :

y′′(x) + p(x)y′(x) + q(x)y(x) = 0, p, q : I 7→ R

Nous pouvons faire les observations suivantes :
1. La solution générale d’une EDL2 homogène à coefficients constants contient

2 constantes arbitraires. En fait, c’est le cas pour les EDL2 homogènes en
général. Ce point est difficile à démontrer, et nous ne le feront pas dans ce
cours.

2. Si y1(x) et y2(x) sont deux solutions d’une EDL2 homogène, alors la fonction
suivante est aussi une solution :

y(x) = Ay1(x) +By2(x), où A,B ∈ R

En effet, nous pouvons le vérifier trivialement (j’adore ce mot) :

(Ay1(x) +By2(x))′′ + p(x)(Ay1(x) +By2(x))′ + q(x)(Ay1(x) +By2(x))
= A (y′′

1 (x) + p(x)y′
1(x) + q(x)y1(x))︸ ︷︷ ︸
=0

+B (y′′
2 (x) + p(x)y′

2(x) + q(x)y2(x))︸ ︷︷ ︸
=0

= 0

puisque y1(x) et y2(x) sont des solutions.

Théorème Une EDL2 homogène admet une seule solution y(x) : I 7→ R de classe C2 telle que
y(x0) = t et y′(x0) = s pour un x0 ∈ I et les nombres arbitraires s, t ∈ R.

Preuve Nous acceptons ce théorème sans preuve dans ce cours, mais il est
cohérent avec ce que nous avons trouvé jusque là (notamment avec
l’observation qu’une solution a deux constantes).

Définition : in-
dépendance
linéaire

Deux solutions y1(x), y2(x) : I 7→ R sont linéairement indépendantes s’il n’existe
pas de constante C ∈ R telle que :

y2(x) = Cy1(x) ou y1(x) = Cy2(x), ∀x ∈ I

En particulier, cela implique que y1(x) et y2(x) ne sont pas des fonctions constantes
égales à 0 sur I.

Remarque Le théorème que nous avons vu juste avant nous dit que les EDL2
homogènes possèdent exactement deux solutions linéairement indé-
pendantes. En effet, il nous faut exactement deux constantes pour
qu’il y ait exactement une solution qui respecte deux conditions
initiales.

Construction
d’une deuxième
solution

Supposons que v1(x) est une solution de y′′(x) + p(x)y′(x) + q(x)y(x) = 0 telle
que v1(x) ̸= 0 pour tout x ∈ I. Nous nous demandons comment trouver une autre
solution linéairement indépendante.
Prenons l’Ansatz v2(x) = c(x)v1(x) telle que c(x) n’est pas constante (sinon la
solution serait linéairement dépendante). Alors, on obtient que :

v′
2(x) = c′(x)v1(x) + c(x)v′

1(x)

v′′
2 (x) = c′′(x)v1(x) + 2c′(x)v′

1(x) + c(x)v′′
1 (x)

Ainsi, nous pouvons remplacer notre solution dans notre équation :

c′′(x)v1(x)+2c′(x)v′
1(x)+c(x)v′′

1 (x)+p(x)c′(x)v1(x)+p(x)c(x)v′
1(x) + q(x)c(x)v1(x) = 0
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Les termes en rouge sont déjà égaux à 0 puisque v1(x) est une solution. Cela nous
permet donc de simplifier notre équation en :

c′′(x)v1(x) + 2c′(x)v′
1(x) + p(x)c′(x)v1(x) = 0

On suppose maintenant aussi que v1(x) ̸= 0 sur I et c′(x) ̸= 0 sur I (ils ne s’annulent
pas en aucun point de l’intervalle). Ceci nous donne donc que :

c′′(x)
c′(x) = −p(x) − 2v

′
1(x)
v1(x)

qui est une EDVS pour c′(x).
Nous pouvons intégrer des deux côté, en prenant log(C) comme constante :

log|c′(x)| = −P (x) − 2 log|v1(x)| + log(C) = log
(
Ce−P (x)

v2
1(x)

)
Or, puisque le logarithme est une fonction bijective :

c′(x) = ±C e
−P (x)

v2
1(x) = C1

e−P (x)

v2
1(x) , C1 ∈ R∗, C1 = ±C

Nous pouvons maintenant intégrer :

c(x) =
�
c1
e−P (x)

v2
1(x) dx+ C2, C2 ∈ R

On obtient alors que v2(x) = c(x)v1(x) est une solution. Par exemple, nous pouvons
prendre C1 = 1 et C2 = 0, ce qui nous donne une solution telle que v2(x) et v1(x)
sont linéairement indépendantes :

v2(x) = c(x)v1(x) = v1(x)
�
e−P (x)

v2
1(x) dx

Ainsi, à partir du moment où on trouve une solution particulière, nous sommes
capable de trouver la solution générale.

Exemple Prenons l’EDL2 homogène suivante :

y′′ + 2y′ + y = 0

Solution 1 On remarque que v1(x) = e−x est une solution pour x ∈ R telle
que v1(x) ̸= 0 sur R. On cherche une autre solution linéairement
indépendante :

p(x) = 2 =⇒ P (x) = 2x

v2(x) = v1(x)
�
e−P (x)

v2
1(x) dx = e−x

�
e−2x

(e−x)2 = e−x
�

1dx = e−xx

Nous avons donc obtenu que v1(x) = e−x et v2(x) = xe−x sont deux
solutions linéairement indépendantes sur R. Ainsi, d’après notre
théorème, la solution générale de cette équation est :

v(x) = C1e
−x + C2xe

−x, C1, C2 ∈ R,∀x ∈ R

Notre solution est cohérente avec celle qu’on avait trouvée en utili-
sant la méthode de l’équation caractéristique.

Solution 2 Cette fois, nous partons de v1(x) = xe−x comme première solution,
et nous essayons de trouver v2(x) linéairement indépendante.
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Prenons la solution de telle manière à ce qu’elle soit jamais égale à
0 :

v1(x) = xe−x sur ]−∞, 0[ et ]0,+∞[

Alors, on obtient :

v2(x) = c(x)v1(x) = xe−x
�
e−P (x)

v2
1(x) dx = xe−x

�
e−2x

x2e−2x dx

Ce qu’on peut simplifier en :

v2(x) = xe−x
(

− 1
x

)
= −e−x, sur ]−∞, 0[ et ]0,∞[

Cependant, puisque e−x est de classe C2 sur R (elle est même
de classe C∞), on peut coller nos deux solutions sans obtenir de
singularité en 0, et on obtient alors :

v2(x) = −e−x, ∀x ∈ R

Nous avons donc obtenu les deux mêmes solutions linéairement
indépendantes v1(x) = xe−x et v2(x) = −e−x. Ainsi, la solution
générale sur R est :

v(x) = C1xe
−x + C2e

−x

On a obtenu la même solution générale (et heureusement).

Remarque À l’examen, on ne va jamais nous demander de deviner une solution
(contrairement aux exercices). Si nous avons besoin d’en obtenir
une, alors elle nous sera donnée.

Lundi 7 mars 2022 — Cours 5 : Wronskien

2.5 Wronskien

Définition :
Wronskien

Soient v1, v2 : I 7→ R deux fonctions dérivables sur I ⊂ R. Nous appelons la fonction
W [v1, v2] : I 7→ R définie par :

W [v1, v2] = det
(
v1(x) v2(x)
v′

1(x) v′
2(x)

)
= v1(x)v′

2(x) − v2(x)v′
1(x)

le Wronskien de v1 et v2.

Exemple Prenons l’équation suivante :

y′′ + 2y′ + y = 0

Son polynôme caractéristique, λ2 + 2λ+ 1 = 0 nous donne les racines a = b = −1,
ce qui nous permet de trouver la solution générale :

v(x) = C1e
−x + C2xe

−x, où C1, C2 ∈ R,∀x ∈ R

Calculons le Wronskien de nos deux solutions :

W
[
e−x, xe−x] = det

(
e−x xe−x

−e−x e−x − xe−x

)
= e−2x − xe−2x + xe−2x = e−2x

On observe que e−2x = W [e−x, xe−x] ̸= 0 pour tout x ∈ R. Nous allons généraliser
cette idée.
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Proposition
pour le Wrons-
kien

Soient v1, v2 : I 7→ R deux solutions de l’équation y′′(x) + p(x)y′(x) + q(x)y(x) = 0
(EDL2 homogène).
v1(x) et v2(x) sont linéairement indépendants si et seulement si W [v1, v2](x) ≠ 0
pour tout x ∈ I.

La démonstration de ce théorème doit être connue pour l’examen.

Preuve ⇐= Démontrons ce point par la contraposée. Nous voulons donc montrer
que les solutions sont linéairement dépendantes implique qu’il existe
x ∈ I tel que W [v1, v2](x) = 0.
Puisque nos deux solutions sont linéairement dépendantes, nous
pouvons prendre sans perte de généralité qu’il existe c ∈ R tel
que v1(x) = cv2(x) (si plutôt v2(x) = cv1(x), nous pourrions juste
échanger les noms, d’où le “sans perte de généralité”).
Ainsi, nous avons :

W [v1, v2](x) = det
(
v1(x) cv1(x)
v′

1(x) cv′
1(x)

)
= cv1(x)v′

1(x) − cv1(x)v′
1(x)

= 0, ∀x ∈ I

Nous avons donc trouvé que le Wronskien est nul pour tout x sur
cet intervalle, donc il existe bien un x pour lequel il est égal à 0.

Preuve =⇒ Prouvons aussi cette affirmation par la contraposée. Nous voulons
donc montrer que, s’il existe x0 ∈ I tel que W [v1, v2](x0) = 0, alors
v1(x) et v2(x) sont linéairement dépendantes.
Puisqu’il existe un tel x0 ∈ I, nous savons que :

det
(
v1(x0) v2(x0)
v′

1(x0) v′
2(x0)

)
= 0

Ainsi, le kernel de cette matrice est est non-trivial (il n’est pas de
dimension 0), donc il existe un vecteur non nul

(
a
b

)
∈ R2 tel que :(

v1(x0) v2(x0)
v′

1(x0) v′
2(x0)

)(
a
b

)
=
(

0
0

)
Ainsi : {

av1(x0) + bv2(x0) = 0
av′

1(x0) + bv′
2(x0) = 0

Soit v(x) = av1(x)+bv2(x). Alors, v(x) est une solution de l’équation
donnée par la superposition des solutions. De plus, par le système
d’équations que nous venons de trouver, nous avons v(x0) = 0 et
v′(x0) = 0. Par le théorème de l’existence et unicité d’une solution
de l’équation y′′(x)+p(x)y′(x)+q(x)y(x) = 0, cette équation admet
une seule solution satisfaisant y(x0) = 0 et y′(x0) = 0. Puisque la
solution triviale y(x) = 0 ∀x ∈ I satisfait l’équation et les conditions
initiale, alors nécessairement :

v(x) = av1(x) + bv2(x) = 0, ∀x ∈ I

Puisque a et b ne sont pas les deux nuls, soit nous avons v1(x) =
−b
a v2(x) pour tout x ∈ I, soit nous avons v2(x) = −a

b v1(x) pour
tout x ∈ I (soit les deux).
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Nous avons donc bien trouvé que v1(x) et v2(x) sont linéairement
dépendantes sur I.

□

Idée de la
preuve

On démontre que Q =⇒ P et P =⇒ Q par la contraposée car P
et Q sont des propositions “négatives” : il est beaucoup plus simple
d’avoir une fonction qui est parfois égale à 0, ou deux fonctions qui
sont linéairement dépendantes.

Exercice Considérons les solutions des EDL2 homogènes à coefficients constants y′′(x)+py′(x)+
qy(x) = 0 telle que les racines du polynôme caractéristique sont a = b = α+ iβ ̸∈ R.
Nous voulons montrer que W [eαx cos(βx), eαx sin(βx)] ̸= 0 pour tout x ∈ R. Avec
un peu de travail, nous pouvons obtenir que :

W [eαx cos(βx), eαx sin(βx)] = βe2αx, ∀x ∈ R

Or, puisque β ̸= 0 (sinon a = α+ iβ ∈ R), nous obtenons bien que le Wronskien de
ces deux solutions n’est jamais 0, et donc qu’elles sont linéairement indépendantes.

Théorème :
Forme des solu-
tions aux EDL2
homogènes

Soient v1, v2 : I 7→ R deux solutions linéairement indépendantes de l’équation
y′′(x) + p(x)y′(x) + q(x)y(x) = 0.
Alors, la solution générale de cette équation est de la forme :

v(x) = C1v1(x) + C2v2(x), C1, C2 ∈ R, x ∈ I

La démonstration de ce théorème doit être connue pour l’examen.

Preuve Soit ṽ(x) une solution de l’équation donnée, et x0 ∈ I. Alors, nous
savons que ṽ(x0) = a0 ∈ R et ṽ(x0) = b0 ∈ R.
Par hypothèse, nous avons deux solutions linéairement indépen-
dantes v1, v2 : I 7→ R. Ainsi, par la caractérisation, nous sa-
vons que W [v1, v2](x) ̸= 0 pour tout x ∈ I, ce qui implique que
W [v1, v2](x0) ̸= 0.
Or, quand le déterminant d’une matrice est non-nul (la matrice est
dite non-dégénérée), nous savons qu’une équation l’utilisant a une
solution unique. Ainsi, nous savons qu’il existe d’uniques constantes
C1, C2 ∈ R telles que :{

C1v1(x0) + C2v2(x0) = a0

C1v
′
1(x0) + C2v

′
2(x0) = b0

Considérons la fonction v(x) = C1v1(x) + C2v2(x). Nous pouvons
voir deux informations. La première est que v(x) est une solution de
l’équation (puisque v1(x) et v2(x) sont des solutions). La deuxième
est que v(x0) = a0 et v′(x0) = b0.
Par le théorème de l’existence et unicité d’une solution des EDL2
homogènes satisfaisant des conditions initiales données v(x0) = a0
et v′(x0) = b0, on a ṽ(x) = v(x) pour tout x ∈ I. Nous avons donc
bien montré que notre solution de départ est de la bonne forme.

□
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2.6 Équations différentielles linéaires d’ordre 2 complètes

Introduction Nous considérons maintenant l’équation complète :

y′′(x) + p(x)y′(x) + q(x)y(x) = f(x)

Superposition
des solutions

Si v(x) est une solution de l’équation y′′(x) + p(x)y′(x) + q(x)y(x) = f(x) et u(x)
est une solution de l’équation homogène associée, alors v(x) + u(x) est une solution
de cette équation.

Preuve Cette preuve est considérée comme triviale, et elle est laissée en
exercice au lecteur.

Méthode de la
variation de la
constante

Nous cherchons une solution particulière de l’équation complète, supposant que
nous connaissons deux solutions linéairement indépendantes de l’équation homogène
associée : v1, v2 : I 7→ R.
Prenons l’Ansatz v0(x) = c1(x)v1(x) + c2(x)v2(x), où c1(x) et c2(x) sont deux
fonctions inconnues de classe C1 sur I.
Nous pouvons dériver notre solution présumée :

v′
0(x) = c′

1(x)v1(x) + c′
2(x)v2(x) + c1(x)v′

1(x) + c2(x)v′
2(x)

Supposons aussi que le bout en rouge est égal à 0, car cela permet non seulement
de diminuer grandement la taille de notre solution, mais aussi de ne pas avoir de
c′′(x) (puisque nous les avons prises de classe C1). Notez que nous avons le droit de
faire ceci, car nous prenons un Ansatz. Cela peut ne pas fonctionner, mais si cela
fonctionne c’est gagné.
Nous pouvons encore dériver v′

0 :

v′′
0 (x) = c′

1(x)v′
1(x) + c′

2(x)v′
2(x) + c1(x)v′′

1 (x) + c2(x)v′′
2 (x)

Mettons ce que nous avons trouvé dans notre équation v′′
0 (x)+p(x)v′

0(x)+q(x)v0(x) =
f(x), de manière à trouver des conditions sur c1(x) et c2(x) :

c′
1(x)v′

1(x) + c′
2(x)v′

2(x) + c1(x)v′′
1 (x) + c2(x)v′′

2 (x)
+ p(x)c1(x)v′

1(x) + p(x)c1(x)v′
2(x)

+ q(x)c1(x)v1(x) + q(x)c2(x)v2(x)
= f ′(x)

Puisque v1(x) et v2(x) sont des solutions de l’équation homogène associée, les termes
en rouge sont égaux à 0, et les termes en bleu sont aussi égaux à 0. Nous obtenons
donc une grande simplification à notre équation :

c′
1(x)v′

1(x) + c′
2(x)v′

2(x) = f(x)

En tout, nous avons deux conditions (celle que nous venons de trouver, et celle que
nous avions prise de manière arbitraire) :{

c′
1(x)v1(x) + c′

2(x)v2(x) = 0
c′

1(x)v′
1(x) + c′

2(x)v′
2(x) = f(x)

Or nous pouvons écrire notre système sous la forme :(
v1(x) v2(x)
v′

1(x) v′
2(x)

)(
c′

1(x)
c′

2(x)

)
=
(

0
f(x)

)
Cependant, c’est un système d’équations sur c′

1(x) et c′
2(x). Puisqu’on sait

que v1(x) et v2(x) sont linéairement indépendantes, nous avons W [v1, v2](x) =
det
(
v1(x) v2(x)
v′

1(x) v′
2(x)

)
̸= 0 pour tout x ∈ I. Ceci nous dit donc que notre matrice est

inversible, et que nous pouvons résoudre notre système de cette manière :(
c′

1(x)
c′

2(x)

)
= 1
W [v1, v2](x)

(
v′

2(x) −v2(x)
−v′

1(x) v1(x)

)(
0

f(x)

)
= 1
W [v1, v2](x)

(
−v2(x)f(x)
v1(x)f(x)

)
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Nous pouvons maintenant intégrer :

c1(x) = −
�

f(x)v2(x)
W [v1, v2](x)dx, c2(x) =

�
f(x)v1(x)
W [v1, v2](x)dx

où on supprime les constantes.
Nous obtenons donc v0(x) = c1(x)v1(x) + c2(x)v2(x) est une solution de l’équation
complète. Nous pouvons même obtenir la solution générale à cette équation :

v(x) = C1v1(x) + C2v2(x) + v0(x), où C1, C2 ∈ R, x ∈ I

Exemple Nous voulons trouver la solution générale de l’équation suivante :

y′′(x) − 1
x(log(x) − 1)︸ ︷︷ ︸

p(x)

y′(x) + 1
x2(log(x) − 1)︸ ︷︷ ︸

q(x)

y(x) = log(x) − 1︸ ︷︷ ︸
f(x)

, sur ]e,+∞[

Solution par-
ticulière à
l’équation ho-
mogène

Nous essayons de trouver une solution non-nulle de l’équation ho-
mogène associée :

y′′ − 1
x log(x) − 1y

′ + 1
x2(log(x) − 1)y = 0

On remarque que y(x) = x est une solution. En effet, y′(x) = 1 et
y′′(x) = 0, donc :

− 1
x(log(x) − 1) + x

x2(log(x) − 1) = 0, ∀x ∈ ]e,+∞[

Nous avons donc v1(x) = x qui est une solution particulière à
l’équation homogène associée.

Solution li-
néairement
indépendante

Nous pouvons trouver une solution linéairement indépendante à
l’équation différentielle homogène associée en prenant :

v2(x) = c(x)v1(x), où c(x) =
�
e−P (x)

v2
1(x) dx, P (x) =

�
p(x)dx

Nous savons que p(x) = − 1
x(log(x)−1) , donc :

P (x) = −
�

dx

x(log(x) − 1) = −
�

d(log(x))
log(x) − 1 = − log(log(x− 1))

où nous ne mettons pas de constante, et où nous n’avons pas besoin
de mettre de valeur absolue puisque x > e.
Calculons maintenant c(x) :

c(x) =
�
e−P (x)

v2
1(x) dx =

�
elog(log(x)−1)

x2 dx =
� log(x) − 1

x2 dx

Nous pouvons utiliser la linéarité des intégrales :

c(x) = −
�
dx

x
+
� log(x)

x2 dx = −
�
dx

x2 −
�

log(x)d
(

1
x

)
Faisons une intégration par partie :

c(x) = −
�

d

x2 − log(x)
x

+
� 1
x
d(log(x)) = −

�
dx

x2 − log(x)
x

+
�
dx

x2

Et ainsi, on a obtenu notre c(x) :

c(x) = − log(x)
x
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Et v2(x) en découle directement :

v2(x) = c(x)v1(x) = − log(x)
x

x = − log(x)

En examen, il est une bonne idée de vérifier que v2(x) est bien une
solution.

Solution géné-
rale équation
homogène

Nous pouvons maintenant trouver la solution générale à l’équation
homogène associée :

v(x) = C1v1(x)+C2v2(x) = C1x+C2 log(x), C1, C2 ∈ R, x ∈ ]e,+∞[

Solution par-
ticulière équa-
tion complète

Nous voulons maintenant trouver une solution particulière à l’équa-
tion complète. On sait que v0(x) = c1(x)v1(x) + c2(x)v2(x) est une
solution, où :

c1(x) = −
�

f(x)v2(x)
W [v1, v2](x) , c2(x) =

�
f(x)v1(x)
W [v1, v2](x)dx

Nous pouvons calculer le Wronskien :

W [v1, v2](x) = det
(
v1 v2
v′

1 v′
2

)
= det

(
x − log(x)
1 − 1

x

)
= log(x) − 1

qui est bien différent de 0 pour tout x sur ]e,+∞[. Nous pouvons
maintenant calculer c1 et c2 :

c1(x) = −
� (log(x) − 1)(− log(x))

(log(x) − 1) dx =
�

log(x)dx

= x log(x) −
�
x

1
x
dx = x log(x) − x

c2(x) =
� (log(x) − 1)x

log(x) − 1 dx =
�
xdx = 1

2x
2

(où on supprime les constantes).
Ainsi, nous trouvons une solution particulière à l’équation complète :

v0(x) = c1(x)v1(x) + c2(x)v2(x)

= x(log(x) − 1)x+ 1
2x

2(− log(x))

= 1
2x

2 log(x) − x2

avec x ∈ ]e,∞[.
Encore une fois, en examen, c’est une bonne idée de vérifier notre
résultat.

Solution géné-
rale équation
complète

Nous savons que la solution générale de l’équation complète est
donnée par :

v(x) = C1x+C2 log(x)+ 1
2x

2 log(x)−x2, C1, C2 ∈ R, x ∈ ]e,+∞[

Mercredi 9 mars 2022 — Cours 6 : Fin des équations différentielles

Méthode des
coefficients indé-
terminés

Cette méthode permet de trouver une solution particulière à l’équation y′′(x) +
py′(x) + qy(x) = f(x), p, q ∈ R
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Pour que cette méthode fonctionne, il faut que f(x) soit une combinaison linéaire
de :

ecxRn(x) et eax(cos(bx)Pn(x) + sin(bx)Qm(x))

où Rn(x), Pn(x), Qm(x) sont des polynômes de degré n et m, et c, a, b ∈ R.
Ainsi, si f(x) est une combinaison linéaire de ces deux fonctions, disons f(x) =
c1f1(x)+ c2f2(x), nous avons seulement besoin de trouver une méthode pour trouver
une solution pour f1(x) et pour f2(x), puis utiliser le principe de la superposition
des solutions.
Si f(x) = ecxRn(x) :

c est une racine de
λ2 + pλ+ q = 0 Ansatz

Non ypart = ecxTn(x)
Oui ypart = xrecxTn(x)

où r est la multiplicité de la racine λ = c, et Tn(x) est polynôme de degré n à
coefficients indéterminé.
Si f(x) = eax(cos(bx)Pn(x) + sin(bx)Qn(x)) :

a+ ib est une racine
de λ2 + pλ+ q = 0 Ansatz

Non ypart = eax(TN (x) cos(bx) + SN (x) sin(bx))
Oui ypart = xeax(TN (x) cos(bx) + SN (x) sin(bx))

où N = max(n,m), et TN (x) et SN (x) sont des polynômes de degré N à coefficients
indéterminés.

Note person-
nelle : Mnémo-
technie

Dans les quatre cas, nous prenons exactement l’équation en tant
qu’Ansatz, dans laquelle nous remplaçons les polynômes par des
polynômes inconnus, et nous multiplions par la multiplicité d’une
solution potentielle.
En effet, on remarque que, si c n’est pas une racine de λ2+pλ+q = 0,
alors c’est tout comme si c’était une racine de multiplicité 0 (bien
évidemment, ne jamais dire cette phrase à un oral d’analyse). Ainsi,
xr = 1. Nous pouvons faire le même raisonnement pour la deuxième
fonction, mais nous pouvons aussi voir qu’il est impossible que a+ ib
ait une multiplicité 2 (sinon cela voudrait dire que b = 0, puisque z
et z sont des solutions pour les nombres complexes, et donc nous
serions dans le premier scénario). En d’autres mots, on obtient donc
qu’on doit multiplier par x et non pas xr.
Par rapport à la valeur pour laquelle on doit considérer la multiplicité
de la racine, nous pouvons faire deux observations. Premièrement,
dans la deuxième fonction, si b = 0, alors nous sommes de retour
dans la première fonction. Deuxièmement, il est probable qu’il y ait
un lien avec l’exponentielle complexe, qui a une forme similaire, et
que nous avons déjà utilisée pour résoudre ce genre de problèmes :

ea+ib = ea(cos(b) + i sin(b))

Pour l’intuition derrière cette méthode, il est probable que tout cela
découle du fait qu’il est impossible de “tuer” l’exponentielle et les
fonctions trigonométriques basiques en les dérivant (elles tournent
en rond), alors que les polynômes descendent en degré.

Exemple Nous voulons trouver la solution générale de l’équation suivante, avec x ∈ R :

2y′′ − y′ − y = 100xe2x
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Équation ho-
mogène asso-
ciée

Commençons par résoudre l’équation homogène associée :

y′′ − 1
2y

′ − 1
2y = 0

L’équation caractéristique est λ2 − 1
2λ− 1

2 = 0, et ses solutions sont
λ = 1,− 1

2 . On obtient donc :

yhom = C1e
x + C2e

−x
2 , C1, C2 ∈ R, x ∈ R

Solution par-
ticulière équa-
tion complète

Cherchons une solution particulière de l’équation complète par la
méthode de coefficients indéterminés.
On remarque que f(x) = 50xe2x est de la forme Rn(x)ecx où
Rn(x) = 50x et n = 1, c = 2. Ainsi, f(x) est de forme acceptée par
la méthode des coefficients indéterminés.
On remarque que c = 2 n’est pas une racine de l’équation caracté-
ristique λ2 − 1

2λ− 1
2 = 0. Ainsi, nous pouvons prendre l’Ansatz :

ypart = (Ax+B)e2x

=⇒ y′
part = Ae2x + 2(Ax+B)e2x

=⇒ y′′
part = 2Ae2x + 2Ae2x + 4(Ax+B)e2x

Remplaçons la dans l’équation pour obtenir des contraintes sur A
et B :

4Ae2x + 4(Ax+B)e2x︸ ︷︷ ︸
y′′

part

−1
2Ae

2x − (Ax+B)e2x︸ ︷︷ ︸
− 1

2y
′
part

−1
2(ax+B)e2x︸ ︷︷ ︸

−1
2 ypart

= 50xe2x

Ainsi, nous obtenons que :

xe2x
(

4 − 1 − 1
2

)
A+ e2x

((
4 − 1

2

)
A+

(
4 − 1 − 1

2

)
B

)
= 50xe2x

Ce qui implique que :

xe2x
(

5
2A
)

+ e2x
(

7
2A+ 5

2B
)

= 50xe2x

Ceci nous donne le système d’équations suivant :{
5
2A = 50
7
2A+ 5

2B = 0

Ce qui nous permet de trouver que :

A = 20, B = −28

C’est ensuite une bonne idée de vérifier le résultat.

Solution géné-
rale

Nous trouvons finalement que la solution générale de 2x′′ − y′ − y =
100xe2x est :

y(x) = C1e
x + C2e

−x
2 + (20x− 28)e2x, C1, C2 ∈ R, x ∈ R
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Méthode de la
variation de la
constante

Nous pouvons trouver le même résultat en utilisant la méthode de
la variation de la constante.
Nous savons que v1(x) = ex et v2(x) = e− x

2 sont deux solutions
linéairement indépendantes de l’équation homogène. Calculons leur
Wronskien :

W [v1, v2](x) = det
(
ex e− x

2

ex − 1
2e

− x
2

)
= −1

2e
x
2 − e

x
2 = −3

2e
x
2

Nous devons maintenant calculer c1(x) et c2(x) :

c1(x) = −
�
f(x)v2(x)
W [v1, v2] dx = −

� 50xe2xe− x
2

− 3
2e

x
2

dx = . . . = 100
3 (x− 1)ex

c2(x) =
�

f(x)v1(x)
W [v1, v2](x)dx =

� 50xe2xex

− 3
2e

x
2

dx = . . . = −40
3 xe

5
2x+16

3 e
5
2x

Ainsi, on obtient :

v0(x) = c1(x)v1(x) + c2(x)v2(x) = . . . = 20xe2x − 28e2x

comme attendu.

Note person-
nelle : Résumé

EDVS Une équation de la forme f(y)y′ = g(x) se résout en séparant les
variables :

f(y)dy
dx

= g(x) =⇒ f(y)dy = g(x)dx =⇒
�
f(y)dy =

�
g(x)dx

EDL1 homo-
gène

La solution générale d’une EDL1 homogène y′(x) + p(x)y(x) = 0
est donnée par :

y(x) = Ce−P (x), C ∈ R

où P (x) est une primitive (sans la constante) de p(x).

EDL1 com-
plète

Pour résoudre une EDL1 complète, y′(x)+p(x)y(x) = f(x), nous uti-
lisons plusieurs principes. La méthode de la variation de la constante
nous donne une solution particulière :

v(x) = c(x)e−P (x), avec c(x) =
�
f(x)eP (x)

où P (x) est une primitive (sans la constante) de p(x).
Ensuite, en trouvant v0(x), la solution générale à l’équation ho-
mogène associée, nous utilisons le principe de superposition des
solutions pour trouver la solution générale à notre équation :

y(x) = v(x) + v0(x)

EDL2 ho-
mogène à
coefficients
constants

Pour résoudre une EDL2 homogène à coefficients constants, y′′(x) +
py(x) + qy(x) = 0 où p, q ∈ R, nous cherchons les racines a, b ∈ C
du polynôme caractéristique :

λ2 + pλ+ q = 0
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y(x) =


C1e

ax + C2e
bx, si a, b ∈ R, a ̸= b

C1e
ax + C2xe

ax, si a = b

C1e
αx cos(βx) + C2e

αx sin(βx), si a = α+ iβ = b ̸∈ R

EDL2 homo-
gène

Pour résoudre une EDL2 homogène, y′′(x) + p(x)y′(x) + q(x)y(x) =
0, nous avons besoin de deviner une solution particulière v1(x).
De là, nous pouvons calculer une deuxième solution linéairement
indépendante :

v2(x) = c(x)v1(x), avec c(x) =
�
e−P (x)

v2
1(x) dx

où P (x) est une primitive (sans la constante) de p(x).
Finalement, la solution générale est donnée par :

y(x) = C1v1(x) + C2v2(x), ∀C1, C2 ∈ R

EDL2 à co-
efficients
constants

Pour résoudre une EDL2 à coefficients constants, y′′(x) + py′(x) +
qy(x) = f(x) où p, q ∈ R, nous pouvons parfois aller plus vite que
la méthode de la variation de la constante en utilisant la méthode
des coefficients indéterminés, si f(x) a une forme particulière.

EDL2 com-
plète

Pour résoudre une EDL2 complète, y′′(x) + p(x)y′(x) + q(x)y(x) =
f(x), nous cherchons d’abord deux solutions particulières linéai-
rement indépendantes à l’EDL2 homogène associée v1(x) et v2(x)
(qui nous donnent donc aussi la solution générale à cette EDL2
homogène associée). De là, nous obtenons une solution particulière
à notre EDL2 complète à l’aide de la méthode de la variation de la
constante :

v(x) = c1(x)v1(x) + c2(x)v2(x)

Avec :
c1(x) = −

�
f(x)v2(x)
W [v1, v2](x)dx

c2(x) =
�

f(x)v1(x)
W [v1, v2](x)dx

W [v1, v2](x) = det
(
v1(x) v2(x)
v′

1(x) v′
2(x)

)
De là, nous pouvons trouver notre solution générale :

y(x) = C1v1(x) + C2v2(x) + v(x), ∀C1, C2 ∈ R
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Lundi 14 mars 2022 — Cours 7 : On introduit pleins de symboles marrants

Chapitre 3

Espace Rn

3.1 Rn est un espace vectoriel normé

Définition Rn est un ensemble de tous les n-tuples ordonnés de nombres réels.

−→x =
(
x1 · · · xn

)
=

x1
...
xn

 ∈ Rn

On dit parfois que −→x est un point (élément) de Rn.

Opérations de
Rn

Rn est muni de deux opérations. La première est l’addition + :

−→x =
(
x1 · · · xn

)
,−→y =

(
y1 · · · yn

)
=⇒ −→x + −→y déf=

(
x1 + y1 · · · xn + yn

)
La deuxième est la multiplication par un nombre réel λ ∈ R :

−→x =
(
x1 · · · xn

)
=⇒ λ−→x déf=

(
λx1 · · · λxn

)
Propriétés On remarque que les opérations satisfont les propriétés suivantes,

pour tout −→x ,−→y ∈ Rn, λ, λ1, λ2 ∈ R.
• (λ1λ2)−→x = λ1

(
λ2

−→x
)

= λ2
(
λ1

−→x
)

• 0−→x =
(
0 · · · 0

)
= −→0

• 1−→x = −→x
• (λ1 + λ2)−→x = λ1

−→x + λ2
−→x

• λ
(−→x + −→y

)
= λ−→x + λ−→y

Base Nous avons défini Rn comme des n-tuples ordonnés de nombres réels (et non de
manière géométrique). Nous pouvons donc prendre la base :{−→e i =

(
0 · · · 0 1 0 · · · 0

)}
i=1n =⇒ −→e i ∈ Rn, i = 1, . . . , n

où −→e i a uniquement un 1 à la i-ème position.
On remarque que n’importe quel élément de Rn peut s’écrire comme combinaison
linéaire de cette base :

−→x =
n∑
i=1

xi
−→e i =

(
x1 · · · xn

)
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Définition : Pro-
duit scalaire

Nous définissons le produit scalaire comme :

〈−→x ,−→y
〉 déf=

n∑
i=1

xiyi = x1y1 + . . .+ xnyn

Définition :
Norme Eucli-
dienne

Nous définissons la norme Euclidienne comme :

∥∥−→x
∥∥ déf=

√〈−→x ,−→x
〉

=

√√√√ n∑
i=1

x2
i

Proposition :
Inégalité de
Cauchy-Schwarz

Pour tout −→x ,−→y ∈ Rn, nous avons :∣∣〈−→x ,−→y
〉∣∣ ≤

∥∥−→x
∥∥ ·
∥∥−→y

∥∥
La démonstration de ce théorème doit être connue pour l’examen.

Preuve Soit λ ∈ R. Considérons la somme
∑n
i=1(λxi + yi)2.

Nous savons que
∑n
i=1(λxi + yi)2 ≥ 0, puisque c’est une somme de

termes positifs :

0 ≤
n∑
i=1

(λxi + yi)2 =
n∑
i=1

(
λ2x2

i + 2xiyi + y2
i

)
Et donc :

0 ≤

(
n∑
i=1

x2
i

)
︸ ︷︷ ︸

a

λ2 + 2
(

n∑
i=1

xiyi

)
︸ ︷︷ ︸

b

λ+
(

n∑
i=1

y2
i

)
︸ ︷︷ ︸

c

, ∀λ ∈ R

Nous avons obtenu une équation quadratique selon λ qui est toujours
positive. Ainsi, on remarque qu’il est impossible que cette équation
ait deux racines, sinon, par le théorèmes des valeurs intermédiaires,
elle serait négative en certains points. Nous savons donc qu’elle a
un discriminant négatif :

b2 − 4ac ≤ 0 =⇒ 4
(

n∑
i=1

xiyi

)2

︸ ︷︷ ︸
=⟨−→x ,−→y ⟩2

−4
(

n∑
i=1

x2
i

)
︸ ︷︷ ︸

=∥−→x ∥2

(
n∑
i=1

y2
i

)
︸ ︷︷ ︸

=∥−→y ∥2

≤ 0

Ce qui implique que :∥∥−→x
∥∥2 ·

∥∥−→y
∥∥2 ≥

〈−→x ,−→y
〉2 =⇒

∥∥−→x
∥∥ ·
∥∥−→y

∥∥ ≥
∣∣〈−→x ,−→y

〉∣∣
Puisque

∥∥−→x
∥∥ et

∥∥−→y
∥∥ sont positifs, nous pouvons enlever leur valeur

absolue. Cependant, nous ne pouvons pas enlever celle du produit
scalaire, car elle peut être négative (enfin nous pourrions, puisque
|x| ≥ x, mais nous perdrions de l’information).

