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Jai fait ce document pour mon usage, mais je me suis dit que des notes dactylographiées pouvaient
intéresser d’autres personnes. Ainsi, je ’ai partagé (& vous, si vous lisez ces lignes!); puisque cela ne
me cofitait rien. Je vous demande simplement de garder en téte qu’il y a des erreurs, c’est impossible
de ne pas en faire. Si vous en trouvez, n’hésitez pas & me les partager (les erreurs de grammaires et de
vocabulaires sont naturellement aussi bienvenues). Vous pouvez me contacter a ’adresse e-mail suivante :

joachim.favre@epfl.ch

Si vous n’avez pas obtenu ce document par le biais de mon repo GitHub, vous serez peut-étre intéressé
par le fait que j’en ai un sur lequel je mets mes notes dactylographiées. Voici le lien (allez regarder dans la
section “Releases” pour trouver les documents compilés) :

https://github.com/JoachimFavre/EPFLNotesIN

Notez que le contenu ne m’appartient pas. J’ai fait quelques modifications de structure, j’ai reformulé
certains bouts, et j’ai ajouté quelques notes personnelles ; mais les formulations et les explications viennent
principalement de la personne qui nous a donné ce cours, et du livre dont elle s’est inspirée.

Je pense qu’il est intéressant de préciser que, pour avoir ces notes dactylographiées, j’ai pris mes notes
en W TEXpendant le cours, puis j’ai fait quelques corrections. Je ne pense pas que mettre au propre des
notes écrites a la main est faisable niveau quantité de travail. Pour prendre des notes en IXTEX, je me suis
inspiré du lien suivant, écrit par Gilles Castel. Si vous voulez plus de détails, n’hésitez pas a me contacter
a mon adresse e-mail, mentionnée ci-dessus.

https://castel.dev/post/lecture-notes-1/

Je tiens aussi a préciser que les mots “trivial” et “simple” n’ont, dans ce cours, pas la définition que vous
trouvez dans un dictionnaire. Nous sommes a 'EPFL, rien de ce que nous faisons n’est trivial. Quelque
chose de trivial, c’est quelque chose que quelqu’un pris de maniere aléatoire dans la rue serait capable de
faire. Dans notre contexte, comprenez plutot ces mots comme “plus simple que le reste”. Aussi, ce n’est
pas grave si vous prenez du temps a comprendre quelque chose qui est dit trivial (surtout que j’adore
utiliser ce mot partout hihi).

Puisque vous lisez ces lignes, je vais me permettre de vous donner un petit conseil. Le sommeil est un
outil bien plus puissant que ce que vous pouvez imaginer, donc ne négligez jamais une bonne nuit de
sommeil au profit de vos révisions (particulierement la veille de ’examen). Je vais aussi me permettre de
paraphraser mon enseignante de philosophie du gymnase, Ms. Marques, j’espere que vous vous amuserez
en faisant vos examens !

Version 2022-07-14
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Chapitre 1

Résumé par cours

Cours 1 : Le meilleur sujet — Lundi 21 février 2022 p. 15

e Définition des équations différentielles ordinaires.
e Explication d’un petit peu de terminologie autour de ces équations.
e Introduction au théoreme de l'existence et de I'unicité d’une solution des EDVS.

Cours 2 : D’autres équations avec des différences, facile! — Mercredi 23 février 2022 — p. 19

e Fin des EDVS, et définition de leur solution maximale.

e Définition des EDLI.

e Définition des équation homogéne associée, démonstration du principe de superposition des solutions,
explication de la méthode de la variation de la constante ; puis utilisation de tous ces principes pour
démontrer la méthode pour trouver la solution générale a une EDL1.

Cours 3 : Place aux exemples — Lundi 28 février 2022 p. 23

e Deux gros exemples de résolution d’EDL1.
e Exemple d’application d’équations différentielles pour modéliser des phénomenes physiques.

Cours 4 : On rajoute un prime — Mercredi 2 mars 2022 p. 26

e Définition des équations différentielles linéaires du second ordre.
e Résolution générale des EDL2 homogenes a coefficients constants.

e Explication de la méthode pour trouver une solution linéairement indépendante a partir d’une autre
solution a une EDL2 homogene.

e Explication de la méthode pour trouver une solution générale d’une EDL2 homogeéne a partir de deux
solutions linéairement indépendantes.

Cours 5 : Wronskien — Lundi 7 mars 2022 p. 31

e Définition du Wronskien, et preuve du théoréeme faisant le lien avec des solutions linéairement indépen-
dantes d’'une EDL2 homogeéne.
e Démonstration de la forme des solutions aux EDL2 homogenes.

Démonstration de la méthode de la variation de la constante pour résoudre les EDL2 complétes.
e Long exemple de résolution d’'une EDL2 complete.
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Cours 6 : Fin des équations différentielles — Mercredi 9 mars 2022 p. 36

e Explication de la méthode des coefficients indéterminés.
e Résumé des méthodes pour résoudre les équations différentielles que nous avons vues.

Cours 7 : On introduit pleins de symboles marrants — Lundi 14 mars 2022 —___ p. /1

e Définition des opérations, de la base canonique, du produit scalaire, de la norme Euclidienne et de la
distance dans R"; et démonstration de certaines de leurs propriétés.

e Introduction a la topologie dans R™. Ainsi, définition d’une boule ouverte, d’'un ensemble ouvert, d’'un
point intérieur, de I'intérieur d’un ensemble, du complémentaire d’un ensemble et d’'un ensemble fermé;
et démonstration de certaines de leurs propriétés.

e Beaucoup d’exemple d’ensembles ouverts, fermés, et ni I'un ni I'autre.

Cours 8 : J’ai failli ajouter un d a ce nom de théoréme — Mercredi 16 mars 2022 —__ p. /7

e Définition d’adhérence et de frontiere.

Définition des suites dans R™, de leur convergence, et du concept de suite bornée.

Explication du théoréme de Bolzano-Weierstrass.

Explication et preuve du théoréeme qui fait un lien entre les suites dans R"™ et la topologie.

Définition d’ensemble borné, d’ensemble compact, et de recouvrement.

Explication du théoréeme de Heine-Borel-Lebesgue.

Cours 9 : Ca devient limite 14 — Lundi 21 mars 2022 p. 53

e Définition des fonctions réelles de plusieurs variables réelles.

e Définition de la notion de voisinage, de limite et de continuité pour les fonctions réelles a plusieurs
variables réelles.

e Démonstration du théoreme de la caractérisation des limites a partir des suites convergentes.

Cours 10 : Le retour des gendarmes — Mercredi 23 mars 2022 p. 58

Explication de la méthode de calcul de limites par changement de coordonnées vers le systeme polaire.
e Preuve du théoréeme des deux gendarmes.

Explication de la méthode de calcul de limites par la continuité d’une fonction composée.

Définition des minimum et maximum d’une fonction, et démonstration qu’'une fonction continue sur un
sous-ensemble compact atteint son minimum et son maximum.

Cours 11 : Et le retour des différences maintenant! ® — Lundi 28 mars 2022 —_ p. 65

Définition des dérivées partielles.

Définition du gradient.
Définition des dérivées directionnelles.
Définition de la dérivabilité.
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Cours 12 : Gros théoreme tres trés utile — Mercredi 30 mars 2022 p. 70

e Démonstration du théoreme qui fait le lien entre les dérivées partielles, le gradient, les dérivées
directionnelles et la différentielle d’une fonction.

e Démonstration que le gradient est toujours orthogonal a une courbe de niveau d’une fonction.
e Dérivation de la formule pour trouver le plan orthogonal au graphique d’une fonction.

Cours 13 : On monte en ordres — Lundi 4 avril 2022 p. 7

Explication du théoréme 2 sur la dérivabilité.

Définition des dérivées partielles d’ordres supérieurs, et du concept de classe pour une fonction.

Explication du théoreme de Schwarz.
Définition de la matrice Hessienne.

Grand résumé, suivit d’un grand nombre d’exemples.

Cours 14 : Toujours plus d’exemples — Mercredi 6 avril 2022 p. 80

e Explication de comment démontrer qu’une fonction est dérivable, ou qu’elle ne 'est pas.
e Beaucoup d’exemples.

Cours 15 : Masterclass Jacob — Lundi 11 avril 2022 p. 85

La référence du titre de ce cours est pas triviale, bien joué si vous 'avez (pour les autres, allez regarder
la La Recette #10 de Maskey).

Définition des fonctions a valeurs dans R™, et explication de pourquoi les concepts définis jusqu’a
présent fonctionnent de la méme maniere pour ces fonctions.

Définition de la matrice Jacobienne, et du déterminant de Jacobi.

Explication du théoréme permettant de trouver la matrice Jacobienne d’une fonction composée.

Cours 16 : Retour aux intégrales — Mercredi 13 avril 2022 p. 90

e Explication de I'application du théoréme du Jacobien pour les fonctions composées aux changements de
variables.

e Explication et preuve de comment calculer la dérivée partielle d’une intégrale selon une variable d’une
fonction de plusieurs variables.

Cours 17 : Méthode de physicien — Lundi 25 avril 2022 p. 96

Définition du Laplacien.

Preuve de la proposition permettant de calculer un Laplacien d’une fonction donnée en coordonnées
polaires.

e Définition des fonctions harmoniques.

Définition de la formule de Taylor pour les fonctions de n variables.
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Cours 18 : Vous savez toujours calculer des valeurs propres ? — Mercredi 27 avril 2022 . p. 101

e Explication de la méthode de calcul des polynémes de Taylor par ceux en une dimension.

e Définition d’un point stationnaire d’une fonction, et preuve que les extremums locaux d’une fonction
dérivable en ce point sont des points stationnaires.

e Définition d’un point critique d’une fonction, et preuve que les extremums locaux d’une fonction sont
des points critiques.

e Explication et justification de la condition suffisante pour un extremum local, passant par les valeurs
propres de la matrice Hessienne.

Cours 19 : Fin des études d’extremums — Lundi 2 mai 2022 p. 106

Explication et preuve d’une proposition qui donne des hypothéses équivalentes pour le théoréme de la
condition suffisante pour un extremum local quand n = 2.

Explication d’un théoréme similaire pour n = 3.

Explication de la méthode pour trouver les minimums et maximums globaux sur un ensemble compact.

Introduction aux fonctions implicites.

Cours 20 : Fonctions implicites — Mercredi 4 mai 2022 p. 112

e Définition de la notion de surface de niveau.
e Explication et démonstration du théoréme des fonctions implicites.
e Application de ce théoreme pour le calcul de I’hyperplan tangent.

Cours 21 : Lagrange a Laferme avec Lescochons — Mercredi 11 mai 2022 — p. 118
e Démonstration du théoreme de la méthode des multiplicateurs de Lagrange quand n = 2, et explication

de sa généralisation.
e Exemples de ce théoreme.

Cours 22 : Mon intégrale elle est douce — Lundi 16 mai 2022 p. 123

e Parce que I’épilation intégrale (je sais pas si c’est la meilleure référence a avoir, mais elle est la (Cyprien
— L’école 2)!).

e Définition de pavé, de subdivision et de sommes de Darboux.

e Définition des fonctions intégrables, et preuve que les fonctions continues sont intégrables.

e Explication des propriétés de I'intégrale, et du théoréme de Fubini.

Cours 23 : Fubini on steroids — Mercredi 18 mai 2022 p. 129

e Définition de l'intégrale d’une fonction sur un ensemble qui n’est pas un pavé fermé.
e Explication du théoréeme de Fubini pour les domaines & frontiere réguliere de type 1 et 2.

e Explication de la méthode pour calculer 'intégrale de fonctions sur des domaines a frontiéres réguliéres
qui ne sont ni de type 1 ni de type 2.
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Cours 24 : Changements de variables — Lundi 23 mai 2022 p. 134

e Explication du théoréeme de Fubini pour les intégrales triples.
e Explication du théoréme disant comment faire un changement de variable pour une intégrale multiple.
e Application du changement de variable pour les coordonnées polaires.

Cours 25 : 7w apparait de nulle part — Mercredi 25 mai 2022 p. 139

e Explication du changement de variables en coordonnées sphériques.

e Explication de la méthode pour calculer la masse d’un objet donc on connait la masse volumique en
tout point.

Cours 26 : Toutes les bonnes choses ont une fin — Lundi 30 mai 2022 p. 143

e Définition du changement de variable cylindrique.
e Beaucoup d’exemples.
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Lundi 21 février 2022 — Cours 1 : Le meilleur sujet

Chapitre 2

Equations différentielles ordinaires

2.1 Définitions et exemples

Exemple 1

Définition

Exemple 2

Supposons qu’on a une fonction y(x) = y, ot € R. De plus, disons que nous savons
que :
y =0, VzeER

On remarque alors que y(z) = 2 est une solution sur R. De plus, on peut méme
obtenir une solution plus générale :

y(z)=C, ouCeRVzxeR
On verra plus tard que c’est la solution générale a cette équation.

Une équation différentielle ordinaire est une expression :

E(x5y7yl7"' ’y(n)) = 0

ol E est une expression fonctionnelle, n € Ny, et y = y(x) est une fonction inconnue
de x.

On cherche un intervalle ouvert I C R et une fonction y : I — R de classe C™ telle
que ’équation donnée est satisfaite Va € I.

Remarque Cette définition peut paraitre tres formelle, mais 1'idée c’est qu'une

personnelle équation différentielle ordinaire est une équation ot on a une fonction,
ses dérivées, et la variable z. Cela permet de faire une opposition
avec les équations intégrales comme la Rendering Equation (ot L;
est liée a L,, ce qui fait que c’est bien une équation et non une
formule) :

Lo(2, @) = Lo(z, @) + / Lie, @ (2, @) cos(0)d @

Q

Cela permet aussi de faire une différence avec les équations a dérivées
partielles, comme ’équation de la chaleur :

ol (z,t) i 0T (z,t)

ot gz Y

Considérons 'équation différentielle ordinaire suivante :

y//:O
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Exemple 3

Equation la plus
simple

Equation a va-
riables séparées

Terminologie
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On remarque déja que, nécessairement, ¥y’ = C; € R pour tout € R. Ainsi, pour
finir, on obtient :
y:C’lx+C’2, VC1,C e R,V € R

Prenons maintenant I’équation suivante :
y+y =0 = y' =-y

On sait que f(x) = e” est telle que f'(z) = f(z). Il nous suffit donc de la modifier
légerement pour obtenir une solution & notre équation :

y=e % VreR
On peut finalement en déduire la solution générale :
y(x)=Ce™, VCeR,z€R
On remarque que 'exemple 1 et 'exemple 2 sont de la forme :

y™ = f(x)

ou f(z) est une fonction connue et continue sur 1.
Dans ce cas la, nous pouvons résoudre cette équation par intégration.

On appelle le troisieme exemple une équation a variables séparées. En effet, on
peut écrire :

d d od

dx dx Y
Ainsi, nos variables sont séparées : nous avons y d’'un c6té et x de I'autre. Ceci
nous permet d’obtenir une dépendance entre le changement infinitésimal en y et le
changement infinitésimal en x. Puisque c’est vrai pour tout x sur notre intervalle,
on peut intégrer en préservant 1’égalité :

dy_

/dac = logly| = —z+ C4
Y

pour un C; € R arbitraire.
On peut continuer notre équation :

= &

C2>0

= y=+2Ch"

Finalement, on peut aussi remarquer que y = 0 est une solution. Tout ceci nous
permet d’obtenir la solution générale a notre équation :

yle)=Ce™, CeRzeR

On appelle E(X7 Yy ,y(”)) = 0 une équation différentielle (ED).

Ordre Un nombre naturel n € N* est I’ordre d’une équation différentielle
si n est 'ordre maximal de dérivée de y(x) dans I’équation.

Equation li- Si notre équation différentielle est un polynome linéaire en y, v/, . . ., y(™),
néaire alors I’équation est dite linéaire.

Bquation auto- 91 I'expression ne contient pas de x, '’équation est dite autonome.

nome




2.2. EDVS

Exemple 4

Définition du
probléme de
Cauchy

Retour a
I’exemple 2

Notes par Joachim Favre

Solution géné- La solution générale d’une équation différentielle est I’ensemble
rale de toutes les solutions de I’équation.

Considérons les équations suivantes :
l.y+y =bzx+1
2. 22%y + 9" =0
3.9 +3y" =0
On peut voir les propriétés suivantes :
1. Equation différentielle linéaire d’ordre 1 qui n’est pas autonome.
2. ED linéaire d’ordre 3 qui n’est pas autonome.
3. ED linéaire d’ordre 2 autonome.

Résoudre le probleme de Cauchy (équation différentielle avec des conditions
initiales) pour 'équation E(z,y,y/,...,y™) = 0 consiste & trouver I'intervalle ouvert
I C R et une fonction y : I — R de classe C"(I) telle que E(x, Yyoony y(")) =0 sur
I et pour laquelle des conditions initiales sont satisfaites :

y(xo) = bo, y(21) = b1,y (x2) = ba, ...

Le nombre des conditions initiales dépend du type de I’équation différentielle.

Nous avions trouvé :
y":O - y(x):Cling, VC1,C e R,z € R

Résolvons maintenant le probléme de Cauchy pour y”’ = 0 avec les conditions
initiales :

y(0) =1, y(2)=4

Nous pouvons mettre ces conditions initiales dans notre solution générale :
liy(0)101'0+02102 — (Cy =1

4=y(2)=Ci-2+Cy =20, +1 — clzg

On obtient ainsi la solution particuliére satisfaisant les conditions initiales :

3
y(x) = §$+1

2.2 Equations différentielles & variables séparées

Définition

On appelle une équation différentielle a variables séparées (EDVS) une équation
sous la forme :

fy) -y =g(x)

ou f : I +— R est une fonction continue sur I C R et g : J — R est une fonction
continue sur J € R.