□

Propriétés
norme Eucli-
dienne

1. La norme est toujours positive :∥∥−→x
∥∥ ≥ 0 ∀−→x ∈ Rn
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2. Si
∥∥−→x

∥∥ = 0, alors :
−→x = −→0

3. Linéarité : ∥∥λ−→x
∥∥ = |λ|

∥∥−→x
∥∥, −→x ∈ Rn, λ ∈ R

4. Inégalité triangulaire 1 :∥∥−→x + −→y
∥∥ ≤

∥∥−→x
∥∥+

∥∥−→y
∥∥, ∀−→x ,−→y ∈ Rn

5. Inégalité triangulaire 2 : ∥∥−→x − −→y
∥∥ ≥

∣∣∥∥−→x
∥∥−

∥∥−→y
∥∥∣∣

Preuve de
l’inégalité tri-
angulaire 1

Nous savons que :∥∥−→x + −→y
∥∥2 =

〈−→x + −→y ,−→x + −→y
〉

=
〈−→x ,−→x

〉
+2
〈−→x ,−→y

〉
+
〈−→y ,−→y

〉
Aussi :(∥∥−→x

∥∥+
∥∥−→y

∥∥)2 =
〈−→x ,−→x

〉
+ 2
∥∥−→x

∥∥∥∥−→y
∥∥+

〈−→y ,−→y
〉

Ainsi, si on regarde la différence entre ces deux équations :∥∥−→x + −→y
∥∥2 −

(∥∥−→x
∥∥+

∥∥−→y
∥∥)2 = 2⟨x, y⟩ − 2

∥∥−→x
∥∥∥∥−→y

∥∥ ≤ 0

par Cauchy-Schwarz.
Puisque les deux termes sont positifs, nous pouvons prendre une
racine carrée sans valeur absolue, ce qui nous donne :∥∥−→x + −→y

∥∥ ≤
∥∥−→x

∥∥+
∥∥−→y

∥∥
□

Remarque L’inégalité de Cauchy-Schwarz pourrait être considérée comme une
de ces propriétés, mais, puisque nous devons la connaitre pour
l’examen, j’ai décidé de la mettre à part.

Définition : Dis-
tance

L’expression
∥∥−→x − −→y

∥∥ = d
(−→x ,−→y

)
est appelée la distance entre −→x et −→y dans

Rn.

Propriétés 1. d
(−→x ,−→y

)
= d
(−→y ,−→x

)
2. d

(−→x ,−→y
)

= 0 ⇐⇒ −→x = −→y
3. d

(−→x ,−→y
)

≤ d
(−→x ,−→z

)
+ d
(−→z ,−→y )

3.2 Topologie dans Rn

Définition :
Boule ouverte

Pour tout −→x ∈ Rn et nombre réel δ > 0, soit :

B
(−→x , δ

)
=
{−→y ∈ Rn tel que

∥∥−→x − −→y
∥∥ < δ

}
B
(−→x , δ

)
⊂ Rn est appelé la boule ouverte de centre −→x et rayon δ.
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Définition : En-
semble ouvert

Nous définissons que E ⊂ Rn est ouvert si et seulement si :

∀−→x ∈ E ∃δ > 0 tel que B
(−→x , δ

)
⊂ E

Remarque Notez que, selon cette définition, ø est un ensemble ouvert. En effet,
∀x ∈ ø P (x) est une tautologie, peu importe P (x).

Définition :
Point intérieur

Soit E ⊂ Rn non-vide. Alors, −→x ∈ E est un point intérieur de E s’il existe δ > 0
tel que B

(−→x , δ
)

⊂ E.
L’ensemble des points intérieurs de E est appelé l’intérieur de E, noté E̊.
Clairement :

E̊ ⊂ E

Observation Soit E ⊂ Rn non-vide.
On remarque que E ⊂ Rn est ouvert si et seulement si E̊ = E.

Note person-
nelle : 1D

Regardons cette définitions en une dimension, dans R1 = R. Nous
obtenons par exemple que l’intérieur de ]1, 2] ∪ [5, 7[ ∪ {9} est :

]1, 2[ ∪ ]5, 7[

Proposition La boule ouverte B
(−→x , δ

)
est un ensemble ouvert.

Preuve Prenons δ̃ = δ −
∥∥−→x − −→y

∥∥, la distance entre −→y et le bord de la
boule. Par la définition de la boule ouverte, on sait que :∥∥−→x − −→y

∥∥ < δ =⇒ δ̃ = δ −
∥∥−→x − −→y

∥∥ > 0

Nous pouvons prendre une boule ouverte B
(−→y , δ̃2

)
qui est claire-

ment inclue dans B
(−→x , δ

)
.

Ansi, on ne déduit que B
(−→x , δ

)
⊂ Rn est un sous-ensemble ouvert

de Rn pour tout −→x ∈ Rn et pour tout δ > 0.
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Exemple 1 Nous voulons montrer que l’ensemble suivant est ouvert :

E =
{−→x ∈ Rn tel que xi > 0,∀i = 1, . . . , n

}
Soit −→y ∈ E. Alors, nous pouvons prendre B

(−→y ,min(yi)
)

⊂ E.

Exemple 2 Nous savons déjà que ø ⊂ Rn est ouvert par définition. Nous voulons aussi montrer
que Rn ⊂ Rn est un sous-ensemble ouvert.
Soit −→x ∈ Rn. Nous pouvons prendre n’importe quel δ > 0, et nous avons B

(−→x , δ
)

⊂
Rn.

Exemple 3 Soit n ≥ 2. Nous définissons l’ensemble suivant :

E =
{−→x ∈ Rn tel que x1 = 0, xi > 0, i = 2, ..., n

}
Nous voulons montrer qu’il n’est pas ouvert.
Prenons le point −→y =

(
0 y2 · · · yn

)
où y2, . . . , yn > 0. Alors, pour tout δ > 0 :

B
(−→y , δ

)
∋
(
δ
2 y2 · · · yn

)
̸∈ E

Propriétés 1. Toute réunion (même infinie)
⋃
i∈I Ei de sous-ensembles ouverts est un sous-

ensemble ouvert.
2. Toute intersection finie

⋂n
i=1 Ei de sous-ensembles ouverts est un sous-ensemble

ouvert.

Preuve de la
propriété 1

Si −→x ∈
⋃
i∈I Ei, alors nous savons que −→x ∈ Ej pour un indice j.

Or, puisque Ej est ouvert, il existe un δ > 0 tel que B
(−→x , δ

)
⊂

Ej ⊂
⋃
i∈I Ei.

□
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Preuve de la
propriété 2

Soit −→x ∈
⋂n
i=1 Ei. Alors, nous savons que pour tout j, −→x ∈

Ej . Puisque Ej est ouvert pour tout j, il existe δj > 0 tel que
B
(−→x , δj

)
⊂ Ej . Puisqu’on a un nombre fini d’éléments, nous savons

que minj δj existe. Donc :

B

(
−→x ,min

j
δj

)
⊂ Ej ∀j =⇒ B

(
−→x ,min

j
δj

)
⊂

n⋂
i=1

Ei = E

□

Nous pouvons aussi remarquer qu’une intersection infinie de sous-
ensembles ouverts de Rn n’est pas nécessairement ouvert :

∞⋂
k=1

B

(
−→0 , 1

k

)
=
{−→0

}
⊂ Rn

Définition :
Complémentaire
d’un ensemble

Soit E ⊂ Rn. Son complémentaire, noté CE, est défini par :

CE
déf=
{−→x ∈ Rn tel que −→x ̸∈ E

}
= Rn \ E

Définition : En-
semble fermé

Soit E ⊂ Rn un sous-ensemble. E est fermé dans Rn si son complémentaire CE est
ouvert.

Exemple 1 Nous savons que l’ensemble suivant est fermé :

E =
{−→y ∈ Rn tel que

∥∥−→x − −→y
∥∥ ≥ δ

}
En effet, E = CB

(−→x , δ
)

⊂ Rn, et nous savons que B
(−→x , δ

)
est un sous-ensemble

ouvert.

Exemple 2 Soit E =
{−→x

}
∈ Rn. Nous voulons montrer qu’il est fermé. Ceci est équivalent à

montrer que son complémentaire est ouvert :

CE =
{−→y ∈ Rn tel que

∥∥−→y − −→x
∥∥ > 0

}
Pour tout −→y ∈ CE, nous pouvons prendre la boule :

B

(
−→y ,

1
2
∥∥−→y − −→x

∥∥) ⊂ CE

Exemple 3 Nous voulons montrer que l’ensemble suivant est fermé :

E =
{−→x ∈ Rn tel que x1 = 0

}
=⇒ CE =

{−→x ∈ Rn tel que x1 ̸= 0
}

Montrons que CE est ouvert. Soit −→z ∈ CE, donc z1 ̸= 0. Alors, nous pouvons
prendre :

B

(
−→z , 1

2 |z1|
)

⊂ CE

Exemple 4 Soit l’ensemble suivant, où n ≥ 2 :

E =
{−→x ∈ Rn tel que x1 = 0, xi > 0, i = 2, . . . , n

}
Son complémentaire est donné par :

CE =
{−→x ∈ Rn tel que x1 ̸= 0

}
∪

n⋃
i=2

{−→x ∈ Rn tel que xi ≤ 0
}
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Nous allons montrer que CE n’est pas ouvert. Soit −→y =
(
0 0 y3 · · · yn

)
∈ CE.

Pour tout δ > 0, B
(−→y , δ

)
contient :

−→p =
(
0 δ

2 y3 · · · y4
)

∈ B
(−→y , δ

)
et −→p ∈ E

Cependant, cela implique que −→p ̸∈ CE pour tout δ > 0. Ainsi, on obtient que CE
n’est pas fermé et donc que E n’est pas ouvert.
On avait déjà démontré que E n’était pas fermé. C’est donc un ensemble qui est ni
ouvert ni fermé.

Exemple 5 Nous pouvons démontrer que ø et Rn sont fermés car Cø = Rn et CRn = ø qui sont
ouverts.
Plus généralement, il est possible de démontrer que les seuls sous-ensembles de Rn
fermés et ouverts à la fois sont ø et Rn.

Propriétés 1. Toute intersection (même infinie) de sous-ensembles fermés est un sous-ensemble
fermé.

2. Toute réunion finie de sous-ensembles fermés est un sous-ensemble fermé.

Preuve Pour démontrer ces propriétés, nous pouvons utilises les propriétés
des sous-ensembles ouverts, et en voyant que :

C
⋂
i∈I

Ei =
⋃
i∈I

CEi

C

n⋃
i=1

Ei =
n⋂
i=1

CEi

Mercredi 16 mars 2022 — Cours 8 : J’ai failli ajouter un d à ce nom de théorème

Définition :
Adhérence

Soit E ⊂ Rn un sous-ensemble non-vide.
L’intersection de tous les sous-ensembles fermés contenant E est appelée l’adhérence
de E. E est la notation de l’adhérence de E dans Rn.

Remarque On voit que si E ⊂ Rn est fermé, alors on a E = E par définition.

Note person-
nelle : Intui-
tion

Nous pouvons considérer R1 = R.
Prenons par exemple E = ]1, 2] ∪ {6}. Alors, son adhérence est
donnée par :

E = [1, 2] ∪ {6}

L’adhérence est donnée par l’ensemble en union avec sa frontière
(concept qu’on va définir juste après).

Définition :
Frontière

Soit un ensemble E ⊂ Rn non vide, où E ̸= Rn.
Un point −→x ∈ Rn est un point de frontière de E si toute boule ouverte de centre
−→x contient au moins un point de E et au moins un point de CE.
L’ensemble des points de frontière de E s’appelle la frontière de E, notée ∂E.
Nous définissons aussi les deux frontières suivantes :

∂ø = ø, ∂Rn = ø

Exemple Prenons le sous-ensemble suivant :

E =
{−→x ∈ Rn tel que xi > 0, i = 1, . . . , n

}
C’est un sous-ensemble ouvert, comme nous l’avons déjà montré.
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Pour trouver l’adhérence, nous pouvons prendre le plus petit sous-ensemble fermé
contenant E :

E =
{−→x ∈ Rn tel que xi ≥ 0, i = 1, . . . n

}
Nous pouvons aussi trouver la frontière :

∂E =
{−→x ∈ Rn tel que ∃i xi = 0,∀j ̸= i xj ≥ 0

}
Propriétés Soit E ⊂ Rn non-vide. Alors, nous avons les propriétés suivantes :

1. E̊ ∩ ∂E = ø
2. E̊ ∪ ∂E = E
3. ∂E = E \ E̊

3.3 Suites dans Rn

Définition :
Suite dans Rn

Une suite d’éléments de Rn est une application f : N 7→ Rn :

f : k 7→ −→xk =
(
x1k · · · xnk

)
∈ Rn{−→xk

}∞
k=0 est une suite d’éléments de Rn.

Définition :
Convergence

Une suite {xk}∞
k=0 est convergente et admet pour limite −→x ∈ Rn si pour tout

ε > 0, il existe k0 ∈ N tel que ∀k ≥ k0, nous avons :∥∥−→xk − −→x
∥∥ ≤ ε

Nous notons :
lim
k→∞

−→xk = −→x

Remarque Notez que
∥∥−→xk − −→x

∥∥ ≤ ε est équivalent à −→xk ∈ B
(−→x , ε

)
.

Proposition Soit −→x =
(
x1 · · · xn

)
∈ Rn. Alors :

lim
k→∞

−→xk = −→x ⇐⇒ lim
k→∞

xj,k = xj , ∀j = 1, . . . , n

Preuve En effet, nous savons que :

ε ≥
∥∥−→xk − −→x

∥∥ =

 n∑
j=1

(xj,k − xj)2

 1
2

Puisque c’est une somme, de termes positifs, nous avons (xj,k − xj)2 ≤
εj ≤ ε. Ainsi, nous pouvons rendre xj,k et xj arbitrairement proches
en augmentant k, ce qui est la définition de la limite.

□

Définition :
Suite bornée

Une suite
{−→xk

}
est bornée s’il existe un M > 0 tel que

{−→xk

}
est contenue dans la

boule fermée B
(−→0 ,M

)
.

Propriétés 1. La liste d’une suite
{−→xk

}
, si elle existe, est unique.

2. Toute suite convergente
{−→xk

}
est bornée.

Justification de
la propriété 2

Par définition, si une suite est convergente, alors limk→∞
−→xk = −→x .

Cela implique donc que, pour ε = 1 par exemple, il existe k0 ∈ N
tel que pour tout k ≥ k0, nous avons

∥∥−→xk − −→x
∥∥ ≤ ε = 1, donc que
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pour k ≥ k0, xk ∈ B
(−→x , ε

)
. Puisqu’il y a un un nombre fini de

points −→x0, . . . ,
−−−→xk0−1. En prenant en compte la distance maximale

à l’origine de cette boule, et la distance maximale de ces points
(qui existe puisqu’il y en a un nombre finis), nous avons trouvé un
M > 0 tel que −→xk ∈ B

(−→0 ,M
)

.

Théorème
de Bolzano-
Weierstrass

Nous pouvons extraire une sous-suite convergente de toute suite bornée
{−→xk

}
⊂ Rn.

Théorème : Lien
entre les suites
dans Rn et la
topologie

Un sous-ensemble non-vide E ⊂ Rn est fermé si et seulement si toute suite
{−→xk

}
⊂ E

d’éléments de E qui converge a pour limite un élément de E.

La démonstration de ce théorème doit être connue pour l’examen.

Preuve =⇒ Nous supposons que E ⊂ Rn est fermé.
Supposons par l’absurde qu’il existe une suite

{−→xk

}
⊂ E d’éléments

de E qui converge et qui a pour limite −→x ̸∈ E. Ainsi, on sait que
−→x ∈ CE, qui est un ensemble ouvert dans Rn (puisque E est fermé
par hypothèse). Puisque cet ensemble est ouvert nous savons, par
définition, que ∃δ > 0 tel que :

B
(−→x , δ

)
⊂ CE

Or, cela implique que :{−→xk ∀k ∈ N
}︸ ︷︷ ︸

⊂E

∩B
(−→x , δ

)︸ ︷︷ ︸
⊂CE

= ø

En d’autres mots, aucun élément de la suite ne fait partie de cette
boule ouverte.
De l’autre côté, puisque limk→∞

−→xk = −→x , nous avons qu’il existe
un k0 ∈ N tel que pour tout k ≥ k0 :

−→xk ∈ B

(
−→x ,

δ

2

)
⊂ B

(−→x , δ
)

En d’autres mots, pour k ≥ k0, −→xk fait partie de notre boule ouverte.
Ceci entre en contradiction avec ce que nous avions vu ci-dessus.

□
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Preuve ⇐= Nous allons démontrer notre proposition par la contraposée : nous
voulons montrer que si E ⊂ Rn n’est pas fermé, alors il existe une
suite

{−→xk ⊂ E
}

d’éléments de E qui converge et qui a pour un
limite un élément qui n’est pas dans E.
Puisque nous savons que E n’est pas fermé, nous savons que CE
n’est pas ouvert. Ainsi, ∃−→y ∈ CE tel que, pour tout ε > 0 :

B
(−→y , ε

)
∩ E ̸= ø

Plus précisément, on peut prendre ε = 1
k , ce qui nous donne :

∀k ∈ N+, B

(
−→y ,

1
k

)
∩ E ̸= ø

Ceci implique que, pour tout k, on sait qu’il existe un −→yk tel que
−→yk ∈ B

(−→y , 1
k

)
et −→yk ∈ E. Ceci nous donne une suite

{−→yk

}
k∈N+

⊂ E

telle que limk→∞
−→yk = −→y ∈ CE, et donc −→y ̸∈ E.

□

Remarque Pour construire l’adhérence E d’un sous-ensemble non-vide E ⊂ Rn, il faut et il
suffit d’ajouter les limites de toutes suites convergentes d’éléments de E.

Exemple Dans R1 = R, si on prend toutes les suites d’éléments de [0, 1[, il
y a des suites qui convergent vers toutes les valeurs entre 0 et 1,
compris.

Définition : En-
semble borné

Un ensemble E ⊂ Rn est borné s’il existe un M > 0 tel que :

E ⊂ B
(−→0 ,M

)
Définition : En-
semble compact

Un sous-ensemble non-vide E ⊂ Rn est compact s’il est fermé et borné.

Exemple 1 Prenons une boule fermée quelconque :

B
(−→x , δ

)
=
{−→y ∈ Rn tel que

∥∥−→x − −→y
∥∥ ≤ δ

}
Nous savons qu’elle est bornée car :

B
(−→x , δ

)
⊂ B

(−→0 ,
∥∥−→x

∥∥+ δ
)

On peut donc en déduire qu’une boule fermée est compacte.

Exemple 2 Prenons l’ensemble suivant, où n ≥ 2 :

E =
{−→x ∈ Rn tel que x1 = 0

}
Il est clairement fermé, on peut prendre n’importe quelle boule centrée sur la droite
définie par CE (x1 = 0), il est impossible de trouver un δ qui fait qu’elle est
entièrement inclue dans CE.
Cependant, nous pouvons aussi voir que E n’est pas borné. Prenons la suite suivante :{−→ak = (0, k, 0, 0, · · · )

}
k∈N ⊂ E

Les normes forment la suite
∥∥−→ak

∥∥ = k ∈ N. La distance entre l’origine et les éléments
de
(−→ak

)
n’est donc pas bornée, ce qui nous permet d’en déduire que E n’est pas

borné. Ainsi, E n’est pas compact.
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Définition : Re-
couvrement

Un recouvrement d’un ensemble E est défini par :

E ⊂
⋃
i∈I

Ai, Ai ⊂ Rn ouverts

Notez que I peut être innombrable.

Théorème de
Heine-Borel-
Lebesgue

Un sous-ensemble non-vide E ⊂ Rn est compact si et seulement si de tout recou-
vrement de E par des sous-ensembles ouverts dans Rn on peut extraire une famille
finie d’ensembles qui forment un recouvrement de E.

Exemple 1.1 Une droite dans Rn, où n ≥ 2, est fermée mais pas bornée, et donc pas compacte.
Prenons une origine quelconque sur la droite, et numérotons là comme la droite des
réelles. Alors, nous pouvons prendre le recouvrement suivant :

E ⊂
⋃
n∈Z

B

(
n,

2
3

)

On ne peut clairement pas choisir de sous-recouvrement fini qui recouvre E. Si on
jette une-seule boule, ce qui reste ne couvrira pas notre ensemble.

Exemple 1.2 Un intervalle ouvert dans R1 = R, E = ]0, 1[ ⊂ R n’est pas compact. Il est bien
borné, mais pas fermé.
Prenons le recouvrement suivant :

E ⊂
⋃
i∈N+

]
0, i

i+ 1

[
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Il est aussi impossible de choisir un sous-recouvrement fini. En effet, avec un nombre
fini d’intervalles, alors il existe un i qui est le plus grand, et donc nous n’atteignons
pas les valeurs entre i

i+1 et 1.

Exemple 2.1 Prenons l’ensemble suivant :

A =
{

(x, y) ∈ R2 tel que 1 > sin(x+ y) ≥ −2
}

Nous remarquons que sin(x+ y) ≥ −2 tient toujours, ∀(x, y) ∈ R2. Pour l’autre
condition, nous avons besoin de :

sin(x+ y) ̸= 1 ⇐⇒ x+ y ̸= π

2 + 2kπ ⇐⇒ y ̸= −x+ π

2 + 2kπ

On obtient donc que :

CA =
{

(x, y) ∈ R2 tel que y = −x+ π

2 + 2kπ
}

Or, c’est une union de droites, donc il est clairement fermé. On obtient ainsi que A
est ouvert.

Exemple 2.2 Prenons l’ensemble suivant :

B =
{

(x, y) ∈ R2 tel que √
xy < 2

}
Pour que √

xy existe, nous avons besoin de xy ≥ 0. De plus, nous avons aussi la
condition √

xy < 2 =⇒ xy < 4.
Nous avons donc deux cas. Si x > 0, alors y ≥ 0 et :

xy < 4 ⇐⇒ y <
4
x

Si x < 0, alors y ≤ 0 et :
xy < 4 ⇐⇒ y >

4
x

Si x = 0, alors y est arbitraire.

Les axes sont inclus dans notre sous-ensembles, mais pas les courbes. Ainsi, B n’est
ni ouvert ni fermé.
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Chapitre 4

Fonctions réelles de plusieurs
variables réelles

4.1 Définitions et exemples

Définition Soit E ⊂ Rn un sous-ensemble non-vide où n ≥ 1.
Une fonction E 7→ Rn est une application qui envoie chaque point −→x =(
x1 . . . xn

)
∈ E dans R. E est le domaine de définition de f , et f(E) ⊂ R

est l’ensemble image.

Exemple 1 Prenons la fonction suivante :

f(x, y) =
√

1 − (x2 + y2)

Pour notre domaine de définition, on veut que x2 + y2 ≤ 1, ce qui est un disque de
rayon 1 et centre (0, 0). Donc :

E =
{

(x, y) ⊂ R2 tel que x2 + y2 ≤ 1
}

Considérons le graphique de z = f(x, y). Cette équation est équivalente à :{
z2 = 1 −

(
x2 + y2) ⇐⇒ x2 + y2 + z2 = 1

z ≥ 0

Il est donc clair que c’est une hemisphère de rayon 1 et centre (0, 0, 0) ∈ R3.

Exemple 2 Prenons maintenant la fonction suivante :

f(x, y) = 2x+ 1 ⇐⇒ z = 2x+ 1

Si on considère seulement le graphique sur x et z, alors c’est une droite. Si maintenant
on rajoute y, on prolonge cette droite, ce qui nous donne un plan.
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Exemple 3 Soient a, b, c ∈ R, et la fonction suivante :

f(x, y) = ax+ by + c

Clairement, E = R2. Nous nous demandons ce que représente cette fonction graphi-
quement.
Pour simplifier, prenons c = 0. Nous pouvons considérer le graphique de f :

F =
{

(x, y, z) ∈ R3 tel que ax+ by = z
}

=
{

(x, y, z) ∈ R3 tel que ax+ by − z = 0
}

=
{

(x, y, z) ∈ R3 tel que ⟨(x, y, z), (a, b,−1)⟩ = 0
}

ce qui est le plan orthogonal à −→n = (a, b,−1) et qui contient (0, 0, 0).
Considérons maintenant c ∈ R. Il suffit de monter le plan par c unités le long de l’axe
z pour obtenir le graphique de notre fonction : le plan orthogonal à −→n = (a, b,−1)
qui contient (0, 0, c).

Définition Soit f : E 7→ Rn et c ∈ f(E) ⊂ R. Alors, l’ensemble suivant est appelé l’ensemble
de niveau de f :

Nf (c) =
{−→x ∈ E tel que f

(−→x ) = c
}

⊂ E

Exemple Prenons la fonction suivante :

f(x, y) = sin
(
x2 + y

)
, E = R2

Son ensemble image est donné par f(E) = [−1, 1] puisque le sinus est borné.
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Calculons Nf (1) :

Nf (1) =
{

(x, y) ∈ R2 tel que sin
(
x2 + y2) = 1

}
=
{

(x, y) ∈ R2 tel que x2 + y = π

2 + 2kπ, k ∈ Z
}

=
{

(x, y) ∈ R2 tel que y = −x2 + π

2 + 2kπ, k ∈ Z
}

Ce qui nous donne le graphique suivant :

4.2 Limites et continuité

Définition :
Définition au
voisinage

Une fonction est définie au voisinage de −→x0 si :

∃δ > 0 tel que B
(−→x0, δ

)
⊂ E ∪ {x0}

Remarque La fonction n’a pas besoin d’être définie en −→x0 pour être définie au
voisinage de ce point.

Définition : Li-
mite

Une fonction définie au voisinage de −→x0 admet pour limite le nombre réel ℓ lorsque
−→x tend vers −→x0, si pour tout ε > 0, il existe δ > 0 tel que pour tout −→x ∈ E :

0 <
∥∥−→x − −→x0

∥∥ ≤ δ =⇒
∣∣f(−→x )− ℓ

∣∣ ≤ ε

Dans ce cas, nous notons :
lim−→x →−→x0

f
(−→x ) = ℓ

Définition :
Continuité

Soit −→x0 ∈ E un point intérieur de E.
f : E 7→ R est continue en −→x = −→x0 si et seulement si :

lim−→x →−→x0

f
(−→x ) = f

(−→x0
)

Il faut donc à la fois que la limite existe, et qu’elle soit égale à la valeur de la
fonction.

Exemple 1 Nous souhaitons montrer que la fonction suivante est continue pour tout (x0, y0) ∈
R2 :

f(x, y) = x+ y
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Soit ε > 0. Considérons la différence suivante :

|f(x, y) − f(x0, y0)| = |(x+ y) − (x0 + y0)|
†
≤ |x− x0| + |y − y0|

=
√

(x− x0)2 +
√

(y − y0)2

≤
√

(x− x0)2 + (y − y0)2︸ ︷︷ ︸
≥0

+
√

(x− x0)2︸ ︷︷ ︸
≥0

+(y − y0)2

= 2
√

(x− x0)2 + (y − y0)2

≤ 2δ

= 2 · ε2
= ε

en prenant δ = ε
2 , et où l’inégalité † est l’inégalité triangulaire.

On en déduit que la fonction f(x, y) = x+ y est continue sur R2, par définition de
la continuité.

Exemple 2 Nous souhaitons montrer que la fonction suivante est continue pour tout (x0, y0) ∈
R2 :

f(x, y) = x · y

Le cas où x0 = 0 est laissé en exercice au lecteur.
Supposons maintenant que x0 ̸= 0. Soit ε > 0. Considérons la différence suivante :

|f(x, y) − f(x0, y0)| = |xy − x0y0|
= |xy − x0y0 + x0y − x0y|
= |(x− x0)y + x0(y − y0)|
≤ |x− x0||y| + |y − y0||x0|

Regardons le deuxième terme :

|y − y0||x0| ≤
√

(x− x0)2 + (y − y0)2|x0| ≤ δ|x0| ≤ ε

2|x0|
|x0| = ε

2

en prenant δ ≤ ε
2|x0| , puisqu’on sait que |x0| ≠ 0.

Regardons maintenant le premier terme, qui est plus difficile puisque |y| est une
variable :

|x− x0||y| ≤
√

(x− x0)2 + (y − y0)2 |y|︸︷︷︸
≤|y0|+δ

≤ δ(|y0| + δ) ≤ δ(|y0| + 1) ≤ ε

2

en prenant δ ≤ 1 et δ ≤ ε
2(|y0|+1) .

Nous pouvons mettre ensemble toutes les conditions sur δ :

δ = min
(

ε

2|x0|
,

ε

2(|y0| + 1) , 1
)

Dans ce cas, en reprenant notre première différence :

|f(x, y) − f(x0, y0)| ≤ ε

2 + ε

2 = ε

pour tout (x, y) ∈ R2.
Ainsi, par la définition de la limite, on obtient que :

lim
(x,y)→(x0,y0)

xy = x0y0

ce qui implique que la fonction est continue partout sur R2.
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Théorème : Ca-
ractérisation
des limites à
partir des suites
convergentes

Une fonction f : E 7→ R définie au voisinage de −→x0 admet pour limite ℓ ∈
R lorsque −→x → −→x0 si et seulement si pour toute suite d’éléments

{−→ak

}
de{−→x ∈ E tel que −→x ̸= −→x0

}
, qui converge vers −→x0, la suite

{
f
(−→ak

)}
converge vers ℓ.

En d’autres mots :(
lim−→x →−→x0

f
(−→x ) = ℓ

)
⇐⇒

(
lim
k→∞

f
(−→ak

)
= ℓ, ∀

{−→ak

}
⊂ E \

{−→x0
}

telle que lim
k→∞

−→ak = −→x0

)

La démonstration de ce théorème doit être connue pour l’examen.

Preuve =⇒ Nous savons par hypothèse que lim−→x →−→x0
f
(−→x ) = ℓ. Ainsi, par la

définition de la limite, on sait que, pour tout ε > 0, il existe δ > 0
tel que :

0 <
∥∥−→x − −→x0

∥∥ ≤ δ =⇒
∣∣f(−→x )− ℓ

∣∣ ≤ ε

Soit une suite arbitraire
{−→ak

}
⊂ E\

{−→x0
}

telle que limk→∞
−→ak = −→x0.

Puisque la définition des limites pour les suites marche pour tout ε̃,
nous pouvons prendre ε̃ = δ. Ainsi, par définition, pour ε̃ = δ > 0,
nous savons que ∃k0 tel que, pour tout k ≥ k0, on a :∥∥−→ak − −→x0

∥∥ ≤ δ

Or, puisque
{−→ak

}
⊂ E \

{−→x 0
}

, nous savons que −→ak −−→x0 ̸= 0. Ainsi,
pour tout k ≥ k0, 0 <

∥∥−→ak − −→x0
∥∥ ≤ δ. Cependant, cela implique

par la première implication que :∣∣f(−→ak

)
− ℓ
∣∣ ≤ ε

Ainsi, nous avons démontré que pour tout ε > 0, il existe k0 tel
que pour tout k ≥ k0 on a

∣∣f(−→ak

)
− ℓ
∣∣ ≤ ε. En d’autres mots, nous

avons montré que :
lim
k→∞

f
(−→ak

)
= ℓ

Preuve ⇐= Nous allons faire cette preuve par la contraposée. Ainsi, nous sup-
posons par hypothèse que lim−→x →−→x0

f
(−→x ) ̸= ℓ.

Par la définition de la limite, on obtient que ∃ε > 0 tel que ∀δ > 0,
∃−→xδ tel que : ∥∥−→xδ − −→x0

∥∥ ≤ δ et
∣∣f(−→xδ

)
− ℓ
∣∣ > ε

Puisque c’est vrai pour tout δ, alors c’est aussi vrai pour le cas
particulier où δ = 1

k , k ∈ N+. Ainsi, pour le ε dont nous connaissons
l’existence, pour tout k ∈ N+, il existe −→xk ∈ E tel que :∥∥−→xk − −→x0

∥∥ ≤ 1
k

et
∣∣f(−→xk

)
− ℓ
∣∣ > ε

On obtient la suite
{−→xk

}∞
k=1 qui est telle que, par la définition,

limk→∞
−→xk = −→x0. Cependant, cette suite est aussi telle que

∣∣f(−→xk

)
− ℓ
∣∣ >

ε pour tout k ∈ N+, ce qui implique que :

lim
k→∞

f
(−→xk

)
̸= ℓ

□
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Opérations algé-
briques

Soient f, g deux fonctions ERn 7→ R telles que :

lim−→x →−→x0

f
(−→x ) = ℓ1 et lim−→x →−→x0

g
(−→x ) = ℓ2

Alors, nous avons :
1. lim−→x →−→x0

(αf + βg)
(−→x ) = αℓ1 + βℓ2 pour α, β ∈ R

2. lim−→x →−→x0

(f · g)
(−→x ) = ℓ1ℓ2

3. Si ℓ2 ̸= 0, alors lim−→x →−→x0

(
f

g

)(−→x ) = ℓ1

ℓ2
Cet propriétés sont facilement démontrables à l’aide de la caractérisation des limites
à partir des suites.

Implication On peut en déduire que tous les polynômes de plusieurs variables
et toutes les fonctions rationnelles sont continues sur leur domaines
de définition.

Remarque La caractérisation de la limite à partir des suites convergentes est pratique pour
montrer qu’une fonction n’admet pas de limite en −→x0 ∈ Rn. En effet, il nous suffit
de trouver deux suites

{−→ak

}
et
{−→

bk

}
d’éléments de E \

{−→x0
}

, convergentes vers
−→x0 ∈ Rn, et telles que :

lim
k→∞

f
(−→ak

)
̸= lim
k→∞

f
(−→

bk

)
Exemple 1 Soit la fonction f : R2 7→ R telle que :

f(x, y) =


xy

x2 + y2 , si (x, y) ̸= (0, 0)

0, si (x, y) = (0, 0)

Nous voulons savoir vers quoi tend la fonction quand (x, y) tend vers (0, 0). De
manière générale, quand le degré du numérateur est égal au degré du dénominateur,
il est relativement probable que la limite n’existe pas. Essayons de le démontrer par
la caractérisation des limites à partir des suites convergentes.
Prenons la suite −→ak =

( 1
k ,

1
k

)
, qui converge bien vers 0 quand k → ∞. Alors :

lim
k→∞

f
(−→ak

)
= lim
k→∞

1
k · 1

k( 1
k

)2 +
( 1
k

)2 = 1
2

Comme deuxième suite, prenons
−→
bk =

( 1
k , 0
)

qui tend bien vers (0, 0) quand k tend
vers l’infini. Alors :

lim
k→∞

f
(−→

bk

)
= lim
k→∞

1
k · 0

1
k2

= lim
k→∞

0 = 0

Puisque les deux limites sont différentes, 1
2 ≠ 0, on sait que lim(x,y)→(0,0) f(x, y)

n’existe pas, par la caractérisation des suites.

Mercredi 23 mars 2022 — Cours 10 : Le retour des gendarmes

Exemple 2 Soit la fonction f : R2 7→ R définie par :

f(x) =


x3 + y3

x2 + y2 , si (x, y) ̸= (0, 0)

0, autrement
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Utilisons nos deux mêmes limites :
{−→ak

}
=
( 1
k , 0
)

et
{−→

b k

}
=
( 1
k ,

1
k

)
:

lim
k→∞

f
(−→ak

)
= lim
k→∞

1
k3

1
k2

= lim
k→∞

1
k

1 = 0

lim
k→∞

f
(−→

bk

)
= lim
k→∞

1
k3 + 1

k3

2
k2

= lim
k→∞

2
k

1 = 0

Nous décidons donc de formuler l’hypothèse que lim(x,y)→(0,0) = 0.

Preuve par
changement de
coordonnées

Il est possible de démontrer cette limite par la définition. Cependant,
une deuxième manière beaucoup plus efficace consiste à utiliser un
changement de variable vers les coordonnées polaires.

Ce changement de variable nous donne :

x = r cos(φ), y = r sin(φ)

où r ∈ R≥0 et, si r ̸= 0, φ ∈ [0, 2π[.
Ainsi, on obtient que notre fonction est égale à :

f(r, φ) = r3 cos3(φ) + r3 sin3(φ)
r2 cos2(φ) + r2 sin2(φ)

=
r3(cos3(φ) + sin3(φ)

)
r2

= r
(
cos3(φ) + sin3(φ)

)
Or, nous savons que (x, y) → (0, 0) est équivalent à dire que r =√
x2 + y2 → 0 et φ est une fonction inconnue de r. Ceci nous donne

que :
lim
r→0

|f(r, φ)| = lim
r→0

r︸︷︷︸
→0

∣∣cos3(φ) + sin3(φ)
∣∣︸ ︷︷ ︸

≤2

= 0

On en déduit donc que :

lim
(x,y)→(0,0)

f(x, y) = 0

Cette méthode est souvent efficace (mais pas toujours) pour montrer
l’existence des limites à l’origine. Elle est à retenir.

□

Remarque 1 Nous ne pouvons pas calculer la limite d’une fonction de plusieurs variables de la
façon suivante :

lim
(x,y)→(x0,y0)

f(x, y) ̸= lim
x→x0

(
lim
y→y0

f(x, y)
)
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En effet, si on considère à nouveau l’exemple 1 :

f(x, y) =


xy

x2 + y2 , si (x, y) ̸= (0, 0)

0, si (x, y) = (0, 0)

Considérons d’abord la limite de y → 0, si x ̸= 0 :

lim
y→0

f(x, y) = lim
y→0

→0︷︸︸︷
xy

x2︸︷︷︸
̸=0

+y2 = 0

Ainsi :
lim
x→0

lim
y→0

f(x, y) = lim
x→0

0 = 0

Alors que lim(x,y)→(0,0) f(x, y) n’existe pas. Nous arrivons au même problème si
nous commençons par la limite selon x.

Remarque 2 Si la limite lim(x,y)→(a,b) f(x, y) existe, et les limites par rapport à chaque variables
existent pour tout x et tout y dans le domaine de f , alors on peut échanger l’ordre
des limites :

lim
x→a

(
lim
y→b

f(x, y)
)

= lim
y→b

(
lim
x→a

f(x, y)
)

Remarque 3 L’existence de la limite lim(x,y)→(a,b) f(x, y) n’implique pas en général l’existence
des limites limx→a f(x, y) et limy→b f(x, y).

Exemple Voici un exemple tiré du livre Douchet-Swahlen, qui ne nous est
probablement pas demandé de savoir pour l’examen puisqu’il n’a
pas été donné pendant le cours.
Soit la fonction d’une variable suivante :

h(t) =
{

1, si t ∈ Q
0, si t ̸∈ Q

Prenons aussi la fonction suivante :

f(x, y) = xh(y) + yh(x)

Nous trouvons que lim(x,y)→(0,0) f(x, y) = 0, alors que les limites
par rapport à une seule variable n’existent pas.

Théorème des 2
gendarmes

Soient f, g, h : E 7→ R, où E ⊂ Rn, telles que :
1. lim−→x →−→x0

= lim−→x →−→x0

g
(−→x ) = ℓ

2. Il existe un α > 0 tel que pour tout x ∈
{
x ∈ E : 0 <

∥∥−→x − −→x0
∥∥ ≤ α

}
=

B
(−→x0, α

)
\
{−→x0

}
, on a :

f
(−→x ) ≤ h

(−→x ) ≤ g
(−→x )

Alors :
lim−→x →−→x0

h
(−→x ) = ℓ

Preuve Soit
{−→ak

}
⊂ E une suite arbitraire telle que limk→∞

−→ak = −→x0. Alors,
la première hypothèse nous donne par la caractérisation à partir
des suites que :

lim
k→∞

f
(−→ak

)
= lim
k→∞

g
(−→ak

)
= ℓ
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De plus, la deuxième hypothèse nous dit qu’il existe un k0 ∈ N tel
que :

f
(−→ak

)
≤ h

(−→ak

)
≤ g
(−→ak

)
, ∀k ≥ k0

Et donc par le théorème des 2 gendarmes pour les suites, cela
implique que :

∃ lim
k→∞

h
(−→ak

)
= ℓ ∈ R

On en déduit donc que, puisque
{−→ak

}
→ −→x0 est une suite arbitraire

convergente vers −→x0, par la caractérisation à partir des suites :

lim−→x →−→x0

h
(−→x ) = ℓ

□

Exemple Soit la fonction suivante :

f(x, y) =
{
xy log(|x| + |y|), si (x, y) ̸= (0, 0)
0, si (x, y) = (0, 0)

On cherche une fonction g(x, y) telle que 0 ≤ |f(x, y) − 0| ≤ g(x, y) pour (x, y) au
voisinage de (0, 0), et telle que :

lim
(x,y)→(0,0)

g(x, y) = 0

Soit (x, y) ∈ B((0, 0), 1). Cela donne donc que
√
x2 + y2 ≤ 1, ce qui nous permet

d’obtenir les inégalités suivantes :

|xy| = |x||y| = |x|
√
y2 ≤ |x|

√
x2 + y2 ≤ |x|

|xy| = |x||y| =
√
x2|y| ≤

√
x2 + y2|y| ≤ |y|

Nous savons donc que ∀(x, y) tels que
√
x2 + y2 ≤ 1, nous avons :

0 ≤ |xy log(|x| + |y|)| ≤ 1
2(|x| + |y|) log(|x| + |y|) = g(x, y)

Or, puisque 0 ≤ |x| + |y| ≤ 2
√
x2 + y2, et puisque

√
x2 + y2 → 0, nous savons que

|x| + |y| → 0, par le théorème des 2 gendarmes.
Prenons maintenant t = |x| + |y|. Nous avons :

lim
(x,y)→(0,0)

g(x, y) = lim
t→0+

g(t) = lim
t→0+

1
2 t

∣∣∣∣∣∣log(t)︸ ︷︷ ︸
−∞

∣∣∣∣∣∣ = − lim
t→0+

1
2 t log(t)

s = 1
t= − 1

2 lim
s→∞

− log(s)
s

∞
∞= 1

2 lim
s→∞

1
s

1 = 0

Nous pouvons en déduire par les 2 gendarmes que :

lim
(x,y)→(0,0)

f(x, y) = 0

Proposition :
Continuité d’une
fonction compo-
sée

Soient 2 sous-ensembles ensembles A ⊂ Rn, B ⊂ Rp. De plus, soient deux fonctions
−→g : A 7→ B et f : B 7→ R où :

−→g
(−→x ) =

(
g1
(−→x ), . . . , gp(−→x ))

Si g1, . . . , gp sont continues en −→a ∈ A, et f
(−→y ) est continue en

(
g1
(−→a ), . . . , gp(−→a )),

alors f ◦ −→g
(−→x ) est continue en −→x = −→a .
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Exemple 1 Soit la fonction suivante :

h(x, y) = sin(xy) cos(xy), ∀(x, y) ∈ R2

On remarque que g(x, y) = xy est continue sur R2, et f(t) = sin(t) cos(t) est
continue sur R. Ainsi, f ◦ g(x, y) = sin(xy) cos(xy) = h(x, y) est continue sur R2 par
la proposition.

Exemple 2 Soit la fonction suivante :

f(x, y) =


sin(xy)
xy

, x ̸= 0 et y ̸= 0

1, autrement

Prenons g(x, y) = xy et :

h(t) =


sin(t)
t

, t ̸= 0

1, t = 0

On sait que g(x, y) est continue sur R2 puisque c’est un polynôme, et nous savons
que h(t) est continue sur R puisque limt→0

sin(t)
t = 1.

Ainsi, par notre proposition, f(x, y) = h ◦ g(x, y) est continue sur R2.

Exemple 3 Considérons la limite suivante :

lim
(x,y)→(1,0)

(x− 1)2 log(x)
(x− 1)2 + y2

Cette limite est de la forme 0
0 , nous devons donc faire plus de travail. Nous formulons

l’hypothèse que la limite existe. Le changement de variables vers coordonnées
polaires semble ne pas être efficace car des choses peu agréables se passeraient avec
le logarithme. Utilisons plutôt le théorème des deux gendarmes ; nous cherchons une
fonction g(x, y) telle que, au voisinage de (1, 0) :

0 ≤ |f(x, y) − 0| ≤ g(x, y) et lim
(x,y)→(1,0)

= 0

Remarquons que :

0 ≤ |f(x, y) − 0| =

∣∣∣∣∣∣∣∣∣
(x− 1)2 log(x)
(x− 1)2 + y2︸︷︷︸

≥0

∣∣∣∣∣∣∣∣∣ ≤ (x− 1)2|log(x)|
(x− 1)2 = |log(x)|

Nous avons donc obtenu :

0 ≤ f(x, y) ≤ |log(x)| = g(x, y)

Or, nous remarquons que :

lim
(x,y)→(1,0)

g(x, y) = lim
(x,y)→(1,0)

|log(x)| = lim
x→1

|log(x)| = 0

Ainsi, par les deux gendarmes :

lim
(x,y)→(1,0)

(x− 1)2 log(x)
(x− 1)2 + y2

= 0
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4.3. MIN ET MAX SUR UN COMPACT Notes par Joachim Favre

4.3 Maximum et minimum d’une fonction sur un ensemble
compact

Définition :
Maximum

Soit la fonction f : E 7→ R, où E ⊂ Rn.
Si M ∈ R satisfait :

1. f
(−→x ) ≤ M pour tout −→x ∈ E

2. M ∈ f(E)
Alors M est le maximum de la fonction f sur E.

Définition : Mi-
nimum

Soit la fonction f : E 7→ R, où E ⊂ Rn.
Si m ∈ R satisfait :

1. f
(−→x ) ≥ m pour tout −→x ∈ E

2. m ∈ f(E)
Alors m est le minimum de la fonction f sur E.

Exemple Soit la fonction suivante, définie sur f : R2 7→ R :

f(x, y) = sin
(
x2 + y

)
Alors, nous avons :

max
(x,y)∈R2

f(x, y) = 1, min
(x,y)∈R2

f(x, y) = −1

Théorème du
min et du max
sur un compact

Une fonction continue sur un sous-ensemble compact E ⊂ R2 atteint son maximum
et son minimum, i.e. :

∃ max−→x ∈E
f
(−→x ), ∃ min−→x ∈E

f
(−→x )

La démonstration de ce théorème doit être connue pour l’examen.

Preuve f(E)
est borné

Nous voulons commencer par montrer que
{
f
(−→x )}−→x ∈E est borné.

Supposons par l’absurde que f(E) n’est pas borné. Ceci implique
que, pour tout k ≥ 0, il existe un −→xk ∈ E tel que

∣∣f(−→xk

)∣∣ ≥ k. Ceci
nous donne une suite

{−→xk

}
∈ E.

Puisque E est un ensemble compact, nous savons qu’il est borné, et
donc

{−→xk

}
est bornée. Ainsi, par le théorème de Bolzano-Weierstrass,

nous pouvons trouver une sous suite convergente
{−→xkp

}
, qui a pour

limite un vecteur −→x0 ∈ Rn. Puisque E est compact (et donc fermé),
nous savons que −→x0 ∈ E.
Puisque f est continue, nous savons que :

lim
p→∞

f
(−→xkp

)
= f

(−→x0
)

∈ R

Mais, par construction,
∣∣f(−→xk

)∣∣ ≥ k pour tout k ∈ N, donc
{
f
(−→xkp

)}
n’est pas bornée et ne peut donc pas converger. Ceci est notre contra-
diction, nous en concluons que f est bornée sur E.

Preuve f at-
teint ses extre-
mum

Nous voulons montrer que f atteint son minimum et son maximum
sur E.
Par ce que nous venons de démontrer, nous savons que f(E) est un
sous-ensemble borné. Ainsi :

∃M = sup
{
f
(−→x ),−→x ∈ E

}
, ∃m = inf

{
f
(−→x ),−→x ∈ E

}
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Par la définition du supremum et de l’infimum, nous pouvons nous
en rapprocher arbitrairement, donc cela implique qu’il existe deux
suites

{−→ak

}
,
{−→

bk

}
∈ E telles que :

lim
k→∞

f
(−→ak

)
= m, lim

k→∞
f
(−→

bk

)
= M

Or, puisque
{−→ak

}
,
{−→

bk

}
∈ E (qui est borné), ce sont des suites

bornées, et donc il existe des sous-suites convergentes. En d’autres
mots :

−→akp → −→a ∈ Rn,
−→
bkp →

−→
b ∈ Rn

De plus, puisque E est compact (et donc fermé), nous savons que
−→a ∈ E et

−→
b ∈ E. Ainsi, par la continuité de f :

m = lim
k→∞

f
(−→ak

)
= lim
p→∞

f
(−→akp

)
= f

(−→a )
M = lim

k→∞
f
(−→

bk

)
= lim
p→∞

f
(−→

bkp

)
= f

(−→
b
)

Ainsi, nous savons qu’il existe −→a ,
−→
b ∈ E tels que :

f
(−→a ) = m = min−→x ∈E

f
(−→x )

f
(−→

b
)

= M = max−→x ∈E
f
(−→x )

□

Remarque Ce théorème est similaire à celui qu’on avait pour la 1D : une
fonction continue sur un intervalle fermé borné atteint son minimum
et son maximum.
Notez que, dans Rn, pour que f atteigne aussi toute valeur inter-
médiaire entre m et M , il faut que E soit compact, mais aussi qu’il
soit connexe par chemins (la définition arrive juste après).

Définition :
Connexité par
chemins

Un ensemble E est connexe par chemins si, pour n’importe quels 2 points, il
existe un chemin d’un point à l’autre qui est continu et qui est contenu entièrement
dans E.

Exemples L’ensemble de gauche est compact et connexe par chemin, et celui
de droite est compact mais pas convexe par chemins.
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Lundi 28 mars 2022 — Cours 11 : Et le retour des différences maintenant ! ,

Chapitre 5

Calcul différentiel des fonctions de
plusieurs variables

5.1 Dérivée partielles et le gradient

Définition : déri-
vée partielle

Soit f : E 7→ Rn une fonction, où E ⊂ Rn est un ensemble ouvert, et soit la fonction
d’une seule variable suivante :

g(s) = f(a1, a2, . . . , ak−1, s, ak+1, . . . , an), où −→a = (a1, . . . , an) ∈ E

Le domaine de définition de g est :

Dg = {s ∈ R tel que (a1, a2, . . . , ak, s, ak+1, . . . , an) ∈ E}

Alors, si g est dérivable en ak ∈ Dg, on dit que la k-ème dérivée partielle de f
en −→a ∈ E existe est égale à g′(ak), notée :

g′(ak) déf= ∂f

∂xk

(−→a ) = Dkf
(−→a )

On remarque que nous avons :

∂f

∂xk

(−→a ) = lim
t→0

g(ak + t) − g(ak)
t

= lim
t→0

f
(−→a + t−→ek

)
− f

(−→a )
t

Remarque Quand on prend une dérivée partielle, on considère que tout est
constant, sauf la variable selon laquelle nous calculons notre dérivée.

Exemple Soit la fonction f(x, y) = sin(xy) où f : R2 7→ R. Soit aussi (x0, y0) ∈ R2. Nous
voulons calculer la dérivée partielle selon x en (x0, y0) :

∂f

∂x
(x0, y0) = lim

t→0

f(x0 + t, y0) − f(x0, y0)
t

= lim
t→0

sin((x0 + t)y0) − sin(x0y0)
t

Si y0 = 0, alors nous avons :

∂f

∂x
(x0, 0) = lim

t→0

sin(0) − sin(0)
t

= 0
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Si y0 ̸= 0 :

∂f

∂x
(x0, y0) = lim

t→0

sin(x0y0) cos(ty0) + cos(x0y0) sin(ty0) − sin(x0y0)
t

= lim
t→0

y0 sin(x0y0) · cos(ty0) − 1
ty0︸ ︷︷ ︸
→1

+y0 cos(x0y0) sin(ty0)
ty0︸ ︷︷ ︸
→1


= y0 cos(x0y0)

On obtient donc :
∂

∂x
sin(x, y)

∣∣∣
(x0,y0)

= y0 cos(x0, y0)

Nous avons calculé cette dérivée par la définition, cependant, nous pouvons aller
beaucoup plus rapidement en utilisant notre remarque ci-dessus (quand on prend
une dérivée partielle selon y, on considère x comme constant) :

∂f

∂y
(x0, y0) = x0 cos(x0, y0)

Définition : Gra-
dient

Si toutes les dérivées partielles existent en −→a ∈ E :

∂f

∂x1

(−→a ), . . . ,
∂f

∂xn

(−→a )
Alors, on définit le gradient de f en −→a comme :

∇f
(−→a ) =

(
∂f

∂x1

(−→a ), . . . , ∂f
∂xn

(−→a ))
Notez que ∇ s’appelle le nabla, et ce symbole se révélera très utile par la suite.

Intuition Le gradient montre la direction de la plus grande pente de la fonction.
En d’autres mots, si la fonction représente une altitude en fonction
d’une position, alors le gradient montre dans quelle direction nous
devrons aller pour monter le plus vite. Nous prenons cette propriété
telle quelle pour l’instant, mais nous la démontrons dans le cours
suivant.

Exemple 1 Reprenons notre fonction f(x, y) = sin(xy). Nous avions déjà calculé les dérivées
partielles, donc :

∇f(x, y) = (y cos(xy), x cos(xy)), ∀(x, y) ∈ R2

Voici le graphique de notre fonction :

−2 0
2 −2

0
2−1

0

1
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5.1. DÉRIVÉE PARTIELLES ET LE GRADIENT Notes par Joachim Favre

Nous pouvons visualiser le champ vectoriel du gradient, c’est-à-dire :

∇f : R2 7−→ R2

(x, y) 7−→ ∇f((x, y))

−2 0 2

−2

0

2

Exemple 2 Soit la fonction f(x, y) = x2 + y2, où f : R2 7→ R2. Alors :

∇f(x, y) = (2x, 2y), ∀(x, y) ∈ R2

Nous pouvons dessiner le graphique de la fonction et le champ de vecteurs de son
gradient :

−2 0 2 −2
0

20

10

−2 0 2

−2

0

2

Nous pouvons aussi calculer une dérivée partielle par la définition :

∂f

∂x
(x0, y0) = lim

t→0

(x0 + t)2 + y2
0 − x2

0 − y2
0

t
= lim
t→0

x2
0 + 2x0t+ t2 − x2

0
t

= 2x0

Définition :
Dérivée direc-
tionnelle

Soit E ⊂ Rn un sous-ensemble ouvert. Soient aussi −→a ∈ E, et −→v ∈ Rn où −→v ̸= −→0 .
Nous savons que la droite passant par −→a en direction de −→v admet la paramétrisation
suivante : −→

ℓ (t) = −→a + t−→v , ∀t ∈ R
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Considérons une fonction f : E 7→ R, et soit la fonction d’une variable t suivante :

g(t) déf= f
(−→

ℓ (t)
)

= f
(−→a + t−→v

)
, ∀t ∈

{
t ∈ R tel que −→a + t−→v ∈ E

}
Si g est dérivable en t = 0, on dit qu’il existe la dérivée directionnelle de f en −→a
suivant le vecteur −→v (dans la direction de −→v ). La dérivée directionnelle de f en −→a
en direction de −→v est donnée par :

lim
t→0

g(t) − g(0)
t

= lim
t→0

f
(−→a + t−→v

)
− f

(−→a )
t

déf= Df
(−→a ,−→v

)
= ∂f

∂−→v
(−→a )

Remarque 1. Si −→v = −→ei , où −→ei = (0, . . . , 0, 1, 0, . . . , 0), alors :

Df
(−→a ,−→ei

)
= lim
t→0

f
(−→a + t−→ei

)
− f

(−→a )
t

= ∂f

∂xi

(−→a )
En d’autres mots, la dérivée partielle est un cas particulier de la
dérivée directionnelle.
Ainsi, si toutes les dérivées directionnelles existent en −→a (pour
tout −→v ̸= −→0 ), alors toutes les dérivées partielles existent aussi
en ce point. Cependant, la réciproque est fausse en générale.

2. Essayons de multiplier −→v par λ ∈ R∗ :

Df
(−→a , λ−→v

)
= lim
t→0

f
(−→a + tλ−→v

)
− f

(−→a )
t

s = t · λ= lim
s→0

f
(−→a + s−→v

)
− f

(−→a )
s
λ

= lim
s→0

f
(−→a + s−→v

)
− f

(−→a )
s

λ

= Df
(−→a ,−→v

)
λ

C’est cohérent car ce qui nous importe est la direction est non
pas la longueur de notre vecteur.
Donc, si la dérivée directionnelle de f en −→a suivant −→v existe,
alors la dérivée directionnelle de f en −→a suivant λ−→v existe pour
tout λ ∈ R∗. Il suffit donc de calculer les dérivées directionnelles
suivant les vecteurs unitaires

∥∥−→v
∥∥ = 1.

Exemple Prenons la fonction suivante :

f(x, y) = x2 + y2
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5.2. DÉRIVABILITÉ ET DIFFÉRENTIELLE Notes par Joachim Favre

Nous voulons calculer Df
(−→a ,−→v

)
, où −→a = (1, 1) et −→v =

(
1
2 ,

√
3

2

)
:

Df
(−→a ,−→v

)
= lim
t→0

f
(−→a + t−→v

)
− f

(−→a )
t

= lim
t→0

(
1 + 1

2 t
)2 +

(
1 +

√
3

2

)2
− 12 − 12

t

Ce qui est égal à :

lim
t→0

1 + t+ 1
4 t

2 + 1 +
√

3t+ 3
4 t

2 − 1 − 1
t

= lim
t→0

t+
√

3t+ t2

t
= 1 +

√
3

Nous allons voir bientôt une méthode de calcul plus rapide.

5.2 Dérivabilité et différentielle

Définition : déri-
vabilité

Soit f : E 7→ R, où E ⊂ Rn est ouvert. De plus, soit −→a ∈ E.
On dit que f est dérivable (ou différentiable) au point −→a s’il existe une transfor-
mation linéaire L−→a : Rn 7→ R et une fonction r : E 7→ R telles que :

f
(−→x ) = f

(−→a )+ L−→a
(−→x − −→a

)
+ r
(−→x ), ∀x ∈ E

et aussi r doit être telle que :

lim−→x →−→a

r
(−→x )∥∥−→x − −→a

∥∥ = 0

L−→a s’appelle la différentielle de f au point −→a ∈ E, et est aussi parfois notée :

L−→a = df
(−→a )

Intuition Cette définition veut dire que notre fonction admet une linéarisation :
elle se comporte comme un hyperplan autour d’un point.

Transformation
linéaire

Une transformation linéaire T : Rn 7→ R est une fonction telle que :

T
(
α−→x + β−→y

)
= αT

(−→x )+ βT
(−→y ), ∀−→x ,−→y ∈ Rn,∀α, β ∈ R

En particulier, cela nous donne :

T
(−→0

)
= −→0

Par exemple, T (x, y) = x+ y est une application linéaire R2 7→ R,
mais T (x, y) = x+ y + 2 n’est pas une application linéaire (même
si c’est une fonction linéaire, puisque c’est un polynôme).

Remarque Comparons notre définition avec la dérivabilité des fonctions d’une
seule variable.
Une fonction f : I 7→ R, où I ⊂ R est un sous-ensemble ouvert, est
différentiable en a ∈ I s’il existe ℓ ∈ R et une fonction r : I 7→ R
tels que :

f(x) = f(a) + ℓ(x− a) + r(x), ∀x ∈ I, et lim
x→a

r(x)
|x− a|

= 0

Or, une constante L(x) = ℓx est une application linéaire R1 7→ R1

(un scalaire est comme une matrice de dimension 1 × 1). De plus,
dans ce cas, nous avions ℓ = f ′(a), cela semble donc cohérent avec
le fait que L−→a = df

(−→a ) est appelée la différentielle.
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En d’autres mots, notre définition de dérivabilité s’applique dans le
cas n = 1.

Mercredi 30 mars 2022 — Cours 12 : Gros théorème très très utile

Remarque Soit L : Rn 7→ R une transformation linéaire, et
{−→ei

}n
i=1 la base canonique de Rn.

Posons aussi : −→
ℓ =

(
L
(−→e1

)
, . . . , L

(−→en

))
Alors, nous avons :

L
(−→v ) = L

(
v1

−→e1 + . . .+ vn
−→en

) linéaire= v1L
(−→e1

)
+ . . .+ vnL

(−→en

)
Ce qui est égal à :

L
(−→v ) =

〈−→v , (L(−→e1
)
, . . . , L

(−→en

))〉
=
〈−→v ,

−→
ℓ
〉

Ainsi, si nous connaissons les valeurs de notre transformation linéaire évaluée aux
différents vecteurs de la base canonique, alors nous pouvons trouver la formule
générale de celle-ci. Ce résultat va être important dans la preuve du théorème qui
suit.

Théorème 1 sur
la dérivabilité

Soit f : E 7→ R, où E ⊂ Rn, une fonction dérivable en −→a ∈ E et de différentielle
L−→a : Rn 7→ R. Alors :

1. f est continue en −→a ∈ E.
2. Pour tout −→v ∈ Rn, où −→v ̸= −→0 , la dérivée directionnelle Df

(−→a ,−→v
)

existe
et :

Df
(−→a ,−→v

)
= L−→a

(−→v )
3. Toutes les dérivées partielles de f en −→a existent, et :

∂f

∂xk

(−→a ) = L−→a
(−→ek

)
où −→ek est le k-ème vecteur de la base canonique.
Le gradient de f existe en −→a et :

∇f
(−→a ) =

(
L−→a

(−→e1
)
, . . . , L−→a

(−→en

))
4. Pour tout −→v ∈ Rn, où −→v ̸= −→0 , alors :

L−→a
(−→v ) = Df

(−→a ,−→v
)

=
〈
∇f
(−→a ),−→v 〉

5. Pour tout −→v ∈ Rn tel que
∥∥−→v

∥∥ = 1, nous avons :

Df
(−→a ,−→v

)
≤
∥∥∇f

(−→a )∥∥
De plus :

Df

(
−→a ,

∇f
(−→a )∥∥∇f
(−→a )∥∥

)
=
∥∥∇f

(−→a )∥∥
En d’autres mots, le gradient donne la direction et la valeur de la plus grande
pente de f en −→a (si ∇f

(−→a ) ≠ −→0 , sinon la fonction est simplement plate à
cet endroit, comme nous le verrons plus tard).

Preuve du
point 1

Puisque f est dérivable en −→a , nous avons que :

f
(−→x ) = f

(−→a )+ L−→a
(−→x − −→a

)
+ r
(−→x ), lim−→x →−→a

r
(−→x )∥∥−→x − −→a

∥∥ = 0

70
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Puisque nous voulons montrer que notre fonction est continue,
calculons la limite suivante :

lim
x→−→a

f
(−→x ) = lim−→x →−→a

f(−→a )+ L−→a
(−→x − −→a

)︸ ︷︷ ︸
→0

+ r
(−→x )︸ ︷︷ ︸
→0

 = f
(−→a )

En effet, nous savons que L−→a
−→x est continue, puisque les polynômes

sont continus.
Nous avons donc démontré que f est continue en −→x = −→a .

Preuve du
point 2

Soit −→v ∈ Rn, où −→v ̸= −→0 . Soit aussi g(t) = f
(−→a + t−→v

)
, définie

sur g : D 7→ R, où D ⊂ R. Alors, nous savons que, si la dérivée
existe :

Df
(−→a ,−→v

)
= g′(t)

∣∣∣
t=0

Nous voulons donc uniquement montrer que cette dérivée existe :

Df
(−→a ,−→v

)
= lim
t→0

g(t) − g(0)
t

= lim
t→0

f
(−→a + t−→v

)
− f

(−→a )
t

Or, nous savons que notre fonction est dérivable en −→a , donc :

f
(−→x ) = f

(−→a )+ L−→a
(−→x − −→a

)
+ r
(−→x )

=⇒ f
(−→a + t−→v

)
= f

(−→a )+ L−→a
(
t−→v
)

+ r
(−→a + t−→v

)
Ainsi, en prenant −→x (t) = −→a + t−→v , qui est tel que −→x → −→a quand
t → 0, nous obtenons que notre limite est égale à :

Df
(−→a ,−→v

)
= lim

t→0

f
(−→a )+ L−→a

(
t−→v
)

+ r
(−→a + t−→v

)
− f

(−→a )
t

= lim
t→0

L−→a
(
t−→v
)

+ r
(−→a + t−→v

)
t

= lim
t→0

(
t · L−→a

(−→v )
t

+
r
(−→a + t−→v

)∥∥t−→v ∥∥ ·
∥∥t−→v ∥∥
t

)

= lim
t→0

L−→a +
r
(−→x (t)

)∥∥−→x (t) − −→a
∥∥︸ ︷︷ ︸

→0

|t|
∥∥−→v

∥∥
t


= L−→a

(−→v )
Preuve du
point 3

Nous savons déjà que :

∂f

∂xk

(−→a ) = Df
(−→a ,−→ek

)
Ainsi, par le point 2 :

∂f

∂xk

(−→a ) = Df
(−→a ,−→ek

)
= L−→a

(−→ek

)
De plus, cela implique directement que le gradient de f existe, et
que :

∇f
(−→a ) =

(
L−→a

(−→e 1
)
, . . . , L−→a

(−→e n

))
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Preuve du
point 4

Par la remarque juste avant le théorème, nous savons que :

L−→a
(−→v ) =

〈−→v ,∇f(−→a )〉
En effet, par le point 3 :

∇f
(−→a ) =

(
L−→a

(−→e1
)
, . . . , L−→a

(−→en

))
Ceci nous donne donc que :

Df
(−→a ,−→v

)
= L−→a

(−→v ) =
〈−→v ,∇f(−→a )〉

Preuve du
point 5

Soit
∥∥−→v

∥∥ = 1, et supposons que ∇f
(−→a ) ̸= 0. Alors :

Df
(−→a ,−→v

)
=
〈
∇f
(−→a ),−→v 〉

=
∥∥∇f

(−→a )∥∥ ∥∥−→v
∥∥︸ ︷︷ ︸

=1

cos
(
∇f
(−→a ),−→v )︸ ︷︷ ︸
≤1

≤
∥∥∇f

(−→a )∥∥
De plus, soit −→v = ∇f(−→a )

∥f(−→a )∥ . Alors :

Df
(−→a ,−→v

)
=
〈

∇f
(−→a ), ∇f

(−→a )∥∥∇f
(−→a )∥∥

〉
=
∥∥∇f

(−→a )∥∥2∥∥∇f
(−→a )∥∥ =

∥∥∇f
(−→a )∥∥

Ainsi, si ∇f
(−→a ) ≠ −→0 , la valeur maximale de la dérivée direction-

nelle de f en −→a est dans la direction du gradient ∇f
(−→a ).

□

Exemple Soit la fonction suivante :
f(x, y) = x2 + y2

Nous allons montrer que cette fonction est dérivable sur R2. Commençons par
calculer les dérivées partielles :

∂f

∂x
= 2x, ∂f

∂y
= 2y

Nous pouvons maintenant calculer le gradient :

∇f = (2x, 2y), ∀(x, y) ∈ R2

Aussi, calculons la différentielle, avec −→v = (v1, v2)

L(x,y)
(−→v ) = Df

(
(x, y),−→v

)
=
〈
∇f(x, y),−→v

〉
= 2xv1 + 2xv2

Prenons maintenant par exemple (x, y) = (1, 1) et −→v =
(

1
2 ,

√
3

2

)
. On remarque

que le gradient en ce point est donné par ∇f(1, 1) = (2, 2). Calculons la dérivée
directionnelle dans la direction de −→v et dans la direction du gradient :

Df
(
(1, 1),−→v

)
=
〈

(2, 2),
(

1
2 ,

√
3

2

)〉
= 1 +

√
3

Df

(
(1, 1), ∇f

∥∇f∥

)
=
〈

(2, 2),
(

1√
2
,

1√
2

)〉
=

√
2+

√
2 = 2

√
2 = ∥∇f(1, 1)∥ > 1+

√
3
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Courbe de
niveau

Considérons maintenant la courbe de niveau de notre fonction
f(x, y) : {

(x, y) ∈ R2 tel que x2 + y2 = k
}

ce qui est un cercle de rayon
√
k et centre (0, 0).

On remarque que ∇f(x, y) = (2x, 2y) est normal à la courbe de
niveau.

On sait que ∇f(x, y) ≠ 0 dans notre cas, généralisons donc nos
trouvailles. La courbe de niveau montre là où la valeur de la fonction
ne change pas. Ainsi, la dérivée directionnelle dans la direction de
notre courbe de niveau, −→v , doit être nulle. Or, on sait qu’elle se
calcule par :

Df
(
(x0, y0),−→v

)
=
〈
∇f(x0, y0),−→v

〉
= 0

Et, puisque ∇f(x0, y0) ≠ 0 et −→v ̸= 0, nécessairement ils doivent
être orthogonaux.

Application :
Plan tangent à
une surface

Soit f : E 7→ R, où E ⊂ R2, une fonction dérivable sur E (c’est-à-dire qu’elle est
dérivable en tout point de E). Soit aussi −→a = (x0, y0, f(x0, y0)) ∈ R3 un point du
graphique de f . On cherche une équation du plant tangent à z = f(x, y) à ce point.
Soit F (x, y, z) = z − f(x, y), qui est définie sur D 7→ R, où D ⊂ R3, et qui est
dérivable puisque f(x, y) est dérivable. Par définition de F (x, y, z), nous avons
paramétrisé la surface de notre graphique avec l’équation F (x, y, z) = 0 (puisqu’on
sait que c’est équivalent à z = f(x, y), qui est la définition de notre graphique).
Le gradient de F est donné par :

∇F (x, y, z) =
(

−∂f

∂x

(−→a ),−∂f

∂y

(−→a ), 1) ̸= −→0

Par un argument similaire à ce que nous venons de trouver avec la courbe de niveau,
nous savons que le gradient est orthogonal au plan tangent à la courbe. En effet,
la courbe de niveau de F telle que F (x, y, z) = 0 est exactement notre graphique.
Ainsi, tout vecteur de notre plan −→v est tel que :〈

∇F
(−→a ),−→v 〉 = 0

Prenons z0 = f(x0, y0). Puisque nous savons que le point (x0, y0, z0) appartient au
plan, nous savons que −→v , allant de (x0, y0, z0) à un vecteur quelconque, est de la
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forme (x− x0, y − y0, z − z0). Ainsi, cela nous donne :〈
∇F

(−→a ), (x− x0, y − y0, z − z0)
〉

= 0

⇐⇒ − ∂f

∂x

(−→a )(x− x0) − ∂f

∂y

(−→a )(y − y0) + 1(z − f(x0, y0)) = 0

⇐⇒ z = f(x0, y0) + ⟨∇f(x0, y0), (x− x0, y − y0)⟩

Il faut connaitre ce résultat.