Une fonction y : J' C J — I de classe C! satisfaisant 1’équation f(y)y’ = g(x) est
une solution.

Eaplication Nous pouvons manipuler notre équation de la maniére suivante :
dy en gros
fly)yo =9 = | fly)dy = [ g(x)dz

Nous verrons pourquoi ceci marche et pourquoi cette méthode est

formelle a l'aide d’un théoréme ci-apres.

17
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Exemple

Théoréeme : Exis-
tence et unicité
d’une solution
des EDVS
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Par exemple, 3’ = —y est une EDVS :

1 1
Yy =—y = ;y’=—1 = f(y)=§,g($)=—1

Soit f : I — R une fonction continue telle que f(y) # 0 pour tout y € I, et soit
g : J — R une fonction continue.
Existence : Alors, pour tout couple (zg,bo) ou g € J et by € I, ’équation

fw)y' = g(x)

admet une solution y : J' C J ~ I vérifiant la condition initiale.
Unicité : Siy; : J; — I et yo : Jo — I sont deux solutions telles que y;(xg) =
ya(xg) = bo, alors :

yi(x) = ya2(z), Ve e N,

La démonstration de ce théoréme doit étre connue pour I’examen.

Note person-  Ce théoreme implique que si nous pouvons écrire la solution générale

nelle a une EDVS de maniere complétement générale avec des constantes,
alors il y a une et exactement une constante. Par exemple, les
ensembles de fonctions suivants ne pourraient pas étre les solutions
générales d'une EDVS :

f(z) = Cysin(x) + Cycos(z), g(x) = 22

ou C1,Cy, € Ret x € R.

Cependant, comme on I’a vu plus t6t, 'ensemble de fonctions suivant
est la solution générale & 'EDVS ¢/ = —y :

yle) =Ce™, ounCeR,zeR

Preuve Nous allons seulement montrer I'existence de la solution.
Soit la fonction suivante :

Fy) = byf(t)dt

On sait que F(y) est dérivable par le théoréme fondamental du
calcul intégral. De plus, on sait que F'(y) = f(y) # 0 sur I, donc
f(y) ne change pas pas de signe et donc F'(y) est monotone. Puisque
F(y) est continue et monotone, on sait qu’elle est inversible sur I.

Soit aussi la fonction suivante :

Gz) = / "t

0

Par le théoreme fondamental du calcul intégral, on sait aussi que
G(x9) =0 et que G est dérivable sur J.

Définissons aussi la fonction suivante dans un voisinage de xy (on
sait que F est inversible sur I, et F~1(G(xg)) =bo € I) :

Nous allons démontrer que y(z) est une solution de I’équation
f(W)y'(z) = g(z) dans un voisinage de zy € J, et qu’elle satisfait
y(wo) = bo.
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En manipulant notre définition, on obtient que, dans un voisinage
de xg € J :

Fly(e) = Ga) & Fy()y' (@) = G'@) = F@)/(x) = glo)

De plus, nous savons par la définition de G et F que G(zg) =0 et
F(by) =0, donc :

Idée de la Nous partons de notre équation :

preuve
dy B
g(y)% = f(=)

Et, notre théoréme nous dit que c’est plus ou moins équivalent & :

/f@My=/ﬁqu¢:>F@w=Gw>

Mercredi 23 février 2022 — Cours 2 : D’autres équations avec des différences, facile!

Résumé pour les Pour résoudre une EDVS, donc une équation sous la forme f(y)y’ = g(x) ol

EDVS

Exemple

f:I—Retg:J+— R sont continues, on pose I’équation :

[ty = [ g(a)ds

Puisqu’on a une constante des deux coOtés, il nous suffit de prendre une seule
constante.

Résolvons I'équation suivante :
y'(z) _
y*(x)
C’est une EDVS, car f(y) = y% est continue sur R* ou sur R*, donc on peut
considérer chaque intervalle séparément, et g(z) =1: R +— R.
Posons nos intégrales :

d 1
/—g:/dx — —~=z+C, VCeR
Yy Y
Ainsi, on peut résoudre notre équation pour obtenir :
1
=———, VCEeR
Y z+C
C’est la solution générale sur |—oo, —C|[ et |—C, +00[ (y n’est pas continue en —C,
donc elle n’est clairement pas dérivable). Il ne faut pas oublier qu'une solution

générale est une fonction et un intervalle.
Supposons maintenant qu’on cherche une solution telle que y(0) = by € R* :

1 1
0)=—==by = C=——
y(0) c 0 by
Ainsi :
() 1 bo
y xr) = — 1 =
T — g 1 — xby
Sibg >0 = % > 0, notre solution particuliere est :
1 1
y(r) = ——7 sur}—oo,{ao
Xr — % b()
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tion maximale

CHAPITRE 2. EQUATIONS DIFFERENTIELLES ORDINAIRES
Si by < 0, notre solution particuliere est donnée par :

1 1
y(r) = ——7 sur},—koo{a()
bo bo

On choisit I'intervalle de maniere a ce que 0 soit dedans.

Une solution maximale d’une EDVS avec la condition initiale y(z¢) = by ot 2o € J
et by € I est une fonction y(x) de classe C! satisfaisant 1’équation, la condition
initiale, et qui est définie sur le plus grand intervalle possible.

Le théoreme des EDVS nous dit que si f(y) # 0 sur I, alors il existe une unique
solution maximale. Toute solution avec la méme condition initiale est une restriction
de la solution maximale.

Remarque Dans I’exemple ci-dessus, nous avons trouvé les solutions maximales
pour les conditions initiales xg = 0 et bg € R*, bg > 0 ou by < 0.

2.3 Equations différentielles linéaires du premier ordre

Définition :
EDL1

Equation homo-
géne associée

Principe de su-
perposition de
solutions

20

Soit I C R un intervalle ouvert. Nous appelons équation différentielle linéaire
du premier ordre (EDL1) une équation de la forme suivante :

y'(x) + plx)y(x) = f(x)

ou p, f : I — R sont continues.
Une solution est une fonction y : I — R de classe C! satisfaisant I’équation.

Commencons par considérer ’équation suivante (qui est plus facile) :
y'(z) + p(z)y(z) =0

Cette équation s’appelle I’équation homogeéne associée & 'EDL1 y'(z) +
p(x)y(x) = f(x).

Nous avons deux cas. Soit y(z) = 0 Va € R, soit
Continuous a travailler sur le deuxiéme cas :

Z,/((;)) = —p(z) (qui est une EDVS).

dy _

) —/p(:lc)dx = logly| = —P(z)+C;, Ci€R

ou P(x) est une primitive de p(z).
Ainsi :

ly| = e P@+C = (O =P — y(z) = Coe @ ¢, e R
Cy>0

Cependant, puisque y(x) = 0 est aussi une solution, on obtient que la solution
générale de I’équation homogene associée sur I C R est :

y(x) = Ce P®  vrelIVCeR

Soit I C R un intervalle ouvert, et p, f1, fo : I = R des fonction continues.
Supposons que v; : I — R de classe C! est une solution de I’équation :

Y +plx)y = fi(z)

Supposons aussi que vy : I — R de classe C! est une solution de I’équation :

Y +p(x)y = fa(z)
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Alors, pour tout couple C1,Cs € R, la fonction v(z) = Chv1(x) + Cava(x) est une
solution de I’équation :

Y +p(x)y = Cifi(z) + Cofo(x)
Vérification Nous pouvons facilement vérifier notre équation :

' (2) + p(x)v(z) = Croi(z) + Cavy(a) + p(x)(Croi (z) + Cava())
= C1(v)(x) + p(x)vi(2)) + Ca(v5(x) + p(x)va())
= C1f1(z) + Cafa(x)

Ce qui termine notre démonstration.

O
Méthode de Nous cherchons une solution particuliére de y'(x) + p(x)y(z) = f(z) oup, f: I = R
la variation de sont des fonctions continues, sous la forme suivante :
constante

v(z) = C(z)e F'™

ou P(x) est une primitive de p(z) sur I et C(x) est une fonction inconnue de x.
Nous appelons ceci un Ansatz. On suppose que notre solution est d’une certaine
forme et on espére que ¢a nous ameéne & une solution (en 'occurrence, on prend une
solution similaire a celle qu’on avait trouvée pour les équations homogenes associées).
Si v(z) est une solution de 1’équation, alors :

V(@) p(a)o(z) = f(z) = C'(2)e” "D +0(@)e” "D (—p(a))+p(z)C(z)e ") = f(x)

Ceci nous permet donc d’obtenir que :
C/(gg)e—P(x) = f(z) = C'(z) = f(a?)ep(x) — C(z) = /f(a?)ep(x)dx

Nous avons donc trouvé une solution particuliére de I’équation, qui est :

v(z) = (/ f(x)ep(f)dx) o—P(@)

ot P(x) est une primitive de p(z) sur I.
Exemple Résolvons I'équation différentielle suivante :
v +y=5r+1

C’est une EDL1 avec p(x) =1 et f(x) =5z + 1, ot p, f : R — R sont continues. On
trouve que P(x) = x est une primitive (quelconque, donc sans constante) de p(z).
Nous savons que la solution générale de ’équation homogene associée ' +y = 0 est :

y(z) = Ce P = Ce™® vz eR,VCeR
Pour trouver une solution particuliére de I’équation 3’ +y = 5x + 1 on calcule :
C(z) = /f(x)ep(x)da: = /(535—1— 1)e®dx = 5/me”dm—|—/e“dw
Nous pouvons calculer la premiere intégrale par partie :
C(z) = bze® — 5 / e’dr + /e“"dm = bze” — 4e”

On peut prendre une constante arbitraire, donc nous prenons C' = 0.
Ainsi, on a trouvé une solution particuliere de vy’ +y =5z + 1 :

v(z) = (bre® —4e®)e™™ =bx — 4
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CHAPITRE 2. EQUATIONS DIFFERENTIELLES ORDINAIRES

Nous pouvons vérifier que c’est bien une solution :
V(z)+v(x)=5+5r—4=5r+1
comme attendu.

Soient p, f : I — R des fonctions continues. Supposons que vg : I — R est une
solution particuliere de I’équation suivante :

y'(x) + plx)y(x) = f(x)
Alors, la solution générale de cette équation est :
v(z) = vo(z) + Ce @ vCO eR

ot P(z) est une primitive de p(z) sur I.

La démonstration de ce théoréme doit étre connue pour I’examen.

Preuve Nous allons montrer que toute solution de cette équation est de la
forme vg(z) + Ce P,
Soit vy (x) une solution de y'(x) + p(z)y(r) = f(x). On a aussi que
vo(z) est une solution de la méme équation.

Alors, d’apres le principe de superposition de solutions, la fonction
v1(x) — vo(x) est une solution de I’équation :

y'(x) +pa)y(x) = f(x) — f(z) =0
Ainsi, v1(z) — vo(x) est une solution de 1’équation homogene :
y'(2) + p(x)y(z) = 0

Cependant, c’est une EDVS, donc nous savons que la solution
générale de cette équation homogene est :

v(z) = Ce~P®@ € € R arbitraire

ot P(z) est une primitive de p(z) sur I.
On en déduit qu’il existe une valeur de C' € R telle que vy (z) —
vo(z) = Ce~P(*) Ainsi, on obtient que la solution v, () est de la

forme :
v1(x) = vo(x) + Ce™P@

Puisque v (z) était une solution arbitraire, nous obtenons que l'en-
semble de toutes les solutions de I'équation y'(z) + p(z)y(x) = f(z)
est :

v(z) =vo(x) + Ce @ CeRzel

Donc, par définition, v(z) est la solution générale.

O

En mettant tout en commun, on obtient que la solution générale d’'une EDLI est :

y(x) = Ce—P(JC) + (/ f(x)ep(x)dx) e—P(gc)7 VO e R,LE cl
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Lundi 28 février 2022 — Cours 3 : Place aux exemples

Types d’équa- Regardons les équations différentielles suivantes :
tions 1. e*y =y +y
2. (1+sin®2)y*y’ = cos(z)
3.2y =2z =y
4.y = Bz +y)°
Etudions le type de ces équations :
1. Puisqu’il y a un 33, elle n’est clairement pas linéaire. Cependant, c’est une
EDVS car elle est équivalente a :

dy —:,;
Pty =e %dx

Il ne faut oublier non plus que y = 0 est une solution, puisqu’on a divisé par
Y.
2. Cela ne peut non plus pas étre une équation linéaire puisqu’on a y%. Cependant,
elle est équivalente a :
cos(z)dx
yzdy = T a3/
1+ sin®(x)
3. C’est une EDLI, et il est impossible de I’écrire sous la forme d’une équation
différentielle & variable séparée.

1 1

y,_iy:xa p(x):—i,f(x)zx

4. Cela ne peut pas étre linéaire car il y a un carré. Il semble aussi compliqué
de séparer les variables. Cependant, en prenant z =3z +y — 2/ =y’ + 3,
notre équation devient :

dz

F 3= =
2243

dzr

On arrive donc bien a une équation différentielle a variable séparée.

Exemple 1 Prenons ’équation différentielle linéaire d’ordre 1 suivante :
2 T 2 T

/ =2 __Z .

y-y=5 pla)=——.fl@) =3

On remarque que p est continue sur |—oo, 0 ou sur ]0, +0oo[, et f est continue sur R.

Equation ho- ~ Premierement, on cherche la solution générale de 1’équation homo-
mogéne géne associée :

2
y' — =y =0, sur]|—o0,0]et]0,00]

x

Pour cela, on cherche une primitive de p(z) :
2 2

P(z)= [ —=dx = —2log|z| = —log(z®), z#0

x

Ainsi, la solution de notre équation homogene est :

yhom(x) = Ceip(w) = Cef(* log(zQ)) = C1~2

sur |—o0, 0] et |0, oo.

On peut facilement vérifier que notre solution fonctionne bien.
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CHAPITRE 2. EQUATIONS DIFFERENTIELLES ORDINAIRES

Solution parti- Deuxiémement, nous cherchons une solution particuliere de I’équa-

culiére tion complete :
;2
Y a:y 2

Calculons l'intégrale suivante :

P@ gy — — [ Eoton(@) gy — [Tl [ _1
/f(x)e dx /26 dx 2x2dw 5 210g|:v|

ou x # 0.
On obtient que la solution particuliére a notre équation est donnée
par :

1 2 1
Ypart () = 5 loglarle*5("") = Za?loglal, 2 #0

On peut vérifier que notre solution fonctionne bien, prenons x €
]—00, 0] par exemple. Sur cet ensemble, notre solution est :

1
Ypart(T) = ixz log(—x)

Et donc :
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Nous pouvons aussi vérifier que cela fonctionne sur |0, +oo[ de
maniere similaire.

Solution géné- Troisiemement, on sait que la solution générale de 'EDLI est donnée
rale par :
Y(@) = Ynom (%) + Ypart(2)

On trouve donc que :
72
Ca? + 5 log(z), z€]0,00[,C €R

y(e) = .2
Ca? + 5 log(—z), z€]-00,0,C€R

Prenons 'EDL1 suivante :

y' —tan(x)y = cos(x)
—_——— ~——r
p(z) f(z)

Nous voulons trouver la solution maximale avec la condition initiale y(0) = 3.
Cette information est importante, car cela nous dit que 0 doit étre dans 'intervalle
(il y a une infinité d’intervalles ou tangente est continue). Nous allons donc considérer
cette équation sur ]%’T, 3 [ En d’autres mots, on prend p, f : ]%’T, 3 [ — R.
Equation ho- ~ Premieérement, nous cherchons la solution générale de 1'équation
mogéne homogene associée :

y' —tan(x)y =0
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Solution géné-

rale

Condition ini-

tiale

Notes par Joachim Favre

Calculons une primitive de p(x) :

P(x)=-— /tan(x)dx = —/ sin(z) dz

cos(z)

Nous pouvons remarque que sin(x) est la dérivée de cos(z) & une
constante pres, et donc nous pouvons prendre un changement de
variable :

P(x) = /dc(s;)(sxa;) = log|cos(x)| = log(cos(x))

Nous pouvons bien enlever la valeur absolue car, sur ] =555 [, cos(x)
est positif.
On obtient donc que la solution a ’équation homogene est :

C —
yhom(x) = Oeip(m) = CeilOg(COS(m)) = , T €& :l T |:’ CeR

Deuxiemement, nous cherchons une solution particuliere de I’équa-
tion complete. Calculons l'intégrale suivante :

/f(x)ep(gﬂ)dx = /cos(x)elog(cos("”))dx = /cos2(x)dw

On sait que cos(2z) = cos?(x) — sin?(z), donc notre intégrale est
donnée par :

/f(x)ep(””)dx = /%(1 + cos(2z))dx = %x + isin(Qag)

Ce qui nous permet d’obtenir une solution particuliere a notre
équation :

1 1
ypart(x) = (Z‘ + 1 Sin(zl‘)) eip(x)

2
1 1 1
= <2x + i sm(2x)> cos()
x sin(x)
- 2 cos(x) 2

puisque sin(2z) = 2sin(x) cos(z).

Troisiemement, nous obtenons la solution générale :

(2) n C L " +sin(fr) 6} 7r7r[
xXr) = = €T -
4 Yhom 7+ Ypart cos(z) = 2cos(x) 2’

pour C € R, une constante arbitraire.