Remarque Nous pouvons comparer ce résultat avec la tangente à une fonction
d’une seule variable en a ∈ E :

Ta(x) = f(a) + f ′(a)(x− a)

Exemple Prenons la fonction suivante :

f(x, y) = sin(xy)

Nous verrons plus tard qu’elle est bien dérivable sur R2. Calculons son gradient :

∇f(x, y) = (y cos(xy), x cos(xy))

Un vecteur normal au graphique de z = sin(xy) en (x0, y0, sin(x0y0)) est :

(y0 cos(x0y0), x0 cos(x0y0),−1)

Ainsi, cela nous donne que la plan tangent à la surface z = sin(x, y) en ce point est :

z = sin(x0, y0) + y0 cos(x0y0)(x− x0) + x0 cos(x0y0)(y − y0)

Nous aurions naturellement pu aller plus rapidement en prenant directement la
formule :

z = f(x0, y0) + ⟨∇f(x0, y0), (x− x0, y − y0)⟩

Lundi 4 avril 2022 — Cours 13 : On monte en ordres

Rappel Nous avons vu que f est dérivable en −→a implique que les dérivées directionnelles
existent. De plus, si les dérivées directionnelles existent dans toutes les direction,
alors les dérivées partielles existent. Notez que les deux réciproques sont fausses en
général, l’existence des dérivées directionnelles n’implique pas la dérivabilité de la
fonction, et l’existence des dérivées partielles n’implique pas l’existence des dérivées
directionnelles.
Cependant, nous avons le théorème qui suit.

Théorème 2 sur
la dérivabilité

Soit E ⊂ Rn un ensemble ouvert, f : E 7→ R et un point −→a ∈ E.
Supposons qu’il existe δ > 0 tel que toutes les dérivées partielles ∂f

∂xk

(−→a ) existent
sur B

(−→a , δ
)

et sont continues en −→a . Alors, f est dérivable en −→a ∈ E.
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5.3 Dérivées partielles d’ordre supérieur

Définition :
Fonction dérivée
partielle

Soit f : E 7→ R, où E ⊂ Rn est ouvert, une fonction telle que ∂f
∂xk

existe pour un
k, avec 1 ≤ k ≤ n, en tout point de E. Alors ∂f

∂xk

(−→x ) où −→x ∈ E, est la fonction
k-ème dérivée partielle.

Définition : Dé-
rivée partielle
d’ordre supé-
rieur

Soit f : E 7→ R une fonction telle que ∂f
∂xk

existe en tout −→x ∈ E. Si la fonction ∂f
∂xk

admet à son tour une dérivée partielle par rapport à xi (potentiellement une autre
variable), on pose :

∂

∂xi

(
∂f

∂xk

)
déf= ∂2f

∂xi∂xk

Nous appelons ceci la dérivée partielle seconde. Nous pouvons définir ainsi,
lorsqu’elles existent, les dérivées partielles d’ordre p. Par exemple :

∂

∂xj

(
∂

∂xi

(
∂f

∂xk

))
= ∂3f

∂xj∂xi∂xk

Remarque Notez que la dérivée partielle qui se calcule en premier est celle
de droite. Ceci est très cohérent avec la plupart des opérateurs,
notamment les matrices et les application linéaires. Cependant,
dans le livre de référence Douchet-Swahlen, l’ordre des dérivées
partielles est échangé (et c’est probable que ce soit le seul livre qui
utilise cette convention).

Définition :
Classe

Soit E ⊂ Rn un ensemble ouvert.
Une fonction f : E 7→ R est dite de classe Cp sur E, si toutes les dérivées partielles
d’ordre ≤ p existent et sont continues sur E.

Remarque 1 C∞ veut dire que la fonction est de classe p pour tout p ∈ N.

Remarque 2 Le théorème 2 sur la dérivabilité nous dit que, si f est de classe C1

sur E, alors f est dérivable sur E.

Théorème de
Schwarz

Soit f : E 7→ R et −→a ∈ E tel que les dérivées partielles secondes ∂2f
∂xi∂xj

et ∂2f
∂xj∂xi

existent dans un voisinage de −→a et sont continues en −→a (en d’autres mots, f est de
classe C2 sur un ensemble ouvert contenant −→a ).
Alors, nous avons :

∂2f

∂xi∂xj

(−→a ) = ∂2f

∂xj∂xi

(−→a )
Remarque De manière générale, on peut démontrer que si f est de classe Cp

sur E, alors nous pouvons échanger l’ordre des dérivées partielles
jusqu’à l’ordre p.

Définition : Ma-
trice Hessienne

La matrice Hessienne est la matrice des dérivées partielles d’ordre 2 pour une
fonction E 7→ Rn, où E ⊂ Rn est un sous-ensemble ouvert, notée :

Hess(f)
(−→a ) =



∂2f

∂x2
1

(−→a ) ∂2f

∂x2x1

(−→a ) · · · ∂2f

∂xn∂x1

(−→a )
∂2f

∂x1∂x2

(−→a ) ∂2f

∂x2
2

(−→a ) · · · ∂2f

∂xn∂x2

(−→a )
...

...
. . .

...
∂2f

∂x1∂xn

(−→a ) ∂2f

∂x2∂xn

(−→a ) · · · ∂2f

∂x2
n

(−→a )


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Remarque Si f est de classe C2 sur E, alors la matrice Hessienne est symétrique,
c’est-à-dire :

Hess(f)
(−→a ) = Hess(f)

(−→a )T
Exemple Soit la fonction définie sur f : R2 7→ R suivante :

f(x, y) = sin(xy)

Nous allons utiliser cet exemple afin d’illustrer le théorème de Schwarz, et les matrices
Hessiennes.

Dérivées par-
tielles pre-
mières

Nous pouvons calculer les dérivées premières :

∂f

∂x
= y cos(xy), ∂f

∂y
= x cos(xy)

Dérivées par-
tielles secondes

Calculons maintenant les dérivées partielles secondes mixtes :

∂2f

∂y∂x
= ∂

∂y
(y cos(xy)) = cos(xy) − xy sin(xy)

∂2f

∂x∂y
= ∂

∂x
(x cos(xy)) = cos(xy) − xy sin(xy)

Nous remarquons qu’ici elles sont égales. Nous pouvons aussi calculer
les autres dérivées partielles :

∂2f

∂x2 = ∂

∂x

(
∂f

∂x

)
= ∂

∂x
(y cos(xy)) = −y2 sin(xy)

∂2f

∂y2 = ∂

∂y

(
∂f

∂y

)
= ∂

∂y
(x cos(xy)) = −x2 sin(xy)

Dérivées par-
tielles d’ordre
3

Nous pouvons maintenant aussi calculer les dérivées d’ordre 3 pour
cette fonction. Par exemple :

∂3f

∂x∂y∂x
= ∂

x

(
∂2f

∂y∂x

)
= −2y sin(xy) − xy2 cos(xy)

∂3f

∂x∂x∂y
= ∂

∂x

(
∂2f

∂x∂y

)
= ∂

∂x

(
∂2f

∂y∂x

)
= ∂3f

∂x∂y∂x

∂3f

∂y∂x2 = ∂

∂y

(
∂2f

∂x2

)
= −2y sin(xy) − xy2 cos(xy)

On remarque que nous avons :

∂3f

∂x2∂y
= ∂3f

∂x∂y∂x
= ∂3f

∂y∂x2 , ∀(x, y) ∈ R2

Qui sont différentes de :

∂3f

∂y2∂x
= ∂3f

∂y∂x∂y
= ∂3f

∂x∂y2 , ∀(x, y) ∈ R2

Nous pouvons calculer les dérivées partielles d’ordre p, où p ∈ N∗,
pour f(x, y) = sin(xy). Elle existent et sont continues sur R2, ainsi
l’ordre de dérivation ne fait pas de différence pour cette fonction.
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Matrice Hes-
sienne

Finalement, nous pouvons utiliser ce que nous avons calculé pour
construire notre matrice Hessienne :

Hess(f)(x, y) =
(

∂2f
∂x2

∂2f
∂y∂x

∂2f
∂x∂y

∂2f
∂y2

)

=
(

−y2 sin(xy) cos(xy) − xy sin(xy)
cos(xy) − xy sin(xy) −x2 sin(xy)

)
Résumé Nous avons vu beaucoup de théorie, de laquelle nous pouvons faire le schéma suivant.

Nous allons voir un certain nombre de contre-exemples sur les réciproques de nos
propositions, ainsi elles sont déjà écrites sur le schéma pour plus de clarté.
Soit f : E 7→ R, où E est ouvert, alors :

Classe C2

sur E

Classe C1

sur E

Dérivable
en −→a ∈ E

Df
(−→a ,−→v

)
existent ∀−→v ̸= −→0

∂f

∂xk

(−→a ) existent
et ∇f

(−→a ) existe

∂2f

∂xi∂xj
= ∂2f

∂xj∂xi
pour i, j = 1, . . . , n

Continue
en −→a ∈ E

Déf. Ex. 3

Thm. 2 Ex. 4

Thm. 1 Ex. 2 Ex. 1

Déf.

Ex. 1

Thm. 1

Thm.

Schwarz

Ex. 5

Ex. 2

Exemple 1 Soit la fonction suivante :

f(x, y) =


xy

x2 + y2 , (x, y) ̸= (0, 0)

0, (x, y) = (0, 0)

Nous allons montrer que toutes les dérivées partielles de cette fonction existent, mais
qu’elle n’est pas continue et que les dérivées directionnelles n’existent pas en (0, 0).

Continuité On remarque que f(x, y) n’est pas continue en (0, 0) :

lim
k→∞

f

(
1
k
,

1
k

)
= lim
k→∞

1
k2

1
k2 + 1

k2

= 1
2

lim
k→∞

f

(
0, 1
k

)
= lim
k→∞

0 · 1
k

1
k

= 0

Ceci implique que la fonction n’est pas dérivable, par la contraposée
de notre premier théorème.
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Dérivées par-
tielles

Calculons maintenant les dérivées partielles. Si (x, y) ≠ (0, 0), alors
nous avons :

∂f

∂x
=
y
(
x2 + y2)− 2xxy

(x2 + y2)2 = y3 − x2y

(x2 + y2)2

Or, on remarque qu’elle ne peut pas être continue en −→0 , puisque la
limite suivante n’existe pas :

lim
k→∞

∂f

∂x

(
0, 1
k

)
= lim
k→∞

1
k3

1
k4

= lim
k→∞

k

Si nous voulons trouver la dérivée partielle selon y, alors nous
pouvons utiliser la symétrie de notre fonction et échanger les x et
les y dans ∂f

∂x :
∂f

∂y
= x3 − y2x

(x2 + y2)2

De manière similaire, on trouve que cette dérivée partielle ne peut
pas être continue en −→0 .

Dérivées direc-
tionnelles

Calculons les dérivées directionnelles en (0, 0). Ainsi, soit −→v =
(v1, v2) ̸= (0, 0), cela nous donne :

Df
(−→0 ,−→v

)
= lim

t→0

f
(−→0 + t−→v

)
− f

(−→0
)

t

= lim
t→0

1
t

(
t2v1v2

t2(v2
1 + v2

2) − 0
)

= lim
t→0

v1v2

t(v2
1 + v2

2)

Cette limite n’existe pas, sauf si v1 = 0 ou v2 = 0, auquel cas elle
est égale à 0. Ainsi, seules nos dérivées partielles existent, et elles
sont égales à 0.

Exemple 2 Soit la fonction suivante :

f(x, y) =


x2y3

x4 + y6 , (x, y) ̸= (0, 0)

0, (x, y) = (0, 0)

Nous allons montrer que toutes les dérivées directionnelles de cette fonction existent
en (0, 0), mais qu’elle n’est ni continue ni dérivable en ce point.

Continuité Nous remarquons qu’elle n’est pas continue en (0, 0) :

lim
k→∞

f

(
1
k
,

1
k

)
= lim
k→∞

1
k5

1
k4

(
1 + 1

k2

) = 0

lim
k→∞

f

(
1
k3 ,

1
k2

)
= lim
k→∞

1
k6 · 1

k6

1
k12 + 1

k12

= 1
2

Nous en déduisons que cette fonction n’est pas dérivable en (0, 0).
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Dérivées direc-
tionnelles

Calculons maintenant les dérivées directionnelles en (0, 0). Ainsi,
soit −→v = (v1, v2) ̸= 0. Nous avons :

Df
(−→0 ,−→v

)
= lim

t→0

f
(−→0 + t−→v

)
− f

(−→0
)

t

= lim
t→0

t5v2
1v

3
2

t(t4v4
1 + t6v6

2)

= lim
t→0

v2
1v

3
2

v4
1 + t2v6

2

Ce qui nous donne que :

Df
(−→0 ,−→v

)
=


v2

1v
3
2

v4
1

= v3
2
v2

1
, si v1 ̸= 0

lim
t→0

0
0 + t2v2

2
= 0, si v1 = 0

Nous en déduisons que les dérivées directionnelles existent en (0, 0)
pour tout −→v ∈ R2, −→v ̸= (0, 0).

Dérivées par-
tielles

En particulier, nous avons :

∂f

∂x

(−→0
)

= Df
(−→0 , (1, 0)

)
= 0

∂f

∂y

(−→0
)

= Df
(−→0 , (0, 1)

)
= 0

Ainsi, ∇f
(−→0

)
= −→0 . Nous pouvons montrer que les dérivées par-

tielles ne sont pas continues (cette propriété est nécessaire par notre
deuxième théorème).

Plan tangent Nous savons que f n’est pas dérivable en (0, 0), mais nous avons
que ∇f(0, 0) = (0, 0). Ainsi, nous pouvons essayer d’écrire tout de
même l’équation d’un plan :

z = f(0, 0) + ⟨∇f(0, 0), (x, y)⟩ = 0

Cependant, comme nous pouvons le voir sur l’image suivante, ce
plan ne fait aucun sens, ce n’est pas un plan tangent au graphique
de la fonction. Cela montre que, si la fonction n’est pas dérivable,
alors il n’existe pas de plan tangent.

Ceci nous amène à la remarque suivante.
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Remarque Nous avions trouvé que si f(x, y) est dérivable en (x0, y0), alors le plan tangent à la
surface z = f(x, y) au point (x0, y0, f(x0, y0)) est défini par l’équation :

z = f(x0, y0) + ⟨∇f(x0, y0), (x− x0, y − y0)⟩

Si f n’est pas dérivable en ce point, alors ce plan n’est pas un plan tangent, même
si le gradient ∇f(x0, y0) existe. Le plan tangent n’est simplement pas défini dans ce
cas.

Mercredi 6 avril 2022 — Cours 14 : Toujours plus d’exemples

Démonstration
de la dérivabilité

Voici deux méthodes pour démontrer qu’une fonction est dérivable.

Méthode 1 Nous savons que si toutes les dérivées partielles d’ordre 1 sont
continues au point donné, alors nous savons que cela implique que
f est dérivable.
Il est important de voir que le fait qu’une ou plusieurs dérivées
partielles ∂f

∂xi
ne soient pas continues en −→a n’implique pas nécessai-

rement que f n’est pas dérivable en −→a , comme nous le verrons dans
l’exemple 5, et comme nous pouvons voir sur le schéma de résumé.

Méthode 2 Si le gradient ∇f
(−→a ) n’existe pas, alors nous savons que f n’est

pas dérivable en −→a . S’il existe, nous pouvons poser :

r
(−→x ) = f

(−→x )− f
(−→a )−

〈
∇f
(−→a ),−→x − −→a

〉
Alors, si lim−→x →−→a

r(−→x )
∥−→x −−→a ∥ = 0, nous savons que f est dérivable en

−→a par définition.

De manière similaire, si lim−→x →−→a
r(−→x )

∥−→x −−→a ∥ ̸= 0, alors f n’est pas
dérivable par notre premier théorème. En effet, si une fonction est
dérivable, alors L−→a · −→v =

〈
∇f
(−→a ),−→v 〉, et donc r

(−→x ) et telle que
donnée ci-dessus. Ainsi, si notre limite ne donne pas 0, c’est une
contradiction avec le fait que la fonction soit dérivable.

Exemple 3 Soit la fonction suivante :

f(x, y) =


xy3

x2 + y2 , (x, y) ̸= (0, 0)

0, (x, y) = (0, 0)

Nous allons montrer que cette fonction est de classe C1, mais pas de classe C2. De
plus, les dérivées partielles secondes existent, mais nous ne pouvons pas changer
l’ordre de dérivation.

Dérivées par-
tielles pre-
mières

Nous pouvons calculer ses dérivées partielles en (0, 0) :

∂f

∂x
(0, 0) = lim

t→0

f(t, 0) − f(0, 0)
t

= lim
t→0

t · 0
t(t2 + 0) = 0

∂f

∂y
(0, 0) = lim

t→0

f(0, t) − f(0, 0)
t

= lim
t→0

0 · t3

t(0 + t2) = 0

Calculons aussi les dérivées partielles pour (x, y) ̸= (0, 0) :

∂f

∂x
=
y3(x2 + y2)− 2x

(
xy3)

(x2 + y2)2 = y5 − x2y3

(x2 + y2)2

80



5.3. DÉRIVÉES PARTIELLES D’ORDRE SUPÉRIEUR Notes par Joachim Favre

∂f

∂y
=

3y2x
(
x2y2)− 2y

(
xy3)

(x2 + y2)2 = y4x+ 3x3y2

(x2 + y2)2

Nous pouvons aussi calculer leur limite :

lim
(x,y)→(0,0)

∂f

∂x
= lim
r→0

r5

borné︷ ︸︸ ︷(
sin5(φ) − cos2(φ) sin3(φ)

)
r4 = 0

lim
(x,y)→(0,0)

∂f

∂y
= lim
r→0

r5

borné︷ ︸︸ ︷(
sin4(φ) cos(φ) + 3 cos3(φ) sin2(φ)

)
r4 = 0

Ainsi, puisque les dérivées partielles existent et sont continues sur
R2, nous savons que f est dérivable sur R2 par notre deuxième
théorème.

Dérivées par-
tielles secondes

Calculons maintenant les dérivées partielles secondes :

∂

∂y

(
∂f

∂x

)
(0, 0) = lim

t→0

t5 − 0 · t3

t(t2 + 0)2 = lim
t→0

t5

t5
= 1

∂

∂x

(
∂f

∂y

)
(0, 0) = lim

t→0

t · 0 − 0 · t3

t(0 + t2)2 = lim
t→0

0
t5

= 0

Nous avons donc trouvé une fonction telle que :

∂2f

∂x∂y
(0, 0) ̸= ∂2f

∂y∂x
(0, 0)

Par la contraposée du théorème de Schwarz, nous savons que ∂2f
∂x∂y

n’est pas continue en (0, 0). En effet, pour (x, y) ̸= (0, 0) :

∂2f

∂x∂y
= 6x2y4 + y6 − 3x4y2

(x2 + y2)3 = ∂2f

∂y∂x

Or, la limite n’existe pas en (0, 0), donc elles ne peuvent pas être
continues à ce point.

Dérivabilité Nous savons déjà que cette fonction est dérivable, puisqu’elle est de
classe C1, mais utilisons la deuxième méthode pour l’illustrer.
Nous avions trouvé ∇f(0, 0) = (0, 0). Ainsi, posons :

r(x, y) = f(x, y) − f(0, 0)︸ ︷︷ ︸
=0

− ⟨∇f(0, 0), (x, y)⟩︸ ︷︷ ︸
=0

= f(x, y) = xy3

x2 + y2

Nous pouvons maintenant calculer la limite :

lim
(x,y)→(0,0)

r(x, y)
∥(x, y) − (0, 0)∥ = lim

(x,y)→(0,0)

xy3

(x2 + y2)
√
x2 + y2

= lim
r→0

r4 cos(φ) sin3(φ)
r3

= lim
r→0

r cos(φ) sin3(φ)︸ ︷︷ ︸
borné

= 0

Ainsi, cette fonction est bien dérivable.
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Exemple 4 Prenons la fonction suivante :

f(x, y) =

x
2 sin

(
1
x

)
, x ̸= 0

0, x = 0

Nous allons montrer que est dérivable en (0, y0), mais qu’elle n’est pas de classe C1

en (0, y0), pour y0 ∈ R.

Dérivée par-
tielles

Clairement, f(x, y) est continue sur R2. Calculons la dérivée partielle
selon x. Si x ̸= 0 :

∂f

∂x
= 2x sin

(
1
x

)
+ x2 cos

(
1
x

)(
− 1
x2

)
= 2x sin

(
1
x

)
− cos

(
1
x

)
Et, si x = 0 :

∂f

∂x
(0, y) = lim

t→0

t2 sin
( 1
t

)
− 0

t
= lim
t→0

t sin
(

1
t

)
︸ ︷︷ ︸

borné

= 0

Regardons maintenant si cette dérivée partielle est continue en
(0, y0) :

lim
(x,y)→(0,y0)

∂f

∂x
(x, y) = lim

x→0

2x sin
(

1
x

)
︸ ︷︷ ︸

→0

− cos
(

1
x

)
︸ ︷︷ ︸

n’existe pas


qui n’existe pas. Ainsi, ∂f

∂x n’est pas continue si x = 0.

Dérivabilité Si nous voulons savoir si cette fonction est dérivable, nous devons
faire la deuxième méthode (la première méthode ne peut pas fonc-
tionner puisque les dérivées partielles ne sont pas continues, et donc
la fonction n’est pas de classe C1). Posons :

r(x, y) = f(x, y) − f(0, y0)︸ ︷︷ ︸
=0

− ⟨∇f(0, y0), (x, y − y0)⟩︸ ︷︷ ︸
=0

= x2 sin
(

1
x

)

Nous avons maintenant :

lim
(x,y)→(0,y0)

|r(x, y)|
∥(x, y) − (0, y0)∥ = lim

(x,y)→(0,y0)

x2
∣∣sin( 1

x

)∣∣√
x2 + (y − y0)2︸ ︷︷ ︸

≥0

≤ lim
x→0

x2
∣∣sin( 1

x

)∣∣
|x|

= lim
x→0

|x|
∣∣∣∣sin( 1

x

)∣∣∣∣︸ ︷︷ ︸
borné

= 0

Ceci implique que notre fonction est dérivable en (0, y0).

Plan tangent
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f est dérivable en (0, y0), et nous savons que ∇f(0, y0) = −→0 . Ainsi,
nous savons que le plan tangent en (0, y0, f(0, y0)) est :

z = 0 + ⟨∇f(0, y0), (x, y − y0)⟩ = 0

Ceci est cohérent, comme nous pouvons le voir sur l’image suivante :

Exemple 5 Prenons la fonction suivante :

f(x, y) =


x4y

(x2 + y2)2 , (x, y) ̸= (0, 0)

0, (x, y) = (0, 0)

Nous allons montrer que cette fonction est continue, mais pas dérivable en −→0 .

Continuité Nous pouvons voir que f est continue sur R :

lim
(x,y)→(0,0)

|f(x, y)| = lim
r→0

r5

borné︷ ︸︸ ︷∣∣cos4(φ) sin(φ)
∣∣

r4 = 0

Dérivées par-
tielles

Regardons les dérivées partielles en (0, 0) :

∂f

∂x
(0, 0) = lim

t→0

t4 − 0
t(t2 + 0)2 = 0

∂f

∂y
(0, 0) = lim

t→0

0 · t
t(0 + t2)2 = 0

Ceci nous donne que le gradient est donné par ∇f(0, 0) = (0, 0).

Dérivabilité Nous voulons montrer que la fonction n’est pas dérivable en (0, 0).
Pour ce faire, nous allons utiliser la deuxième méthode, puisque le
gradient et la fonction sont nuls à ce point. Ainsi, posons :

r(x, y) = f(x, y)−f(0, 0)−⟨∇f(0, 0), (x, y)⟩ = f(x, y) = x4y

(x2 + y2)2

Calculons maintenant la limite suivante :

lim
(x,y)→(0,0)

r(x, y)
∥(x, y)∥ = lim

(x,y)→(0,0)

x4y

(x2 + y2)2√
x2 + y2

= lim
(x,y)→(0,0)

x4y

(x2 + y2)
5
2
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Le fait que le degré du dénominateur est égal au degré du numérateur
nous donne envie de montrer que cette limite n’existe pas :

ak =
(

1
k
,

1
k

)
=⇒ lim

k→∞

1
k4 · 1

k( 2
k2

) 5
2

= 1
2 5

2

bk =
(

0, 1
k

)
=⇒ lim

k→∞

0 · 1
k

1
k5

= 0

Ainsi, nous avons vu que la limite n’existe pas, et donc que f(x, y)
n’est pas dérivable en (0, 0).

Plan tangent En particulier, le plan z = 0 n’est pas le plan tangent à la surface
z = f(x, y) en (0, 0) :

Résumé Nous pouvons à nouveau voir notre résumé. Soit f : E 7→ R, où E est ouvert, alors :

Classe C2

sur E

Classe C1

sur E

Dérivable
en −→a ∈ E

Df
(−→a ,−→v

)
existent ∀−→v ̸= −→0

∂f

∂xk

(−→a ) existent
et ∇f

(−→a ) existe

∂2f

∂xi∂xj
= ∂2f

∂xj∂xi
pour i, j = 1, . . . , n

Continue
en −→a ∈ E

Déf. Ex. 3

Thm. 2 Ex. 4

Thm. 1 Ex. 2 Ex. 1

Déf.

Ex. 1

Thm. 1

Thm.

Schwarz

Ex. 5

Ex. 2

Ce schéma est très important, et nous devons le connaître.
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Remarque Nous pouvons le comparer avec ce que nous avions en Analyse 1 :

Classe C2 sur E
=⇒ Classe C1 sur E
=⇒ Dérivable en a ∈ E

⇐⇒ f ′(a) existe
=⇒ Continue en a ∈ E

Lundi 11 avril 2022 — Cours 15 : Masterclass Jacob

5.4 Fonctions à valeurs dans Rm

Exemple Soit E ⊂ Rn un ensemble ouvert, et soit f : E 7→ R une fonction telle que le gradient
∇f
(−→x ) existe ∀−→x ∈ E.

Alors, (∇f)T : E 7→ Rn est une application à valeurs dans Rn.
Par exemple, si on prend f(x, y) = sin(x, y), nous avons f : R2 7→ R de classe C∞

sur R2, et cela nous donne :

∇f(x, y) =
(
∂f

∂x
(x, y), ∂f

∂y
(x, y)

)
= (y cos(xy), x cos(xy))

Ceci est une matrice ligne, et nous voulons un vecteur colonne à la fin, c’est pourquoi
nous devons le transposer. Nous pouvons dessiner notre champ de vecteurs :

Introduction Plus généralement, nous pouvons considérer les fonctions à valeurs dans Rm,
−→
f :

E 7→ Rm où E ⊂ Rn :

−→
f
(−→x ) =

 f1
(−→x )
...

fm
(−→x )

 ∈ Rm

Chaque composante fi est une fonction réelle de n variables réelles.

Définition : k-
ème dérivée
partielle

Soit E ⊂ Rn.
La k-ème dérivée partielle de

−→
f : E 7→ Rm en −→a ∈ E, est définie par :

∂
−→
f

∂xk

(−→a ) déf=


∂f1
∂xk

(−→a )
...

∂fm

∂xk

(−→a )

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si chacune des fonctions f1, . . . , fm admet la dérivée partielle ∂
∂xk

en −→a .

Définition :
Dérivée direc-
tionnelle

Soit E ⊂ Rn, et soit −→v ∈ Rn tel que −→v ̸= −→0 .
La dérivée directionnelle de

−→
f : E 7→ Rm suivant −→v en −→a ∈ E, est :

D
−→
f
(−→a ,−→v

) déf=

Df1
(−→a ,−→v

)
...

Dfm
(−→a ,−→v

)


si Dfi
(−→a ,−→v

)
existent pour tout i = 1, . . . ,m.

Définition : Li-
mite

Soit E ⊂ Rn.
Une fonction

−→
f : E 7→ Rm admet

−→
ℓ ∈ Rm pour limite lorsque −→x tend vers −→a si

∀ε > 0, ∃δ > 0 tel que pour tout −→x ∈ E, on a :

0 <
∥∥−→x − −→a

∥∥ ≤ δ =⇒
∥∥∥f(−→x )−

−→
ℓ
∥∥∥ ≤ ε

Remarque En particulier, nous avons :

lim−→x →−→a

−→
f
(−→x ) =


lim−→x →−→a

f1
(−→x )

...
lim−→x →−→a

fm
(−→x )


En effet, nous voulons que la valeur suivante soit arbitrairement
petite :∥∥∥−→

f
(−→x )−

−→
ℓ
∥∥∥2

=
(
f1
(−→x )− ℓ1

)2 + . . .+
(
fm
(−→x )− ℓm

)2

Or, puisque c’est une somme de carré, rendre la norme arbitrairement
petite est équivalent à rendre les composantes arbitrairement proche
à ℓi.
En d’autres mots, l’existence de cette limite est équivalente à l’exis-
tence de la limite de toutes les composantes.

Définition : Déri-
vabilité

Soit E ⊂ Rn.−→
f : E 7→ Rm est dérivable au point −→a ∈ E s’il existe une transformation linéaire−→
L −→a : Rn 7→ Rm et une fonction −→r : E 7→ Rm telles que :

−→
f
(−→x ) =

−→
f
(−→a )+ −→

L −→a
(−→x − −→a

)
+ −→r

(−→x )
De plus, il faut aussi que :

lim−→x →−→a

−→r
(−→x )∥∥−→x − −→a

∥∥ = 0

Si
−→
f est dérivable, alors −→

L −→a : Rn 7→ Rm est appelée la différentielle de
−→
f en

−→a .

Proposition :
Dérivabilité
pour chaque
composante

Soit E ⊂ Rn.−→
f = (f1, . . . , fm) : E 7→ Rm est dérivable en −→a ∈ E si et seulement si chaque
composante fi : E 7→ R est dérivable en −→a ∈ E pour i = 1, . . . ,m. De plus, nous
pouvons construire :

−→
L −→a

(−→v ) =

L1,−→a
(−→v )
...

Lm,−→a
(−→v )

, −→v ∈ Rn,−→v ̸= −→0
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où Li,−→a
(−→v ) est la différentielle de fi calculée en −→a et appliquée en −→v . En d’autres

mots :
Li,−→a

(−→v ) = Dfi
(−→a ,−→v

)
=
〈
∇fi

(−→a ),−→v 〉
Preuve La définition d’une fonction dérivable nous donne m équations, une

pour chaque composante. De plus, la contrainte avec la limite peut
aussi être séparée en m sous-contraintes, en utilisant notre remarque
pour le calcul des limites.

Définition : Ma-
trice Jacobienne

Soit E ⊂ Rn. Si
−→
f : E 7→ Rm possède toutes ses dérivées partielles en −→a ∈ E, alors

sa matrice Jacobienne (matrice de Jacobi) est définie par :

J−→
f

(−→a ) déf=



∂f1

∂x1

(−→a ) ∂f1

∂x2

(−→a ) · · · ∂f1

∂xn

(−→a )
∂f2

∂x1

(−→a ) ∂f2

∂x2

(−→a ) · · · ∂f2

∂xn

(−→a )
...

...
. . .

...
∂fm
∂x1

(−→a ) ∂fm
∂x2

(−→a ) · · · ∂fm
∂xn

(−→a )


=


∇f1

(−→a )
∇f2

(−→a )
...

∇fm
(−→a )



Observations Cette matrice n’est pas forcément carrée.
De plus, nous pouvons voir que chaque colonne de la matrice Jaco-
bienne est la dérivée partielle ∂

−→
f

∂xi

(−→a ). Aussi, chaque ligne est le
gradient ∇fi

(−→a ). La Professeure utilise cet argument pour justifier
que le gradient devrait être une matrice ligne (mais selon moi cela de-
vrait quand même être un vecteur colonne, car le Nabla doit être un
vecteur colonne si nous voulons la mnémotechnie grad

(−→
f
)

= ∇f ,

div
(−→

f
)

= ∇ ·
−→
f et rot

(−→
f
)

= ∇ ×
−→
f ).

Ainsi, nous avons que :
• Si g : Rn 7→ R, alors Jg

(−→x ) = ∇g
(−→x ).

• Si −→g : R 7→ Rn, alors J−→g (x) = ∂−→g
∂x .

• Si g : R 7→ R, alors Jg(x) = g′(x).

Remarque 1 Si
−→
f est dérivable en −→a ∈ E, alors nous avons :

J−→
f

(−→a ) =

L1,−→a
(−→e1

)
· · · L1,−→a

(−→en

)
...

. . .
...

Lm,−→a
(−→e1

)
· · · Lm,−→a

(−→en

)


Ainsi, si
−→
f est dérivable en −→a , la matrice Jacobienne nous donne

la matrice de la différentielle de
−→
f .

Remarque 2
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Si
−→
f est dérivable, alors :

D
−→
f
(−→a ,−→v

)
=

Df1
(−→a ,−→v

)
...

Dfm
(−→a ,−→v

)


=


〈
∇f1

(−→a ),−→v 〉
...〈

∇fm
(−→a ),−→v 〉


=

 ∇f1
(−→a )
...

∇fm
(−→a )


︸ ︷︷ ︸

m×n

v1
...
vn


︸ ︷︷ ︸
n×1

=
(
J−→

f

(−→a )) · −→v

Cela rejoint notre première remarque.

Définition : Jaco-
bien

Soit E ⊂ Rn. Si
−→
f : E 7→ Rm possède toutes ses dérivées partielles en −→a ∈ E, et si

m = n, alors on définit le déterminant de Jacobi, aussi appelé le Jacobien, de−→
f en −→a comme :

∣∣∣J−→
f

(−→a )∣∣∣ = det
(
J−→

f

(−→a )) déf= det


∂f1

∂x1

(−→a ) · · · ∂f1

∂xn

(−→a )
...

. . .
...

∂fm
∂x1

(−→a ) · · · ∂fm
∂xn

(−→a )


Exemple Soient
−→
f (x, y) = sin(xy) et −→g : R2 7→ R2 définie par :

−→g (x, y) = (∇f(x, y))T =
(
y cos(xy)
x cos(xy)

)
Calculons sa matrice Jacobienne :

J−→g (x, y) =
(
∂g1
∂x

∂g1
∂y

∂g2
∂x

∂g2
∂y

)
=
(

−y2 sin(xy) cos(xy) − xy sin(xy)
cos(xy) − xy sin(xy) −x2 sin(xy)

)
obs=
(

∂2f
∂x2

∂2f
∂y∂x

∂2f
∂x∂y

∂2f
∂y2

)

On remarque que J−→g (x, y) = Hess(f)
(−→x ). Calculons maintenant le Jacobien :∣∣J−→g (x, y)

∣∣ = x2y2 sin2(xy)−(cos(xy) − xy sin(xy))2 = − cos2(xy)+2xy cos(xy) sin(xy)

Remarque Soit E ⊂ Rn.
D’après la définition, nous avons, pour toute fonction f : E 7→ R (attention, R et
non pas Rn) de classe C2 sur E :

J(∇f)T

(−→x ) = Hess(f)
(−→x )
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5.5 Application des matrices Jacobiennes

Théorème Soient A,B deux ensembles tels que A ⊂ Rn et −→g (A) ⊂ B ⊂ Rp. Soient −→g : A 7→ Rp

et
−→
f : B 7→ Rq. En d’autres mots, nous avons :

Rn
−→g7→ Rp

−→
f7→ Rq

Soient −→a ∈ A et
−→
b = −→g

(−→a ) ∈ B. Supposons que −→g est dérivable en −→a avec la
différentielle L−→g ,−→a et

−→
f est dérivable en

−→
b avec la différentielle L−→

f ,
−→
b

.

Alors
−→
f ◦ −→g est dérivable en −→a , et on a :

1. −→
L −→

f ◦−→g ,−→a = −→
L −→

f ,
−→
b

◦
−→
L −→g ,−→a

2. J−→
f ◦−→g

(−→a ) = J−→
f

(−→g (−→a )) · J−→g
(−→a )

3. Si n = p = q, alors
∣∣∣J−→

f ◦−→g

(−→a )∣∣∣ =
∣∣∣J−→

f

(−→g (−→a ))∣∣∣ ·
∣∣J−→g

(−→a )∣∣
Idée de la
preuve

Nous savons que −→g est dérivable en −→a , ainsi :

−→
f
(−→g (−→x )) =

−→
f
(−→g

(−→a )+ −→
L −→g ,−→a

(−→x − −→a
)

+ −→r −→g
(−→x ))

Maintenant, nous savons que
−→
f est dérivable en −→g

(−→a ), ainsi, c’est
égal à :

−→
f
(−→g (−→a ))+−→

L −→
f ,

−→
b

(−→
L −→g ,−→a

(−→x − −→a
)

+ −→r −→g
(−→x ))+−→r −→

f

(−→g (−→x ))
Ainsi, en utilisant la linéarité de −→

L −→
f ,

−→
b

, on obtient que c’est égal
à :

−→
f
(−→g (−→a ))+ −→

L −→
f ,

−→
b

(−→
L −→g ,−→a

(−→x − −→a
))

+ −→
L −→

f ,
−→
b

(−→r −→g
(−→x ))+ −→r −→

f

(−→g (−→x ))
Or, les deux termes de la deuxième ligne sont très petits lorsque
−→x → −→a , ainsi on obtient que

−→
f ◦ −→g est dérivable en −→a avec la

différentielle : −→
L −→

f ◦−→g ,−→a = −→
L −→

f ,
−→
b

◦ L−→g ,−→a

Exemple 1 Pour commencer, vérifions notre résultat en prenant n = p = q = 1. Ainsi, par
exemple, soient :

f : R 7→ R, f(y) = y2

g : R 7→ R, g(x) = sin(x)

Nous pouvons maintenant calculer la composée :

f ◦ g(x) = f(g(x)) = f(sin(x)) = sin2(x)

Soit a ∈ R et b = g(a) = sin(a) ∈ R, alors nous pouvons calculer les matrices
Jacobiennes, qui sont des matrices 1 × 1 et donc des scalaires :

Jg(a) = (sin(x))′
∣∣∣
x=a

= cos(a)

Jf (b) =
(
y2)′

∣∣∣
y=b=sin(a)

= 2b = 2 sin(a)

Notre théorème nous dit que :

Jf◦g(a) = Jf (g(a)) · Jg(a) = 2 sin(a) · cos(a)
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Nous pouvons vérifier ce résultat :

Jf◦g(a) =
(
sin2(x)

)′
∣∣∣
x=a

= 2 sin(a) cos(a)

Il est très intéressant de remarquer que nous avons retrouvé la formule de dérivée
d’une fonction composée :

(f ◦ g)′(a) = f ′(g(a))g′(a)

Exemple 2 Prenons les fonctions suivantes :

f : R 7→ R, f(z) = z2

g : R2 7→ R, g(x, y) = sin(xy)

Calculons nos matrices Jacobiennes :

Jg(x, y) = ∇g(x, y) = (y cos(xy), x cos(xy))

Jf (z) =
(
z2)′ = 2z =⇒ Jf (g(x, y)) = 2z

∣∣∣
z=sin(xy)

= 2 sin(xy)

Calculons déjà notre résultat, afin de savoir ce que nous devons obtenir :

f ◦ g(x, y) = sin2(x, y)
=⇒ Jf◦g(x, y) = ∇(f ◦ g)(x, y) = (2 sin(xy) cos(xy)y, 2 sin(xy) cos(xy)x)

Notre théorème nous dit que :

Jf (sin(x, y)) · Jg(x, y) = 2 sin(xy)(y cos(xy), x cos(xy))

Ce qui est bien ce à quoi nous nous attendions.

Mercredi 13 avril 2022 — Cours 16 : Retour aux intégrales

Exemple 3 Prenons les fonctions suivantes :

−→g (x) =
(
x3
1
x

)
, f(u, v) = uv2

Composée 1 Nous pouvons calculer leur composée dans un sens :

f ◦ −→g (x) = f(g1(x), g2(x)) = f

(
x3,

1
x

)
= x3 1

x2 = x

Ainsi, nous savons que notre but est de trouver Jf◦−→g (x) =
(
f ◦ −→g

)′(x) =
1. Calculons les matrices Jacobiennes de nos deux fonctions :

J−→g (x) =
(
∂g1
∂x
∂g2
∂x

)
=
(

3x2

− 1
x2

)

Jf
(−→g (x)

)
= ∇f(u, v)

∣∣∣
(g1(x),g2(x))

=
(
v2, 2uv

)∣∣∣
(g1(x),g2(x))

=
(

1
x2 , 2x

3 · 1
x

)
=
(

1
x2 , 2x

2
)

Ainsi, nous obtenons bien que :

Jf◦−→g (x) = Jf
(−→g (x)

)
J−→g (x) =

( 1
x2 2x2)( 3x2

− 1
x2

)
= 3 − 2 = 1
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Composée 2 Nous pouvons aussi considérer la fonction composée dans l’autre
sens : −→g ◦ f : R2

+ 7→ R2
+ :

−→g ◦ f(x, y) = −→g
(
xy2) =

(
x3y6

1
xy2

)
Nous pouvons calculer la matrice Jacobienne, puisque la fonction
est dérivable sur R2

+ :

J−→g ◦f =
(

3x2y6 6x3y5

− 1
x2y2 − 2

xy3

)
De plus, calculons les matrices Jacobiennes de nos deux fonctions :

Jf (x, y) = ∇f(x, y) =
(
y2, 2xy

)
J−→g (u) =

(
3u2

− 1
u2

)
=⇒ J−→g (f(x, y)) =

(
3x2y4

− 1
x2y4

)
Finalement, notre théorème nous donne :

J−→g ◦f = J−→g (f(x, y))Jf (x, y) =
(

3x2y4

− 1
x2y4

)(
y2 2xy

)
=
(

3x2y6 6x3y5

− 1
x2y2 − 2

xy3

)
comme attendu.
De plus, on peut remarquer que, puisque notre transformation J−→g ◦f
représente une composition de Jf : R2

+ 7→ R+ et J−→g : R+ 7→ R2
+,

elle passe par un ensemble qui restreint son espace image sur une
dimension, nous savons que rang

(
J−→g ◦f

)
≤ 1. Nous pouvons vérifier

que le déterminant est nul :

det J−→g ◦f = −6xy3 + 6xy3 = 0

Application :
Changement de
variable

Supposons que nous avons le schéma de fonction suivant :

Rn
−→
h7→ Rn

−→g7→ Rn

tels que
−→
h est un changement de variable et −→g est sa fonction réciproque, i.e. :

−→g ◦
−→
h (x1, . . . , xn) = (x1, . . . , xn)

Nous savons donc que le Jacobien de notre composée est :

J−→g ◦
−→
h

=


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 = In×n

Supposons maintenant aussi que
−→
h et −→g sont dérivables sur leurs domaines. Par le

théorème de la fonction composée, nous obtenons :

J−→g

(−→
h
(−→a )) · J−→

h

(−→a ) = In×n

=⇒ J−→g

(−→
h
(−→a )) =

(
J−→

h

(−→a ))−1
et det

(
J−→g
)

det
(
J−→

h

)
= 1

Puisqu’une matrice est bijective si et seulement si elle est inversible, nous en déduisons
donc la proposition suivante.
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Proposition Soit −→g : Rn 7→ Rn une fonction dérivable en −→a . −→g est bijective
dans un voisinage de −→a si et seulement si det

(
J−→g
(−→a )) ̸= 0.

Exemple : Coor-
données polaires

Nous avons les fonctions de changement de variable suivantes :
−→
h (x, y) = (r, φ), −→g (r, φ) = (x, y)

Pour plus de simplicité sur la fonction qui nous donne φ, prenons x > 0 (si on prend
R2 \ {0}, cela fonctionnera de la même manière, mais la notation sera plus lourde) :

−→g (r, φ) =
(
r cos(φ)
r sin(φ)

)
,

−→
h (x, y) =

(√
x2 + y2

arctan
(
y
x

))
Nous savons que la propriété suivante tient :(−→

h ◦ −→g
)

(r, φ) = (r, φ) =⇒ J−→
h ◦−→g =

(
1 0
0 1

)
= J−→

h ◦−→g (x, y) · J−→g (r, φ)

La matrice Jacobienne de −→g se calcule relativement facilement :

J−→g =
(

cos(φ) −r sin(φ)
sin(φ) r cos(φ)

)
=⇒ det

(
J−→g
)

= r
(
cos2(φ) + sin2(φ)

)
= r ̸= 0

Pour calculer la matrice Jacobienne de
−→
h , utilisons le fait qu’elle soit l’inverse de

celle de
−→
f :

J−→
h

=
(
J−→g
)−1 = 1

r

(
r cos(φ) r sin(φ)
− sin(φ) cos(φ)

)
=
(

cos(φ) sin(φ)
− sin(φ)

r
cos(φ)
r

)
Or, puisque cos(φ) = x

r = x√
x2+y2

, et de manière similaire pour sin(φ), nous
obtenons :

J−→
h

(x, y) =
(

x√
x2+y2

y√
x2+y2

− y
x2+y2

x
x2+y2

)
=
(
∂h1
∂x

∂h1
∂y

∂h2
∂x

∂h2
∂y

)

Nous pouvons vérifier cette dernière égalité en utilisant la définition explicite de
−→
h .

5.6 Dérivée d’une intégrale qui dépend d’un paramètre

Théorème Soit I ⊂ R un ensemble ouvert, soit f : [a, b] × I 7→ R telle que ∂f
∂y est continue sur

[a, b] × I, et soit :

g(y) =
� b

a

f(x, y)dx

Alors, g(y) est de classe C1 sur I, et nous avons :

g′(y) =
� b

a

∂f

∂y
(x, y)dx, ∀y ∈ I

Preuve
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Considérons le quotient suivant :

D(y) = g(y) − g(y0)
y − y0

= 1
y − y0

� b

a

(f(x, y) − f(x, y0))dx

=
� b

a

f(x, y) − f(x, y0)
y − y0

dx

Par le théorème des accroissement finis, nous savons qu’il existe un
ỹ entre y et y0 tel que :

∂f

∂y
(x, ỹ) = f(x, y) − f(x, y0)

y − y0

Ceci nous dit donc que :

D(y) =
� b

a

∂f

∂y
(x, ỹ)dx

Or, puisque ỹ est entre y et y0, que ∂f
∂y est continue, nous savons

que, quand y → y0, ∂f∂y (x, ỹ0) → ∂f
∂y (x, y0) par le théorème des deux

gendarmes. Ainsi, cela implique que :

g′(y0) = lim
y→y0

D(y) =
� b

a

∂f

∂y
(x, y0)dx

□

Exemple Considérons la fonction suivante :

g(y) =
� π

2

0
sin(xy)dx

Nous voulons calculer sa dérivée.

Théorème Nous savons que, par notre théorème :

g′(y) =
� π

2

0
cos(xy)xdx

Si y = 0, alors :

g′(y) =
� π

2

0
xdx = 1

2x
2
∣∣∣π

2

0
= 1

2

(π
2

)2
= π

82

Si y ̸= 0, nous pouvons faire une intégrale par partie :

g′(y) = 1
y

� π
2

0
xd(sin(xy)) = x

y
sin(xy)

∣∣∣π
2

0
− 1
y

� π
2

0
sin(xy)dx

Ce qui est égal à :

π

2y sin
(πy

2

)
+ 1
y2 cos(yx)

∣∣∣π
2

0
= π

2y sin
(πy

2

)
+ 1
y2

(
cos
(πy

2

)
− 1
)

Directement Calculons notre fonction directement :

g(y) =
� π

2

0
sin(xy)dx y ̸= 0= −1

y
cos(xy)

∣∣∣π
2

0
= −1

y
cos
(πy

2 − 1
)
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Calculons maintenant la dérivée :

g′(y) = − 1
y2 + 1

y2 cos
(πy

2

)
+ 1
y

sin
(πy

2

)
· π2

= π

2y sin
(πy

2

)
+ 1
y2

(
cos
(πy

2

)
− 1
)

comme attendu.
Notez que, si nous voulons calculer les limites de g(y) et g′(y) en
0, nous pouvons utiliser le développement limité de cosinus autour
de 0. Ceci nous permettrait de démontrer que cette fonction et sa
dérivée sont continues en y = 0.

Rappel : Théo-
rème Fondamen-
tal du calcul
intégral

Soit f une fonction continue. Alors, nous avons :

d

dt

(� t

a

f(y)dy
)

= f(t), d

dt

(� b

t

f(y)dx
)

= d

dt

(
−
� t

b

f(y)dx
)

= −f(t)

Nous pouvons maintenant combiner nos résultats, et obtenir le théorème suivant.

Théorème Soient I, J ⊂ R deux ensembles ouverts, soient g, h : I 7→ R des fonctions continûment
dérivables, et soit f : J × I 7→ R une fonction telle que ∂f

∂t (x, t) est continue sur I.
Finalement, soit :

A(t) =
� g(t)

h(t)
f(x, t)dx

Alors, A(t) est continûment dérivable sur I, et on a :

A′(t) = f(g(t), t)g′(t) − f(h(t), t)h′(t) +
� g(t)

h(t)

∂f

∂t
(x, t)dx

Remarque Ce théorème doit être connu, car il y a souvent un exercise où nous
devons l’utiliser en examen.

Preuve Dans l’idée, nous pouvons définir F : R3 7→ R telle que :

F (g, h, t) =
� g

h

f(x, t)dx

De plus, nous pouvons définir T : R 7→ R3 :

T (t) = (g(t), h(t), t)

Ainsi, nous avons :

A(t) = F (g(t), h(t), t) = F (T (t))

Alors, par le théorème de la dérivée d’une fonction composée, on a :

A′(t) = JF◦T = ∇F (g, h, t)

g′(t)
h′(t)

1

 = ∂F

∂g
g′(t) + ∂F

∂h
h′(t) + ∂F

∂t
· 1

Mais, par le théorème fondamental du calcul intégral, nous obtenons :

A′(t) = f(g(t), t)︸ ︷︷ ︸
∂F
∂g

g′(t) − f(h(t), t)︸ ︷︷ ︸
∂F
∂h

h′(t) +
� g(t)

h(t)

∂f

∂t
(x, t)dx

□
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Note person-
nelle : Intui-
tion

L’intuition de cette formule est intimement liée avec sa preuve. Ainsi,
refaisons là en utilisant des étiquettes différentes sur ce que nous
pouvons reconnaître, afin de voir que nous ne partons pas loin des
connaissances que nous avons déjà. Pour commencer, il est possible
de démontrer que :

∂

∂x
f(g(x, y), h(x, y)) = ∂f(g, h)

∂g
· ∂g(x, y)

∂x
+ ∂f(g, h)

∂h
· ∂h(x, y)

∂x

Ceci est une généralisation de la règle de la dérivée en chaine.
Définissons maintenant :

F (x, t) =
� x

a

f(ξ, t)dξ =⇒ A(t) = F (g(t), t) − F (h(t), t)

Ainsi, en dérivant, nous obtenons :

A′(t) = ∂F (g, t)
∂g

· ∂g
∂t

+ ∂F (g, t)
∂t

− ∂F (h, t)
∂h

· ∂h
∂t

− ∂F (h, t)
∂t

Par un argument similaire à la preuve, il est raisonnable de se
convaincre que, en utilisant le théorème fondamental du calcul
intégral :

∂F (g, t)
∂g

= f(g, t), −∂F (h, t)
∂h

= −f(h, t)

Aussi, comme nous l’avons démontré dans un théorème plus tôt,
nous avons :

∂F (g, t)
∂t

− ∂F (h, t)
∂t

= ∂

∂t
(F (g, t) − F (h, t))

= ∂

∂t

� g

h

f(x, t)dx

=
� g

h

∂f

∂t
(x, t)dx

En mettant tout ensemble, nous obtenons le résultat que nous
cherchions. Notez que ce raisonnement peut se faire très rapidement
sur une feuille de brouillon pendant un examen, en faisant toujours
attention selon quoi on dérive. Si les notations, comme ∂f(g,t)

∂g , vous
semblent bizarre, n’hésitez pas à les comparer avec les notations
suivantes pour la dérivée en chaine classique :

df(g(x))
dx

= df(g(x))
dg

· dg(x)
dx

= df(g)
dg

· dg(x)
dx

Ces notations peuvent prend un peu de temps à assimiler, mais
elles sont très pratiques (notamment en physique, par exemple
pour l’équation de Lagrange, où on dérive une fonction “selon des
fonctions” (la position et sa dérivée) ! ,).

Exemple Calculons la primitive de la fonction suivante :

F (t) =
� 3t2

2t
et+xdx

Nous allons appliquer notre théorème. Nous avons :

h(t) = 2t, g(t) = 3t2, f(x, t) = ex+t
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Ainsi, par notre théorème :

F ′(t) = e3t2+t g′(t)︸︷︷︸
6t

−e2t+t h′(t)︸︷︷︸
2

+
� 3t2

2t

∂et+x

∂t
dx

= e3t2+t · 6t− e3t · 2 +
� 3t2

2t
exetdx

= 6te3t2+t − 2e3t + et
(
e3t2 − e2t

)
= (6t+ 1)e3t2+t − 3e3t

Vérification De manière générale, il n’est pas toujours possible de calculer F (t)
explicitement, mais ici c’est possible et donc nous pouvons l’utiliser
pour vérifier notre résultat :

F (t) =
� 3t2

2t
etexdx = et

(
e3t2 − e2t

)
= e3t2+t − 3e3t

Ainsi :
F ′(t) = (6t+ 1)e3t2+t − 3e3t

comme attendu.

Lundi 25 avril 2022 — Cours 17 : Méthode de physicien

5.7 Application du gradient et du Laplacien en coordonnées
polaires

Définition : La-
placien

Soit E ⊂ Rn un ensemble, et soit f : E 7→ R de classe C2 sur E.
La fonction ∆f : E 7→ R suivante est le Laplacien de f :

∆f(x1, . . . , xn) = ∂2f

∂x2
1

+ . . .+ ∂2f

∂x2
n

Remarque
personnelle

Définissons la Nabla de la manière suivante :

∇ =
(

∂

∂x1
, . . . ,

∂

∂xn

)
Notez que c’est un vecteur d’opérateurs, le Nabla ne contient pas
des valeurs ou des fonctions, mais l’opérateur dérivée. Cela peut être
défini formellement, mais nous allons l’utiliser comme des physiciens.
Premièrement, remarquons que notre gradient est toujours cohérent
avec cette notation :

∇f =
(
∂f

∂x1
, . . . ,

∂f

∂xn

)
Cette définition est très pratique, notamment pour définir la diver-
gence et le rotationel, très pratiques en physique (rot f = ∇ × f ,
div f = ∇ • f).
Maintenant, pour le Laplacien, on voit que :

∆f = ∇2f

où un vecteur au carré est défini par :
−→a 2 = −→a • −→a =

∥∥−→a
∥∥2
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Nous pouvons donc définir :

∆ = ∇2

Exemple Soit la fonction f : R2 7→ R suivante :

f(x, y) = xy + 3x3

Cette fonction est de classe C∞ sur R, ainsi :

∆f(x, y) = ∂2f

∂x2 + ∂2f

∂y2 = 18x+ 0 = 18x

Proposition Soit f : R2 7→ R une fonction de classe C2, et soit f̃ = f ◦g(r, φ), où g est la fonction
changement de variable vers les coordonnées polaires. Alors :

∇f(x, y) =
(

cos(φ)∂f̃
∂r

− 1
r

sin(φ)∂f̃
∂φ

, sin(φ)∂f̃
∂r

+ 1
r

cos(φ)∂f̃
∂φ

)

∆f(x, y) = ∂2f̃

∂r2 + 1
r2
∂2f̃

∂φ2 + 1
r

∂f̃

∂r

Preuve Nous savons que f̃(r, φ) = f ◦ g(r, φ), où :

g(r, φ) =
(
r cos(φ)
r sin(φ)

)
=
(
x
y

)
=⇒ Jg(r, φ) =

(
cos(φ) −r sin(φ)
sin(φ) r cos(φ)

)
De plus :

J
f̃(r,φ) = Jf◦g(r, φ) =

(
∂f̃

∂r
,
∂f̃

∂φ

)
= Jf (g(r, φ))Jg(r, φ)

= Jf (x, y)Jg(r, φ) =
(
∂f

∂x
,
∂f

∂y

)
︸ ︷︷ ︸

∇f(x,y)

Jg(r, φ)

Ceci est une équation matricielle, qu’on peut résoudre en utilisant
la formule pour l’inverse des matrices 2 × 2 :

∇f(x, y) =
(
∂f

∂x
,
∂f

∂y

)
=
(
∂f̃

∂r
,
∂f̃

∂φ

)
(Jg(r, φ))−1

=
(
∂f̃

∂r
,
∂f̃

∂φ

)
1
r

(
r cos(φ) r sin(φ)
− sin(φ) cos(φ)

)

=
(

cos(φ)∂f̃
∂r

− 1
r

sin(φ)∂f̃
∂φ

, sin(φ)∂f̃
∂r

+ 1
r

cos(φ)∂f̃
∂φ

)

Pour calculer ∂2f
∂x2 , nous pouvons utiliser la méthode que nous venons

de calculer :
∂2f

∂x2 = cos(φ) ∂
∂r

(
∂f

∂x
en coordonnées polaires

)
− 1
r

sin(φ) ∂
∂φ

(
∂f

∂x
en coordonnées polaires

)
Nous ferons ces calculs dans la série 9.
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□

Remarque
personnelle

J’espère que les dérivées selon des fonctions vous ont manquées,
parce qu’on y retourne ! ,
Je trouve personnellement que c’est plus intuitif, mais il est na-
turellement complètement possible que vous préfériez la méthode
présentée pendant le cours.
Commençons par définir que :

x(r, φ) = r cos(φ), y(r, φ) = r sin(φ)

r(x, y) =
√
x2 + y2, φ(x, y) = arctan

(y
x

)
Notez que φ(x, y) devrait avoir une définition par partie plus gé-
nérale pour être vraie pour tout x, y, mais prenons x, y > 0. Le
raisonnement est le même si nous voulons prendre R2 comme do-
maine (tout ce qu’il faut retenir pour utiliser cette méthode en
examen c’est que les dérivées de atan2(y, x) sont égales à celles de
arctan

(
y
x

)
), mais nous pouvons aussi le faire à l’aide de la méthode

de calcul de dérivée de l’inverse d’une fonction vue plus tôt dans ce
cours.
Ainsi, si nous avons une fonction qui nous est donnée sous sa forme
polaire, nous pouvons écrire :

f(r, φ) = f
(√

x2 + y2, arctan
(y
x

))
Dérivons notre fonction par la formule vue plus tôt dans une de mes
remarques :

∂f(r, φ)
∂x

= ∂f(r, φ)
∂r

· ∂r(x, y)
∂x

+ ∂f(r, φ)
∂φ

· ∂φ(x, y)
∂x

= ∂f

∂r

2x
2
√
x2 + y2

+ ∂f

∂φ

1
1 +

(
y2

x2

)(− y

x2

)

Et nous pouvons maintenant repasser en variables polaires, en
prenant la définition de x(r, φ) et y(r, φ) :

∂f(r, φ)
∂x

= ∂f

∂r

r cos(φ)
r

+ ∂f

∂φ

−r sin(φ)
r2

= ∂f

∂r
cos(φ) − ∂f

∂φ

sin(φ)
r

Ce qui est exactement ce qui est exactement le résultat attendu. Il
est naturellement possible de faire exactement le même raisonnement
pour la dérivée partielle selon y et pour les dérivées secondes.

Exemple Soit la fonction de classe infinie sur R2 \ (0, 0) suivante :

f(x, y) = y

x2 + y2

Ce n’est pas très agréable de calculer les dérivées de cette fonction dans cette forme,
ainsi passons là en coordonnées polaires :

f̃(r, φ) = r sin(φ)
r2 = sin(φ)

r

Par notre proposition, nous obtenons :

∆f = ∂2f̃

∂r2 + 1
r2
∂2f̃

∂φ2 + 1
r

∂f̃

∂r
= 2 sin(φ)

r3 + 1
r2

− sin(φ)
r

+ 1
r

(
− sin(φ)

r2

)
= 0
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Définition :
Fonctions har-
moniques

Une fonction telle que ∆f = 0 sur E ⊂ R2 s’appelle harmonique.

Proposition Une fonction harmonique sur un domaine compact atteint son minimum et son
maximum sur la frontière du domaine.

Preuve Nous acceptons cette proposition sans preuve. Cependant, nous
pouvons faire une justification rapide.
Nous pouvons remarquer que le Laplacien est la trace (la somme
des éléments diagonaux) de la matrice Hessienne. Or, un théorème
d’Algèbre Linéaire nous dit que la trace d’une matrice est égale à
la somme de ses valeurs propres, et nous verrons plus tard que les
valeurs propres de la matrice Hessienne définissent l’existence ou
non du maximum et du minimum.

Remarque Ceci implique qu’une fonction harmonique sur un domaine compact
est telle que, pour n’importe quel sous-ensemble compact, elle atteint
son minimum et son maximum sur la frontière.

Exemple 1 Soit la fonction f : R2 7→ R définie par :

f(x, y) = x2 − y2

Alors, nous avons :

∆f(x, y) = 2 − 2 = 0, ∀(x, y) ∈ R2

Ainsi, cette fonction est harmonique.

Exemple 2 Soit la fonction g : R2 7→ R définie par :

g(x, y) = x2 + y2

Alors :
∆g(x, y) = 2 + 2 = 4 ̸= 0, ∀(x, y) ∈ R2

Ainsi, elle n’est pas harmonique.
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5.8 Formule de Taylor

Théorème Soit E ⊂ Rn, et soit f : E 7→ R une fonction de classe Cp+1 au voisinage de −→a ∈ E.
Alors, il existe δ > 0 tel que, pour tout −→x ∈ B

(−→a , δ
)

∩ E, il existe 0 < θ < 1 tel
que :

f
(−→x ) = F (0) + F ′(0) + . . .+ 1

p!F
(p)(0) + 1

(p+ 1)!F
(p+1)(θ)

où F : I 7→ R, avec I ⊂ [0, 1], est définie par F (t) = f
(−→a + t

(−→x − −→a
))

.

Preuve Nous remarquons que f
(−→x ) = F (1) et f

(−→a ) = F (0). Ainsi, F (t)
est de classe Cp+1 sur I.
Dans le cours d’Analyse 1, nous avions vu la formule de Taylor pour
les fonctions d’une seule variable, ce que nous pouvons appliquer
sur F (t) :

F (t) = F (0) + F ′(0)t+ . . .+ 1
p!F

(p)(0)tp + 1
(p+ 1)!F

(p+1)(θ)tp+1

où θ est entre 0 et t.
Or, nous voulons F (1), donc :

f
(−→x ) = F (1) = F (0)+F ′(0)+ . . .+ 1

p!F
(p)(0)+ 1

(p+ 1)!F
(p+1)(θ)

où θ est entre 0 et 1.

□

Remarque Nous voyons que :

F ′(0) = lim
t→0

f
(−→a + t

(−→x − −→a
))

− f
(−→a )

t
= Df

(−→a ,−→x − −→a
)

Terminologie Ce théorème nous dit que nous pouvons écrire :

f
(−→x ) = F (0) + F ′(0) + . . .+ 1

p!F
(p)(0) + le reste

Nous l’appelons le polynôme de Taylor de f d’ordre p au point
−→a .

Cas où n = 2 Soit −→a = (a, b),−→x = (x, y) et f(x, y) : E 7→ R une fonction de classe Cp+1 où p ≥ 2.
Nous cherchons le polynôme de Taylor d’ordre p autour de −→a .
Pour commencer, nous prenons :

F (t) = f(a+ t(x− a), b+ t(y − b))

Pour trouver F ′(t) en termes de f , nous pouvons remarquer que nous avons F (t) =
f ◦ g(t), où :

g(t) = (a+ t(x− a), b+ t(y − b))

Ainsi, par le théorème de la composée des matrices Jacobiennes :

F ′(t) = Jf (t) = Jf (g(t))·Jg(t) =
(
∂f
∂x

∂f
∂y

)(∂g1
∂t
∂g2
∂t

)
= ∂f(g(t))

∂x
(x− a)+∂f(g(t))

∂y
(y − b)

Et ainsi :
F ′(0) = ∂f(a, b)

∂x
(x− a) + ∂f(a, b)

∂y
(y − b)
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Nous voulons maintenant calculer F ′′(0). Nous venons de trouver que :

F ′(t) = ∂f

∂x

∂g1

∂t
+ ∂f

∂y

∂g2

∂t

Calculons la dérivée du premier terme :

∂

∂t

(
∂f

∂x
· ∂g1

∂t

)
= ∂

∂t

(
∂f

∂x

)
∂g1

∂t
+ ∂f

∂x

(
∂2g1

∂t21

)
︸ ︷︷ ︸

=0

=
(
∂2f

∂x2
∂g1

∂t
+ ∂2f

∂y∂x

∂g2

∂t

)
∂g1

∂t

La dérivée du deuxième terme d’une manière similaire :

∂

∂t

(
∂f

∂y

∂g2

∂t

)
= ∂2f

∂y∂x

(
∂g1

∂t

)(
∂g2

∂t

)
+ ∂2f

∂y2

(
∂g2

∂t

)2

Nous pouvons mettre nos résultats ensembles pour obtenir que, avec le théorème de
Schwarz (puisque notre fonction est de classe Cp où p ≥ 3) :

F ′′(t) = ∂f

∂x2 (x− a)2 + 2 ∂2f

∂x∂y
(x− a)(y − b) + ∂2f

∂y2 (y − b)2

Et ainsi :

F ′′(0) = ∂2f(a, b)
∂x2 (x− a)2 + 2∂

2f(a, b)
∂x∂y

(x− a)(y − b) + ∂2f(a, b)
∂y2 (y − b)2

D’une façon similaire, on obtient :

F (3) = ∂3f

∂x3 (x− a)3+3 ∂3f

∂x2∂y
(x− a)2(y − b)+3 ∂3f

∂x∂y2 (x− a)(y − b)2+∂3f

∂y3 (y − b)3

Nous reconnaissons les coefficients binomiaux Ckp = p!
k!(p−k)! , et nous pouvons

démontrer par récurrence que :

F (p)(0) =
p∑
k=0

∂pf

∂xk∂yp−kC
k
p (x− a)k(y − b)p−k

Souvent, on utilise l’approximation de Taylor d’ordre 2, donnée par :

f(x, y) = f(a, b) + ∂f

∂x
(a, b)(x− a) + ∂f

∂y
(a, b)(y − b)

+ 1
2

(
∂2f

∂x2 (a, b)(x− a)2 + 2 ∂2f

∂x∂y
(a, b)(x− a)(y − b) + ∂2f

∂y2 (a, b)(y − b)2
)

+ ε
(

∥(x, y) − (a, b)∥2
)

où les deux premières lignes sont P2,f,(a,b), le polynôme de Taylor de f d’ordre 2
autour de (a, b), et la troisième ligne est le reste.

Remarque
personnelle

En manipulant les opérateurs comme de physiciens, il est tentant
d’écrire :

F (p)(0) =
(

(x− a) ∂
∂x

+ (y − b) ∂
∂y

)p
f

Mercredi 27 avril 2022 — Cours 18 : Vous savez toujours calculer des valeurs propres ?

Exemple Considérons la fonction f : R2 7→ R de classe C∞ suivante :

f(x, y) = e−x+2y2+1
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Nous voulons trouver le polynôme de Taylor de f d’ordre 2 autour de (0, 1). Calculons
nos dérivées :

∂f

∂x
(0, 1) = −e−x+2y2+1

∣∣∣
(0,1)

= −e3

∂f

∂y
(0, 1) = 4ye−x+2y2+1

∣∣∣
(0,1)

= 4e3

∂2f

∂x2 (0, 1) = e−x+2xy2+1
∣∣∣
(0,1)

= e3

∂2f

∂y2 = 4e−x+2y2+1 + 4y(4y)e−x+2y2+1
∣∣∣
(0,1)

= 20e3

∂2f

∂x∂y
(0, 1) = ∂2f

∂y∂x
(0, 1) = −4ye−x+2y2+1

∣∣∣
(0,1)

= −4e3

Et ainsi, on obtient :

P2,f,(0,1) = e3 +
(
−e3)x+ 4e3(y − 1) + 1

2

(
e3x2 + 2

(
−4e3)x(y − 1) + 20e3(y − 1)2

)
= e3

(
1 − x+ 4(y − 1) + 1

2x
2 − 4x(y − 1) + 10(y − 1)2

)
Remarque Il existe une autre méthode pour calculer les polynômes de Taylor, en utilisant les

developments limités d’une seule variable.

Exemple Reprenons l’exemple que nous venons de faire. Puisque nous faisons notre develop-
ment limité autour de (0, 1), nous avons que x et y− 1 sont petits. Ainsi, mettons-les
en évidence :

f(x, y) = e−x+2y2+1 = e−x+2((y−1)+1)2+1

= e−x+2(y−1)2+4(y−1)+2+1 = e3e

s︷ ︸︸ ︷
−x+ 4(y − 1) + 2(y − 1)2

Ainsi, puisque s est petit, nous pouvons maintenant utiliser la développement limité
d’ordre 2 de es autour de s = 0, en ignorant les termes d’ordre plus grand ou égal à
3 :

P2,f,(0,1) = e3
(

1 + s+ 1
2s

2
)

= e3
[
1 +

(
−x+ 4(y − 1) + 2(y − 1)2

)
+ 1

2

(
x2 + 16(y − 1)2 − 8x(y − 1)

)]
= e3

(
1 − x+ 4(y − 1) + 1

2x
2 + 10(y − 1)2 − 4x(y − 1)

)
Ce qui est exactement ce que nous avions obtenu.

Taylor en trois
dimensions

Considérons maintenant le cas où n = 3. Ainsi, nous avons f(x, y, z), une fonction
de classe C3, et nous voulons calculer son développement limité autour de (a, b, c) ∈
E ⊂ R3.
En utilisant la même méthode que dans le cours précédent, nous pouvons poser :

g(t) =

a+ t(x− a)
b+ t(y − b)
c+ t(z − c)

 =

g1(t)
g2(t)
g3(t)

, F ′(t) = ∂f

∂x
· ∂g1

∂t
+ ∂f

∂y
· ∂g2

∂t
+ ∂f

∂z
· ∂g3

∂t

Ainsi, nous avons :

F ′(0) = ∂f

∂x
(a, b, c)(x− a) + ∂f

∂y
(a, b, c)(y − b) + ∂f

∂z
(a, b, c)(z − c)

102



5.8. FORMULE DE TAYLOR Notes par Joachim Favre

La dérivée seconde est donnée par :

F ′′(0) = ∂2f

∂x2 (a, b, c)(x− a)2 + ∂2f

∂y2 (a, b, c)(y − b)2 + ∂2f

∂z2 (a, b, c)(z − c)2

+ 2 ∂2f

∂x∂y
(x− a)(y − b) + 2 ∂2f

∂y∂z
(y − b)(z − c) + 2 ∂2f

∂x∂z
(x− a)(z − c)

Remarque
personnelle

Je vois un pattern avec la formule trouvée dans le cours précédent.
Ainsi, je ne sais pas du tout si c’est vrai, mais je conjecture que
nous avons, pour n variables :

F (p)(0) =
(

(x1 − a1) ∂

∂x1
+ . . .+ (xn − an) ∂

∂xn

)p
f(x1, . . . , xn)

Méthodes Nous avons maintenant deux méthodes pour calculer une formule de Taylor :
1. Utiliser la formule de Taylor en plusieurs variables.
2. Utiliser les développements limités d’une seule variable.

Exemple Prenons la fonction suivante :

f(x, y) =
sin
(
x+ 1

y

)
1 + x

Nous voulons calculer sa formule de Taylor d’ordre 2 autour de (0, 1).

Méthode 1 Cette méthode est directe mais fastidieuse. Les dérivées deviennent
vite très compliquées.

Méthode 2 Cette méthode nécessite un traitement soigneux et une maitrise des
développements limités.
Commençons pas tout réécrire en fonction de (y − 1) :

1
y

= 1
(y − 1) + 1 = 1 − (y − 1) + (y − 1)2 − . . .

Nous pouvons aussi voir que :

1
1 + x

= 1 − x+ x2 + . . .

Regardons maintenant le sinus :

sin
(
x+ 1 − (y − 1) + (y − 1)2 − . . .

)
= sin

1 + x− (y − 1) + (y − 1)2︸ ︷︷ ︸
s petit

− . . .


= sin(1) cos(s) + cos(1) sin(s)

= sin(1)
(

1 − s2

2 + . . .

)
+ cos(1)(s− . . .)