Quatriemement, nous devons mettre notre condition initiale dans
notre solution :

y0)=3 = 3=9y(0)=C+04+0=C = C=3
On obtient donc que la solution maximale satisfaisant la condition
initiale est :

. AR B ve |22
~ cos(z)  2cos(z)  2sin(z)’ 272

y()
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CHAPITRE 2. EQUATIONS DIFFERENTIELLES ORDINAIRES

Les équations différentielles permettent typiquement de décrire des phénomenes
physiques. Un exemple commun est que la croissance ou la décroissance de quelque
chose est proportionnel a la taille de ce quelque chose. En d’autres mots :

y'(t)=ky(t), keR

Une population de bactérie avec de la nourriture et de la place infinie ou la masse
d’un objet subissant une désintégration radioactive suivent typiquement cette loi.
La premiere a k > 0, alors que la deuxieme a k < 0. D’autres phénomenes, comme
la propagation d’un virus au sein d’une population, suivent cette loi sur un temps
restreint.

Résolvons notre équation différentielle. On remarque que y = 0. De plus, c’est une
EDVS, donc :

d
/;y = /kdt — logly| = kt+C, = |y| = 9 " — y(t) = Ce*', CeR
>0

Supposons que nous savons que y(0) = yo > 0, alors :
yo=y(0)=Ce"’ =C

On obtient donc que la solution maximale satisfaisant la condition initiale (0) = yo
est :

y(t) = yoe™

Ce qui est cohérent avec ce & quoi nous pouvions nous attendre.

Mercredi 2 mars 2022 — Cours 4 : On rajoute un prime

2.4 Equations différentielles linéaires du second ordre

Définition :
EDL2

Exemple

EDL2 homogéne
a coefficients
constants

26

Soit I un intervalle ouvert. On appelle équation différentielle linéaire du second
ordre (EDL2) une équation de la forme :

y" (@) + p(2)y () + q(2)y(z) = f(z)

ou p,q, f: I+— R sont des fonctions continues.
Nous appelons EDL2 homogeéne une équation de la forme suivante :

y" () + p()y () + q(z)y(z) = 0
Nous cherchons une solution de cette équation de classe C?(I,R).
Prenons ’EDL2 homgeéne suivante :
y' =0
En intégrant deux fois, on trouve que :
ylx) =Crz+Cy, C1,C2 e RV €R

Considérons les EDL2 homogeéne a coefficients constants. En d’autres mots,
soit ’équation différentielle suivante :

y'(x) +py' () + qy(x) =0, p,geR

Construisons un polynéme A? + p\ 4+ ¢ = 0. Par le théoréme fondamental de
l’algebre, on sait qu'il existe deux solutions complexes a et b tel que A\? + p\ 4+ q =
(A —a)(A—b) = A% — (a + b)\ + ab. On obtient donc que p = —(a + b) et ¢ = ab, ce
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qu’on peut remplacer dans notre équation :

y"(z) — (a+ b)y'(z) + aby(x) =0, a,beC

Nous pouvons voir que notre équation est équivalente a :

(¥ (2) —ay(z))" = b(y' () — ay(x)) = 0

Ainsi, nous pouvons prendre le changement de variable z(z) = y'(x) — ay(x), ce qui
nous donne une EDL1 homogene :

2 (x) —bz(z) =0 = z(z) = C1e*®, = € R,C arbitraire

Puisque z(z) = y'(x) — ay(x), on obtient une EDLI pour y :

Résolution de
I’EDL1

Solution géné-

rale

Y (2) ~a y(z) = Cre™
p(@) §(@)

Nous pouvons trouver une primitive de p(x) :
P(z) = / —adx = —ax
Ainsi, cela nous donne la solution a I’équation homogene associée :

Yhom (.’17) = 02 e*”

Nous pouvons utiliser la méthode de la variation de la constante :
C(aﬁ) = /f(x)eP(x)dx — /Clebme—azdx _ Cl /e(b_a)zdx

Nous avons deux possibilitiés :

1
Clz)=<b—-a
Cixz, sib=a

Cre®=7  gib+£a

On obtient donc une solution particuliére a notre équation :

(2) Crelb—a)zgar Cieb®,  sib #a
art(T) = .
Ypart Cize™, sib=a

Tout ceci nous permet d’obtenir la solution générale a notre équa-
tion :
( Coe™ + Che’, sia #+b
€Tr) =
Y Coe™ + Crze™, sia=0b

ou C; et (5 sont deux constantes arbitraires, et a et b sont des
racines de ’équation caractéristique A2 + pA 4+ ¢ = 0, Vx € R.

Il nous reste un probléme, c’est que nous faisons de I’analyse réelle,
mais C7 et Cs sont des constantes complexes arbitraires et a et b
sont potentielle complexes. Il faut donc encore qu’on traite cette
question.

Si a # b sont des racines complexes, telles que a,b ¢ R, alors nous
savons que a = b. De plus, prenons C7 = C et Cy = C afin d’obtenir
une solution réelle :

y(z) = Ce™ + Ce™
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Nous pouvons prendre a = a + iff ot «, 8 € R et § # 0. De plus,
prenons C = 1(C3 — iCy). Ceci nous donne :

y(x) = Ce™ + Ce™

1 ) 1 .
5(03 - iC4)ea”e”3”” + 5(03 + iC4)eO‘””e_ZBw

Ieiﬁz 4 672',31 Lc o eiﬁm o e*iﬁz
- - e
2 * 2

= C3e* cos(fBx) + Cye*sin(fz), ou C5,Cy e Rz eR

= C36a

. . l
puisque —i = =.

C’est la solution générale réelle de ’équation si b =a ¢ R.

Nous commencons avec une équation de la forme :
y'(z) +py'(2) +qy(z) =0, p,geR

Soient a,b € C les racines de I’équation A% + pA + ¢ = 0. Alors, la
solution générale est :

Cre® 4+ Che®,  sia,beR,a#b
y(z) = ¢ C1e™ + Coze™, sia=0b
C1e*" cos(Bx) + Coe™sin(Bz), sia=a+if=b&R

pour des constantes arbitraires C,Cy € R et pour tout z € R.

Il peut paraitre tres bizarre de cherchez les racines du polynoéme
au départ. Cela fonctionne, mais il est aussi intéressant de savoir
comment est-ce que les mathématiciens ’ont deviné aux premiers
abords.

Nous avons donc ’équation suivante :
y'(@) +py'(z) +qy(z) =0, p,geR

Nous savons que l’exponentielle est tres pratique, donc faisons
I’ Ansatz y(x) = e*. Cela nous donne :

NN 4 pAeM + e =0 = (A +pA+g) =0

Or, puisque ’exponentielle est non-nulle pour tout x, nécessairement,
A2 4+ pA + ¢ = 0. Les deux solutions & cette équation nous donnent
deux solutions linéairement indépendantes (nous allons définir ce
concept juste apres) a notre équation différentielle, sauf si a = b.
Dans le cas ou les solutions sont réelles, nous avons terminé, dans
le cas o elles sont complexes nous pouvons les modifier de maniere
a obtenir un sinus et un cosinus.

Notes que I’équation du mouvement d’un oscillateur harmonique
amorti (un pendule avec des frottements de Dair, par exemple).
Les trois possibilités de solutions correspondent aux trois régimes
des oscillateurs harmoniques amortis : overdamped, underdamped et
critically damped.

Exemple Considérons I’équation différentielle suivante :

y'+2 +y=0

C’est une EDL2 homogene, donc nous cherchons les racines de I’équation caractéris-

tique :
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On trouve alors que las solution générale est donnée par :
y(r) = Cre™" + Coze ™™, Vz eR VxR

EDL2 homogene Considérons I’équation suivante :

y'(x) +p(2)y (x) + q(x)y(x) =0, p,q:I—R

Nous pouvons faire les observations suivantes :
1. La solution générale d’une EDL2 homogene a coefficients constants contient
2 constantes arbitraires. En fait, c’est le cas pour les EDL2 homogenes en
général. Ce point est difficile a démontrer, et nous ne le feront pas dans ce
cours.
2. Siyi(x) et y2(z) sont deux solutions d'une EDL2 homogene, alors la fonction
suivante est aussi une solution :

y(x) = Ay1(z) + Bya(z), ou A,BeR
En effet, nous pouvons le vérifier trivialement (j’adore ce mot) :

(Ay1(z) + Bya(x))"” + p(z)(Ay1 (x) + Byz(x)) + q(z)(Ayi (z) + Bya(x))
= A () (x) + p(x)y; () + q(x)y1(2) +B (y5 () + p(2)ys () + q(2)ya(z))
=0 =0

=0
puisque y1 () et y2(z) sont des solutions.

Théoréme Une EDL2 homogene admet une seule solution y(x) : I — R de classe C? telle que
y(xo) =t et y'(z9) = s pour un zg € I et les nombres arbitraires s,t € R.

Preuve Nous acceptons ce théoreme sans preuve dans ce cours, mais il est
cohérent avec ce que nous avons trouvé jusque 1a (notamment avec
Pobservation qu’une solution a deux constantes).

Définition : in-  Deux solutions y1(x), y2(z) : I — R sont linéairement indépendantes s’il n’existe
dépendance pas de constante C' € R telle que :
linéaire

y2(2) = Cy1(x) ou yy(x) = Cya(x), Vo el

En particulier, cela implique que y;(x) et y2(x) ne sont pas des fonctions constantes
égales a 0 sur 1.

Remarque Le théoréme que nous avons vu juste avant nous dit que les EDL2
homogenes possedent exactement deux solutions linéairement indé-
pendantes. En effet, il nous faut exactement deux constantes pour
qu’il y ait exactement une solution qui respecte deux conditions

initiales.
Construction Supposons que v1(x) est une solution de y”(x) + p(x)y'(z) + q(z)y(z) = 0 telle
d’une deuxiéme que vi(z) # 0 pour tout z € I. Nous nous demandons comment trouver une autre
solution solution linéairement indépendante.

Prenons ’Ansatz va(z) = c(x)vi(x) telle que c(x) n’est pas constante (sinon la
solution serait linéairement dépendante). Alors, on obtient que :

vy(z) = (2)v1(z) + c(x)vy (2)

vy (z) = " ()vr(x) + 2 ()0 (@) + c(z)vf (2)

Ainsi, nous pouvons remplacer notre solution dans notre équation :

¢ (o1 (2)42¢ ()0} (2)+e(2)of () +p(@)d (@)vr (2)+p(a)e(a)v) (@) + glw)e(w)or (2) = 0
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Les termes en rouge sont déja égaux & 0 puisque vy (x) est une solution. Cela nous
permet donc de simplifier notre équation en :

(z)v1(z) + 2 (z)v) () + p(z)c (2)v1 () = 0

On suppose maintenant aussi que v1(z) # 0 sur I et ¢/(x) # 0 sur I (ils ne s’annulent
pas en aucun point de l'intervalle). Ceci nous donne donc que :

() _ v (@)

qui est une EDVS pour ¢'(z).
Nous pouvons intégrer des deux coté, en prenant log(C) comme constante :

e—P(w)
logl¢ ()] = ~P(a) — 21oglus (0)] +1og(C) = log Lz )

Or, puisque le logarithme est une fonction bijective :
@)= +0° 2 o G ey = 20
cl(z) = =01 ) 1€kK,00 =
vi(x) vi(z)

Nous pouvons maintenant intégrer :

(@) / e Gy CheR

clr) = c1—s——ax + Cy, 2 €
vi(x)

On obtient alors que ve(x) = c¢(x)v1(z) est une solution. Par exemple, nous pouvons

prendre C; = 1 et Cy = 0, ce qui nous donne une solution telle que ve(x) et v1(z)
sont linéairement indépendantes :

efp(x)

va(x) = e(x)vi(x) = v1(x) / de

Ainsi, a partir du moment ol on trouve une solution particuliere, nous sommes
capable de trouver la solution générale.

Prenons 'EDL2 homogene suivante :
y'+2 +y=0
Solution 1 On remarque que vi(xz) = e~ % est une solution pour z € R telle
que v1(z) # 0 sur R. On cherche une autre solution linéairement

indépendante :
p(r) =2 = P(z) =2z

efp(a:) B e 2z B B
vz(x):vl(x)/vz(x)dx:e w/(ez)Q:e w/ld:v:e Tz
1

Nous avons donc obtenu que v1(z) = e™* et va(z) = ze~® sont deux
solutions linéairement indépendantes sur R. Ainsi, d’apres notre
théoreme, la solution générale de cette équation est :

v(z) = Cre™" + Coze™™, C1,Cy € R,Vx €R

Notre solution est cohérente avec celle qu’on avait trouvée en utili-
sant la méthode de I’équation caractéristique.

Solution 2 Cette fois, nous partons de vy (x) = ze~* comme premiére solution,

et nous essayons de trouver vy () linéairement indépendante.
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Prenons la solution de telle maniére a ce qu’elle soit jamais égale a
0:
vi(x) =xe™® sur |—o0,0[ et |0, +00[

Alors, on obtient :

e—P(m) e 2w
va(x) = c(x)vi(x) = ze™™ / ———dx =ze " / ——dz

vi(z) x2e—2%

Ce qu’on peut simplifier en :

va (@) = pe* (-i) — —e®, sur ]—o0,0[ et ]0, 00

Cependant, puisque e~ est de classe C? sur R (elle est méme
de classe C*°), on peut coller nos deux solutions sans obtenir de
singularité en 0, et on obtient alors :

ve(x) =—€e7%, VzeR
Nous avons donc obtenu les deux mémes solutions linéairement
indépendantes vi(x) = xe™® et vo(x) = —e~*. Alnsi, la solution
générale sur R est :

v(xz) = Crze™ " 4 Cae™™

On a obtenu la méme solution générale (et heureusement).

Remarque A T'examen, on ne va jamais nous demander de deviner une solution
(contrairement aux exercices). Si nous avons besoin d’en obtenir
une, alors elle nous sera donnée.

Lundi 7 mars 2022 — Cours 5 : Wronskien

2.5 Wronskien

Définition :
Wronskien

Exemple

Soient vy, vs : I — R deux fonctions dérivables sur I C R. Nous appelons la fonction
W{v1,v9] : I — R définie par :

Wlvy,ve] = det (Z} () Zz(x)) = vi(x)vh(z) — va ()] ()

le Wronskien de vy et vs.
Prenons 1’équation suivante :
y'+2y +y=0

Son polynéme caractéristique, A2 4+ 2\ + 1 = 0 nous donne les racines ¢ = b = —1,
ce qui nous permet de trouver la solution générale :

v(z) = Cre " + Cowe™™, ou 1,02 € R,Vz € R

Calculons le Wronskien de nos deux solutions :

e " re~
—e T e T —zge”

Wle * ze "] = det( x) = —ge T fge T =

On observe que e~ = W[e™®, xe~%] # 0 pour tout x € R. Nous allons généraliser
cette idée.
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Soient vy, v : I — R deux solutions de I'équation y”(z) + p(x)y'(z) + q¢(z)y(z) =0
(EDL2 homogene).
v1(x) et vo(z) sont linéairement indépendants si et seulement si W{vy, va](x) # 0

pour tout x € I.

La démonstration de ce théoréme doit étre connue pour ’examen.

Preuve <=

Preuve —>

Démontrons ce point par la contraposée. Nous voulons donc montrer
que les solutions sont linéairement dépendantes implique qu’il existe
z € I tel que Wvy,ve](z) = 0.

Puisque nos deux solutions sont linéairement dépendantes, nous
pouvons prendre sans perte de généralité qu’il existe ¢ € R tel
que v1(x) = cva(z) (si plutdt ve(z) = cvp(x), nous pourrions juste
échanger les noms, d’ou le “sans perte de généralité”).

Ainsi, nous avons :

Wioy, va)(z) = det (”}(@ Cm("”i)

vi(z) cvi(x
= cvi(z)vy(x) — cvi(z)vy (@)
=0, Vexel

Nous avons donc trouvé que le Wronskien est nul pour tout z sur
cet intervalle, donc il existe bien un = pour lequel il est égal a 0.

Prouvons aussi cette affirmation par la contraposée. Nous voulons
donc montrer que, s'il existe x € I tel que W vy, v2](zg) = 0, alors
v1(z) et va(x) sont linéairement dépendantes.

Puisqu’il existe un tel zg € I, nous savons que :

dot (le(xo) v;(ﬂﬁo)) —0

1(z0)  v3(wo)

Ainsi, le kernel de cette matrice est est non-trivial (il n’est pas de
dimension 0), donc il existe un vecteur non nul (3) € R? tel que :

(e e (5) - (6)

{av (z0) + bva(xo)

Ainsi :
1 0) — 0
av(xo) + bvh(zg) =0

Soit v(z) = avi(x)+bva(x). Alors, v(x) est une solution de I'équation
donnée par la superposition des solutions. De plus, par le systéme
d’équations que nous venons de trouver, nous avons v(xg) = 0 et
v'(zg) = 0. Par le théoréme de l'existence et unicité d’une solution
de 'équation y” (z)+p(z)y' (z) +q(z)y(z) = 0, cette équation admet
une seule solution satisfaisant y(xg) = 0 et y'(xo) = 0. Puisque la
solution triviale y(z) = 0 Va € I satisfait ’équation et les conditions
initiale, alors nécessairement :

v(x) = avy(x) + bua(z) =0, Veel

Puisque a et b ne sont pas les deux nuls, soit nous avons vy (z) =
=buy(z) pour tout x € I, soit nous avons ve(z) = —%vy(z) pour
tout x € I (soit les deux).
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Théoréme :
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homogeénes

Notes par Joachim Favre

Nous avons donc bien trouvé que v1(z) et ve(z) sont linéairement
dépendantes sur 1.