En multipliant tout ensemble, on obtient (désolé pour le changement
de taille de police, c’est impossible de tout écrire sur une ligne comme
ça aussi) :(

1 − x + x
2
)[

sin(1)

(
1 −

1

2

(
x − (y − 1) + (y − 1)2

)2
)

+ cos(1)
(

x − (y − 1) + (y − 1)2
)]
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Ce qu’on peut simplifier, nous donnant P2f(0,1) :

sin(1)
(

1 − 1
2x

2 − 1
2(y − 1)2 + x(y − 1) − x+ x2

)
+ cos(1)

(
x− (y − 1) + (y − 1)2 − x2 + x(y − 1)

)
= sin(1) + x(cos(1) − sin(1)) − (y − 1) cos(1) + x2

(
1
2 sin(1) − cos(1)

)
+ (y − 1)2

(
cos(1) − 1

2 sin(1)
)

+ x(y − 1)(sin(1) + cos(1))

5.9 Extrema d’une fonction de plusieurs variables

Définition :
Point station-
naire

Soit E ⊂ Rn et f : E 7→ R.
−→a ∈ E est un point stationnaire de f si et seulement si :

∇f
(−→a ) =

(
∂f

∂x1

(−→a ), . . . , ∂f
∂xn

(−→a )) = −→0

Définition :
Maximum local

f : E 7→ R admet un maximum local au point −→a ∈ E s’il existe δ > 0 tel que
f
(−→x ) ≤ f

(−→a ) pour tout −→x ∈ E ∩B
(−→a , δ

)
.

Définition : Mi-
nimum local

f : E 7→ R admet un minimum local au point −→a ∈ E s’il existe δ > 0 tel que
f
(−→x ) ≥ f

(−→a ) pour tout −→x ∈ E ∩B
(−→a , δ

)
.

Exemple 1 Prenons la fonction f(x, y) = x2 + y2. Nous pouvons voir que (0, 0) est un point
stationnaire :

∇f(x, y) = (2x, 2y)
∣∣∣
(0,0)

= −→0

Or, nous pouvons voir que c’est un minimum local sur le graphique :

Exemple 2 Prenons la fonction f(x, y) = x2. Nous pouvons voir que (0, b) est un point station-
naire ∀b ∈ R :

∇f(x, y) = (2x, 0)
∣∣∣
(0,b)

= −→0

De manière similaire, nous pouvons aussi voir qu’ils représentent des minimum
locaux sur le graphique :

Proposition :
Condition né-
cessaire pour un
extremum local

Soit E ⊂ Rn et f : E 7→ R une fonction admettant un extremum local au point
−→a ∈ E et telle que ∂f

∂xi

(−→a ) existent ∀i = 1, . . . , n.
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Alors, −→a est un point stationnaire de f , i.e. ∇f
(−→a ) = −→0 .

Preuve Soit la fonction suivante :

gi(x) = f(a1, . . . , ai−1, x, ai+1, . . . , an)

Nous savons que ∇f
(−→a ) existe implique que gi(x) est dérivable en

ai = x. De plus, nous savons qu’elle admet un extremum local en
ce point puisque f en a un à ce point (si g n’avait pas d’extremum
local, alors clairement f n’en n’aurait pas non plus). Or, par le cours
d’Analyse 1, cela implique que :

g′
i(ai) = 0 = ∂f

∂xi

(−→a ) = 0

Nous pouvons faire ce même argument pour chaque i = 1, . . . , n,
ainsi on obtient bien que ∇f

(−→a ) = −→0 .

□

Remarque 1 Cette proposition est parallèle à celui qu’on a vu en Analyse 1 : si
une fonction d’une variable est dérivable à un point et elle admet
un extremum local en ce point, alors sa dérivée est nulle.

Remarque 2 La réciproque est fausse. Si le gradient est nul en un point, alors
cela nous donne par forcément un extremum local. Nous pouvons
prendre un contre-exemple parallèle à celui typique en Analyse 1 :

f(x, y) = x3

Il y aura un autre contre-exemple dans l’exemple suivant.

Remarque 3 Même si f
(−→x ) admet un minimum local le long de toute droite

passant par −→a , cela n’implique pas que f
(−→x ) admet un minimum

local en −→a . Nous avons un résultat similaire pour les maximum
locaux.

Exemple Prenons f(x, y) = x2 − y2. Ainsi, nous avons :

∇f(0, 0) = (2x,−2y)
∣∣∣
(0,0)

= −→0

Ainsi, −→0 est un point stationnaire, mais comme on peut le voir sur le graphique
suivant, ce n’est pas un extremum :

Définition :
Point critique

−→a ∈ E est un point critique de f : E 7→ R si −→a est un point stationnaire, ou si
au moins une des dérivées partielles de f n’existe pas en −→x = −→a .
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Remarque En utilisant notre théorème, nous avons la proposition suivante :
Si −→a est un point d’extremum local, alors −→a est un point critique.

Théorème :
Condition suffi-
sante pour un
extremum local

Soit f : E 7→ R une fonction de classe C2 sur E, et soit −→a ∈ E un point stationnaire
(∇f

(−→a ) = −→0 ).
Si toutes les valeurs propres de la matrice Hessienne de f en −→a sont strictement
positives, alors f possède un minimum local en −→a .
Si toutes les valeurs propres de la matrice Hessienne de f en −→a sont strictement
négatives, alors f possède un maximum local en −→a .
S’il y a au moins une valeur propre strictement négative et au moins une strictement
positive, alors −→a n’est pas un point d’extremum local.

Justification Nous n’allons pas démontrer ce théorème, mais justifions le de
manière à comprendre ce qui se passe derrière.
La matrice Hessienne est symétrique par le théorème de Schwarz,
puisque f ∈ C2(E) :

Hessf
(−→a ) =

(
Hessf

(−→a ))T
Par le théorème spectral d’Algèbre Linéaire, nous savons donc
que Hessf

(−→a ) a toutes ses valeurs propres réelles, et qu’elle est
diagonalisable à l’aide d’une matrice orthogonale O :

Hessf
(−→a ) = ODOT

où :

D =

λ1 · · · 0
...

. . .
...

0 · · · λn

, O−1 = OT

Ainsi, il existe un changement de variable linéaire orthogonal (x1, . . . , xn) 7→
(y1, . . . , yn) tel que la matrice Hessienne devient diagonale, avec
λ1, . . . , λn ∈ R étant ses valeurs propres :

D = Hessf(y1,...,yn)
(−→a )

Alors si nous supposons que f est de classe C3, nous pouvons écrire
par la formule de Taylor :

f
(−→y )− f

(−→a ) ≈ 1
2

(
λ1(y1 − a1)2 + . . .+ λn(yn − an)2

)
+ ε
(∥∥−→y − −→a

∥∥2
)

De là, nous pouvons voir que, clairement, si λ1 > 0, . . . , λn > 0,
alors f

(−→y )− f
(−→a ) ≥ 0 pour tout −→y dans un voisinage de −→a , et

donc −→a est un point de minimum local.
De manière similaire, si λ1 < 0, . . . , λn < 0, alors f

(−→y )−f(−→a ) ≤ 0
et donc −→a est un point de maximum local.
Finalement, nous voyons que s’il existe i, j tels que λi > 0 et
λj < 0, alors −→a n’est pas un point d’extremum local (nous pouvons
trouver une inégalité dans chaque direction en mettant toutes les
composantes à 0 sauf la i-ème ou la j-ème).

Lundi 2 mai 2022 — Cours 19 : Fin des études d’extremums
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Proposition :
Hypothèses équi-
valentes pour le
théorème de la
condition suffi-
sante pour un
extremum local
quand n = 2

Dans le cas où n = 2, nous pouvons réécrire les conditions de notre théorème.
Notre matrice Hessienne est donnée par :

Hessf
(−→a ) =

(
∂2f
∂x2

∂2f
∂y∂x

∂2f
∂x∂y

∂2f
∂y2

)
=
(
r s
s t

)
Nous avons les équivalences suivantes :

1. λ1 > 0, λ2 > 0 ⇐⇒ det Hessf
(−→a ) > 0 et r > 0

2. λ1 < 0, λ2 < 0 ⇐⇒ det Hessf
(−→a ) > 0 et r < 0

3. λ1 > 0, λ2 < 0 ou λ1 < 0, λ2 > 0 ⇐⇒ det Hessf
(−→a ) < 0

La démonstration de ce théorème doit être connue pour l’examen.

Preuve Pour commencer, nous savons que le déterminant et la trace d’une
matrice sont des invariants de conjugaisons. Ainsi, si on a :

O

(
r s
s t

)
O−1 =

(
λ1 0
0 λ2

)
⇐⇒

(
r s
s t

)
= O−1

(
λ1 0
0 λ2

)
O

Alors, on obtient :

rt− s2 = det Hessf
(−→a ) = det(O)λ1λ2 det

(
O−1) = λ1λ2

r+t = Tr Hessf
(−→a ) = Tr

(
ODO−1) = Tr

(
O−1OD

)
= Tr(D) = λ1+λ2

Preuve point 1
=⇒

Commençons par montrer la direction =⇒ . Ainsi, nous supposons
que λ1 > 0, λ2 > 0.
Alors, clairement, det Hessf

(−→a ) = λ1λ2 > 0. Aussi, nous voyons
que :

λ1λ2 = rt− s2 > 0 =⇒ rt > s2 ≥ 0 =⇒ rt > 0

donc r et t sont de même signe.
Nous pouvons aussi voir que :

Tr Hessf
(−→a ) = λ1︸︷︷︸

>0

+ λ2︸︷︷︸
>0

= r + t > 0

donc r et t doivent être les deux strictement positifs, puisqu’ils ont
le même signe.
Nous en déduisons bien que det Hessf

(−→a ) > 0 et r > 0.

Preuve point 1
⇐=

Supposons que det Hessf
(−→a ) > 0 et r > 0.

Alors, puisque det Hessf
(−→a ) = λ1λ2 > 0, nous en déduisons que

λ1 et λ2 sont de même signe. De plus, nous voyons aussi que rt >
s2 ≥ 0 =⇒ rt > 0.
Ainsi, puisque rt > 0 et r > 0, nous obtenons que t > 0. De plus,
cela implique que :

Tr Hessf
(−→a ) = λ1 + λ2 = r︸︷︷︸

>0

+ t︸︷︷︸
>0

> 0

Puisque λ1 et λ2 sont de mêmes signes, et λ1 + λ2 > 0, nous en
déduisons bien que λ1 > 0 et λ2 > 0.
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Preuve point 2
=⇒

Commençons par montrer la direction =⇒ . Ainsi, nous supposons
que λ1 < 0, λ2 < 0.
Alors, clairement, det Hessf

(−→a ) = λ1λ2 > 0. Aussi, nous voyons
que :

λ1λ2 = rt− s2 > 0 =⇒ rt > s2 ≥ 0 =⇒ rt > 0

donc r et t sont de même signe.
Nous pouvons aussi voir que :

Tr Hessf
(−→a ) = λ1︸︷︷︸

<0

+ λ2︸︷︷︸
<0

= r + t < 0

donc r et t doivent être les deux strictement négatifs, puisqu’ils ont
le même signe.
Nous en déduisons bien que det Hessf

(−→a ) > 0 et r < 0.

Preuve point 2
⇐=

Supposons que det Hessf
(−→a ) > 0 et r < 0.

Alors, puisque det Hessf
(−→a ) = λ1λ2 > 0, nous en déduisons que

λ1 et λ2 sont de même signe. De plus, nous voyons aussi que rt >
s2 ≥ 0 =⇒ rt > 0.
Ainsi, puisque rt > 0 et r < 0, nous obtenons que t < 0. De plus,
cela implique que :

Tr Hessf
(−→a ) = λ1 + λ2 = r︸︷︷︸

<0

+ t︸︷︷︸
<0

< 0

Puisque λ1 et λ2 sont de mêmes signes, et λ1 + λ2 < 0, nous en
déduisons bien que λ1 < 0 et λ2 < 0.

Preuve point 3 Nous voyons que :

det Hessf
(−→a ) < 0 ⇐⇒ λ1λ2 < 0 ⇐⇒ λ1 et λ2 sont de signes opposés

Note person-
nelle

La démonstration de ce théorème peut sembler très longue et com-
pliquée, mais elle ne l’est pas ! À partir du moment où on sait que
le déterminant est donné par ad− bc et que la trace est donnée par
la somme des éléments diagonaux, il suffit de poser nos hypothèses
et de simplement voir ce que nous pouvons en déduire, en gardant
en tête où nous voulons aller.

Résumé du cas
n = 2

Soit f une fonction de classe C2 au voisinage de −→a = (a1, a2), et soit sa matrice
Hessienne :

Hessf
(−→a ) =

(
r s
s t

)
1. Si det Hessf

(−→a ) = rt− s2 > 0 et r > 0, alors nous avons un minimum local :

f(u, v) − f
(−→a ) ≈ 1

2λ1(u− a1)2︸ ︷︷ ︸
>0

+ 1
2λ2(v − a2)2︸ ︷︷ ︸

>0

> 0

2. Si det Hessf
(−→a ) = rt− s2 > 0 et r < 0, alors nous avons un un maximum local :

f(u, v) − f
(−→a ) ≈ 1

2λ1(u− a1)2︸ ︷︷ ︸
<0

+ 1
2λ2(v − a2)2

< 0︸ ︷︷ ︸
<0

108



5.9. EXTREMA D’UNE FONCTION DE PLUSIEURS VARIABLES Notes par Joachim Favre

3. Si det Hessf
(−→a ) = rt− s2 < 0, alors il existe u, v dans tout voisinage de −→a tels

que nous n’avons pas d’extremum local :

f(u, v) − f
(−→a ) ≈ 1

2λ1(u− a1)2︸ ︷︷ ︸
>0

+ 1
2λ2(v − a2)︸ ︷︷ ︸

<0

4. Si det Hessf
(−→a ) = 0, alors nous n’avons pas de conclusion. Par exemple, f(x, y) =

x4 + y4 a un maximum local en −→0 , f(x, y) = −x4 − y4 a un minimum local en
−→0 , et f(x, y) = x4 − y4 n’a pas d’extremum local en −→0 , alors que le déterminant
de toutes leurs matrice Hessiennes est nul en ce point.

Conditions équi-
valentes aux
conditions suf-
fisantes pour
n = 3

Soit f une fonction de classe C2 au voisinage de −→a , et soit sa matrice Hessienne :

Hessf
(−→a ) =


∂2f
∂x2

1

∂2f
∂x2∂x1

∂2f
∂x3∂x1

∂2f
∂x1∂x2

∂2f
∂x2

1

∂2f
∂x3∂x2

∂2f
∂x1∂x3

∂2f
∂x2∂x3

∂2f
∂x2

3


Nous définissons ∆1 le déterminant de la matrice 1 × 1 avec le coin en haut à gauche
(mineure principale de taille 1 × 1), ∆2 le déterminant de la matrice 2 × 2 avec le
coin au même endroit (mineure principale de taille 2 × 2), et ∆3 = det Hessf

(−→a ) :

Nous avons donc :

∆1 = ∂2f

∂x2
1
, ∆2 = ∂2f

∂x2
1

· ∂
2f

∂x2
2

− ∂2f

∂x2∂x1
· ∂2f

∂x1∂x2
, ∆3 = det Hessf

1. Si ∆1 > 0,∆2 > 0,∆3 > 0, alors −→a est un point de minimum local (et Hessf
(−→a )

est dite définie positive).
2. Si ∆1 < 0,∆2 > 0,∆3 < 0, alors −→a est un point de maximum local.
3. Autrement, si ∆3 ̸= 0, alors il n’y a pas d’extremum local en −→a .
4. Si ∆3 = 0, alors nous ne pouvons rien conclure.

Preuve Nous acceptons ce théorème sans preuve.

Exemple Prenons la fonction suivante :

f(x, y) = y3 + 3y2 − 4xy + x2

Nous pouvons remarquer que f est de classe C∞(R2), donc ses points critiques sont
ses point stationnaires. Nous cherchons de tels points, ainsi calculons le gradient :

∇f(x, y) =
(
−4y + 2x, 3y2 + 6y − 4x

)
En posant ∇f(x, y) = (0, 0) on obtient :{

4y = 2x
3y2 + 6y − 4x = 0

⇐⇒

{
x = 2y
y(3y − 2) = 0

Et donc, nous avons deux solutions. Soit y = 0, ce qui implique x = 0, soit y = 2
3 ,

ce qui implique x = 4
3 . Nous avons donc deux points stationnaires : (0, 0) et

( 4
3 ,

2
3
)
.
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Regardons le premier point :

Hessf (0, 0) =
(

2 −4
−4 6

)
=⇒ det Hessf (0, 0) = 12 − 16 = −4 < 0

Nous pouvons en déduire qu’il n’y a pas d’extremum local en (0, 0). Regardons
maintenant le deuxième point :

Hessf
(

4
3 ,

2
3

)
=
(

2 −4
−4 10

)
=⇒ det Hessf

(
4
3 ,

2
3

)
= 20 − 16 = 4 > 0

Or, puisque r = 2 > 0, nous avons un minimum local en
( 4

3 ,
2
3
)
.

5.10 Minimum et maximum d’une fonction continue sur un
compact

Rappel : Théo-
rème

Une fonction continue sur un sous-ensemble compact D ⊂ Rn atteint son minimum
et son maximum. En d’autres mots, ∃−→c1 ,

−→c2 tels que :

f
(−→c1

)
= min−→x ∈D

f
(−→x ), f

(−→c2
)

= max−→x ∈D
f
(−→x )

Méthode Nous voulons une méthode pour trouver ces −→c1 ,
−→c2 . Pour faire cela, il faut :

1. Trouver les points critiques
{−→ci

}
de f sur D̊ (l’intérieur de D). Calculer les

valeurs f
(−→ci

)
.

2. Trouver les points
{−→

dj

}
de minimum et maximum de f(∂D) (∂D est la

frontière de D). Calculer les valeurs f
(−→

dj

)
.

3. Choisir le minimum et le maximum parmi les valeurs qu’on a trouvées.
Notez que le deuxième point peut être très dur à calculer. La frontière peut par
exemple être donnée par morceaux, auquel cas il ne faut pas oublier les coins. Ensuite,
nous évaluons f sur la frontière à l’aide de cette dépendance entre x et y.

Exemple Soit la fonction f(x, y) = x2 + 2y2 − 2y + 3. Nous voulons trouver son minium et
maximum absolus sur le disque fermé suivant :

D =
{
x2 + y2 ≤ 4

}
Points cri-
tiques

Notre fonction est de classe C∞
(
D̊
)

, donc les points critiques sont
les points stationnaires.
Le gradient de notre fonction est donné par ∇f(x, y) = (2x, 4y − 2),
ainsi en posant ∇f(x, y) = (0, 0), nous trouvons :

x = 0, y = 1
2

Ainsi,
(
0, 1

2
)

∈ D̊ est le seul point critique. Notez que nous n’avons
pas besoin de faire d’analyse supplémentaire pour savoir si c’est
réellement un extremum ou non, puisque nous allons comparer la
valeurs avec celles de la frontière de toutes façons.

Frontière Notre frontière est donnée par ∂D =
{
x2 + y2 = 4

}
, donc nous

avons la contrainte suivante :

x2 = 4 − y2
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Donc, la fonction sur notre frontière est donnée par :

f̃(y) = 4 − y2︸ ︷︷ ︸
=x2

+2y2 − 2y + 3 = y2 − 2y + 7, sur [−2, 2]

Cette une fonction d’une seule variable, donc nous pouvons la dériver
et faire notre analyse habituelle (qui semble si triviale maintenant) :

f̃ ′(y) = 2y − 2 = 0 =⇒ y = 1 =⇒ x = ±
√

3

Nous avons donc deux points candidats :
(
±

√
3, 1
)
. Aussi, nous ne

devons pas oublier les points au bord, avec y = 2 et y = −2.

Comparaison Calculons la valeur de nos fonctions à nos différents points :

f

(
0, 1

2

)
= 5

2

f
(

±
√

3, 1
)

= f̃(1) = 1 − 2 + 7 = 6

f̃(−2) = 4 + 4 + 7 = 15 = f(0,−2)

f̃(2) = 4 − 4 + 7 = 7 = f(0, 2)

Nous trouvons donc finalement que le minimum global (absolu) de
f sur D est en

(
0, 1

2
)
, et que son maximum global (absolu) sur D

est en (0,−2).

5.11 Théorème des fonctions implicites

Définition :
Fonction impli-
cite

Une fonction implicite est une dépendance f = f
(−→x ) qui est définie par une

équation.

Exemple 1 Prenons F (x, y) = 2x+ 3y. Alors, F (x, y) = 0 définit une fonction implicite y = f(x)
pour tout x ∈ R. En effet, cela nous donne :

2x+ 3f(x) = 0 ⇐⇒ f(x) = −2
3x, ∀x ∈ R

Nous aurions aussi pu considérer x = g(y) :

2g(y) + 3y = 0 ⇐⇒ g(y) = −3
2y, ∀y ∈ R
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Nous obtenons la même fonction, décrite différemment.

Exemple 2 Prenons F (x, y) = x2 + y2 − 1. Nous nous demandons si F (x, y) = 0 nous définit
une fonction.
Soit (a, b) un point sur le cercle de rayon 1, donc tels que a2 + b2 = 1. Si b > 0,
alors nous trouvons y =

√
1 − x2 au voisinage de (a, b). Si b < 0, alors nous trouvons

y = −
√

1 − x2 au voisinage de (a, b).
Cependant, si b = 0, nous avons deux solutions pour chaque x dans tout voisinage
de b. Par exemple, en considérant un voisinage de (−1, 0), nous pouvons voir que
tout y aurait besoin de deux valeurs pour un x :

Donc, puisqu’il faudrait avoir deux valeurs pour un x, nous ne pouvons pas avoir
une fonction y = f(x) au voisinage de b = 0.

Mercredi 4 mai 2022 — Cours 20 : Fonctions implicites

Définition : Sur-
face de niveau

Une surface de niveau d’une fonction F (x, y, z) est la surface définie par l’équation
F (x, y, z) = C ∈ R. C s’appelle le niveau.
De manière similaire, une ligne de niveau d’une fonction F (x, y) est la ligne définie
par l’équation F (x, y) = C ∈ R. C s’appelle le niveau.

Exemple Par exemple, sur une carte géographique, il y a les courbes d’alti-
tudes, qui sont les ensembles de points situés à la même altitude.

Exemple 3 Prenons F (x, y) = 1−yex+xey = 0. Nous nous demandons si nous pouvons prendre
y = f(x) autour d’un point donné. Nous ne pouvons pas résoudre cette équation
d’une manière explicite, mais la fonction est bien définie autour de tout point donné.
Nous pouvons considérer F (x, y) comme une fonction de deux variables de classe
C∞(R2) qui défini une surface z = F (x, y). Nous considérons l’intersection de cette
surface avec le plan z = 0. La courbe obtenue s’appelle la ligne de niveau de
F (x, y) à z = 0.
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Prenons par exemple le point (0, 1), qui est bien tel que F (0, 1) = 0. Nous cherchons
donc y = f(x) telle que F (x, f(x)) = 0 pour tout x proche de 0. Ainsi, supposant
que y = f(x) existe, nous pouvons trouver sa dérivée :

F (x, f(x)) = 0
=⇒ F ′(x, f(x)) = 0

=⇒ ∂F

∂x
(x, f(x)) + ∂F

∂y
(x, f(x))f ′(x) = 0

=⇒ f ′(x) = −
∂F
∂x (x, f(x))
∂F
∂y (x, f(x))

= − yex + ey

−ex + xey

Si nous regardons en (0, 1) :

f ′(0) = −yex + ey

−ex + xey

∣∣∣
(0,1)

= −−1 + e

−1 = −1 + e

qui est la pente de la tangente à y = f(x) au point (0, 1).

Théorème des
fonctions impli-
cites (TFI)

Soit n ≥ 2 et E ⊂ Rn. Soit aussi F : E 7→ R une fonction de classe C1 au voisinage
de −→a = (a1, . . . , an) ∈ E telle que :

1. F
(−→a ) = 0

2. ∂F
∂xn

(−→a ) ̸= 0
Alors, il existe un voisinage B(ǎ, δ) de ǎ = (a1, . . . , an−1) ∈ Rn−1 (remarquez que
ǎ a n− 1 composante et non pas n) et une fonction f : B(ǎ, δ) 7→ R telle que :

1. an = f(a1, . . . , an−1)
2. F (x1, . . . , xn−1, f(x1, . . . , xn−1)) = 0, ∀(x1, . . . , xn−1) ∈ B(ǎ, δ)
3. f est de classe C1 dans un voisinage de ǎ, et on a :

∂f

∂xp
(x1, . . . , xn−1) = −

∂F
∂xp

(x1, . . . , xn−1, f(x1, . . . , xn−1))
∂F
∂xn

(x1, . . . , xn−1, f(x1, . . . , xn−1))
, ∀p = 1, . . . , n−1

Intuition Puisque la fonction est de classe C1, elle se comporte comme une
droite dans un voisinage de chaque point. Il est facile de voir pourquoi
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∂F
∂xn

(−→a ) doit être non-nulle en considérant le cas de n = 2. Si
∂F
∂y = 0, alors la droite est verticale, ce qui est un problème.
De plus, nous pouvons remarquer que si nous voulions que la fonc-
tion f n’existe pas, c’est qu’il faudrait un point où elle devrait
prendre deux valeurs différentes. Pour arriver à cela, sa dérivée doit
clairement passer de positive à négative ou inversement, ce qui est
impossible par le TVI puisqu’elle est non-nulle et continue partout.

Cas n = 2 Considérons le cas où n = 2. Reformulons notre théorème.
Soit E ⊂ R2, et soit F (x, y) : E 7→ R une fonction de classe C1 telle que F (a, b) = 0
et ∂F

∂y (a, b) ̸= 0.
Alors, l’équation F (x, y) = 0 définit localement autour de (a, b) une fonction y = f(x)
telle que f(a) = b, F (x, f(x)) = 0 pour tout x dans un voisinage de x = a, et :

f ′(x) = −
∂F
∂x (x, f(x))
∂F
∂y (x, f(x))

Nous pouvons donc calculer f ′(a) sans savoir la formule pour f(x).
Nous pouvons faire le schéma suivant, où la fonction est bien définie dans les
voisinages rouges, mais pas dans le voisinage vert (puisqu’elle n’y respecte pas les
hypothèses de notre théorème) :

Exemple Reprenons l’exemple du cercle, F (x, y) = x2 + y2 − 1. Nous avons :

∂F

∂y
= 2y ̸= 0 ⇐⇒ y ̸= 0

Ainsi, prenons y > 0, ce qui implique que F (x, y) = 0 ⇐⇒ y =
√

1 − x2. Calculons
sa dérivée directement :

f(x) =
√

1 − x2 =⇒ f ′(x) = −2x
2
√

1 − x2
= − x√

1 − x2

Cependant, nous pouvons aussi utiliser notre théorème. En effet, par le TFI, il existe
y = f(x) où :

f ′(x) =
∂F
∂x (x, f(x))
∂F
∂y (x, f(x))

= −2x
2y

∣∣∣
y=

√
1−x2

= − x√
1 − x2

comme attendu.

Cas n = 3 Considérons le cas n = 3, reformulons notre théorème.
Soit E ⊂ R3 et F (x, y, z) : E 7→ R de classe C1 telle que F (a, b, c) = 0 et ∂F

∂z (a, b, c) ≠
0.
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Alors, il existe localement une fonction z = f(x, y) telle que f(a, b) = c,
F (x, y, f(x, y)) = 0 pour tout couple (x, y) dans un voisinage de (a, b) et :

∂f

∂x
(x, y) = −

∂F
∂x (x, y, f(x, y))
∂F
∂z (x, y, f(x, y))

∂f

∂y
(x, y) = −

∂F
∂y (x, y, f(x, y))
∂F
∂z (x, y, f(x, y))

Exemple Soit la fonction suivante :

F (x, y, z) = x cos(y) + y cos(z) + z cos(x) − 1

Pour commencer, on remarque que F (0, 0, 1) = 0 :

F (0, 0, 1) = 0 + 0 + 1 cos(0) − 1 = 0

Nous voulons maintenant savoir si F (x, y, z) = 0 définit autour de (0, 0, 1) une
fonction z = f(x, y) telle que F (x, y, f(x, y)) = 0, et, si oui, quelles sont ses dérivées
partielles.
On remarque que :

∂F

∂z
(0, 0, 1) = −y sin(z) + cos(x)

∣∣∣
(0,0,1)

= cos(0) = 1 ̸= 0

Ainsi, par le TFI, la fonction z = f(x, y) est bien définie au voisinage de (0, 0) et est
de classe C1. Calculons les dérivées partielles de (x, y) au point (0, 0) :

∂f

∂x
(0, 0) = −

∂F
∂x (x, y, f(x, y))
∂F
∂z (x, y, f(x, y))

= cos(y) − z sin(x)
−y sin(z) + cos(x)

∣∣∣
(0,0,1)

= −1
1 = −1

∂f

∂y
(0, 0) = −

∂F
∂y (x, y, f(x, y))
∂F
∂z (x, y, f(x, y))

= −x sin(y) + cos(z)
−y sin(z) + cos(x)

∣∣∣
(0,0,1)

= −cos(1)
1 = − cos(1)

Ceci nous donne donc le gradient de f en (0, 0) :

∇f(0, 0) =
(
∂f

∂x
(0, 0), ∂f

∂y
(0, 0)

)
= (−1,− cos(1))

Ceci nous permet de calculer l’équation du plan tangent :

z = f(a, b) + ⟨∇f(a, b), (x− a, y − b)⟩

Application :
Équation de l’hy-
perplan tangent

Reconstruisons la formule pour trouver un hyperplan tangent.
Soit F (x1, . . . , xn) une fonction de classe C1 sur E ⊂ Rn telle qu’il existe un i, où
1 ≤ i ≤ n, tel que, pour un −→a ∈ E, nous avons F

(−→a ) = 0 et :

∂F

∂xi

(−→a ) ̸= 0
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Par le TFI, nous savons que l’équation F (x1, . . . , xn) = 0 définit une hypersurface
xi = f(a1, . . . , ai−1, ai+1, . . . , an) (f ne contient pas ai dans son paramètre) qui est
de classe C1.
Or, nous savons que ∃i pour lequel ∂F

∂xi

(−→a ) ̸= 0, est équivalent à ∇F
(−→a ) ≠ 0. Ceci

implique que DF
(−→a ,−→v

)
=
〈
∇F

(−→a ),−→v 〉 = 0 si et seulement si −→v est tangent à
l’hypersurface de niveau. En d’autres mots, pour tout vecteur −→v dans l’hyperplan
tangent à F

(−→x ) = 0 au point −→x = −→a , nous devons avoir :

DF
(−→a ,−→v

)
=
〈

∇F
(−→a )︸ ︷︷ ︸

̸=−→0

, −→v︸︷︷︸
−→x −−→a

〉
= 0

L’équation de l’hyperplan tangent à F
(−→x ) = 0 au point −→a tel que F

(−→a ) = 0 est
donc : 〈

∇F
(−→a ),−→x − −→a

〉
= 0

Observation Nous pouvons voir que, parfois, nous avons besoin d’utiliser diffé-
rentes variables pour représenter le plan tangent d’une fonction à
chacun de ses points. Par exemple, pour une sphère, à chaque pôle
il y a une variable que nous ne pouvons pas utiliser (puisque sa
dérivée est nulle). Ainsi, nous ne pouvons pas écrire le plan tangent
à chaque point d’une sphère sous la forme z = h(x, y).

Remarque Notez qu’un hyperplan est l’équivalent d’un plan en dimension n.
Par exemple, en dimension 2 c’est une droite, en dimension 3 c’est
un plan, etc.

Exemple 1 Nous avions trouvé que pour F (x, y, z) = x cos(y) + y cos(z) + z cos(x) − 1, nous
avons :

∇F (0, 0, 1) = (1, cos(1), 1) ̸= −→0

Ainsi, le plan tangent nous est donné par :

⟨(1, cos(1), 1), (x− 0, y − 0, z − 1)⟩ = 0 =⇒ x+y cos(1)+z−1 = 0 =⇒ z = 1−x−y cos(1)

Il est possible de vérifier que nous pouvons obtenir la même équation en prenant
z = f(0, 0) + ⟨∇f(0, 0), (x− 0, y − 0)⟩.

Exemple 2 Considérons l’équation d’une sphère de rayon 1, donc F (x, y, z) = x2 + y2 + z2 −
1 = 0. Nous cherchons une équation du plant tangent en (a, b, c) ∈ R3 tels que
a2 + b2 + c2 − 1 = 0.
Premièrement, remarquons que :

∇F (a, b, c) = (2x, 2y, 2z)
∣∣∣
(a,b,c)

= (2a, 2b, 2c) ̸= −→0

puisque a = b = c = 0 n’appartient pas à la sphère.
L’équation du plan tangent au point (a, b, c) est donc donné par :

⟨(2a, 2b, 2c), (x− a, y − b, z − c)⟩ = 0
⇐⇒ 2a(x− a) + 2b(y − b) + 2c(z − c) = 0
⇐⇒ ax+ by + cz −

(
a2 + b2 + c2)︸ ︷︷ ︸

=1

= 0

⇐⇒ ax+ by + cz = 1

Exemple 3 Considérons l’équation suivante :

F (x, y) = x
2
3 + y

2
3 − 4 = 0
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Nous voulons trouver l’équation de la ligne tangente au point (a, b) =
(

2 3
2 , 2 3

2

)
.

Commençons par vérifier qu’il appartient bien à la courbe :(
2 3

3

) 2
3 +

(
2 3

2

) 2
3 = 2 + 2 = 4 =⇒ F (a, b) = 0

Calculons maintenant le gradient à ce point :

∇F (a, b) =
(

2
3x

− 1
3 ,

2
3y

− 1
3

)∣∣∣(
2

3
2 ,2

3
2

) =
(

2
3

(
2 3

2

)− 1
3
,

2
3

(
2 3

2

)− 1
3
)

=
(√

2
3 ,

√
2

3

)
̸= −→0

Nous pouvons donc appliquer notre formule, pour trouver que l’équation de la
tangente est :

⟨∇F (a, b), (x− a, y − b)⟩ = 0

=⇒
〈(√

2
3 ,

√
2

3

)
,
(
x− 2 3

2 , y − 2 3
2

)〉
=

√
2

3

(
x− 2 3

2

)
+

√
2

3

(
y − 2 3

2

)
= 0

=⇒ x+ y = 2 · 2 3
2 = 2 5

2

=⇒ y = 2 5
2 − x =

√
32 − x

Notez que l’équation x 2
3 + y

2
3 = 8 2

3 , celle qui est dessinée ci-dessus, donne une figure
appelée un astroïde.

Remarque Considérons le cas n = 3, et faisons le lien avec l’équation du plan tangent au
graphique de z = f(x, y).
Si F (x, y, z) = z − f(x, y), où f est une fonction de classe C1, alors nous avons
∂f
∂z = 1, et donc ∇F (x, y, z) ̸= 0 pour tout (x, y, z) où z = f(x, y) est bien définie.
Ainsi, si c = f(a, b), c’est à dire si a, b, c appartient à la surface de niveau F (x, y, z) =
0, on trouve par le TFI que l’équation du plan tangent au point (a, b, c) est :

⟨∇F (a, b, c), (x− a, y − b, z − c)⟩ = 0

⇐⇒ ∂F

∂x
(a, b, c)(x− a)︸ ︷︷ ︸

− ∂f
∂x (a,b)

+ ∂F

∂y
(a, b, c)︸ ︷︷ ︸

− ∂f
∂y (a,b)

+ ∂F

∂z
(a, b, c)︸ ︷︷ ︸

1

z − c︸︷︷︸
f(a,b)

 = 0

Nous retrouvons donc l’équation :

− ∂f

∂x
(a, b)(x− a) − ∂f

∂y
(a, b)(y − b) + (z − f(a, b)) = 0

⇐⇒ z = f(a, b) + ⟨∇f(a, b), (x− a, y − b)⟩

Examen Notez qu’à l’examen qu’il y a toujours une question sur les plans tangents, ou sur le
calcul d’une dérivée d’une fonction dont on n’a pas la forme explicite.
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Mercredi 11 mai 2022 — Cours 21 : Lagrange à Laferme avec Lescochons

5.12 Extrema liés — Méthode des multiplicateurs de Lagrange

Théorème :
Condition né-
cessaire pour
un extremum
sous contrainte
quand n = 2

Soit l’ensemble E ⊂ R2 et soient les fonctions f, g : E 7→ R de classe C1. Supposons
que f(x, y) admette un extremum en (a, b) ∈ E sous la contrainte g(x, y) = 0, et
que ∇g(a, b) ̸= −→0 .
Alors, il existe λ ∈ R, appelé le multiplicateur de Lagrange, tel que :

∇f(a, b) = λ∇g(a, b)

La démonstration de ce théorème doit être connue pour l’examen.