O
Idée de la On démontre que @ = P et P —> ( par la contraposée car P
preuve et @ sont des propositions “négatives” : il est beaucoup plus simple

d’avoir une fonction qui est parfois égale a 0, ou deux fonctions qui

sont linéairement dépendantes.

Considérons les solutions des EDL2 homogenes & coeflicients constants y” (x)+py’ (z)+
qy(z) = 0 telle que les racines du polynéme caractéristique sont a = b = o + i3 € R.
Nous voulons montrer que W [e®® cos(fx), e*® sin(Bz)] # 0 pour tout z € R. Avec
un peu de travail, nous pouvons obtenir que :

We™ cos(Bx), ™" sin(fz)] = Be***, Vax € R

Or, puisque 8 # 0 (sinon a = a + i € R), nous obtenons bien que le Wronskien de
ces deux solutions n’est jamais 0, et donc qu’elles sont linéairement indépendantes.

Soient vy,v2 : I — R deux solutions linéairement indépendantes de 1’équation

y"(x) + p(x)y'(z) + q(x)y(z) = 0.
Alors, la solution générale de cette équation est de la forme :

v(z) = Cyvi(x) + Covg(z), C1,CoeR iz el

La démonstration de ce théoréme doit étre connue pour I’examen.

Preuve Soit ¥(x) une solution de I’équation donnée, et x¢ € I. Alors, nous

savons que v(xo) = ag € R et v(zg) = by € R.
Par hypothése, nous avons deux solutions linéairement indépen-
dantes vy,vo : I — R. Ainsi, par la caractérisation, nous sa-
vons que Wlvy,vs](x) # 0 pour tout = € I, ce qui implique que
W[’Ul, UQ](J?()) 75 0.
Or, quand le déterminant d’une matrice est non-nul (la matrice est
dite non-dégénérée), nous savons qu’'une équation 'utilisant a une
solution unique. Ainsi, nous savons qu’il existe d’uniques constantes
C1,C5 € R telles que :

Crvi (o) + Cava(z0) = ag

Cl'l}ll (xo) + CQ’U/Q(ZL'O) = bo
Considérons la fonction v(x) = Crvi(x) + Cave(z). Nous pouvons
voir deux informations. La premiére est que v(z) est une solution de
Iéquation (puisque v1(z) et vo(x) sont des solutions). La deuxiéme
est que v(zg) = ag et v'(xg) = bo.
Par le théoreme de l'existence et unicité d’une solution des EDL2
homogenes satisfaisant des conditions initiales données v(zg) = ag

et v'(zg) = by, on a v(x) = v(x) pour tout x € I. Nous avons donc
bien montré que notre solution de départ est de la bonne forme.

O
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Nous considérons maintenant ’équation compléte :

y" (@) + p(2)y () + q(2)y(z) = f(2)

Si v(z) est une solution de I'équation y”(z) + p(x)y'(x) + q(x)y(z) = f(z) et u(z)
est une solution de 1'’équation homogene associée, alors v(x) + u(z) est une solution
de cette équation.

Preuve Cette preuve est considérée comme triviale, et elle est laissée en
exercice au lecteur.

Nous cherchons une solution particuliere de I’équation complete, supposant que
nous connaissons deux solutions linéairement indépendantes de I’équation homogene
associée : vy,v9 : [ — R.

Prenons I'Ansatz vo(z) = c1(z)vi(x) + co(z)va(z), ot ¢1(xz) et ca(x) sont deux
fonctions inconnues de classe C! sur 1.

Nous pouvons dériver notre solution présumée :

vp(x) = ey (w)vi (@) + & (x)v2 () + er (@) (2) + ca(x)vy ()

Supposons aussi que le bout en rouge est égal a 0, car cela permet non seulement
de diminuer grandement la taille de notre solution, mais aussi de ne pas avoir de
¢ (x) (puisque nous les avons prises de classe C'). Notez que nous avons le droit de
faire ceci, car nous prenons un Ansatz. Cela peut ne pas fonctionner, mais si cela
fonctionne c’est gagné.
Nous pouvons encore dériver vy, :

v (2) = cy(x)vy(z) + cp(@)vy(@) + e (z)vf () + ca(@)vg (x)

Mettons ce que nous avons trouvé dans notre équation vj (z)+p(x)vj(z)+q(x)ve(z) =
f(x), de maniére a trouver des conditions sur c¢;(x) et co(x) :

ci(z)vy () + ca(z)v3(@) + er(2)vy (z) + ea(2)vy (2)

+ p(@)er (@)vi(z) + p(z)er (z)vy(z)
+ q(@)e1(@)v1(z) + q(z)c2()va ()
= f'(z)

Puisque v1 () et va(x) sont des solutions de ’équation homogeéne associée, les termes

en rouge sont égaux a 0, et les termes en bleu sont aussi égaux a 0. Nous obtenons

donc une grande simplification a notre équation :

c1 (@) (z) + ch(@)vy(x) = f(2)

En tout, nous avons deux conditions (celle que nous venons de trouver, et celle que
nous avions prise de maniere arbitraire) :

ci(@)or(z) + ey (x)va(e) = 0
i (x)vi(x) + ch(x)vy(x) = f(x)

Or nous pouvons écrire notre systéeme sous la forme :

<vl(x) vg(x)> (c’l(x)) _ ( 0 >
vi(z)  va(x) ) \ () f(=)
Cependant, c’est un systeme d’équations sur cj(z) et ch(x). Puisqu’on sait
que v1(z) et va(x) sont linéairement indépendantes, nous avons Wlvy, va](x) =

det(i}gg Z?Ez)) # 0 pour tout & € I. Ceci nous dit donc que notre matrice est
1 2

inversible, et que nous pouvons résoudre notre systéme de cette maniere :

60) -7 (e o) () = Torerm (e )
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Nous pouvons maintenant intégrer :
f(@)va(x) / [ (z)
ca(r)=— | ==————dz, c(z)= | =————dz
0= [ i 0= [ i
ou on supprime les constantes.

Nous obtenons donc vg(z) = ¢1(z)v1(z) + ca(z)ve(x) est une solution de 1’équation
compléte. Nous pouvons méme obtenir la solution générale a cette équation :

v(z) = Cyv(z) + Cova(x) +vo(x), ouCy,Cr e Rz el

Exemple Nous voulons trouver la solution générale de ’équation suivante :
V(@) ~ ey (@) by (e) = log(@) = 1, sur e, +ool
z(log(z) — 1) z?(log(z) — 1) —_ ’

f(x)
p(x) a(z)

Solution par-  Nous essayons de trouver une solution non-nulle de I’équation ho-
ticuliére a mogene associée :

I’équation ho-

1 , 1
 xlog(x) — 1Y + x2(log(z) — 1)

mogeéne y”

y=0
On remarque que y(z) = x est une solution. En effet, y/'(z) =1 et
y"(x) =0, donc :

1 T
“2(log(z) — 1) | 2(log(a) — 1)

=0, Vzele +oof

Nous avons donc vi(x) = x qui est une solution particuliere a
I’équation homogene associée.

Solution li- Nous pouvons trouver une solution linéairement indépendante a
néairement I’équation différentielle homogene associée en prenant :
indépendante —P(x)
. e
a(a) = cau(a). o e(w) = [ e P@) = [ pla)da
1

Nous savons que p(z) = donc :

1
z(log(z)—1)"

dx d(log(z))
P)=— | ———=— | ————- = —log(l -1
@ =~ | s =~ oty o1 =~ oalosta ~ 1)
ol nous ne mettons pas de constante, et ot nous n’avons pas besoin
de mettre de valeur absolue puisque x > e.

Calculons maintenant c(z) :

—P(z) log(log(z)—1) 1 -1
c(x) :/762 dx:/ie 5 dx:/iog(xg dx
vi(2) x x

Nous pouvons utiliser la linéarité des intégrales :

=[5+ [ 25 [ ()

Faisons une intégration par partie :

o) = — d log(x) +/ %d(log(x)) _ dv log(z) N dx

2 T 2 T 2

Et ainsi, on a obtenu notre ¢(z) :

o(z) = 710g;x)
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Et va(x) en découle directement :

log(z)

va(2) = ela)vr (2) = ——2 D = —log(x)

T

En examen, il est une bonne idée de vérifier que va(x) est bien une
solution.

Solution géné- Nous pouvons maintenant trouver la solution générale a I’équation
rale équation homogene associée :

homogéne

v(x) = Civy(2)+Cavs(x) = Cra+Cslog(z), C1,Cs € R x € Je, +00]

Solution par-  Nous voulons maintenant trouver une solution particuliere a 1’équa-
ticuliére équa-  tion complete. On sait que vo(x) = c1(z)v1(x) + ca(z)va(x) est une
tion compléte solution, ou :

[ @me @)
20 == [ e 0= [ i
Nous pouvons calculer le Wronskien :

Wor, va](2) = det (”} ”3) — det (f _lfgl(“"”)) — log(z) — 1

vy Uy z

qui est bien différent de 0 pour tout z sur Je, +o00[. Nous pouvons
maintenant calculer ¢; et ¢g :

_ [Cog@) -~ D)(log(@) [,
o) = - | e = e

1
= zlog(x) — /x;da: = zlog(x) — x

[ (log(z) — 1)z 1
co(x) = / de = /xdm = ixz

(ot on supprime les constantes).

Ainsi, nous trouvons une solution particuliere a I’équation compléte :
vo(x) = cr(z)vi(x) + c2(@)va ()
1
= z(log(z) — 1)z + 51‘2(— log(z))

1
= —2%log(z) — 2°
2
avec z € Je, oo].
Encore une fois, en examen, c’est une bonne idée de vérifier notre
résultat.

Solution géné- Nous savons que la solution générale de 1’équation complete est
rale égquation  donnée par :

compleéte

v(z) = Crz+Cy log(x)—l—%xQ log(z)—2%, C1,Cy €R,z € e, +00]

Mercredi 9 mars 2022 — Cours 6 : Fin des équations différentielles

Méthode des Cette méthode permet de trouver une solution particuliére & 1’équation y”(z) +
coefficients indé- py/(z) 4+ qy(z) = f(z), p,qeR
terminés
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Exemple

Pour que cette méthode fonctionne, il faut que f(z) soit une combinaison linéaire
de :
e“Ry(z) et e*(cos(bx)Py(x) + sin(bx)Qm(x))

ou R, (z), P,(x), Qm(x) sont des polynomes de degré n et m, et ¢,a,b € R.

Ainsi, si f(z) est une combinaison linéaire de ces deux fonctions, disons f(z) =
c1f1(x) + ca fa(x), nous avons seulement besoin de trouver une méthode pour trouver
une solution pour fi(z) et pour fa(x), puis utiliser le principe de la superposition
des solutions.

Si f(x) =e“"Ry(x) :

¢ est une racine de Ansatz
M4+ph+qg=0
Non Ypart = echn(x)
Oui Ypart = xrechn(x)

ol r est la multiplicité de la racine A = ¢, et T, (x) est polynéme de degré n a
coeflicients indéterminé.

Si f(x) = e*(cos(bz) P, (x) + sin(bx)Qn(z)) :

a + ib est une racine Ansat

de X2 4+pA+¢=0 z
Non Ypart = €**(Tn(x) cos(bz) + Sy () sin(bx))
Oui Ypart = T’ (TN («75) COS(be) + SN (.’L’) Sln(bx))

ot N = max(n,m), et Tn(z) et Sy(x) sont des polyndémes de degré N a coefficients
indéterminés.

Note person- Dans les quatre cas, nous prenons exactement ’équation en tant
nelle : Mnémo- qu’Ansatz, dans laquelle nous remplagons les polyndmes par des
technie polynémes inconnus, et nous multiplions par la multiplicité d’une

solution potentielle.

En effet, on remarque que, si ¢ n’est pas une racine de A2 +pA+q = 0,
alors c’est tout comme si c¢’était une racine de multiplicité 0 (bien
évidemment, ne jamais dire cette phrase & un oral d’analyse). Ainsi,
2" = 1. Nous pouvons faire le méme raisonnement pour la deuxiéme
fonction, mais nous pouvons aussi voir qu’il est impossible que a + b
ait une multiplicité 2 (sinon cela voudrait dire que b = 0, puisque z
et Z sont des solutions pour les nombres complexes, et donc nous
serions dans le premier scénario). En d’autres mots, on obtient donc
qu’on doit multiplier par x et non pas x".

Par rapport a la valeur pour laquelle on doit considérer la multiplicité
de la racine, nous pouvons faire deux observations. Premierement,
dans la deuxiéme fonction, si b = 0, alors nous sommes de retour
dans la premiere fonction. Deuxiémement, il est probable qu’il y ait
un lien avec ’exponentielle complexe, qui a une forme similaire, et
que nous avons déja utilisée pour résoudre ce genre de problémes :

@ — (cos(b) + isin(b))

Pour 'intuition derriere cette méthode, il est probable que tout cela
découle du fait qu’il est impossible de “tuer” I'’exponentielle et les
fonctions trigonométriques basiques en les dérivant (elles tournent
en rond), alors que les polynomes descendent en degré.

Nous voulons trouver la solution générale de I’équation suivante, avec = € R :

2y — 1y —y = 100ze*®
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CHAPITRE 2. EQUATIONS DIFFERENTIELLES ORDINAIRES

Commencons par résoudre ’équation homogene associée :

1, 1
1 /

— Sy —Zy=0
V' =5y -5y

=0, et ses solutions sont

L’équation caractéristique est A2 — %)\ - %

A=1, —%. On obtient donc :

yhomzclew'FCQe%x, Cl,CQ GR,:L’GR

Cherchons une solution particuliere de ’équation compléte par la
méthode de coefficients indéterminés.

On remarque que f(z) = 50ze?® est de la forme R, (z)e® ou
R, (x) =50z et n =1,¢ = 2. Ainsi, f(x) est de forme acceptée par
la méthode des coefficients indéterminés.

On remarque que ¢ = 2 n’est pas une racine de ’équation caracté-

ristique A? — %)\ — % = 0. Ainsi, nous pouvons prendre I’ Ansatz :
Ypart = (Az + B)e**
= Ypart = Ae*™ 4+ 2(Ax + B)e*”
= Yoy = 246> + 24€*" + 4(Ax + B)e*”

Remplacons la dans ’équation pour obtenir des contraintes sur A
et B :

1 1
4Ae* + 4(Az + B)e*” —§A€2$ — (Az + B)e* —E(ax + B)e*” = 50xe*”

"
Ypart 1. -1
2Ypart 5 Ypart

Ainsi, nous obtenons que :

1 1 1
xezm(él— 1— 2>A+e2f((4— 2>A+ (4— 1— 2)3) = 50ze?®

Ce qui implique que :

5 7 5
2z 2 4 2¢ [ B\ = 2z
ze (2 )—i—e 2A+2 50ze

Ceci nous donne le systeme d’équations suivant :

{gA:5o
TA+3B=0

Ce qui nous permet de trouver que :
A=20, B=-28
C’est ensuite une bonne idée de vérifier le résultat.

Nous trouvons finalement que la solution générale de 22" — ' —y =
100ze%* est :

y(x) = Che” + 026%1' + (201’ — 28)62x, C1,0eRzeR
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Notes par Joachim Favre

Nous pouvons trouver le méme résultat en utilisant la méthode de
la variation de la constante.

Nous savons que v;(z) = e® et va(x) = e~ 2 sont deux solutions
linéairement indépendantes de 1’équation homogene. Calculons leur
Wronskien :

Wi, ve](x) = det(Zm € 2;> = 7565 —e2 = 7%65

Nous devons maintenant calculer ¢;(x) et co(x) :

f(z)va(x) /50x62“763 100 "
c1(x) / Wior va] dx 33 dx 3 (x—1)e
B f(x)vi(z) B / 50ze*®e” 40 30,16 5
cz(x)—/w[vl,w](x)dm— e de=...= 3 o€ +3e x

Ainsi, on obtient :
vo () = c1(x)v1 () + co(x)va(z) = ... = 20xe>® — 28e®

comme attendu.

Une équation de la forme f(y)y’ = g(x) se résout en séparant les
variables :

dy _

W =9la) = f@dy=g@)is — [ f@)dy= [ o)z

La solution générale d’'une EDL1 homogene /() + p(z)y(x) =0
est donnée par :

ylx)=CeP@  CeR

ot P(z) est une primitive (sans la constante) de p(x).

Pour résoudre une EDL1 complete, y' (z)+p(x)y(z) = f(x), nous uti-
lisons plusieurs principes. La méthode de la variation de la constante
nous donne une solution particuliere :

v(z) = 43(33)643(1)7 avec c(x) = /f(x)ep(m)

ot P(x) est une primitive (sans la constante) de p(x).