Preuve Nous savons que ∇g(a, b) ̸= −→0 , donc au moins l’une des dérivées
partielles est non-nulle. Supposons que ∂g

∂y (a, b) ̸= 0 (le cas ∂g
∂x (a, b) ̸=

0 est similaire).
Nous avons g(a, b) = 0 puisque (a, b) satisfait la contrainte g(x, y) =
0. Ainsi, par le TFI, il existe une fonction y = h(x) de classe C1 au
voisinage de x = a telle que :

h′(x) = −
∂g
∂x (x, h(x))
∂g
∂y (x, h(x))

, avec g(x, h(x)) = 0

Aussi, pour (x, y) satisfaisant notre contrainte g(x, y) = 0, nous
pouvons remplacer y = h(x) dans l’expression f(x, y) pour obtenir
une fonction d’une seule variable :

f(x, y) si g(x, y) = 0= f(x, h(x))

Nous savons que les extrema de cette fonction, respectent :

f ′(x, h(x)) = ∂f

∂x
(x, h(x)) + ∂f

∂y
(x, h(x))h′(x) = 0

Par hypothèse, (a, b) est un point d’extremum, et il respecte la
contrainte g(a, b) = 0, donc les hypothèses de l’équation que nous
venons d’obtenir sont bien respectées, ce qui nous permet de trouver
que :

∂f

∂x
(a, b) = −∂f

∂y
(a, b)h′(a)

Pour résumer, nous avons trouvé jusque là que :

∂f

∂x
(a, b) = −∂f

∂y
(a, b)h′(a), h′(a) TFI= −

∂g
∂x (a, b)
∂g
∂y (a, b)

Ceci implique que :

∂f

∂x
(a, b)︸ ︷︷ ︸
v1

= ∂f

∂y
(a, b)︸ ︷︷ ︸
v2

u1︷ ︸︸ ︷
∂g

∂x
(a, b)

∂g

∂y
(a, b)︸ ︷︷ ︸
u2 ̸=0
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Séparons notre preuve en différents cas. Si u1 = 0, alors v1 = 0
et donc ∇f(a, b) = (0, v2) et ∇g(a, b) = (0, u2). Ceci implique bien
qu’il existe un λ ∈ R tel que v2 = λ u2︸︷︷︸

̸=0

et donc :

∇f(a, b) = λ∇g(a, b)

Sinon (si u1 ̸= 0), alors, en définissant v1
u1

= v2
u2

:= λ ∈ R, nous
trouvons :

(v1, v2) = λ(u1, u2) ⇐⇒ ∇f(a, b) = λ∇g(a, b)

□

Intuition de la
preuve

Nous trouvons f(x, y) sous la forme d’une fonction d’une seule
variable et la dérivons, puis nous utilisons le théorème des fonctions
implicites, ce qui nous permet de trouver un lien entre les dérivées
de f et celles de g.

Remarque Géométriquement, g(x, y) = 0 est une courbe de niveau. Or, on sait
que ∇g(x, y) est toujours orthogonal à cette courbe. Maintenant, si
(a, b) est un extremum local de f(x, y) sur cette courbe, cela implique
que, pour un −→v tangent à la courbe, D−→v f(a, b) =

〈
∇f(a, b),−→v

〉
=

0 puisque c’est un extremum (ce point est visible sur l’image ci-
dessous).
Ainsi, ceci nous avons plusieurs possibilités. Soit ∇f(a, b) = 0,
auquel cas nous pouvons prendre λ = 0, et l’extremum est un
extremum local de la fonction, même sans contrainte. Sinon, ∇f(a, b)
est orthogonal à la courbe, et donc il est parallèle au gradient de g,
nous disant ∇f(a, b) = λ∇g(a, b) où λ ̸= 0.

Note per-
sonnelle :
Exemple

Regardons par exemple la fonction f(x, y) = x avec la contrainte
g(x, y) = x2 + y2 − 4 = 0. La courbe sous contrainte est présentée
en violet, et il est clair que, aux extrema, ∇g (les vecteurs en noirs)
est colinéaire à ∇f (le vecteur en bleu) :

Théorème :
Condition né-
cessaire pour un
extremum sous
contrainte

Soit E ⊂ Rn et soient f, g1, . . . , gmE 7→ R des fonctions de classe C1, où m ≤ n− 1.
Soit −→a ∈ E un extremum de f

(−→x ) sous les contraintes g1
(−→x ) = . . . = gm

(−→x ) = 0.
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Supposons que les vecteurs ∇g1
(−→a ), . . . ,∇gm(−→a ) sont linéairement indépendants.

Alors, il existe un vecteur
−→
λ = (λ1, . . . , λm) ∈ Rm tel que :

∇f
(−→a ) =

m∑
k=1

λk∇gk
(−→a ) = λ1∇g1

(−→a )+ . . .+ λm∇gm
(−→a )

En particulier, si on cherche un extremum de f
(−→x ) sous une seule contrainte

g
(−→x ) = 0, on obtient les équations :{

∇f
(−→x ) = λ∇g

(−→x )
g
(−→x ) = 0

si ∇g
(−→x ) ̸= 0

Exemple 1 Nous voulons trouver toutes les extrema de la fonction f(x, y, z) = x− 2y + 2z sous
la contrainte g(x, y, z) = x2 + y2 + z2 − 9 = 0.
Commençons par remarquer que pour (x, y, z) sur notre sphère de rayon 3 :

∇g(x, y, z) = (2x, 2y, 2z) ̸= (0, 0, 0)

puisque (x, y, z) = (0, 0, 0) n’appartient à pas la sphère de rayon 3.
Par le théorème des multiplicateurs de Lagrange, si un point (x, y, z) appartenant à
la sphère est un point d’extremum de f(x, y, z), alors il existe λ ∈ R tel que :{

∇f(x, y, z) = λ∇g(x, y, z)
x2 + y2 + z2 = 9

⇐⇒

{
(1,−2, 2) = λ(2x, 2y, 2z)
x2 + y2 + z2 = 9

Clairement, λ ̸= 0, donc nous pouvons diviser la première équation par λ :
x = 1

2λ ,

y = − 1
λ

z = 1
λ

=⇒

{
x = 1

2z

y = −z

En mettant ceci dans notre contrainte, on obtient :

9 = x2 + y2 + z2 = 1
4z

2 + z2 + z2 = 9
4z

2 =⇒ z2 = 4 =⇒ z = ±2

Ainsi, si z = 2, on obtient x = 1, y = −2 et donc on a le point (1,−2, 2). Si z = −2,
on obtient le point (−1, 2,−2). Nous pouvons maintenant regarder leur image par
f :

f(1,−2, 2) = 1 + 4 + 4 = 9, f(−1, 2,−2) = −1 − 4 − 9 = −9

Nous devons encore vérifier que ce sont bien des extrema. Cependant, puisque la
sphère est un compact et f est continue, nous savons que f atteint son minimum et
son maximum. On sait aussi qu’elle est de classe C1, donc les points critiques sont
les point stationnaires. Donc, parmi les points stationnaires il existe forcément les
points de minimum et de maximum sous la contrainte. Mais, nous n’avons trouvé
que deux points, nous savons donc que ce sont notre minimum et maximum.

Exemple 2 Nous voulons trouver les extrema de la fonction f(x, y, z) = xyz sous les contraintes :

g1(x, y, z) = x+ y + z − 5 = 0, g2(x, y, z) = xy + yz + xz − 8 = 0

Commençons par vérifier que les gradients de g1 et g2 sont linéairement indépendants :

∇g1(x, y, z) = (1, 1, 1), ∇g2(x, y, z) = (y + z, x+ z, x+ y)

Pour savoir s’ils sont linéairement indépendants, nous posons :

∇g2(x, y, z) = k∇g1(x, y, z) =⇒ (y + z = x+ z, x+ y) = (k, k, k) =⇒ x = y = z
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Cependant, nous pouvons voir que x = y = z ne marche pas avec nos contraintes :{
g1(x, x, x) = 3x− 5 = 0 =⇒ x = 5

3
g2(x, x, x) = 3x2 − 8 = 0

mais 3
( 5

3
)2 = 25

3 ̸= 8.
Nous en déduisons que le théorème des multiplicateurs de Lagrange s’applique, et
on obtient les équations :

∇f(x, y, z) = (yz, xz, xy) = λ1

∇g1︷ ︸︸ ︷
(1, 1, 1) +λ2

∇g2︷ ︸︸ ︷
(y + z, x+ z, x+ y)

g1(x, y, z) = x+ y + z − 5 = 0
g2(x, y, z) = xy + yz + xz − 8 = 0

Ceci nous donne le système de 5 équations à 5 inconnues suivant :

yz = λ1 + λ2(y + z)
xz = λ1 + λ2(x+ z)
xy = λ1 + λ2(x+ y)
x+ y + z = 5
xy + yz + xz = 8

On voit que la quatrième équation nous donne x+ y = 5 − z. Ainsi, en additionnant
les deux premières équations :

z(x+ y) = 2λ1 + λ2(x+ y + 2z) =⇒ z(5 − z) = 2λ1 + λ2(5 + z)

Nous pouvons utiliser la même idée en additionnant la deuxième et la troisième
équation, et en additionnant la première et la troisième équation. Ceci nous donne
le système :

z(5 − z) = 2λ1 + λ2(5 + z)
x(5 − x) = 2λ1 + λ2(5 + x)
y(5 − y) = 2λ1 + λ2(5 + y)

=⇒


z2 + (λ2 − 5)z + 5λ2 + 2λ1 = 0
x2 + (λ2 − 5)x+ 5λ2 + 2λ1 = 0
y2 + (λ2 − 5)y + 5λ2 + 2λ1 = 0

Nous savons qu’une équation quadratique a au plus deux solutions différentes. Nous
savons déjà que x = y = z n’est pas possible, donc la seule possibilité qui nous
arrangerait (qui dirait que des solutions existe) serait qu’une variable est différente
des deux autres. Prenons par exemple x = y ̸= z. Alors, les équations 4 et 5 de notre
premier système nous donnent :{

2x+ z = 5
x2 + 2xz = 8

=⇒

{
z = 5 − 2x
x2 + 2x(5 − 2x) − 8 = 0 =⇒ −3x2 + 10x− 8 = 0

Nous pouvons donc résoudre :

x = 10 ±
√

100 − 96
6 = 10 ± 2

6 =⇒ x1 = 2, x2 = 4
3 =⇒ z1 = 1, z2 = 7

3

Ceci nous donne 6 points candidats pour un extremum de f sous les contraintes (en
considérant aussi x = z ̸= y et y = z ̸= x) :{

(2, 2, 1), (1, 2, 2), (2, 1, 2),
(

4
3 ,

4
3 ,

7
3

)
,

(
7
3 ,

4
3 ,

4
3

)
,

(
4
3 ,

7
3 ,

4
3

)}
Calculons les valeurs de nos fonctions :

f(2, 2, 1) = f(1, 2, 2) = f(2, 1, 2) = xyz
∣∣∣
(2,2,1)

= 4
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f

(
4
3 ,

4
3 ,

7
3

)
= f

(
4
3 ,

7
3 ,

4
3

)
= f

(
7
3 ,

4
3 ,

4
3

)
= 112

27 = 4 + 4
27

Par un argument similaire à l’exemple précédent, si nous arrivons à démontrer que
les contraintes définissent un compact dans R3, nous pourrons en déduire que les
premiers points nous donnent un minimum de f sous les contraintes, et les deuxième
nous donnent un maximum de f sous les contraintes. En effet, nous savons déjà que
f est continue, ainsi, si les contraintes définissent un compact, cela implique que f
atteint son minimum et son maximum, qui sont à des points stationnaires puisqu’elle
est de classe C1, qui sont donnés par le théorème des multiplicateurs de Lagrange.
Démontrons donc que les contraintes forment un compact. Il est possible de trouver
à partir des contraintes que :

1
2(x+ y)2 + 1

2(x− 5)2 + 1
2(y − 5)2 = 17

Ceci nous dit que 1
2 (x− 5)2 ≤ 17 et 1

2 (y − 5)2 ≤ 17, et donc que x et y sont bornées.
De plus, puisque z = 5 − x− y, cette variable est aussi bornée. Ceci nous permet en
effet de conclure que notre ensemble est en effet compact.
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Lundi 16 mai 2022 — Cours 22 : Mon intégrale elle est douce

Chapitre 6

Calcul intégral des fonctions de
plusieurs variables

6.1 Intégrale sur un pavé fermé

Définition : Pavé Un pavé fermé est un sous-ensemble de Rn qui est le produit Cartésien de n
intervalles fermés bornés :

P = [ai, bi] × [a2, b2] × . . .× [an, bn], ai < bi ∀i = 1, . . . , n

Nous notons le pavé ouvert par :

P̊ = ]a1, b1[ × . . .× ]anbn[

Exemple Un pavé de dimension 1 est donné par :

P1 = [a, b]

c’est un intervalle fermé borné.
Un pavé de dimension 2 est donné par :

P2 = [a1, b1] × [a2, b2]

Nous pouvons les représenter géométriquement :

Définition : Vo-
lume

Le volume d’un pavé fermé est défini par :

|P | = (b1 − a1)(b2 − a2) · · · (bn − an)

Exemple En reprenant nos deux pavés ci-dessus, nous avons :

|P1| = b− a, |P2| = (b1 − a1)(b2 − a2)
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Définition : Sub-
division

Soit σj une subdivision de [aj , bj ] (comme nous l’avions définie en Analyse 1), où
aj < bj . Notez que chaque subdivision n’a pas besoin d’être régulière. Nous avons
donc :

σj =
{
aj = xj,0 < xj,1 < . . . < xj,nj

< bj
}

Alors, σ = (σ1, . . . , σn) est appelée une subdivision de P .
Nous notons D(σ) la collection des pavés engendrés par la subdivision.

Exemple Considérons P2 = [a1, b1] × [a2, b2]. Alors, nous pourrions prendre :

σ = {{a, x1, x2, b}, {a2, y1, y2, y3, b2}}

Nous pouvons représenter cela graphiquement

La subdivision nous donne :

P2 =
⋃

Q∈D(σ)

Q =
⋃

i=1,...,3
j=1,...,4

Qij

Nous pouvons aussi calculer le volume du pavé :

|P2| =
∑

Q∈D(σ)

|Q| =
∑

i=1,...,3
j=1,...,4

|Qij |

Définition :
Sommes de Dar-
boux

Soit P un pavé fermé et soit f : P 7→ R une fonction bornée sur P . Alors, on définit
les sommes de Darboux de f sur P .
Soit D(σ) une collection de pavés fermés engendrée par la subdivision σ. Alors :

Sσ(f) déf=
∑

Q∈D(σ)

m(Q)|Q|, où m(Q) = inf−→x ∈Q

(
f
(−→x ))

Sσ(f) déf=
∑

Q∈D(σ)

M(Q)|Q|, où M(Q) = sup
−→x ∈Q

(
f
(−→x ))

Notez que nous ne savons pas s’il existe un minimum et un maximum, puisque la
fonction n’est pas supposée continue. Cependant, puisqu’elle est bornée, nous savons
qu’il existe un infimum et un suprémum. Aussi, nous remarquons que plus nous
rajoutons de points, plus Sσ(f) augmente et plus Sσ(f) diminue, ce qui nous amène
aux définitions suivantes.
La somme de Darboux inférieure est définie par :

S(f) déf= sup{Sσ(f) : σ est une subdivision de P}

La somme de Darboux supérieure est définie par :

S(f) déf= inf
{
Sσ(f) : σ est une subdivision de P

}
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Exemple La somme de Darboux inférieure Sσ associé à une subdivision donnée
est la somme des parallélépipèdes rouges sur l’image suivante :

Observations Nous remarquons que, toujours S(f) ≤ S(f).

Définition :
Fonction inté-
grable

Soit P ⊂ Rn un pavé fermé et f : P 7→ R une fonction bornée.
f est intégrable sur P si et seulement si :

S(f) = S(f)

Dans ce cas, l’intégrale de f sur P est définie par :
�
P

f
(−→x )d−→x =



P

f(x1, . . . , xn)dx1 . . . dxn
déf= S(f) = S(f)

Notez que le deuxième terme n’est qu’une notation, donc nous ne pouvons par
échanger les intégrales par exemples (pour l’instant). Nous verrons avec le théorème
de Fubini que cette notation est, en fait, très cohérente.

Remarque
mathématique

Quand nous définissons un objet en mathématiques, il faut toujours
donner un exemple immédiatement après, car nous pourrions avoir
défini un objet qui n’existe pas. Il est mieux que cet exemple soit
trivial.

Exemple Soit P ⊂ Rn un pavé fermé, et soit f : P 7→ R une fonction constante, i.e. f
(−→x ) =

C ∈ R. Clairement, f est bornée sur P . Nous allons montrer qu’elle est aussi
intégrable sur P .
Soit σ une division de P . Alors, nous avons :

Sσ(f) =
∑

Q∈D(σ)

inf
Q

(f)︸ ︷︷ ︸
=C

|Q| = C
∑

Q∈D(σ)

|Q| = C|P |

Sσ(f) =
∑

Q∈D(σ)

sup
Q

(f)︸ ︷︷ ︸
=C

|Q| = C
∑

Q∈D(σ)

|Q| = C|P |

pour n’importe quelle subdivision σ.
Donc, nous avons :

S(f) = S(f) = C|P | =
�
P

Cd−→x

Nous avons bien démontré que f était intégrable.

Observation

125



Analyse II CHAPITRE 6. CALCUL INTÉGRAL

En particulier, si C = 1 :
�
P

d−→x =



P

dx1 . . . dxn = |P |

Ceci nous donne donc le volume de P :

P = [a, b] =⇒ |P | =
� b

a

1dx = b− a

P = [a1, b1] × [a2, b2] =⇒
�
P

1dxdy = (b1 − a1)(b2 − a2)

Théorème Toute fonction continue est intégrable sur un pavé fermé.

Idée de preuve
(assez com-
plète)

Soit P ⊂ Rn un pavé fermé, et soit f : P 7→ R une fonction continue.
Pour commencer, puisque P est un sous-ensemble compact et f est
une fonction continue, elle atteint son minimum et son maximum,
et donc, en particulier, f est bornée sur P .
Considérons maintenant l’intégrabilité, nous voulons montrer S(f) =
S(f).
Soit ε > 0 (“l’Analyse sérieuse commence si on commence à parler
d’epsilons” Prof. Lachowska). Puisque f est continue en chaque
point de P , nous savons que pour tout −→x0 ∈ P , il existe δ−→x0

tel que :∥∥−→x0 − −→x
∥∥ ≤ δ−→x0

=⇒
∣∣f(−→x )− f

(−→x0
)∣∣ ≤ ε

2

Notez que nous pouvons prendre ε
2 car cette proposition est vraie

pour toute constante positive.
Nous considérons maintenant le recouvrement de P par les boules
ouvertes B

(−→x0, δ−→x0

)
. C’est bien un recouvrement car chaque point

de P est contenu dans une boule. Il y a beaucoup d’intersections,
mais nous avons bien :

P ⊂
⋃

−→x0∈P

B
(−→x0, δ−→x0

)
Par le théorème de Heine-Borel-Lebesgue, il existe un sous-recouvrement
fini :

P ⊂
⋃

−→xj∈P

B
(−→xj , δ−→xj

)
Or, si −→x1,

−→x2 ∈ B
(−→xj , δj

)
, nous avons :

∣∣f(−→x1
)

− f
(−→x2

)∣∣ †
≤
∣∣f(−→x1

)
− f

(−→xj

)∣∣+
∣∣f(−→xj

)
− f

(−→x2
)∣∣

≤ ε

2 + ε

2
= ε

où l’inégalité † est l’inégalité triangulaire.
Il existe une subdivision de P qui correspond à ce recouvrement fini
(cette affirmation est la partie de la preuve où nous ne donnons pas
l’argument complet). Ainsi, soit σ une telle subdivision. Puisque,
sur chaque sous-pavé, le minimum et le maximum sont dans la boule
ouverte, nous pouvons utiliser notre inégalité ci-dessus, ce qui nous
donne :

max
Q

f − min
Q

f ≤ ε, ∀Q ∈ D(σ)
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Nous trouvons donc que :

Sσ(f)−Sσ(f) =
∑

Q∈D(σ)

(
max
Q

f − min
Q

f

)
|Q| ≤ ε

∑
Q∈D(σ)

|Q| = ε|P |

Mais, nous savons que Sσ(f) ≥ S(f) et Sσ(f) ≤ S(f), ce qui nous
dit que :

0 ≤ S(f) − S(f) ≤ Sσ(f) − Sσ(f) ≤ ε|P |

Cependant, c’est vrai pour tout ε > 0, et le seul nombre qui est tel
que 0 ≤ x < α pour tout α > 0 est x = 0, donc nous avons bien
trouvé que :

S(f) − S(f) = 0 ⇐⇒ S(f) = S(f)

Propriétés de
l’intégrale

Propriété 1 :
Additivité

Soit P un pavé fermé, et {Pi}i∈I une famille dénombrable de pavés
fermés disjoints (l’intersection entre l’intérieur de n’importe quel
deux pavé est vide, P̊i ∩ P̊j = ø pour i ̸= j) telle que P =

⋃
i∈I Pi.

Par exemple, cela pourrait ressembler à :

Alors, pour toute fonction continue f : P 7→ R, nous avons :
�
P

f
(−→x )d−→x =

∑
i∈I

�
Pi

f
(−→x )d−→x

Propriété 2 :
Linéarité

Soit P un pavé fermé, et soient f, g : P 7→ R deux fonctions continues.
Alors, pour tout α, β ∈ R :
�
P

(
αf
(−→x )+ βg

(−→x ))d−→x = α

�
P

f
(−→x )d−→x + β

�
P

g
(−→x )d−→x

Propriété 3 Soit P un pavé fermé, et soit f : P 7→ R une fonction bornée,
intégrable sur P , et telle que :∣∣f(−→x )∣∣ ≤ K ∈ R≥0 ⇐⇒ −K ≤ f

(−→x ) ≤ K, ∀−→x ∈ P

Alors :
−K|P | ≤

�
P

f
(−→x )d−→x ≤ K|P |

Les deux premières propriétés découlent directement de la définition des sommes de
Darboux.
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Définition : Vo-
lume

Soit P ⊂ R2 un pavé fermé de dimension 2, et soit f : P 7→ R+ une fonction
intégrable. Alors, le volume de l’ensemble sous la surface z = f(x, y) ≥ 0 est défini
par :

V
déf=
�
P

f(x, y)dxdy

En d’autres mots, V est le volume du sous-ensemble entre z = 0 et z = f(x, y) ≥ 0
au dessus du pavé fermé P ⊂ R2.

Théorème de
Fubini

Soit P = [a1, b1] × . . .× [an, bn] ⊂ Rn un pavé fermé, et soit f : P 7→ R une fonction
continue.
Alors, f est intégrable sur P , et on a :

�
P

f
(−→x )d−→x =

� bn

an

(� bn−1

an−1

· · ·

(� b1

a1

f(x1, . . . , xn)dx1

)
· · · dxn−1

)
dxn

Ceci marche pour n’importe quel choix de l’ordre d’intégration.

Reformulation En d’autres mots, nous pouvons calculer :

g1(x2, . . . , xn) =
� b1

a1

f(x1, . . . , xn)dx1

où x1 est une variable d’intégration, et x2, . . . , xn sont des para-
mètres. Nous pouvons ensuite prendre :

g2(x3, . . . , xn) =
� b2

a2

g1(x2, . . . , xn)dx2

Nous pouvons continuer ainsi de suite, jusqu’à calculer :
� bn

an

gn−1(xn)dxn = α ∈ R

Remarque Ce théorème n’est uniquement valide sur un pavé fermé, nous verrons
ensuite une autre version de ce théorème pour d’autres ensembles.

Cas n = 2 Soit P = [a, b] × [c, d] ⊂ R2 un pavé fermé de dimension 2, et soit f : P 7→ R une
fonction continue. Alors, nous avons :

� d

c

(� b

a

f(x, y)dx
)
dy =

� b

a

(� d

c

f(x, y)dy
)
dx =

�
P

f(x, y)dxdy

Idée de preuve Nous pouvons trouver une subdivision de P assez fine telle que
P =

⋃
i,j Pi,j et f(x, y) ≈ Ci,j ∈ R sur Pij (en d’autres mots, f est

presque constante sur chaque subdivision).

128



6.1. INTÉGRALE SUR UN PAVÉ FERMÉ Notes par Joachim Favre

Dans ce cas, nous pouvons écrire :
� d

c

(� b

a

f(x, y)dx
)
dy

add.=
∑
j

� yj

yj−1

(∑
i

� xi

xi−1

f(x, y)dx
)
dy

lin.=
∑
i,j

� yj

yj−1

� xi

xi−1

f(x, y)dxdy

≈
∑
i,j

Cij(xi − xi−1)(yj − yj−1)

=
∑
i,j

Cij(yj − yj−1)(xi − xi−1)

≈
∑
i,j

� xi

xi−1

(� yj

yj−1

f(x, y)dy
)
dx

=
� b

a

(� d

c

f(x, y)dy
)
dx

Mercredi 18 mai 2022 — Cours 23 : Fubini on steroids

Exemple Nous voulons calculer le volume du sous-ensemble de R3 défini par :{
(x, y, z) ∈ R3 : 0 ≤ x ≤ 4, 0 ≤ y ≤ 3, 0 ≤ z ≤ (1 + 3x+ x sin(xy))

}
Nous remarquons que f(x, y) = 1 + 3x+ x sin(xy) est continue, et que f(x) > 0 sur
cet intervalle. Ainsi, nous pouvons utiliser le théorème de Fubini sur le pavé fermé
P = [0, 4] × [0, 3]. Pour commencer, utilisons la linéarité et l’additivité de l’intégrale :

V =
�
P

(1 + 3x+ x sin(xy))dxdy =
�
P

1dxdy + 3
�
P

xdxdy +
�
P

x sin(xy)dxdy

La première intégrale est le volume du pavé fermé, qui est (4 − 0)(3 − 0) = 12.
Regardons maintenant la deuxième intégrale. Nous pouvons choisir l’ordre des
variables, et il est souvent mieux d’utiliser la variable “qui participe le moins”, donc
commençons par y :

3
�
P

xdxdy = 3
� 4

0

(� 3

0
xdy

)
dx = 3

� 4

0
xy
∣∣∣y=3

y=0
dx = 3

� 4

0
3xdx = 9

2x
2
∣∣∣4
0

= 72

Pour l’exemple, calculons cette même intégrale en intégrant d’abord par x :

3
�
P

xdxdy =
� 3

0

(� 4

0
3xdx

)
dy =

� 3

0

(
3
2x

2
∣∣∣x=4

x=0

)
dy =

� 3

0
24dy = 24y

∣∣∣3
0

= 72

comme attendu.
Calculons maintenant notre troisième intégrale, en commençant par intégrer par y
puisqu’elle est plus simple :

�
P

x sin(xy)dxdy =
� 4

0

(� 3

0
x sin(xy)dy

)
dx

Prenons maintenant le changement de variable u(y) = xy, ce qui nous donne :
� 4

0

(� 3

0
sin(u)du

)
dx =

� 4

0
− cos(xy)

∣∣∣3
0
dx =

� 4

0
(− cos(3x) + 1)dx

Nous trouvons donc finalement que notre troisième intégrale est égale à :

x− 1
3 sin(3x)

∣∣∣4
0

= 4 − 1
3 sin(12)
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Considérons encore cette troisième intégrale, mais en prenant un autre ordre d’inté-
gration : �

P

x sin(xy)dxdy =
� 3

0

(� 4

0
x sin(xy)dx

)
dy

Calculons l’intégrale intérieure :
� 4

0
x sin(xy)dx = −x

y
cos(xy)

∣∣∣4
0
+1
y

� 4

0
cos(xy)dx = −x

y
cos(xy)

∣∣∣x=4

x=0
+1
y

sin(xy)
y

∣∣∣x=4

x=0

Ce qui est égal à :
−4
y

cos(4y) + 1
y2 sin(4y)

Nous voulons intégrer ce résultat entre 0 et 3, donc regardons sa limite :

lim
y→0

sin(4y) − 4y cos(4y)
y2 = lim

y→0

4y − (4y)3

6 + . . .− 4y
(

1 − 1
2 (4y)2 + . . .

)
y2

= lim
y→0

− (4y)3

6 + 32y3

y2

= 0

Calculons finalement notre intégrale extérieure (qui, malheureusement, ne peut pas
être séparée en deux intégrales, puisque celles-ci ne s’expriment pas en fonctions
élémentaires) :

� 3

0

(
−4
y

cos(4y) + 1
y2 sin(4y)

)
dy

=
� 3

0

sin(4y) − 4y cos(xy)
y2 dy

=
� 3

0
(4y cos(4y) − sin(4y))d

(
1
y

)
= − sin(4y)

y
+ 4 cos(4y)

∣∣∣3
0

−
� 3

0

4 cos(4y) − 16y sin(4y) − 4 cos(4y)
y

dy

= − sin(12)
3 + 4 cos(12) + lim

y→0

sin(4y)
y︸ ︷︷ ︸

=4

−4 +
� 3

0
16 sin(4y)dy

= − sin(12)
3 + 4 cos(12) − 4 cos(4y)

∣∣∣3
0

= − 1
3 sin(12) + 4 cos(12) − 4 cos(12) + 4

= 4 − 1
3 sin(12)

comme attendu. Cependant, clairement, le choix prudent de l’ordre d’intégration
est important, car nous sommes allé beaucoup plus rapidement en intégrant par y
d’abord.
Nous trouvons donc finalement que notre volume est donné par :

V = 12 + 72 + 4 − 1
3 sin(12) = 88 − 1

3 sin(12)
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6.2 Intégrales sur un ensemble borné

Définition :
Fonction inté-
grable sur un
ensemble borné
quelconque

Soit E ⊂ Rn un ensemble borné. Clairement, puisqu’il est borné, il existe un pavé
fermé tel que E ⊂ P ⊂ Rn. Soit aussi f : E 7→ R une fonction bornée sur E.
Posons maintenant la fonction suivante :

f̂
(−→x ) =

{
f
(−→x ), si −→x ∈ E

0, si −→x ∈ P \ E

La fonction f est intégrable sur E, si f̂ est intégrable sur P . Dans ce cas, on pose :
�
E

f
(−→x )d−→x déf=

�
P

f̂
(−→x )d−→x

Remarque La définition ne dépend pas du choix du pavé fermé autour de notre
sous-ensemble E.

Définition :
Frontière régu-
lière

Une frontière est dite régulière (de mesure nulle) si, pour tout ε > 0, il existe un
ensemble de pavé fermés {q1, q2, . . .} tels que :∑

i∈I
|qi| < ε et ∂E ⊂

⋃
i∈I

qi

Intuition En gros, cela veut dire que la frontière n’a pas d’aire.
Voici un exemple d’une frontière qui n’est pas régulière :

De manière similaire, la courbe d’Osgood n’est pas régulière (je vous
laisser aller jeter un œil sur Wikipédia, Osgood Curve en anglais).

Théorème Si f : E 7→ R est bornée sur E, continue sur l’intérieur E̊, et la frontière ∂E est
assez régulière, alors f

(−→x ) est intégrable sur E.

Théorème de
Fubini pour les
domaines à fron-
tière régulière

1. Soient :
• [a, b] ⊂ R un intervalle, où a < b.
• φ1, φ2 : [a, b] 7→ R deux fonctions continues telles que φ1(x) < φ2(x) pour

tout x ∈ ]a, b[.
• D =

{
(x, y) ∈ R2 : a < x < b, φ1(x) < y < φ2(x)

}
(appelé le domaine à

frontière régulière de type 1).
Alors, pour tout fonction continue f : D 7→ R, nous avons :

�
D

f(x, y)dxdy =
� b

a

(� φ2(x)

φ1(x)
f(x, y)dy

)
dx

Le choix du sens des variables d’intégration ne peut pas se faire arbitrairement.
2. Soient :

• [c, d] ⊂ R un intervalle, où c < d.
• ψ1, ψ2 : [c, d] 7→ R deux fonctions continues telles que ψ1(y) < ψ2(y) pour

tout y ∈ ]c, d[.
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• D =
{

(x, y) ∈ R2 : c < y < d, ψ1(y) < x < ψ2(y)
}

(appelé le domaine à
frontière régulière de type 2).

Alors, pour toute fonction continue f : D 7→ R, nous avons :
�
D

f(x, y)dxdy =
� d

c

(� ψ2(y)

ψ1(y)
f(x, y)dx

)
dy

Le choix du sens des variables d’intégration ne peut pas se faire arbitrairement.

Exemple Voici un exemple de type 1 (à gauche) et un exemple de type 2 (à
droite) :

Exemple Soit la fonction f(x, y) = x2y et le domaine suivant :

D =
{

(x, y) ∈ R2 : 0 < x < 1, 0 < y < 1 − x
}

Ceci nous donne le graphe suivant :

Nous pouvons l’interpréter comme un domaine de type 1, donc le théorème de Fubini
nous dit que :�

D

f(x, y)dxdy =
� 1

0

(� 1−x

0
x2ydy

)
dy =

� 1

0

1
2x

2(1 − x2)dx
Ce qui est égal à :

1
2

� 1

0

(
x2 − 2x3 + x4)dx = 1

6x
3 − 1

4x
4 + 1

10x
5
∣∣∣1
0

= 1
6 − 1

4 + 1
10 = 10 − 15 + 6

60 = 1
60

Cependant, nous pouvons aussi réécrire notre domaine de manière à ce qu’il soit de
type 2 :

D =
{

(x, y) ∈ R2 : 0 < y < 1, 0 < x < 1 − y
}

Ainsi, le théorème de Fubini nous dit que :�
D

f(x, y)dxdy =
� 1

0

(� 1−y

0
x2ydx

)
dy =

� 1

0

1
3(1 − y)3

ydy

Ce qui est égal à :

1
3

� 1

0

(
y − 3y2 + 3y3 − y4)dy = 1

6y
2 − 1

3y
3 + 1

4y
4 − 1

15y
5
∣∣∣1
0

= 10 − 20 + 15 − 4
60 = 1

60
comme attendu.
Parfois, il est donc possible de changer notre domaine d’un type à l’autre, mais le
choix est souvent forcé.
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Remarque Regardons le domaine D suivant, qui n’est malheureusement ni de type 1 ni de type
2 :

Nous pouvons le séparer en trois sous-ensembles de type 1 :

De manière générale, il est possible de diviser le domaine en réunion de domaines
de type 1 ou 2, et nous pouvons ensuite utiliser l’additivité de l’intégrale. Ici, nous
aurions, pour une fonction f : D 7→ R continue :
�
D

f(x, y)dxdy

=
�
D1

f(x, y)dxdy +
�
D2

f(x, y)dxdy +
�
D3

f(x, y)dxdy

=
� x2

x1

(� φ1(x)

φ3(x)
f(x, y)dy

)
dx+

� x3

x2

(� φ2(x)

φ3(x)
f(x, y)dy

)
dx+

� x4

x3

(� φ2(x)

φ4(x)
f(x, y)dy

)
dx

Il peut arriver qu’il y ait certains sous-ensembles qui soient de type 1, et certains de
type 2.