Ensuite, en trouvant vg(z), la solution générale a I’équation ho-
mogene associée, nous utilisons le principe de superposition des
solutions pour trouver la solution générale a notre équation :

y(x) = v(z) + vo(x)

Pour résoudre une EDL2 homogéne & coefficients constants, y" (x) 4+
py(x) + qy(z) = 0 ol p,q € R, nous cherchons les racines a,b € C
du polynoéme caractéristique :

N4+pr+q¢=0
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Cre™ 4+ Coe®, sia,beR,a#b
y(z) = ¢ C1e™ + Coze™, sia=0b
Cre™ cos(Bz) + Cae**sin(Bx), sia=a+iB=0b¢R

Pour résoudre une EDL2 homogene, y” () + p(x)y'(x) + q(z)y(z) =
0, nous avons besoin de deviner une solution particuliere vy (z).
De 1a, nous pouvons calculer une deuxieme solution linéairement
indépendante :

eiP(m)

vi (@)

ol P(x) est une primitive (sans la constante) de p(z).

va(z) = ¢(x)vi(x), avec c(z) = /

Finalement, la solution générale est donnée par :

y((ﬂ) = 011)1(1’) + CQ’UQ((E), VCl, R

Pour résoudre une EDL2 & coefficients constants, y” (z) + py'(x) +
qy(z) = f(x) ou p,q € R, nous pouvons parfois aller plus vite que
la méthode de la variation de la constante en utilisant la méthode
des coefficients indéterminés, si f(x) a une forme particuliére.

Pour résoudre une EDL2 compleéte, y” (x) + p(z)y' (x) + q(x)y(x) =
f(z), nous cherchons d’abord deux solutions particuliéres linéai-
rement indépendantes & 'EDL2 homogene associée vy (x) et vy (x)
(qui nous donnent donc aussi la solution générale a cette EDL2
homogene associée). De 14, nous obtenons une solution particuliére
a notre EDL2 compléte a ’aide de la méthode de la variation de la
constante :

v(x) = e1(z)v1(x) + co(z)va(2)

Avec :
@,
ci(z) = /W[m,w](x)d
[ @)
cz(x)/W[vl’UQ}(x)d
—de 1)1(3;‘) U2(x)
Wloy, vo)(z) =d t<v§ () U’z(x))

De 1a, nous pouvons trouver notre solution générale :

y(z) = Crvi(x) + Cova(z) + v(x), VC1,Cr €R



Lundi 14 mars 2022 — Cours 7 : On introduit pleins de symboles marrants

Chapitre 3

Espace R"

3.1 R”"” est un espace vectoriel normé

Définition

Opérations de
RTL

Base

R™ est un ensemble de tous les n-tuples ordonnés de nombres réels.

T
?:(Il zn): cR"”

Ty,
On dit parfois que @ est un point (élément) de R™.

R"™ est muni de deux opérations. La premiere est ’addition + :

T=(r1 - 2), T =01 - ) :>?+7fﬁf(x1+yl o Tt Un)

La deuxieme est la multiplication par un nombre réel A € R :
z = (xl acn) o )\?(ﬁf()\ml )\acn)

Propriétés On remarque que les opérations satisfont les propriétés suivantes,
pour tout ?,7 eR™ A\ A1, A €R.

Md) @ =M (@) = (M)

0Z=(0 - 0)=0

o 17 =7

M+X)T =7 + 07T

NT+Y) =2\T + )Y

Nous avons défini R” comme des n-tuples ordonnés de nombres réels (et non de
maniére géométrique). Nous pouvons donc prendre la base :

{€i=0 - 010 - 0)},_,, = €:€R”, i=1..,n
ou ?1 a uniquement un 1 a la i-éme position.

On remarque que n’importe quel élément de R™ peut s’écrire comme combinaison
linéaire de cette base :

?:Z.’L‘i?i:(fﬂl SCn)
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Nous définissons le produit scalaire comme :

<77 7> « szyz =T1Yy1 + ... +TpYn
i=1

Nous définissons la norme Euclidienne comme :

121 /(@.7) =

Pour tout 7, 7 € R", nous avons :

@) <[Z] 7]

La démonstration de ce théoréme doit étre connue pour I’examen.

Preuve

Soit A € R. Considérons la somme Y .-, (Az; + i)’

Nous savons que Y . (Az; + yz')2 > 0, puisque c’est une somme de
termes positifs :

0< Z()\mz + yi)2 = Z()ﬂx? + 2z;y; + yf)
i=1 i=1

Et donc :
0< (fo) A2 +2(inyi> A+ <Zy3), YAeR
i=1 i=1 i=1

a b c

Nous avons obtenu une équation quadratique selon A qui est toujours
positive. Ainsi, on remarque qu’il est impossible que cette équation
ait deux racines, sinon, par le théorémes des valeurs intermédiaires,
elle serait négative en certains points. Nous savons donc qu’elle a
un discriminant négatif :

n 2 n n
b —dac<0 = 4 (ny> —4 (23%2) (Zzﬁ) <0
i=1 i=1

i=1

2 2 2
=(Z.9) == =¥l
Ce qui implique que :

IZI- 70> (@ %) = 1717 = [(Z.7)]

Puisque H?H et H?H sont positifs, nous pouvons enlever leur valeur
absolue. Cependant, nous ne pouvons pas enlever celle du produit
scalaire, car elle peut étre négative (enfin nous pourrions, puisque
|z| > x, mais nous perdrions de I'information).

O

1. La norme est toujours positive :

|Z| >0 V& eRr"



3.2. TOPOLOGIE DANS RN Notes par Joachim Favre
2. Si H?H =0, alors :
7 =0

3. Linéarité :

AT =2, ZeR"“AeR

4. Inégalité triangulaire 1 :
1=+ 9l <]+
5. Inégalité triangulaire 2 :

I =9l =2 - 1Yl

, VT, Y eR”

Preuve de Nous savons que :

linégalité tri-

angulaire 1 H? + 7“2 = <? + 7, z + ?> = <?7 ?>+2<?, 7>+<7, ?>
Aussi :
IZ [+ 7)== 2) + 22T + (7. ¥)
Ainsi, si on regarde la différence entre ces deux équations :

12+ 7= (21 + [F)° =20e0) 2| 2] 7] < 0

par Cauchy-Schwarz.

Puisque les deux termes sont positifs, nous pouvons prendre une
racine carrée sans valeur absolue, ce qui nous donne :

17+ <=+ 7]
O
Remarque L’inégalité de Cauchy-Schwarz pourrait étre considérée comme une

de ces propriétés, mais, puisque nous devons la connaitre pour
I’examen, j’ai décidé de la mettre a part.

Définition : Dis- L'expression |2 — ¥ || = d(@,Y) est appelée la distance entre @ et Y dans

tance R™

Propriétés Ld(@,Y)=d(¥. @)
2. d(F,Y) =0 — T =7
3. d(2, ) <d(@,2)+d(Z.7)

3.2 Topologie dans R"

Définition : Pour tout @ € R" et nombre réel § > 0, soit :
Boule ouverte
B(@,0) = {d €R" tel que || & — Y| <4}

B(?7 6) C R™ est appelé la boule ouverte de centre T et rayon 6.
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Nous définissons que F C R" est ouvert si et seulement si :

Remarque

VZ € E 35> 0 tel que B(?,é) CcFkE

Notez que, selon cette définition, ¢ est un ensemble ouvert. En effet,
Va € ¢ P(x) est une tautologie, peu importe P(z).

Soit £ C R™ non-vide. Alors, T € E est un point intérieur de F §’il existe § > 0
tel que B(?ﬁ) Cc k.
L’ensemble des points intérieurs de E est appelé 'intérieur de E, noté E.

Clairement :

Observation

Note person-
nelle : 1D

ECE

Soit £ C R™ non-vide.
On remarque que E C R" est ouvert si et seulement si E=E.

Regardons cette définitions en une dimension, dans R! = R. Nous
obtenons par exemple que Uintérieur de |1,2] U [5,7[U {9} est :

11,2[U]5,7]

La boule ouverte B(?, 5) est un ensemble ouvert.

Preuve

Prenons 6 = § — H? - ?H, la distance entre 7 et le bord de la
boule. Par la définition de la boule ouverte, on sait que :

|2 - <d = d=0-||Z -F|>0

Nous pouvons prendre une boule ouverte B (7, g) qui est claire-
ment inclue dans B(?, 6).

Ansi, on ne déduit que B (?, 5) C R™ est un sous-ensemble ouvert
de R™ pour tout Z € R" et pour tout § > 0.



3.2. TOPOLOGIE DANS RN Notes par Joachim Favre

Exemple 1

Exemple 2

Exemple 3

Propriétés

Nous voulons montrer que ’ensemble suivant est ouvert :
E= {?gR” tel que x; >0,Vi:1,...,n}

Soit ? € E. Alors, nous pouvons prendre B ,min yz)) C E.

Vi

Nous savons déja que ¢ C R™ est ouvert par définition. Nous voulons aussi montrer
que R™ C R™ est un sous-ensemble ouvert.

Soit @ € R™. Nous pouvons prendre n’importe quel § > 0, et nous avons B(?, 5) -
R™.

Soit n > 2. Nous définissons I’ensemble suivant :
E= {7 € R™ tel que zy = 0,2; > 0,i =2,...,n}

Nous voulons montrer qu’il n’est pas ouvert.
Prenons le point 7 = (0 Yy - yn) ou Yo, ...,Yn > 0. Alors, pour tout § > 0 :

B(¥.0)5( v - ya)¢E

1. Toute réunion (méme infinie) (J;.; £; de sous-ensembles ouverts est un sous-
ensemble ouvert.

2. Toute intersection finie (;—, E; de sous-ensembles ouverts est un sous-ensemble
ouvert.

Preuve de la Si @ e U,cr Ei, alors nous savons que ZcE ; pour un indice j.
propriété 1 Or, puisque E; est ouvert, il existe un § > 0 tel que B(? (5)
E - UlGI
U
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Preuve de la Soit @ € Ni, E;. Alors, nous savons que pour tout j, z €

propriété 2 E;. Puisque E; est ouvert pour tout j, il existe §; > 0 tel que
B(?, §j) C FEj. Puisqu’on a un nombre fini d’éléments, nous savons
que min; ¢; existe. Donc :

B<?,m_in5j> CE; V)] = B<?,m_in5j> C ﬂEl =F
J J i=1

O

Nous pouvons aussi remarquer qu’une intersection infinie de sous-
ensembles ouverts de R™ n’est pas nécessairement ouvert :

ﬁ B(?,;) - {?} CR"

k=1

Soit E C R™. Son complémentaire, noté CFE, est défini par :

CEL @ cR" telque @ ¢ E} =R"\ E

Soit £ C R™ un sous-ensemble. E est fermé dans R™ si son complémentaire CE est
ouvert.

Nous savons que ’ensemble suivant est fermé :
E= {7 € R"™ tel que H? — 7“ > (5}

En effet, £ = CB(?, 6) C R™, et nous savons que B(?, 5) est un sous-ensemble
ouvert.

Soit E = {?} € R™. Nous voulons montrer qu’il est fermé. Ceci est équivalent a
montrer que son complémentaire est ouvert :

CE={Y €R" tel que || ¥ — Z| >0}

Pour tout 7 € CE, nous pouvons prendre la boule :
1
B(?, S - 7”) CCE
Nous voulons montrer que I’ensemble suivant est fermé :

E:{?ERntelquem:O} = CE:{?ER"telquexl#O}

Montrons que CE est ouvert. Soit Z € CE, donc 2 # 0. Alors, nous pouvons
prendre :

1
B(?, 2|z1> CCE
Soit I’ensemble suivant, ou n > 2 :

E:{?ER” telquexl=O,xi>0,i=2,...,n}

Son complémentaire est donné par :

CE = {7 € R" tel que x4 ¢O}U U{? € R" tel que z; < O}
i=2
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Exemple 5

Propriétés

Définition :

Adhérence

Définition :

Frontiére

Exemple

Nous allons montrer que C'E n’est pas ouvert. Soit 7 = (O 0 y3 --- yn) e CE.
Pour tout 6 > 0, B(?, 5) contient :

T=0 2 y3 - y)eB(T et Peck

Cependant, cela implique que ? ¢ C'E pour tout § > 0. Ainsi, on obtient que CFE
n’est pas fermé et donc que E n’est pas ouvert.

On avait déja démontré que E n’était pas fermé. C’est donc un ensemble qui est ni
ouvert ni fermé.

Nous pouvons démontrer que ¢ et R™ sont fermés car Cp = R" et CR"™ = ¢ qui sont
ouverts.

Plus généralement, il est possible de démontrer que les seuls sous-ensembles de R”
fermés et ouverts a la fois sont ¢ et R”™.

1. Toute intersection (méme infinie) de sous-ensembles fermés est un sous-ensemble
fermé.
2. Toute réunion finie de sous-ensembles fermés est un sous-ensemble fermé.

Preuve Pour démontrer ces propriétés, nous pouvons utilises les propriétés
des sous-ensembles ouverts, et en voyant que :

C(E:i=|JCE:
i€l i€l

n n

c|JEi=()CE:

Mercredi 16 mars 2022 — Cours 8 : J’ai failli ajouter un d a ce nom de théoreme

Soit £ C R™ un sous-ensemble non-vide.
L’intersection de tous les sous-ensembles fermés contenant E est appelée I’adhérence
de E. E est la notation de ’adhérence de E dans R™.

Remarque On voit que si E C R” est fermé, alors on a £ = E par définition.

Note person-  Nous pouvons considérer R! = R.

nelle - Intui- prenons par exemple E = |1,2] U {6}. Alors, son adhérence est

tion donnée par :

E =[1,2]U {6}

L’adhérence est donnée par ’ensemble en union avec sa frontiere
(concept qu’on va définir juste apres).

Soit un ensemble E C R™ non vide, ou E # R".

Un point Z € R” est un point de frontiere de E si toute boule ouverte de centre
Z contient au moins un point de E et au moins un point de C'E.

L’ensemble des points de frontiere de E s’appelle la frontiere de E, notée OF.
Nous définissons aussi les deux frontieres suivantes :

0p=9¢, OR"=g¢
Prenons le sous-ensemble suivant :
E = {? € R" tel que xz; > 0,7 = 1,...,n}

C’est un sous-ensemble ouvert, comme nous 'avons déja montré.
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Pour trouver ’adhérence, nous pouvons prendre le plus petit sous-ensemble fermé

contenant F : -
E = {?ER" tel que x; > 0,7 = 1,...n}

Nous pouvons aussi trouver la frontiere :
8E:{?GR”telqueﬂimizo,Vj#iwj20}

Propriétés Soit E C R™ non-vide. Alors, nous avons les propriétés suivantes :
1. ENOE =
2. FEUOE=E
3. 0E=E\E

3.3 Suites dans R"

Définition : Une suite d’éléments de R™ est une application f : N +— R" :
Suite dans R™ N
fik—x = ($1k xnk) e R"”

{:c_g};io est une suite d’éléments de R™.

Définition : Une suite {z}},, est convergente et admet pour limite Z € R si pour tout
Convergence e > 0, il existe kg € N tel que Vk > kg, nous avons :

& - @) <<

Nous notons :

lim :IT,: =7
k—o0
‘ Remarque Notez que Ha?,: — ?H < ¢ est équivalent a a?k) c B( z ,5).
Proposition Soit @ = (z1 -+ x,) € R™ Alors :
lim a?k:? —= lim z;,=2z;, Vj=1,...,n
k— o0 k— oo
Preuve En effet, nous savons que :

e> |z -2 = [ D (win —2))°

Jj=1

. . 2
Puisque c’est une somme, de termes positifs, nous avons (z; 5 — x;)° <
€; < e. Ainsi, nous pouvons rendre x; et x; arbitrairement proches
en augmentant k, ce qui est la définition de la limite.

]

Définition : Une suite {w_k)} est bornée s’il existe un M > 0 tel que {aT)k} est contenue dans la
Suite bornée T =S N
boule fermée B( 0 ,M).

Propriétés 1. La liste d’une suite {:Fk)}, si elle existe, est unique.
2. Toute suite convergente {?k} est bornée.

Justification de  Par définition, si une suite est convergente, alors limg_, oo Th==.
la propriété 2 Cela implique donc que, pour € = 1 par exemple, il existe kg € N
tel que pour tout k£ > kg, nous avons Hw_k) — ?H < e =1, donc que
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Théoréme
de Bolzano-
Weierstrass

Théoréme : Lien
entre les suites
dans R"™ et la
topologie

Notes par Joachim Favre

pour k > ko, xp € B( z ,s). Puisqu’il y a un un nombre fini de
points g, ..., Tk,—1. En prenant en compte la distance maximale
a l'origine de cette boule, et la distance maximale de ces points
(qui existe puisqu’il y en a un nombre finis), nous avons trouvé un

M > 0 tel queaT,ZGB(ﬁ,M).

Nous pouvons extraire une sous-suite convergente de toute suite bornée {aTk)} C R™

Un sous-ensemble non-vide 2 C R™ est fermé si et seulement si toute suite {c?k)} CFE
d’éléments de E qui converge a pour limite un élément de F.

La démonstration de ce théoréme doit étre connue pour I’examen.

Preuve —>

Nous supposons que E C R"™ est fermé.

Supposons par I’absurde qu’il existe une suite {CIT]:} C E d’éléments
de E qui converge et qui a pour limite z ¢ E. Ainsi, on sait que
Z € CE, qui est un ensemble ouvert dans R™ (puisque E est fermé
par hypothese). Puisque cet ensemble est ouvert nous savons, par
définition, que 39 > 0 tel que :

B(@,5) Cc CE
Or, cela implique que :
{z} Vk e N} NB(Z,0) =0
—_— —
CE CCE

En d’autres mots, aucun élément de la suite ne fait partie de cette
boule ouverte.

De Pautre coté, puisque limy_, o .’F)k = ?, nous avons qu’il existe
un kg € N tel que pour tout k > kg :

7 e B(?g) c B(7.9)

En d’autres mots, pour k > ko, z7, fait partie de notre boule ouverte.
Ceci entre en contradiction avec ce que nous avions vu ci-dessus.

O
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Définition : En-
semble borné

Définition : En-
semble compact

Exemple 1

Exemple 2
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Preuve <= Nous allons démontrer notre proposition par la contraposée : nous
voulons montrer que si £ C R” n’est pas fermé, alors il existe une
suite {aT)k CcCFE } d’éléments de E qui converge et qui a pour un
limite un élément qui n’est pas dans F.

Puisque nous savons que E n’est pas fermé, nous savons que CE
n’est pas ouvert. Ainsi, 37 € CFE tel que, pour tout ¢ > 0 :

B (7, 5) NE#go
Plus précisément, on peut prendre € = %, ce qui nous donne :
1
VkeN,, B ?’E NE+o
Ceci implique que, pour tout k, on sait qu'’il existe un ﬁ) tel que

gﬁ) € B(?, %) et EZ € E. Ceci nous donne une suite {ﬁ}kel\u CcFE
telle que limg o0 EZ = 7 € CE, et donc ? ¢ F.

O

Pour construire I'adhérence E d’un sous-ensemble non-vide E C R”, il faut et il
suffit d’ajouter les limites de toutes suites convergentes d’éléments de F.

Ezemple Dans R! = R, si on prend toutes les suites d’éléments de [0, 1], il
y a des suites qui convergent vers toutes les valeurs entre 0 et 1,
compris.

Un ensemble E C R™ est borné s'il existe un M > 0 tel que :
——
EcC B( 0 ,M)
Un sous-ensemble non-vide £ C R™ est compact s’il est fermé et borné.

Prenons une boule fermée quelconque :
B(@.0) = {¥ € R" tel que |7 - | < 6}

Nous savons qu’elle est bornée car :

B(?,é)cB(ﬁ”

2| +9)
On peut donc en déduire qu’une boule fermée est compacte.

Prenons ’ensemble suivant, ou n > 2 :
E:{?GR” telquexlz()}

Il est clairement fermé, on peut prendre n’importe quelle boule centrée sur la droite
définie par CE (x; = 0), il est impossible de trouver un ¢ qui fait qu’elle est
entierement inclue dans CE.

Cependant, nous pouvons aussi voir que F n’est pas borné. Prenons la suite suivante :

{a_'>k: (O’k’o’()’.”)}kGN cCE

Les normes forment la suite ||ch)|’ = k € N. La distance entre l'origine et les éléments
de (a_)k) n’est donc pas bornée, ce qui nous permet d’en déduire que E n’est pas
borné. Ainsi, E n’est pas compact.



3.3. SUITES DANS RN Notes par Joachim Favre

Définition : Re-

couvrement

Théoréme de
Heine-Borel-
Lebesgue

Exemple 1.1

Exemple 1.2

Un recouvrement d’un ensemble E est défini par :

EC U A;,  A; CR" ouverts
i€l

Notez que I peut étre innombrable.

Un sous-ensemble non-vide £ C R™ est compact si et seulement si de tout recou-
vrement de F par des sous-ensembles ouverts dans R™ on peut extraire une famille
finie d’ensembles qui forment un recouvrement de E.

Une droite dans R™, ot n > 2, est fermée mais pas bornée, et donc pas compacte.
Prenons une origine quelconque sur la droite, et numérotons la comme la droite des
réelles. Alors, nous pouvons prendre le recouvrement suivant :

Ec |/ B(n,%)

nez
o 2
T b A e

On ne peut clairement pas choisir de sous-recouvrement fini qui recouvre E. Si on
jette une-seule boule, ce qui reste ne couvrira pas notre ensemble.

Un intervalle ouvert dans R! = R, E = ]0,1[ C R n’est pas compact. Il est bien
borné, mais pas fermé.
Prenons le recouvrement suivant :

EcC U]O,Hi_l[

S\

~
N
N
N
N
J
A )
5;

ol
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Exemple 2.1

Exemple 2.2
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Il est aussi impossible de choisir un sous-recouvrement fini. En effet, avec un nombre
fini d’intervalles, alors il existe un ¢ qui est le plus grand, et donc nous n’atteignons
pas les valeurs entre 17 et 1.

Prenons I’ensemble suivant :
A={(z,y) € R? tel que 1 > sin(z +y) > —2}

Nous remarquons que sin(x +y) > —2 tient toujours, V(z,y) € R2. Pour l'autre
condition, nous avons besoin de :

sin(z +y) #1 <= :c+y7ég+2k7r = y7é7m+g+2k:7r

On obtient donc que :

CA= {(x,y) eR? tel que y = —x + g —|—2k7r}

Or, c’est une union de droites, donc il est clairement fermé. On obtient ainsi que A
est ouvert.

Prenons ’ensemble suivant :

B={(z,y) € R? tel que /Ty < 2}

Pour que /zy existe, nous avons besoin de xy > 0. De plus, nous avons aussi la
condition /7y < 2 = zy < 4.
Nous avons donc deux cas. Si x > 0, alors y > 0 et :

4
Ty <4 = y<;

Siz<0,alorsy <O0et:
4
Ty <4 <= y>;

Si z = 0, alors y est arbitraire.

/

BRI/

//////

L L/l
/
/

Les axes sont inclus dans notre sous-ensembles, mais pas les courbes. Ainsi, B n’est
ni ouvert ni fermé.



Lundi 21 mars 2022 — Cours 9 : Ca devient limite la

Chapitre 4

Fonctions réelles de plusieurs
variables réelles

4.1 Définitions et exemples

Définition

Exemple 1

Exemple 2

Soit £ C R™ un sous-ensemble non-vide ou n > 1.

Une fonction F — R” est une application qui envoie chaque point z =
(x1 ... an) € E dans R. E est le domaine de définition de f, et f(E) C R
est I’ensemble image.

Prenons la fonction suivante :
f(z,y) = V11— (2% +y?)

Pour notre domaine de définition, on veut que 22 + y? < 1, ce qui est un disque de
rayon 1 et centre (0,0). Donc :

E= {(az,y) C R? tel que 22 + 3% < 1}
Considérons le graphique de z = f(z,y). Cette équation est équivalente a :

Z2=1-(22+y?) <= 22 +y*+22=1
z>0

Il est donc clair que c’est une hemisphére de rayon 1 et centre (0,0,0) € R3.
Prenons maintenant la fonction suivante :
flr,y)=22+1 <= z=22+1

Si on considére seulement le graphique sur x et z, alors c¢’est une droite. Si maintenant
on rajoute y, on prolonge cette droite, ce qui nous donne un plan.
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Définition
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Soient a, b, c € R, et la fonction suivante :
flz,y) =az+by+c

Clairement, E = R?. Nous nous demandons ce que représente cette fonction graphi-
quement.
Pour simplifier, prenons ¢ = 0. Nous pouvons considérer le graphique de f :

F = {(z,y,2) € R? tel que az + by = z}
= {(z,y,2) € R? tel que ax + by — z = 0}
= {(z,y,2) € R® tel que ((z,y, 2), (a,b, ~1)) = 0}
ce qui est le plan orthogonal & = (a,b,—1) et qui contient (0,0,0).
Considérons maintenant ¢ € R. Il suffit de monter le plan par ¢ unités le long de 'axe

z pour obtenir le graphique de notre fonction : le plan orthogonal & = (a,b,—1)
qui contient (0,0, c).

Soit f: E+— R™ et c € f(E) C R. Alors, 'ensemble suivant est appelé I’ensemble
de niveau de f :

Ni(c)={@ € Etelque f(@)=c} CE
Prenons la fonction suivante :
f(z,y) =sin(z? +y), E=R?

Son ensemble image est donné par f(E) = [—1,1] puisque le sinus est borné.




4.2. LIMITES ET CONTINUITE Notes par Joachim Favre

Calculons Ny (1) :

N¢(1) = {(:E,y) € R? tel que sin(m2 +y2) = 1}
= {(x,y) € R? tel que x2+y=g+2kw,kez}

= {(x,y) € R? tel quey:—x2+g+2k7r,k€Z}

Ce qui nous donne le graphique suivant :

A1)

N

N]‘]:-‘i

4.2 Limites et continuité

Définition :
Définition au
voisinage

Définition : Li-
mite

Définition :
Continuité

Exemple 1

Une fonction est définie au voisinage de Z4 si:

36 > 0 tel que B(fo),é) C EU{zo}

Remarque La fonction n’a pas besoin d’étre définie en z pour étre définie au
voisinage de ce point.

Une fonction définie au voisinage de z{4 admet pour limite le nombre réel ¢ lorsque
T tend vers IB_()), si pour tout € > 0, il existe § > 0 tel que pour tout T cE:

0< @ @l <o = [7() (| <e
Dans ce cas, nous notons :

lim f(2)=¢

EaRT

Soit § € E un point intérieur de E.
f: E — R est continue en z = 37()) si et seulement si :

lim z) = f(z4

Jim 1(@) = /(@)

Il faut donc a la fois que la limite existe, et qu’elle soit égale a la valeur de la
fonction.

Nous souhaitons montrer que la fonction suivante est continue pour tout (zg,yo) €
R? :
flxy)=z+y

%)
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Soit € > 0. Considérons la différence suivante :
|f(z,y) = f(@0,90)| = [(z +y) — (zo + yo)|
.i.
< o — 2ol + |y — ol

= \/(35 —20)% + \/(y —0)°

< \/(x —x0)” + (y— 90)? + %x —20)% +(y — %)
>0 >0

= 2\/(55 —20)” + (¥ — v0)*
<2

_9.°%

2
=c

en prenant 6 = 5, et ol I'inégalité 1 est I'inégalité triangulaire.

On en déduit que la fonction f(x,y) = z + y est continue sur R?, par définition de

la continuité.

Nous souhaitons montrer que la fonction suivante est continue pour tout (Jco, yo) €
R? .
f(xa y) =Ty

Le cas ou xg = 0 est laissé en exercice au lecteur.
Supposons maintenant que xg # 0. Soit € > 0. Considérons la différence suivante :

|f(z,y) = f(z0,90)| = |2y — Toyol

= |zy — woyo + 2oy — ToyY|
|(x — 20)y + T0(y — yo)|
< |z — @ollyl + [y — yol|zol

Regardons le deuxiéme terme :

3

|{,C | - =
0

ly — yol|zo| < \/(x —20)” + (¥ — y0)* |zl < 8zo| < 5

en prenant § < puisqu’on sait que |zg| # 0.

£
2|z’
Regardons maintenant le premier terme, qui est plus difficile puisque |y| est une

variable :

& = zollyl < /(& — 50)* + (y — 90)’ ol <80l +9) < oo +1) <
<|yol|+d

DO ™

en prenant § < 1et d < m
Nous pouvons mettre ensemble toutes les conditions sur § :

€ €
0 = min , 1
(2|$0| 2(|yol +1) )

Dans ce cas, en reprenant notre premiere différence :

|f(z,y) — f(zo,y0)| < +§:5

N ™

pour tout (z,y) € R2.
Ainsi, par la définition de la limite, on obtient que :

lim TY =2
() woge) T OY0

ce qui implique que la fonction est continue partout sur R2.



4.2. LIMITES ET CONTINUITE Notes par Joachim Favre

Théoréme : Ca- Une fonction f : E + R définie au voisinage de 376 admet pour limite ¢ €

ractérisation R lorsque T — T si et seulement si pour toute suite d’éléments {(T)k} de
des limites a {? € E tel que @ # 175}, qui converge vers T4, la suite {f(ch))} converge vers /.
partir des suites Ep d’autres mots :

convergentes

( lim f(@) = e) = (kggof(a:) =t v{ai} c B\ {5} telle que lim aj = :FS)

z -z

La démonstration de ce théoréme doit étre connue pour I’examen.

Preuwve = Nous savons par hypothese que limz _, > f (7) = (. Ainsi, par la
définition de la limite, on sait que, pour tout ¢ > 0, il existe § > 0
tel que :

0<|[@-|| <6 = [f(Z)—t]<e

Soit une suite arbitraire {(T)k} C E\{QTS} telle que limy_ oo aTk) = 9?5.
Puisque la définition des limites pour les suites marche pour tout €,
nous pouvons prendre € = ¢. Ainsi, par définition, pour € = § > 0,
nous savons que Jkg tel que, pour tout k > kg, on a :

| - = <o

Or, puisque {CT,:} C E\ {?0}, nous savons que aj, — T # 0. Ainsi,
pour tout k > kg, 0 < ||Cl_,k,> - a?o)H < §. Cependant, cela implique
par la premiere implication que :

|f(ak) — €| <e

Ainsi, nous avons démontré que pour tout £ > 0, il existe ko tel
que pour tout k > ko on a }f(ch)) — f’ < e. En d’autres mots, nous
avons montré que :

lim f(af) = ¢

k—o0

Preuve <= Nous allons faire cette preuve par la contraposée. Ainsi, nous sup-
posons par hypothese que limz_, z» f(?) # 4.
Par la définition de la limite, on obtient que 3¢ > 0 tel que Vd > 0,
3375 tel que :

&% - <o et 5@ (>

Puisque c’est vrai pour tout d, alors c’est aussi vrai pour le cas
particulier ou § = %, k € Ny. Ainsi, pour le € dont nous connaissons
I’existence, pour tout k € N, il existe z; € F tel que :

|7k -3l < ¢ et |f(@k) 4 ><

On obtient la suite {a?;: }:Ozl qui est telle que, par la définition,
limy o0 :EZ = 376. Cependant, cette suite est aussi telle que ’f(a:_k)) — €| >
€ pour tout k € Ny, ce qui implique que :

fi 170) 71
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CHAPITRE 4. FONCTIONS REELLES DE PLUSIEURS VARIABLES REELLES

Soient f, g deux fonctions Eg» — R telles que :

briques - -
lim =/ et lim =/
S /(@) =4 S o(@) =L
Alors, nous avons :
1. lim (af + Bg) (?) = aly + Bl pour a, B € R
Ear N
2. lim . = {1/
o w_g(f 9) () = lily
l
3. Sifly #0, alors  lim (f) (?) =1
2 —-z5 \ g Lo
Cet propriétés sont facilement démontrables a l’aide de la caractérisation des limites
a partir des suites.

Implication On peut en déduire que tous les polynémes de plusieurs variables
et toutes les fonctions rationnelles sont continues sur leur domaines
de définition.

Remarque La caractérisation de la limite a partir des suites convergentes est pratique pour
montrer qu'une fonction n’admet pas de limite en z$ € R". En effet, il nous suffit
ﬁ
de trouver deux suites {CT;: } et {bk} d’éléments de E \ {:1:_6 }, convergentes vers
T4 € R™, et telles que :
_)
lim f(az) # lim /(oK)
k— o0 k—o0
Exemple 1 Soit la fonction f : R? + R telle que :
ry .
S i (@) #(0,0)
flz,y) = @2+ ’ 7
0, si(z,y)=(0,0)
Nous voulons savoir vers quoi tend la fonction quand (z,y) tend vers (0,0). De
maniere générale, quand le degré du numérateur est égal au degré du dénominateur,
il est relativement probable que la limite n’existe pas. Essayons de le démontrer par
la caractérisation des limites a partir des suites convergentes.
Prenons la suite @ = (1, 1), qui converge bien vers 0 quand & — oo. Alors :
N 1.1 1
lim f(ak) = lim —k k- —
1\2 1)2
k—00 k—o0 (E) + (E) 2
N . = . .
Comme deuxiéme suite, prenons by = (P O) qui tend bien vers (0,0) quand k tend
vers 'infini. Alors :
1
— =0
lim f(bk) = lim = = lim 0=0
k—o0 k—o0 = k—o0
Puisque les deux limites sont différentes, % # 0, on sait que lim, 0,0y f(z,¥)
n’existe pas, par la caractérisation des suites.
Mercredi 23 mars 2022 — Cours 10 : Le retour des gendarmes
Exemple 2 Soit la fonction f : R? ++ R définie par :

o8

3 3
f(z) = ;izz’ si (z,y) # (0,0)

0, autrement




4.2. LIMITES ET CONTINUITE Notes par Joachim Favre

Remarque 1

) :

x|

Utilisons nos deux mémes limites : {CT;Z} = (4,0) et {?k} = (4,

1 1
lim f(aj) = lim £ = lim £ =0
k— o0

2
lim f(b_,:) — lim %: lim £ =0

k—o00

Nous décidons donc de formuler I'hypothese que lim(, ) 0,0y = 0.

Preuve par Il est possible de démontrer cette limite par la définition. Cependant,
changement de  une deuxiéme maniere beaucoup plus efficace consiste a utiliser un
coordonnées changement de variable vers les coordonnées polaires.
AR,
¥
>

Ce changement de variable nous donne :

x=rcos(p), y=rsin(p)
our € Rxget,sir#0, ¢el0,2n].
Ainsi, on obtient que notre fonction est égale a :

7"3 COS3

.3
F(re) = E@ o sngw

r2 cos2(p) + r? sin®(y)

13 (cos?(p) + sin®(p))
)

r(cos?’(go) + sin3(g0))

~ =

Or, nous savons que (z,y) — (0,0) est équivalent a dire que r =
v/ 12 4+ 42 — 0 et @ est une fonction inconnue de r. Ceci nous donne
que :
. _ 3 .3 _
lim | (r. )| = lim _1_Jeos? (i) + sin®()] = 0
—0 <o

On en déduit donc que :

lim z,y) =0
(m,y)ﬁ(oﬁo)f( 2

Cette méthode est souvent efficace (mais pas toujours) pour montrer
I’existence des limites a l'origine. Elle est a retenir.