Exemple 1 Nous voulons calculer l’aire du domaine entre y = x2 et y = x+2, quand −1 ≤ x ≤ 2.
Il est souvent une bonne idée de se faire un dessin pour comprendre ce qu’on nous
demande :
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Il est plus simple de considérer ce domaine comme un ensemble de type 1 :

D =
{

(x, y) ∈ R2 : −1 ≤ x ≤ 2, x2 ≤ y ≤ x+ 2
}

Nous cherchons l’aire, donc :
�
D

1dxdy =
� 2

−1

(� x+2

x2
dy

)
=
� 2

−1

(
x+ 2 − x2)dx = 1

2x
2 + 2x− 1

3x
3
∣∣∣2
−1

Ce qui est égal à :

2 + 4 − 8
3 − 1

2 + 2 − 1
3 = 8 − 3 − 1

2 = 9
2

Cependant, nous aurions aussi pu considérer notre domaine comme une réunion de
deux domaines de type 2 :

D =
{

(x, y) ∈ R2 : 0 ≤ y ≤ 1,−√
y ≤ x ≤ √

y
}

∪
{

(x, y) ∈ R2 : 1 ≤ y ≤ 4, y − 2 ≤ x ≤ √
y
}

Nous avons alors :�
D

1dxdy =
�
D1

1dxdy +
�
D2

1dxdy

=
� 1

0

(� √
y

−√
y

1dx
)
dy +

� 4

1

(� √
y

y−2
1dx

)
dy

=
� 1

0
2√

ydy +
� 4

1
(√y − y + 2)dy

= 2 · 2
3y

3
2

∣∣∣1
0

+ 2
3y

3
2 − 1

2y
2 + 2y

∣∣∣4
1

= 4
3 + 16

3 − 8 + 8 − 2
3 + 1

2
= 9

2

Lundi 23 mai 2022 — Cours 24 : Changements de variables

Exemple 2 Nous voulons calculer l’intégrale de f(x, y) = x2

y2 sur le domaine suivant :

D =
{

(x, y) ∈ R2 : 1 < x < 2, 1
x
< y < x

}
Nous pouvons voir notre ensemble comme un domaine régulier de type 1 :
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Clairement, puisque (x, 0) ̸∈ D, notre fonction est continue et donc nous pouvons
appliquer notre théorème :
�
D

x2

y2 dxdy =
� 2

1

(� x

1
x

x2

y2 dy

)
dx =

� 2

1

(
−x2

y

∣∣∣y=x

y= 1
x

)
dx =

� 2

1

(
−x+ x3)dx

Ce qui est égal à :

−1
2x

2 − 1
4x

4
∣∣∣2
1

= −2 + 1
2 + 4 − 1

4 = 9
4

Nous pouvons maintenant aussi considérer notre ensemble comme deux domaines
réguliers de type 2 :

Appliquons notre théorème sur cette autre vision du même ensemble :
�
D

x2

y2 dxdy =
� 1

1
2

(� 2

1
y

x2

y2 dx

)
dy +

� 2

1

(� 2

y

x2

y2 dx

)
dy = . . . = 9

4

Ici, cela ne change pas grand chose de savoir interpréter notre domaine de deux
manières différentes, mais, même si ce n’est pas toujours possible, cela permet parfois
de grandement simplifier notre intégrale

Théorème de
Fubini pour les
intégrales triples

Soient :
• Un intervalle [a, b], où a < b.
• Deux fonctions φ1, φ2 : [a, b] 7→ R continues telles que φ1(x) < φ2(x) pour

tout x ∈ ]a, b[
• L’ensemble défini par :

D =
{

(x, y) ∈ R2 : a < x < b, φ1(x) < y < φ2(x)
}

• Deux fonctions G,H : D 7→ R continues telles que G(x, y) < H(x, y) pour tout
(x, y) ∈ D.

• L’ensemble défini par :

E =
{

(x, y, z) ∈ R3 : (x, y) ∈ D : G(x, y) < z < H(x, y)
}
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• Une fonction f : E 7→ R.
Alors, f est intégrable sur E, et on a :

�
E

f(x, y, z)dxdydz =
� b

a

(� φ2(x)

φ1(x)

(� H(x,y)

G(x,y)
f(x, y, z)dz

)
dy

)
dx

Nous ne pouvons pas choisir l’ordre d’intégration.

Notation Pour simplifier la notation d’intégrales multiples, nous pouvons
écrire :

� b

a

(� φ2(x)

φ1(x)

(� H(x,y)

G(x,y)
f(x, y, z)dz

)
dy

)
dx

not.=
� b

a

dx

� φ2(x)

φ1(x)
dy

� H(x,y)

G(x,y)
f(x, y, z)dz

Remarque Si nous voulions formuler ce théorème de la même manière que pour
le théorème pour les intégrales de deux variables, nous aurions besoin
de définir 6 types différents de domaines. En d’autres mots, le nom
des variables dans le théorème n’est pas important (il serait donc
valide pour un D =

{
(z, x) ∈ R2 : a < z < b, φ1(z) < x < φ2(z)

}
si

tout le reste est cohérent avec).

Exemple Nous voulons intégrer f(x, y, z) = ex
3 sur le domaine suivant :

E =
{

(x, y, z) ∈ R3 : 0 < z < y < x < 1
}

Nous remarquons que f(x, y, z) n’a pas directement de primitive selon x, donc nous
voudrons intégrer selon cette variable en dernier. Nous faisons ensuite un choix
arbitraire pour l’ordre en y et z, afin de réécrire notre domaine comme :

E =
{

(x, y, z) ∈ R3 : 0 < x < 1, 0 < y < x, 0 < z < y
}

Calculons maintenant notre intégrale :�
E

ex
3
dxdydz =

� 1

0
dx

� x

0
dy

� y

0
ex

3
dz =

� 1

0
dx

� x

0
dy
(
zex

3
)∣∣∣z=y

z=0

=
� 1

0
dx

� x

0
dy
(
yex

3
)

=
� 1

0
dx

1
2y

2ex
3
∣∣∣y=x

y=0

= 1
2

� 1

0
x2ex

3
dx = 1

6

� 1

0
ex

3
d
(
x3)

= 1
6e

x3
∣∣∣1
0

= e− 1
6

Notez qu’il est absolument nécessaire d’intégrer selon x en dernier (comme mentionné
ci-dessus, ex3 n’a pas de primitive exprimée en fonctions élémentaires). Cependant,
nous pouvons échanger l’ordre d’intégration entre y et z :

E =
{

(x, y, z) ∈ R3 : 0 < x < 1, 0 < z < x, z < y < x
}

Ceci nous donne ainsi que :�
E

ex
3
dxdydz =

� 1

0
dx

� x

0
dz

� x

z

ex
3
dy =

� 1

0
dx

� x

0
dzyex

3
∣∣∣y=x

y=z

=
� 1

0
dx

� x

0
dz(x− z)ex

3
=
� 1

0
dx

(
xz − 1

2z
2
)∣∣∣z=x

z=0

=
� 1

0
dx

(
x2 − 1

2x
2
)
ex

3
= 1

2

� 1

0
x2ex

3
dx

= 1
6

� 1

0
ex

3
d
(
x3)1

6e
x3
∣∣∣1
0

= e− 1
6
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comme attendu.

6.3 Changement de variables dans une intégrale multiple

Théorème Soit E ⊂ Rn un sous-ensemble tel que E est compact. Soit aussi ψ : E 7→ Rn
telle que ψ ∈ C1(E) et ψ : E 7→ ψ(E) est bijective (ce qui est équivalent à
Jψ
(−→u ) est inversible pour tout −→u ∈ E, comme vu précédemment). Soit finalement

f : D 7→ ψ(E) 7→ R une fonction continue.
Alors : �

D

f
(−→x )d−→x =

�
E

f
(
ψ
(−→u ))∣∣det

(
Jψ
(−→u ))∣∣d−→u

Exemple 1 Nous voulons intégrer f(x, y) = 1 = f(u, v) en utilisant un changement de variable
(clairement non nécessaire, mais c’est pour l’exemple). Soient les deux sous-ensembles
suivants :

E = [0, 1]2, D = ψ(E) = [0, 2]2

Prenons la fonction de changement de variable suivante :

ψ(u, v) =
(

2u
2v

)
=
(
x
y

)
, Jψ =

(
2 0
0 2

)
=⇒ |det(Jψ)| = 4, ∀(u, v) ∈ E

Calculons finalement notre intégrale :
�
D

f(x, y)dxdy =
�
E

1|det Jψ|dudv =
� 1

0
du

� 1

0
dv1 · 4 = 4(1 − 0)(1 − 0) = 4

Ce qui est cohérent avec le résultat que nous aurions obtenu sans changement de
variable : �

D

f(x, y)dxdy =
� 2

0
dx

� 2

0
1dy = 1(2 − 0)(2 − 0) = 4

Exemple 2 Nous voulons intégrer la fonction f(x, y) = x2 sur le domaine suivant :

D =
{

(x, y) ∈ R2 : 0 < x < 1,−x < y < x
}

∪
{

(x, y) ∈ R2 : 1 < x < 2, x− 2 < y < 2 − x
}

Nous pouvons dessiner notre domaine D = D1 ∪D2 de la manière suivante :
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Clairement, D1 et D2 sont des domaines réguliers de type 1. Ainsi, utilisons le
théorème de Fubini :

�
D

f(x, y)dxdy =
� 1

0
dx

� x

−x
x2dy +

� 2

1
dx

� 2−x

x−2
x2dy

=
� 1

0
dx
(
yx2)∣∣∣y=x

y=−x
+
� 2

1
dx
(
yx2)∣∣∣y=2−x

y=x−2

=
� 1

0
2x3dx+

� 2

1
(4 − 2x)x2dx

= 1
2x

4
∣∣∣1
0

+ 4
3x

3
∣∣∣2
1

− 1
2x

4
∣∣∣2
1

= 7
3

Cependant, il est plus simple de voir notre ensemble comme un carré, que nous
pouvons tourner. Ainsi, nous pouvons introduire les variables suivantes :{

u = x− y

v = x+ y
⇐⇒

{
x = 1

2 (u+ v)
y = 1

2 (v − u)
=⇒ 0 < u < 2, 0 < v < 2

En d’autres mots, nous avons trouvé :

ψ(u, v) = (x, y) =
(

1
2(u+ v), 1

2(u− v)
)

Calculons le déterminant de son Jacobien :

Jψ(u, v) =
( 1

2
1
2

− 1
2

1
2

)
=⇒ det(Jψ(u, v)) = 1

4 + 1
4 = 1

2 ̸= 0

donc ψ : E 7→ D est bien bijective.
Nous pouvons maintenant calculer notre intégrale :
�
D

x2dxdy =
�
E

1
4(u+ v)2|det(Jψ(u, v))|dudv =

� 2

0
du

� 2

0
dv · 1

8(u+ v)2

= 1
24

� 2

0
du(u+ v)3

∣∣∣v=2

v=0
= 1

24

� 2

0

(
(u+ 2)3 − u3

)
du

= 1
24 · 1

4

(
(u+ 2)4 − u4

)∣∣∣2
0

= 1
6 · 1

16
(
44 − 24 − 24 + 0

)
= 1

6 · 1
16
(
16
(
24 − 2

))
= 1

6 · 14 = 7
3

comme attendu.

Application :
Changement de
variables polaire

Par définition, le changement de variable polaire nous donne :

ψ : R+ × [0, 2π[ 7→ R2 \ {0}, ψ(r, φ) = (r cos(φ), r sin(φ))

Calculons son déterminant Jacobien :

Jψ(r, φ) =
(

cos(φ) −r sin(φ)
sin(φ) r cos(φ)

)
=⇒ det(Jψ(r, φ)) = r

(
cos2(φ) + sin2(φ)

)
= r

Elle est donc bien bijective lorsque r ̸= 0.
Si nous avons un domaine circulaire dans R2, il est souvent une bonne idée de faire
un changement de variable polaire.

Exemple 1 Nous voulons calculer l’aire du secteur circulaire Sα,r d’angle α et rayon R, où
0 < α ≤ 2π et R > 0 :
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Soit le domaine suivant :

Eα,R = {(r, φ) : 0 < r < R, 0 < φ < α}

Ainsi, l’aire est donnée par :

Aα,R =
�
Sα,R

dxdy =
�
Eα,r

1|det(Jψ)|drdφ =
� α

0
dφ

� R

0
rdr

=
� α

0
dφ · 1

2r
2
∣∣∣R
0

= 1
2R

2
� α

0
dφ = 1

2R
2α

En particulier, si α = 2π, l’aire du disque de rayon R est donnée par :

A2π,R = 1
2R

22π = πR2

comme attendu.

Remarque Notez qu’il aurait été possible de calculer l’aire d’un cercle en
coordonnée cartésienne — il est d’ailleurs un bon exercice de le faire
pour un cercle de rayon 1 — mais le changement de variable nous
simplifie grandement la tâche.

Mercredi 25 mai 2022 — Cours 25 : π apparaît de nulle part

Exemple 2 Nous voulons calculer l’intégrale de f(x, y) =
√

4 − x2 − y2 sur le domaine suivant :

D =
{

(x, y) ∈ R2 : x > 0, y > 0, 1 <
√
x2 + y2 < 2

}
Clairement, il est plus simple d’exprimer notre domaine en coordonnées polaires :

D =
{

(r, φ) ∈ R2, 0 < φ <
π

2 , 1 < r < 2
}

Calculons donc notre intégrale :
�
D

√
4 − x2 − y2dxdy =

�
E

√
4 − r2 · rdrdφ =

� π
2

0
dφ

� 2

1
r
√

4 − r2dr

= π

2 · 1
2

� 2

1

√
4 − r2d

(
r2) = π

4

(
−
� 2

1

(
4 − r2) 1

2 d
(
4 − r2))

= π

4

(
−2
3

)(
4 − r2) 3

2
∣∣∣r=2

r=1
= −π

6

(
−3 3

2

)
= π

2
√

3
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Le résultat de cette intégrale est positif, comme ce à quoi nous pourrions nous
attendre. Il n’est jamais une mauvaise idée de vérifier le signe après avoir calculé
une intégrale.

Exemple 3 Nous voulons calculer l’intégrale de f(x, y) =
√
a2 − x2 − y2, où a > 0, sur le

domaine D (qui représente une boucle de Lemniscate de Bernoulli ; une figure
géométrique sur laquelle il a travaillé en 1694) :

D =
{

(x, y) ∈ R2 : x > 0,
(
x2 + y2)2 = a2(x2 − y2)}

Écrivons ce résultat en coordonnées polaires, car cela semble infiniment plus facile :

r4 = a2(r2 cos2(φ) − r2 sin2(φ)
) r ̸= 0=⇒ r2 = a2(cos2(φ) − sin2(φ)

)
= a2 cos(2φ)

Ainsi, nous avons deux conditions sur φ :{
a2 cos(2φ) = r2 > 0
x > 0

=⇒

{
−π

4 < φ < π
4 ou 3π

4 < φ < 5π
4

−π
2 < φ < π

2
=⇒ −π

4 < φ <
π

4

Ceci nous donne ainsi :

E =
{

−π

4 < φ <
π

4 , r < a
√

cos(2φ)
}

Nous pouvons dessiner la lemniscate (nous ne travaillons que sur la boucle de droite) :

Nous avons un domaine régulier de type 2, donc nous pouvons calculer notre
intégrale :

I =
�
D

√
a2 − x2 − y2dxdy =

�
E

√
a2 − r2rdrdφ =

� π
4

− π
4

dφ

� a
√

cos(2φ)

0

√
a2 − r2rdr

Commençons par calculer l’intégrale interne. Pour y arriver, nous devons remarquer
que :

(1 − cos(2φ))
3
2 =

(
1 − cos2(φ) + sin2(φ)

) 3
2 = 2 3

2
(
sin2(φ)

) 3
2 = 2 3

2 |sin(φ)|3

Ainsi, calculons notre intégrale interne :
� a

√
cos(2φ)

0

√
a2 − r2rdr = − 1

2

� a
√

cos(2φ)

0

√
a2 − r2d

(
a2 − r2)

= − 1
2

(
2
3

)(
a2 − r2) 3

2
∣∣∣a√cos(2φ)

0

= − 1
3
(
a2 − a2 cos(2φ)

) 3
2 + 1

3a
2

= − 1
3a

32 3
2 |sin(φ)|3 + 1

3a
3

Calculons maintenant l’intégrale extérieure :

I =
� π

4

− π
4

(
−1

3a
32 3

2 |sin(φ)|3 + 1
3a

3
)
dφ = 1

3a
3
(π

4 + π

4

)
− 1

3a
32 3

2

� π
4

− π
4

|sin(φ)|3dφ
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Cependant, la fonction que nous voulons intégrer est paire, et nous savons que pour
f(x) paire,

� a
−a f(x)dx = 2

� a
0 f(x)dx :

I = πa3

6 − 1
3a

32 3
2 · 2
� π

4

0
sin3(φ)dφ

Calculons cette dernière intégrale. Puisque nous avons la puissance d’un sinus ou un
cosinus impaire, nous devons changer vers l’autre fonction :
� π

4

0
sin3(φ)dφ =

� π
4

0

(
1 − cos2(φ)

)
d(− cos(φ)) =

� π
4

0

(
cos2(φ) − 1

)
d(cos(φ))

= 1
3 cos3(φ) − cos(φ)

∣∣∣π
4

0
= 1

3

(
1√
2

)3
− 1√

2
− 1

3 + 1

= 2
3 + 1√

2

(
1
6 − 1

)
= 2

3 − 5
6
√

2

Ainsi, nous trouvons finalement que :

I = πa3

6 − a32 3
2 2

3

(
2
3 − 5

6
√

2

)
= a3

3

(
π

2 − 8
√

2 − 10
3

)
> 0

Notre fonction f(x, y) est toujours positive, donc notre résultat est cohérent.

Remarque per-
sonnelle

J’ai un exemple que je trouve personnellement incroyable et, vu que nous ne l’avons
pas vu en classe, je vais le mettre là. Nous voulons calculer l’intégrale suivante :

I =
� ∞

−∞
e−x2

dx

Cependant, nous savons que les primitives de la fonction f(x) = e−x2 ne peuvent
pas s’exprimer avec des fonctions élémentaires. Ainsi, nous allons devoir utiliser un
trick de 5head. Commençons par remarquer que, dans notre intégrale, x est juste
une variable fictive, ainsi nous pouvons écrire :

I =
� ∞

−∞
e−x2

dx =
� ∞

−∞
e−y2

dy

Maintenant vient le coup de génie, auquel vous n’avez probablement pas pensé (et
c’est bien normal, c’est non-trivial). Calculons le carré de notre intégrale :

I2 =
� ∞

−∞
e−x2

dx

� ∞

−∞
e−y2

dy

=
� ∞

−∞

� ∞

−∞
e−x2

· e−y2
dxdy

=
� ∞

−∞

� ∞

−∞
e−(x2+y2)dxdy

Faisons maintenant un changement de variable polaire ; le r qui apparaît nous aide
infiniment :

I2 =
� 2π

0

� ∞

0
re−r2

drdφ =
� 2π

0
−1

2 · e−r2
∣∣∣r→∞

r=0
dφ =

� 2π

0

1
2dφ = π

Ceci nous permet finalement de trouver que :

I =
� ∞

−∞
e−x2

dx =
√
π

Le fait que π apparaisse dans cette intégrale est tout simplement magnifique.
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Remarque Cette intégrale peut sembler anodine, mais être capable de la calculer
de manière formelle comme cela est notamment très important en
statistique. Nous voulons que l’intégrale entre −∞ et +∞ de la
Gaussienne nous donne 1, donc vous savez pourquoi on divise par√
π dans cette formule.

Application :
Changement
de variables en
coordonnées
sphériques

Le changement de variable vers les coordonnées sphériques est défini par :

G(r, θ, φ) =


x = r sin(θ) cos(φ)
y = r sin(θ) sin(φ)
z = r cos(θ)

où G : ]0,+∞[ × [0, π] × [0, 2π[ 7→ R3 \ {0}.
Nous pouvons illustrer ceci de la manière suivante :

Si r > 0, nous avons :

r =
√
x2 + y2 + z2, θ = arccos

(z
r

)
De plus, si sin(θ) ̸= 0, nous pouvons trouver φ en voyant que :

cos(φ) = x

r sin(θ) , sin(φ) = y

r sin(θ)

Calculons la matrice Jacobienne de notre fonction G :

JG(r, θ, φ) =

sin(θ) cos(φ) r cos(θ) cos(φ) −r sin(θ) sin(φ)
sin(θ) sin(φ) r cos(θ) sin(φ) r sin(θ) cos(φ)

cos(θ) −r sin(θ) 0


Nous pouvons maintenant calculer la valeur absolue de son déterminant :

|det JG(r, θ, φ)|
=
∣∣r2 cos2(θ) sin(θ) cos2(φ) + r2 sin3(θ) sin2(φ) + r2 cos2(θ) sin(θ) sin2(φ) + r2 sin3(θ) cos2(φ)

∣∣
=
∣∣r2 cos2(θ) sin(θ) + r2 sin3(θ)

∣∣
=
∣∣r2 sin(θ)

∣∣
Puisque 0 ≤ θ ≤ π, nous savons que sin(θ) > 0, ainsi :

|det JG(r, θ, φ)| = r2 sin(θ)

Nous en déduisons que quand r > 0 et sin(θ) > 0 (c’est-à-dire θ ̸= 0 et θ ̸= π), alors
G est bijective.

Remarque
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Il est important de se souvenir de ce résultat.

Exemple Calculons le volume d’une boule de rayon a > 0. Pour commencer, regardons notre
domaine :

E = {0 < r < a, 0 < θ < π, 0 < φ < 2π} = B
(−→0 , a

)
Nous trouvons donc :

V =
�

B
(−→0 ,a

) 1dxdydz =
�

E

|det JG(r, θ, φ)|dφdθdr

=
� 2π

0
dφ

� π

0
dθ

� a

0
sin(θ)r2dr =

� 2π

0
dφ ·
� π

0
sin(θ)dθ ·

� a

0
r2dr

= 2π(− cos(θ))
∣∣∣π
0

· 1
3r

3
∣∣∣a
0

= 2π(1 + 1)1
3a

3

= 4
3πa

3

comme attendu.

Application :
Masse totale
d’un objet so-
lide de densité
donnée

Pour calculer la masse totale M d’un objet solide de volume V et de densité ρ(x, y, z),
nous pouvons calculer :

M =
�

V

ρ(x, y, z)dxdydz

Note person-
nelle : Intui-
tion

Nous prenons une grande somme des morceaux de masses infinitési-
maux dm = ρdV sur les petits morceaux de volumes dV = dxdydz.

Exemple Nous voulons trouver la masse totale d’un secteur sphérique, où :

S =
{
x, y, z > 0, x2 + y2 + z2 < a2}, ρ(x, y, z) = x2 + y2

Nous pouvons tout écrire avec des coordonnées sphériques :

E =
{

0 < r < a, 0 < θ <
π

2 , 0 < φ <
π

2

}
, ρ(r, θ, φ) = r2 sin2(θ)

Ainsi, nous pouvons calculer notre masse :

M =
�

S

(
x2 + y2)dxdydz =

� π
2

0

� π
2

0
dθ

� a

0
r2 sin2(θ)︸ ︷︷ ︸
ρ(r,θ,φ)

r2 sin(θ)︸ ︷︷ ︸
|JG|

dr

= π

2

� π
2

0
sin3(θ)dθ ·

� a

0
r4dr = π

2

� π
2

0

(
cos2(θ) − 1

)
d(cos θ) · 1

5a
5

= πa5

10

(
1
3 cos3(θ) − cos(θ)

)∣∣∣π
2

0
= πa5

10

(
−1

3 + 1
)

= πa5

15

Lundi 30 mai 2022 — Cours 26 : Toutes les bonnes choses ont une fin

Exemple Nous voulons calculer le volume d’une ellipsoïde, c’est à dire :

D =
{

(x, y, z) ∈ R3,
x2

a2 + y2

b2 + z2

c2 ≤ 1
}
, a, b, c > 0
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Commençons par faire le changement de variable suivant, nous permettant d’obtenir
une sphère :

(x, y, z) = H(u, v, w) = (au, bv, cw) =⇒ E =
{

(u, v, w) ∈ R3 : u2 + v2 + w2 ≤ 1
}

Notre Jacobien est donc :

JH(u, v, w) =

a 0 0
0 b 0
0 0 c

 =⇒ |det JH(u, v, w)| = abc > 0

Nous pouvons ensuite faire un changement de coordonnées sphériques, nous donnant :

P =
{

(r, θ, φ) ∈ R3 : 0 ≤ r ≤ 1, 0 ≤ θ ≤ π, 0 ≤ φ < 2π
}

Pour résumer, nous avons :

Calculons maintenant notre volume :

V =
�

D

1dxdydz =
�

E

abcdudvdw = abc

�
P

r2 sin(θ)drdφdθ

=
� 2π

0
dφ

� π

0
sin(θ)dθ

� 1

0
r2dr = abc2π(− cos(φ))

∣∣∣π
0

· 1
3r

3
∣∣∣1
0

= 4
3πabc

Coordonnées
cylindriques

Nous définissons le changement de variables en coordonnées cylindriques par :

G(r, φ, z) =


x = r cos(φ)
y = r sin(φ)
z = z

où G : [0,+∞[ × [0, 2π[ × R 7→ R3.
Nous pouvons faire le schéma suivant :
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Calculons maintenant la matrice Jacobienne :

JG(r, φ, z) =

cos(φ) −r sin(φ) 0
sin(φ) r cos(φ) 0

0 0 1


=⇒ det JG(r, φ, z) = 1

∣∣∣∣cos(φ) −r sin(φ)
sin(φ) r cos(φ)

∣∣∣∣ = r
(
cos2(φ) + sin2(φ)

)
= r

Exemple Soit a > 0. Nous voulons trouver le volume du domaine ayant les frontières suivantes
et qui contient (0, 0, a) : {

x2 + y2 + z2 = 2za
x2 + y2 = z2

On voit que z est un peu spécial par rapport à x et y (qui elles cependant jouent un
rôle symétrique), mais nous voyons tout de même qu’il semble y avoir un lien avec
un cercle. Essayons de réorganiser nos équations :{

x2 + y2 + z2 − 2za+ a2 = a2

x2 + y2 = z2 =⇒

{
x2 + y2 + (z − a)2 = a2

x2 + y2 = z2

Faisons maintenant un changement de variables vers les coordonnées cylindriques :{
r2 + (z − a)2 = a2

r = z, z ≥ 0 ou r = −z, z < 0

Cependant, le volume dont nous voulons calculer le volume contient (0, 0, a) où
a > 0, donc seul le cône r = z > 0 est valide, l’autre cône définit un autre volume.
Nous obtenons que notre domaine est borné par la sphère de rayon a et de centre
(0, 0, a) et par le cône r = z (où z > 0). Calculons l’intersection entre ces deux
surfaces (donc nous prenons r = z) :

r2 + (r − a)2 = a2 =⇒ 2r2 = 2ra =⇒ r = a = z ou r = 0 = z

Le point r = 0 = z est une solution triviale, donnée par le bas du cône. Cependant,
le deuxième résultat r = a = z est beaucoup plus intéressant. C’est un un cercle de
rayon a et de centre (0, 0, a), ce qui est le cercle équatorial de notre sphère. Nous
pouvons le voir sur l’image ci-dessous :

Nous pouvons maintenant séparer notre volume en deux calculs : la demi-sphère
du haut et le cône du bas. Le volume de la première est donné par 1

2
4
3πa

3 = 2
3πa

3,
auquel nous devons calculer le volume de notre cône :

Vcone =
� 2π

0
dφ

� a

0
dz

� z

0
r︸︷︷︸

|det(JG)|

dr = 2π
� a

0
dz·12r

2
∣∣∣z
0

= π

� a

0
z2dz = 1

3πz
3
∣∣∣a
0

= 1
3πa

3

En additionnant nos deux volumes, nous obtenons que le volume total est donné
par :

V = 2
3πa

3 + 1
3πa

3 = πa3
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Remarque Dans les changements de variables sphériques et cylindriques, la coordonnée z joue
un rôle spéciale (son expression est plus simple que les deux autres). Cependant,
selon la géométrie du domaine et selon la fonction donnée, nous pouvons choisir une
autre coordonnée cartésienne pour avoir cette forme spéciale. Par exemple, pour un
changement de variable sphérique avec y ayant la forme spéciale, nous aurions :

Gsph =


x = r sin(θ) cos(φ)
z = r sin(θ) sin(φ)
y = r cos(θ)

où Gsph : [0,+∞[ × [0, π] × [0, 2π] 7→ R3 comme d’habitude, et :∣∣JGsph

∣∣ =
∣∣∣−J

G̃

∣∣∣ = r2 sin(θ)

puisqu’échanger deux lignes d’une matrice correspond à multiplier son déterminant
par −1, mais nous ne considérons que la valeur absolue de notre déterminant.
Nous pouvons bien sûr faire la même chose avec un changement de variable cylin-
drique. Par exemple :

Gcyl =


x = r cos(φ)
z = r sin(φ)
y = y

où Gcyl = [0,+∞[ × [0, 2π[ × R 7→ R3, et :∣∣JGcyl

∣∣ = |−r| = r

pour la même raison.

Observation Une autre manière de voir ceci, est que nous pouvons faire un
changement de variable afin de réordrer nos variables :

G(x̃, ỹ, z̃) =


x = x̃

y = z̃

z = ỹ

Clairement, det JG = −1, donc nous avons bien |det JG| = 1, ce
qui nous permet en effet de réordrer nos variables sans conséquence
(sans avoir à multiplier par quoi que ce soit).

Exemple Soit a > 0. Nous voulons trouver le volume du domaine ayant les frontières suivantes
et qui contient (0, a, 0) : {

x2 + z2 + y2 = 2ya
x2 + z2 = y2

C’est exactement les mêmes frontières que dans notre exemple ci-dessus, en prenant
(x, y, z) 7→ (x̃, z̃, ỹ). Ainsi, nous trouvons de la même manière que :

VD = πa3
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Résumé des
changements de
variables

Nous avons vu les changements de variables remarquables suivants :

Gpolaire(r, φ) =
{
x = r cos(φ)
y = r sin(φ)

=⇒ |det(JG)| = r

Gspherique(r, θ, φ) =


x = r sin(θ) cos(φ)
y = r sin(θ) sin(φ)
z = r cos(θ)

=⇒ |det(JG)| = r2 sin(θ)

Gcylindrique(r, φ, z) =


x = r cos(φ)
y = r sin(φ)
z = z

=⇒ |det(JG)| = r

Avec :
r > 0, 0 ≤ θ ≤ π, 0 ≤ φ < 2π

6.4 Exemples d’examen pour terminer

Exemple 1 Nous voulons calculer l’intégrale suivante :

I =
�

D

1
(1 + x+ y + z)3 dxdydz, où D = {x ≥ 0, y ≥ 0, z ≥ 0, x+ y + z ≤ 1}

Le domaine D est un tétraèdre :

Il n’y a pas vraiment de ressemblance avec un cercle ou une sphère (il n’y a pas
de carré), donc cela semble peu judicieux de prendre un changement de variables
sphérique ou cylindrique.
Coupons le volume sur le plan xy :

Nous pouvons ainsi voir que :

D =
{

(x, y, z) ∈ R3 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x, 0 ≤ z ≤ 1 − x− y
}
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Ainsi, calculons notre intégrale :

I =
� 1

0
dx

� 1−x

0
dy

� 1−x−y

0

1
(1 + x+ y + z)3 dz

=
� 1

0
dx

� 1−x

0
dy

(
−1
2

)
1

(1 + x+ y + z)2

∣∣∣z=1−x−y

z=0

=
� 1

0
dx

� 1−x

0

(
−1
8 + 1

2 · 1
(1 + x+ y)2

)
dy

=
� 1

0
dx

(
−1

8y − 1
2 · 1

(1 + x+ y)

)∣∣∣y=1−x

y=0

=
� 1

0

(
−1
8 (1 − x) − 1

4 + 1
2 · 1

1 + x

)
dx

=
� 1

0

(
1
8(x− 1) − 1

4 + 1
2 · 1

1 + x

)
dx

= 1
16(x− 1)2 − 1

4x+ 1
2 log|x+ 1|

∣∣∣x=1

x=0

= − 1
4 + 1

2 log(2) − 1
16

= 1
2 log(2) − 5

16

Nous pouvons vérifier que, comme ce à quoi nous pouvions nous attendre en regardant
l’image ci-dessus, notre résultat est bien positif.

Exemple 2 Il arrive que nous pouvons calculer certaines intégrales multiples sans calcul (y
compris à l’examen !), voici un exemple. Considérons l’intégrale suivante :

I =
� 1

−1
dy

� 1

y2
sin(y) cos(x)dx

Comme souvent, il est une bonne idée de dessiner notre domaine :

Essayons de calculer notre intégrale :
� 1

−1

� 1

y2
sin(y) cos(x)dx =

� 1

−1
sin(y)

(
sin(1) − sin

(
y2))dy =

� 1

−1
f(y)dy

L’intégrale de sin
(
y2) ne s’exprime pas avec des fonctions élémentaires, donc nous

avons un problème. Cependant, nous pouvons voir que :

f(−y) = sin(−y) ·
(

sin(1) − sin
(

(−y)2
))

= − sin(y)
(
sin(1) − sin

(
y2)) = −f(y)

Donc f(y) est impaire. Or nous savons que, pour g(x) une fonction impaire,� a
−a g(x)dx = 0. Ainsi, nous avons trouvé que :

I = 0
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Une autre manière pour arriver à ce résultat est de changer l’ordre d’intégration :

I =
� 1

0
dx

� √
x

−
√
x

sin(y) cos(x)dy =
� 1

0
dx

cos(x)
(
− cos

(√
x
)

+ cos
(
−

√
x
))︸ ︷︷ ︸

=0


=
� 1

0
0dx = 0

Exemple 3 Nous allons voir un autre exemple d’intégrale qui pourrait apparaitre en vrai-faux
(intégrales qui demandent généralement peu de calculs, mais plutôt une bonne com-
préhension du domaine). Nous nous demandons si l’intégrale suivante est positive :

I =
� π

3

0

(� 1

0

sin
(
r2)

1 + e3 r

)
drdφ

Nous remarquons que le r vient d’un changement de variable polaire, ainsi nous
pouvons écrire :

f(r, φ) =
sin
(
r2)

1 + er

Clairement f(r, φ) > 0. Ainsi, nous intégrons une fonction positive, ce qui veut bien
dire que l’intégrale est positive.

Exemple 4 Nous voulons écrire l’intégrale suivante en coordonnées polaires :
�
D

(
x2 + y2)dxdy, où D =

{
(x, y) ∈ R2 : (x+ 1)2 + y2 ≤ 1, y ≤ 0

}
La première inégalité nous donnée :

(x+ 1)2 + y2 ≤ 1 =⇒ (r cos(φ) + 1)2 + r2 sin2(φ) ≤ 1
=⇒ r2 cos2(φ) + 2r cos(φ) + 1 + r2 sin2(φ) ≤ 1 =⇒ r2 ≤ −2r cos(φ)
r > 0=⇒ r ≤ −2 cos(φ)

Puisque nous voulons r > 0, cela nous donne π
2 < φ < 3π

2 . De plus, nous voulons
aussi y ≤ 0, ce qui force π ≤ φ ≤ 2π. En mettant ces deux conditions en commun,
nous trouvons :

π ≤ φ <
3π
2

Ainsi, nous avons :
�
D

r2dxdy =
�
E

r2 · rdrdφ =
� 3π

2

π

dφ

� −2 cos(φ)

0
r3dr

Exemple 5 Nous voulons dessiner le domaine suivant :

D =
{

(x, y) ∈ R2 : x ≥ −1, |y| ≤ 1 − x
}

Séparons notre dessin en deux cas :

y ≥ 0 =⇒ y ≤ 1 − x

y < 0 =⇒ −y ≤ 1 − x =⇒ y ≥ x− 1

Ceci nous permet de dessiner :
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Exemple 6 Nous nous demandons l’aire de quelle figure géométrique l’intégrale suivante exprime :

I =
� π

2

π
4

dφ

� 1
sin(φ)

0
rdr

Clairement, r vient d’un changement de variable depuis les coordonnées cartésiennes,
ainsi essayons de trouver les inégalités sur x et y. Pour commencer, nous voyons
que :

π

4 < φ <
π

2 =⇒ sin(φ) > 0

Ceci nous permet de voir que :

0 < r <
1

sin(φ) ⇐⇒ 0 < r sin(φ)︸ ︷︷ ︸
=y

< 1 ⇐⇒ 0 < y < 1

Ainsi, nous pouvons faire notre dessin :

Nous trouvons donc que notre intégrale représente l’aire d’un triangle.

Remarque Pour conclure, il faut toujours dessiner le domaine quand on fait une intégration de
plusieurs variables (sur deux variables, mais aussi sur trois variables).
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