O

Nous ne pouvons pas calculer la limite d’une fonction de plusieurs variables de la
fagon suivante :

lim f(z,y) # lim <lim f(x,y))

(z,y)—(z0,y0) T—To \ Y—Yo
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En effet, si on considere a nouveau l'exemple 1 :

flz,y) = E;EF’SN%M#%&m

0, si (x,y) - (070)
Considérons d’abord la limite de y — 0, si x £ 0 :

—0
Ty
lim f(z,y) = lim ——— =0
y—0 y—0 —|—y2
N~
#0
Ainsi :
lim i =lim0=0
25 1y o) =
Alors que lim, ) (0,0) f(2,y) n’existe pas. Nous arrivons au méme probléme si
nous commengons par la limite selon x.

Remarque 2 Si la limite lim g, ) (q,5) f (7, y) existe, et les limites par rapport & chaque variables
existent pour tout x et tout y dans le domaine de f, alors on peut échanger ’ordre

des limites :
lim ng}) f(z,y)) = ?}gr})(}}g}l f(Ly))

Remarque 3 L’existence de la limite lim(, ) (a,p) f(2, %) n’implique pas en général I'existence
des limites lim,_,, f(x,y) et lim,_; f(z,y).

Ezemple Voici un exemple tiré du livre Douchet-Swahlen, qui ne nous est
probablement pas demandé de savoir pour ’examen puisqu’il n’a
pas été donné pendant le cours.

Soit la fonction d’une variable suivante :

. 1, site@
)= 0, sitgQ

Prenons aussi la fonction suivante :
f(z,y) = zh(y) + yh(z)

Nous trouvons que lim; ) (0,0 f(z,y) = 0, alors que les limites
par rapport a une seule variable n’existent pas.

Théoréme des 2 Soient f,g,h: E— R, ou F C R", telles que :

endarmes 1. i = 1i Z) =/
& i, = Jim, 9(%)

2. 1l existe un o > 0 tel que pour tout =z &€ {x eEF:0< H?—:FO)H < a} =
B(mg,a) \ {970)}, on a:

£(@) <h(@) < o()

Alors :
lim h(?) =/
—x4
Preuve Soit {Ek)} C F une suite arbitraire telle que limg_, o aj = 3?0) . Alors,

la premiere hypothése nous donne par la caractérisation a partir
des suites que :

i 7 (@) = Jim o(@) =¢
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Exemple

Proposition :
Continuité d’une
fonction compo-
sée

De plus, la deuxieme hypothese nous dit qu’il existe un kg € N tel
que :
f(a) < h(ak) < g(at), vk > ko

Et donc par le théoreme des 2 gendarmes pour les suites, cela
implique que :
3 lim h(ag) =(€R
k—o0
On en déduit donc que, puisque {ak} — ) est une suite arbitraire
convergente vers xg, par la caractérisation a partir des suites :

1im_) h(?) =/

—xQ

Soit la fonction suivante :

Fz,y) = zylog(|z| +[yl), si(z,y) # (0,0)
' 0, si(z,y)=(0,0)

On cherche une fonction g(z,y) telle que 0 < |f(z,y) — 0| < g(z,y) pour (z,y) au
voisinage de (0, 0), et telle que :

lim z,y) =0
(I,y)H(O,O)g( v)

Soit (z,y) € B((0,0),1). Cela donne donc que v/22 + y? < 1, ce qui nous permet
d’obtenir les inégalités suivantes :

lzy| = |z||y| = |z|Vy? < |z|va? +y? < |zl
lzy| = |zlly] = Va2|y| < Va2 + 2yl < |yl

Nous savons donc que V(z,y) tels que y/z2 4+ y? < 1, nous avons :

(Jz| + ly|) log (|| + [y]) = g(=,y)

N =

0 < |zylog(lz| + [y|)| <

Or, puisque 0 < |z| + |y| < 24/2? 4 y2, et puisque /22 + y? — 0, nous savons que
|z| + |y| — 0, par le théoréme des 2 gendarmes.
Prenons maintenant ¢ = |x| + |y|. Nous avons :

1 1
li = 1 t) = lim —t|log(t)| = — Ui —tlog(t
oo 9@ ) = lim g(t) = lim otllog(t)| = — lim otlog(?)
s=1 1. —log(s) =1 . %_
= -3 tm —= =3 lim =0

Nous pouvons en déduire par les 2 gendarmes que :

lim z,y) =0
(r-,y)—>(070)f( v)

Soient 2 sous-ensembles ensembles A C R™, B C RP. De plus, soient deux fonctions
d:A—Bet f:B—Rou:

9 (@) = (0(%).- 0 (7))

Sigi,...,gp sont continues en = A, et f(?) est continue en (91 (7), . 0p (7))7
alors f o ?(?) est continue en @ = @.

61



Analyse II

Exemple 1

Exemple 2

Exemple 3

62

CHAPITRE 4. FONCTIONS REELLES DE PLUSIEURS VARIABLES REELLES

Soit la fonction suivante :
h(z,y) = sin(zy) cos(zy), V(z,y) € R?

On remarque que g(z,y) = xy est continue sur R?, et f(t) = sin(¢)cos(t) est
continue sur R. Ainsi, f o g(z,y) = sin(zy) cos(zy) = h(z,y) est continue sur R? par
la proposition.

Soit la fonction suivante :

sin(zy)
) = P r#0ety#0

1, autrement

Prenons g(z,y) = xy et :

On sait que g(z,y) est continue sur R? puisque c’est un polynéme, et nous savons
que h(t) est continue sur R puisque lim;_,qo % =1.

Ainsi, par notre proposition, f(x,y) = ho g(z,y) est continue sur R2.
Considérons la limite suivante :

b @= D log(@)

@y)=1,0) (z—1)> 412
Cette limite est de la forme %, nous devons donc faire plus de travail. Nous formulons
I’hypothese que la limite existe. Le changement de variables vers coordonnées
polaires semble ne pas étre efficace car des choses peu agréables se passeraient avec
le logarithme. Utilisons plutot le théoreme des deux gendarmes ; nous cherchons une

fonction g(z,y) telle que, au voisinage de (1,0) :

0<|f(z,y) — 0] < g(x, et lim =0
<|f(z,y) = 0| < g(z,y) e

Remarquons que :

— 1)log(x) | _ (z — 1)*[log(x)

0< xz,y) — 0| = < = |log(x
<|f(z,y) = 0| I T |log(x)
=~
>0
Nous avons donc obtenu :
0 < f(z,y) < [log(z)| = g(z,y)
Or, nous remarquons que :
li JY) = li 1 = lim |1 =0
(xﬂﬂgglp)g(w Y) (xﬂngglinlog(x)l lim |log(z)]

Ainsi, par les deux gendarmes :

—1)?%1
i @ )2%@)
@) =(1,0) (2 —1)% + 52



4.8. MIN ET MAX SUR UN COMPACT Notes par Joachim Favre

4.3 Maximum et minimum d’une fonction sur un ensemble
compact

Définition :
Maximum

Définition : Mi-
nimum

Exemple

Théoréme du
min et du max
sur un compact

Soit la fonction f: EF — R, ou £ C R™.
Si M € R satisfait :
1. f(?) < M pour tout ZcE
2. M e f(E)
Alors M est le maximum de la fonction f sur E.

Soit la fonction f: E — R, ou £ C R".
Si m € R satisfait :
1. f(?) > m pour tout T cE
2. me f(E)
Alors m est le minimum de la fonction f sur E.

Soit la fonction suivante, définie sur f : R? — R :

flz,y) = sin(aL‘2 + y)

Alors, nous avons :

e (z,y) =1, Wi, (z,y) =

Une fonction continue sur un sous-ensemble compact E C R? atteint son maximum
et son minimum, i.e. :

H%ax f(?), H%Hé%f(?>

c€E

La démonstration de ce théoréme doit étre connue pour I’examen.

Preuve f(E) Nous voulons commencer par montrer que { f (?) }? cp st borné.

est borné Supposons par I'absurde que f(E ) n’est pas borné. Ceci implique

que, pour tout k > 0, il existe un z}, € F tel que |f(wk)‘ > k. Ceci
nous donne une suite {mk} e k.
Pulsque FE est un ensemble compact, nous savons qu’il est borné, et
donc {wk} est bornée. Ainsi, par le théoreme de Bolzano-Weierstrass,
nous pouvons trouver une sous suite convergente {wk } qui a pour
limite un vecteur Zg € R™. Puisque E est compact (et donc fermé),
nous savons que m_o) € FE.
Puisque f est continue, nous savons que :

lim f(a:k ) f(a?%) eR

p—o0

f(ac_IZ)‘ > k pour tout k € N, donc { f (Z.) }
n’est pas bornée et ne peut donc pas converger. Ceci est notre contra-

diction, nous en concluons que f est bornée sur E.

Preuve f at- Nous voulons montrer que f atteint son minimum et son maximum

teint ses extre- sur K.

mum Par ce que nous venons de démontrer, nous savons que f(FE) est un
sous-ensemble borné. Ainsi :

dM = sup{f(?),? € E}, Hm:inf{f(?),? € E}
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CHAPITRE 4. FONCTIONS REELLES DE PLUSIEURS VARIABLES REELLES

Remarque

Par la définition du supremum et de I'infimum, nous pouvons nous
en rapprocher arbitrairement, donc cela implique qu’il existe deux

_)
suites {E;Z}, {bk} € F telles que :

_>
lim f(@) =m, lim f(bk) - M
k—o0 k—»o0
Or, puisque {ak}, {bk} € F (qui est borné), ce sont des suites
bornées, et donc il existe des sous-suites convergentes. En d’autres
mots :
— =
an, —+ d €R", by, — b €R"
De plus, puisque E est compact (et donc fermé), nous savons que
_>
dcEet b €E. Ainsi, par la continuité de f :

m= Jim f(@) = lm [(@) = £(@)
1= 1 (7) = 1 (52) = ()

%
Ainsi, nous savons qu’il existe 77 b € F tels que :

F(@) =m = min f()

f(?) :M:%laxf(?)

€E
]

Ce théoréme est similaire a celui qu’on avait pour la 1D : une
fonction continue sur un intervalle fermé borné atteint son minimum
et son maximum.

Notez que, dans R"™, pour que f atteigne aussi toute valeur inter-
médiaire entre m et M, il faut que F soit compact, mais aussi qu’il
soit connexe par chemins (la définition arrive juste apres).

Un ensemble F est connexe par chemins si, pour n’importe quels 2 points, il
existe un chemin d’un point a 'autre qui est continu et qui est contenu entierement

dans E.

Ezxemples

L’ensemble de gauche est compact et connexe par chemin, et celui
de droite est compact mais pas convexe par chemins.




Lundi 28 mars 2022 — Cours 11 : Et le retour des différences maintenant! ®

Chapitre 5

Calcul différentiel des fonctions de
plusieurs variables

5.1 Dérivée partielles et le gradient

Définition : déri- Soit f : E — R™ une fonction, ou £ C R™ est un ensemble ouvert, et soit la fonction
vée partielle d’une seule variable suivante :

g(s) = f(ar,a9,...,ak-1,8,Gk41,---,0n), OU = (a1,...,ap) € E
Le domaine de définition de g est :
D, = {s € R tel que (a1,a2,...,ak, S, Akt1,---,0n) € E}

Alors, si g est dérivable en a, € Dy, on dit que la k-éme dérivée partielle de f
en @ € E existe est égale a g'(ax), notée :

o (ar) S 2L (@) = D, p (@)

- axk

On remarque que nous avons :

Of v . glag+t)—glax) . f(@+tek) - f(d)
—( a) = lim = lim
oxy, t—0 t t—0 t

Remarque Quand on prend une dérivée partielle, on considére que tout est
constant, sauf la variable selon laquelle nous calculons notre dérivée.

Exemple Soit la fonction f(x,y) = sin(zy) ou f : R? — R. Soit aussi (z¢,y0) € R% Nous
voulons calculer la dérivée partielle selon x en (g, yo) :
0 t — i t — si
i(xo7yo) — lim f(zo +t,90) — (20, Y0) — lim sin((zo + t)yo) — sin(xoyo)
Ox t—0 t t—0 t

Si yg = 0, alors nous avons :

g(%’o) — lim sin(0) — sin(0)

ox t—0 t =0
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Sl Yo 3& O :
0 . sin(zoyo) cos(tyo) + cos(xoyo) sin(tyo) — sin(zoyo
01 1 ) = Yy ") oxt1)-+ coxpn) ) o)
Xz t—0 t
N cos(tyo) — 1 siniyo)
= lim | yosin(zoyo) ty—o+y0 cos(gcoyo)T
— ~——
-1 ~
= yp cos(xoyo)
On obtient donc :
i sin(z, y) cos(zg, Yo)
—— Sin =
O Y (%0,y0) yo 0> Yo

Nous avons calculé cette dérivée par la définition, cependant, nous pouvons aller
beaucoup plus rapidement en utilisant notre remarque ci-dessus (quand on prend
une dérivée partielle selon y, on considére & comme constant) :

0
O—ch(xo, yo) = g cos(xo, yo)

Si toutes les dérivées partielles existent en @ EE:

af af
(@) (@)

Alors, on définit le gradient de f en @ comme :

V@) = (G (@) (@)

Oz T Oy,

Notez que V s’appelle le nabla, et ce symbole se révélera tres utile par la suite.

Intuition Le gradient montre la direction de la plus grande pente de la fonction.
En d’autres mots, si la fonction représente une altitude en fonction
d’une position, alors le gradient montre dans quelle direction nous
devrons aller pour monter le plus vite. Nous prenons cette propriété
telle quelle pour l'instant, mais nous la démontrons dans le cours
suivant.

Reprenons notre fonction f(z,y) = sin(ay). Nous avions déja calculé les dérivées
partielles, donc :

Vi(x,y) = (ycos(zy),z cos(zy)), V(z,y) € R?

Voici le graphique de notre fonction :

N
\\ %

A "\‘\; \&\\\\\‘ % D)
7 (ARENNSS
“‘\\‘-‘»“}@‘\‘\"’fign K il
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5.1. DERIVEE PARTIELLES ET LE GRADIENT

Exemple 2

Définition :
Dérivée direc-

tionnelle

Notes par Joachim Favre

Nous pouvons visualiser le champ vectoriel du gradient, c’est-a-dire :

Vf:R?— R?
(z,y) — VI((z,y))

NSy

NCA A VAN
27\A \gr" 74?// .
DN\ At
\\‘\*\x KT?‘/x////
M~ v T ke

AN
— — X
<

SETTRRIMNNNESS
LA N
R NN
S IR AN
0

Soit la fonction f(x,y) = 22 + y2, ot f : R? — R2. Alors :
Vi(zy) = (22,2y), VY(z,y) € R?

Nous pouvons dessiner le graphique de la fonction et le champ de vecteurs de son

N\~
N7

SN X A A T T >~
<<« <> >—>—>—

e & ¥ ¥ X NS5

I ARRNNS
NN
ZiliN

%
)
Yy
T
7
1Y

Nous pouvons aussi calculer une dérivée partielle par la définition :

o )2 2 2 .2 2 4 9p b 4 42 _ g2
if(moayo):lim (@0 +1)” + 5 — % — 4o = lim o+ 2xot + %0
T

= 2250
t—0 t t—0 t

%
Soit E C R™ un sous-ensemble ouvert. Soient aussi @ € E, et ¥ € R" ol ¥ #0.
Nous savons que la droite passant par @ en direction de ¥ admet la paramétrisation

suivante :
T =@ +td, VteR
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Considérons une fonction f : E +— R, et soit la fonction d’une variable ¢ suivante :
o (=
g(t) d:ff( / (t)) =f(@+t), Vte{tcRtelque @+t € E}

Si g est dérivable en ¢ = 0, on dit qu’il existe la dérivée directionnelle de f en a
suivant le vecteur ¥ (dans la direction de 7) La dérivée directionnelle de f en a
en direction de U est donnée par :

iy 200200 HE NI ) -

@)

Remarque 1.Sid =ei,one =(0,...,0,1,0,...,0), alors :

D@3 = iy LT F 1) ~ (@) _ 0f

t—0 t o axi

()

En d’autres mots, la dérivée partielle est un cas particulier de la
dérivée directionnelle.

Ainsi, si toutes les dérivées directionnelles existent en a (pour
tout ¥ # 0), alors toutes les dérivées partielles existent aussi
en ce point. Cependant, la réciproque est fausse en générale.

2. Essayons de multiplier 4 par A € R* :

C’est cohérent car ce qui nous importe est la direction est non
pas la longueur de notre vecteur.

Dong, si la dérivée directionnelle de f en @ suivant U existe,
alors la dérivée directionnelle de f en @ suivant AU existe pour
tout A € R*. 1l suffit donc de calculer les dérivées directionnelles
suivant les vecteurs unitaires H?H =1.

Exemple Prenons la fonction suivante :

flz,y) =2 +y°
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5.2. DERIVABILITE ET DIFFERENTIELLE Notes par Joachim Favre

2772

Nous voulons calculer Df (@, ), ot @ = (1,1) et ¥ = (1 ‘/§> :

D) S @) (T () e

t—0 t t—0 t

Ce qui est égal a :

It A1 VB3 11t /Bt
lim =lim —— =
t—0 t t—=0 t

1+3

Nous allons voir bient6t une méthode de calcul plus rapide.

5.2 Dérivabilité et différentielle

Définition : déri- Soit f: E +— R, ot E C R" est ouvert. De plus, soit @ € E.

vabilité

On dit que f est dérivable (ou différentiable) au point @ il existe une transfor-
mation linéaire L : R” — R et une fonction r : /' — R telles que :

(@) =f(d)+ Lz (@ -a)+r(F), VaecE
et aussi r doit étre telle que :
m F)
o2 |7 -4
L— sappelle la différentielle de f au point @ € E, et est aussi parfois notée :

Ly =df (@)

Intuition Cette définition veut dire que notre fonction admet une linéarisation :
elle se comporte comme un hyperplan autour d’un point.

Transformation Une transformation linéaire T : R™ +— R est une fonction telle que :
linéaire
T(e@ +8Y) =al () +8T(Y), V&, ¥ €R"Va,f €R
En particulier, cela nous donne :

r(¥) =7

Par exemple, T'(x,y) = = + y est une application linéaire R? — R,
mais T'(z,y) = ¢ + y + 2 n’est pas une application linéaire (méme
si ¢’est une fonction linéaire, puisque c’est un polynéme).

Remarque Comparons notre définition avec la dérivabilité des fonctions d’une
seule variable.

Une fonction f: I +— R, ou I C R est un sous-ensemble ouvert, est
différentiable en a € I s’il existe £ € R et une fonction r : I — R
tels que :

F(@) = Fa) + 60z — a) + r(z), Vo € I, et lim —)

v—a |z —a|

Or, une constante L(x) = fx est une application linéaire R! — R!
(un scalaire est comme une matrice de dimension 1 x 1). De plus,
dans ce cas, nous avions £ = f’(a), cela semble donc cohérent avec

le fait que L = df (7) est appelée la différentielle.
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En d’autres mots, notre définition de dérivabilité s’applique dans le
casn = 1.

Mercredi 30 mars 2022 — Cours 12 : Gros théoréme trés trés utile

Remarque

Théoréme 1 sur
la dérivabilité

70

Soit L : R™ — R une transformation linéaire, et {E-)}?:l la base canonique de R™.

Posons aussi :
= (L(@),.... L&)

Alors, nous avons :
L(T) = L(niet +...+v,&,) "2 v L(el) + ...+ v, L(&))
Ce qui est égal & :
L(@) = (T, (L(&)..... L&) = (7. 7)

Ainsi, si nous connaissons les valeurs de notre transformation linéaire évaluée aux
différents vecteurs de la base canonique, alors nous pouvons trouver la formule
générale de celle-ci. Ce résultat va étre important dans la preuve du théoreme qui
suit.

Soit f: E — R, ou E C R"”, une fonction dérivable en @ € E et de différentielle
L :R"— R. Alors :
1. f est continue en @ E€E.
2. Pour tout ¥ € R™, ou ¥ # B), la dérivée directionnelle Df(@, ¥) existe
et :

Df(@, W) =Lz (V)

3. Toutes les dérivées partielles de f en a existent, et :

(@) = 1o (@)

8{Ek

ot e}, est le k-éme vecteur de la base canonique.
Le gradient de f existe en a et

Vi(@) = (Lz(el)..... Lz (&)
4. Pour tout @ € R™, o0 T # 0, alors :
Lz (¥)=Df(@.¥)=(VI(d). )
5. Pour tout ¥ € R” tel que || 7| = 1, nous avons :
Df(a@. 7)< |vI(@)

De plus :
vi(a@) \
or( Ry - 17

En d’autres mots, le gradient donne la direction et la valeur de la plus grande

. - . . . N
pente de f en a (si Vf (7) # 0, sinon la fonction est simplement plate a
cet endroit, comme nous le verrons plus tard).

Preuve du Puisque f est dérivable en @, nous avons que :
point 1
()

f(2)=f(d)+Lg (@ - ) +r(T), Eyin?m =0
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Preuve du

point 2

Preuve du

point 3

Notes par Joachim Favre

Puisque nous voulons montrer que notre fonction est continue,
calculons la limite suivante :

lim f(?) = lim

d T = /(@)

f(@)+ Lz (2 - @) +@

—0 —0

En effet, nous savons que Lg? est continue, puisque les polynémes
sont continus.

Nous avons donc démontré que f est continue en Z=1d.

%
Soit ¥ € R", ot ¥ # 0. Soit aussi g(t) = f(? +t?), définie
sur g : D — R, ou D C R. Alors, nous savons que, si la dérivée

existe :
Df(d.¥) = 9’(t)‘t20
Nous voulons donc uniquement montrer que cette dérivée existe :
- a+tY) - f(d
Di(@.F) = 1 L0 =90y, J(@+1T) = /(@)

t—0 t t—0 t

Or, nous savons que notre fonction est dérivable en 7, donc :
(@) =f(@) + Lz (T - @) +r()
= [(d+t7) = f(@) + La (V) +r(d + V)

Ainsi, en prenant 7@) =d +t, qui est tel que @ — @ quand
t — 0, nous obtenons que notre limite est égale a :

f(@)+ L () +r(d +t7) - ()

Df(777) = lim

t—0 t

i L2 () +r(d +t7)

= t

~ lim t-L—g(?) n r(_a)—l-t?) . Ht?”
] @

. r(@) 17
= lim| L4 + ||?(t) __)H :

t—0 a

—0

= Lz (7)
Nous savons déja que :

0
L (@)=ps(@.2)

Ainsi, par le point 2 :

O (@)= pf(@.3) = Lo (L)

8xk

De plus, cela implique directement que le gradient de f existe, et

e VI(@) = (Lg(€).- La(€n))
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Preuve du Par la remarque juste avant le théoreme, nous savons que :

L2 (V) = (V. V/(d))

point 4

En effet, par le point 3 :
Vi(d)=(Lg(el).... Lz (en))
Ceci nous donne donc que :

DI(@. W) = L (V) = (V. V(@)

Preuve du Soit H7H =1, et supposons que Vf(ﬁ) # 0. Alors :
point 5
DI, D) - (VI().7)
= V(@) |7 || cos(V/ (@), ¥)
=1 <1
< |[vs(@)]

. a)
De plus, soit o = L. Alors :
P [l

oy @\ _IG@
o1(2.7) = {v1(2). [ty )= [ - Iesn

Ainsi, si Vf (7) #+ 6}, la valeur maximale de la dérivée direction-
nelle de f en @ est dans la direction du gradient V f (7)

O

Soit la fonction suivante :
fla,y) =2+ 47

Nous allons montrer que cette fonction est dérivable sur R?. Commencons par
calculer les dérivées partielles :

of _
or

of _

2
z, 3y

2y

Nous pouvons maintenant calculer le gradient :
Vf=(2z,2y), V(z,y) €R?
Aussi, calculons la différentielle, avec ¥ = (v1,v2)
L(%y)(?) = Df((amy), 7) = <Vf(:v,y), 7> = 2201 + 2209

Prenons maintenant par exemple (z,y) = (1,1) et v = (%, @) On remarque

que le gradient en ce point est donné par Vf(1,1) = (2,2). Calculons la dérivée
directionnelle dans la direction de ¥ et dans la direction du gradient :

Df((1,1), ) = <(2,2), (; \f)> =1+3

Df((l, 1), Hgiﬂ) = <(2,2), <\}§ \}5)> =V2+V2=2V2=||Vf(1,1)]| > 1+V3
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Application :
Plan tangent a
une surface

Courbe de Considérons maintenant la courbe de niveau de notre fonction
niveau f(m, y) :
{(z,y) € R? tel que 2% + ¢ = k}
ce qui est un cercle de rayon vk et centre (0,0).

On remarque que Vf(z,y) = (2z,2y) est normal & la courbe de
niveau.

A tvecer - €4 (%o )

On sait que Vf(z,y) # 0 dans notre cas, généralisons donc nos
trouvailles. La courbe de niveau montre 1a ou la valeur de la fonction
ne change pas. Ainsi, la dérivée directionnelle dans la direction de
notre courbe de niveau, 7, doit étre nulle. Or, on sait qu’elle se
calcule par :

Df((zo, o), 7) = <Vf($0,yo)77> =0

Et, puisque V f(xo,y0) # 0 et K4 # 0, nécessairement ils doivent

étre orthogonaux.

Soit f : E+— R, ot E C R?, une fonction dérivable sur E (c’est-a-dire qu’elle est
dérivable en tout point de E). Soit aussi = (70,90, f(70,%0)) € R? un point du
graphique de f. On cherche une équation du plant tangent & z = f(x,y) & ce point.
Soit F(x,y,2) = z — f(x,y), qui est définie sur D — R, ol D C R3, et qui est
dérivable puisque f(z,y) est dérivable. Par définition de F(z,y,z), nous avons
paramétrisé la surface de notre graphique avec 1'équation F(z,y, z) = 0 (puisqu’on
sait que c’est équivalent a z = f(x,y), qui est la définition de notre graphique).

Le gradient de F' est donné par :

VF(ey,2) = (_3{(7),_%(7),1) 4T

Par un argument similaire a ce que nous venons de trouver avec la courbe de niveau,
nous savons que le gradient est orthogonal au plan tangent & la courbe. En effet,
la courbe de niveau de F telle que F(x,y,z) = 0 est exactement notre graphique.
Ainsi, tout vecteur de notre plan U est tel que :

(VF(@),T) =0

Prenons zg = f(zg, yo). Puisque nous savons que le point (zg, yo, 20) appartient au
plan, nous savons que 7, allant de (xo, Yo, 20) & un vecteur quelconque, est de la
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forme (x — xg,y — Yo,z — 20). Ainsi, cela nous donne :
(VF(@),(x =0,y — yo, 2 — 20)) = 0
of

= = @) —a0) - 5 (@)~ ) + 1~ Flao,0) =0

<z = f(z0,90) + (Vf(z0,%), (x — T0,y — ¥0))

I1 faut connaitre ce résultat.

Remarque Nous pouvons comparer ce résultat avec la tangente a une fonction
d’une seule variable en a € F :

Tu(z) = f(a) + f'(a)(z — a)
Prenons la fonction suivante :
f(z,y) = sin(zy)
Nous verrons plus tard qu’elle est bien dérivable sur R?. Calculons son gradient :
Vf(z,y) = (ycos(zy), z cos(zy))
Un vecteur normal au graphique de z = sin(zy) en (xo, yo, sin(zoyo)) est :
(yo cos(zoyo), zo cos(Toyo), —1)
Ainsi, cela nous donne que la plan tangent a la surface z = sin(z,y) en ce point est :
z = sin(xo, Yo) + Yo cos(zoyo) (& — x0) + o cos(zoyo) (¥ — Yo)

Nous aurions naturellement pu aller plus rapidement en prenant directement la
formule :

z = f(xo,y0) + (Vf(xo,%0), (x — T0,y — yo))

Lundi 4 avril 2022 — Cours 13 : On monte en ordres

Rappel

Théoréme 2 sur
la dérivabilité
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Nous avons vu que f est dérivable en a implique que les dérivées directionnelles
existent. De plus, si les dérivées directionnelles existent dans toutes les direction,
alors les dérivées partielles existent. Notez que les deux réciproques sont fausses en
général, I'existence des dérivées directionnelles n’implique pas la dérivabilité de la
fonction, et I'existence des dérivées partielles n’implique pas I’existence des dérivées
directionnelles.

Cependant, nous avons le théoréeme qui suit.

Soit £ C R™ un ensemble ouvert, f : £ — R et un point @ cE.
Supposons qu’il existe & > 0 tel que toutes les dérivées partielles BBTJ;(H)) existent

sur B(ﬁ, 6) et sont continues en @ . Alors, f est dérivable en @ € E.



5.3. DERIVEES PARTIELLES D’ORDRE SUPERIEUR

Notes par Joachim Favre

5.3 Dérivées partielles d’ordre supérieur

Définition :
Fonction dérivée
partielle

Définition : Dé-
rivée partielle
d’ordre supé-
rieur

Définition :
Classe

Théoréme de
Schwarz

Définition : Ma-
trice Hessienne

Soit f: E— R, ou E C R" est ouvert, une fonction telle que %

k, avec 1 < k < n, en tout point de E. Alors %(7) on @ € E, est la fonction
k-eéme dérivée partielle.

existe pour un

Soit f : E — R une fonction telle que % existe en tout @ € E. Si la fonction %

admet & son tour une dérivée partielle par rapport & z; (potentiellement une autre
aet O f

variable), on pose :
0 (05 u
Ox; \ Oz | Oxi0xk

Nous appelons ceci la dérivée partielle seconde. Nous pouvons définir ainsi,
lorsqu’elles existent, les dérivées partielles d’ordre p. Par exemple :

0 o [ of

Notez que la dérivée partielle qui se calcule en premier est celle
de droite. Ceci est trés cohérent avec la plupart des opérateurs,
notamment les matrices et les application linéaires. Cependant,
dans le livre de référence Douchet-Swahlen, ’ordre des dérivées
partielles est échangé (et c’est probable que ce soit le seul livre qui
utilise cette convention).

__%f

Remarque

Soit £ C R™ un ensemble ouvert.
Une fonction f: E +— R est dite de classe CP sur FE, si toutes les dérivées partielles
d’ordre < p existent et sont continues sur F.

‘ Remarque 1 C veut dire que la fonction est de classe p pour tout p € N.

Remarque 2 Le théoréme 2 sur la dérivabilité nous dit que, si f est de classe C*

sur F, alors f est dérivable sur F.

2 2
Soit f: E+— Ret d € F tel que les dérivées partielles secondes #@J;j et afj gm
existent dans un voisinage de @ et sont continues en @ (en d’autres mots, f est de
classe C? sur un ensemble ouvert contenant 7)
Alors, nous avons :
0% f

@) =21
Oxiaxj

- ijaxl

Remarque De maniere générale, on peut démontrer que si f est de classe CP
sur F, alors nous pouvons échanger ’ordre des dérivées partielles

jusqu’a lordre p.

La matrice Hessienne est la matrice des dérivées partielles d’ordre 2 pour une
fonction F — R™, ou E C R™ est un sous-ensemble ouvert, notée :

0 f 0% f 92 f
@ (7) 81:22301 (7) o 033”28371 (7
o*f *f o2 f
Hess(f) (7) = | 0x,0z, (7) 0x3 (7) 02,012 (@)
02f 02f 02f
0x10x, ( ) 02202, ) @( a )

(6]
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Remarque

Exemple

CHAPITRE 5. CALCUL DIFFERENTIEL

Si f est de classe C? sur E, alors la matrice Hessienne est symétrique,

c’est-a-dire :
T

Hess(f) (@) = Hess(f)(@)

Soit la fonction définie sur f : R? — R suivante :

f(z,y) = sin(zy)

Nous allons utiliser cet exemple afin d’illustrer le théoreme de Schwarz, et les matrices

Hessiennes.

Dérivées par-
tielles pre-

miéres

Dérivées par-

tielles secondes

Dérivées par-
tielles d’ordre
3

76

Nous pouvons calculer les dérivées premieres :
O — yeosta), 9L = weos(ay)
— =ycos(zy), —=— =zcos(x
5 =Y v gy Yy

Calculons maintenant les dérivées partielles secondes mixtes :

82f — 7( COS(SU )) — Cos(x ) — Sil’l(iL’ )
Oyoxr Oy 4 4 y y Yy
i —— (2 cos(xy)) = cos(xy) — xysin(zy)
oxdy  Ox v = Y Yy Y

Nous remarquons qu’ici elles sont égales. Nous pouvons aussi calculer
les autres dérivées partielles :

52 d [0 0
67;20 =5 <8:j:) = %(y cos(zy)) = —y” sin(zy)

gzyé — é% <g£) = %(m cos(zy)) = —z? sin(zy)

Nous pouvons maintenant aussi calculer les dérivées d’ordre 3 pour
cette fonction. Par exemple :

3f o( 0*f : 2
Jrdyor  x <8y8m> = —2ysin(zy) — zy” cos(zy)
Pf _ 0 o*f _ 0 PfrN\ _ 0f
0x0xdy  Ox \0xOy) Ox\Oydxr) 0Oxdydx
P f 9 (0*f : 2
9902 ~ Oy (8952) = —2ysin(xy) — zy® cos(zy)
On remarque que nous avons :
>f >f >*f 2
= = R
0x20y  Oxdydx  Oydx?’ V(@ y) €
Qui sont différentes de :
3 3 3
of o of V(z,y) € R2

0y20x  Oydxdy  Oxdy?’

Nous pouvons calculer les dérivées partielles d’ordre p, ou p € N*,
pour f(z,y) = sin(xy). Elle existent et sont continues sur R?, ainsi
Iordre de dérivation ne fait pas de différence pour cette fonction.
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Résumé

Exemple 1

Matrice Hes-  Finalement, nous pouvons utiliser ce que nous avons calculé pour
sienne construire notre matrice Hessienne :

o*f  9%f
Hess(£)(o.1) = ( iy 3;%%)

ozdy  oy?
- —y? sin(zy) cos(zy) — zy sin(xy)
~ \cos(zy) — zysin(zy) —2? sin(zy)

Nous avons vu beaucoup de théorie, de laquelle nous pouvons faire le schéma suivant.
Nous allons voir un certain nombre de contre-exemples sur les réciproques de nos
propositions, ainsi elles sont déja écrites sur le schéma pour plus de clarté.

Soit f : E+— R, ou E est ouvert, alors :

Thm. 0? 0?
Classe C? - 3 6f , :3 g '
sur B Schwarz Loty Lot
pour i,j =1,...,n
Déf.ﬂ(% Ex. 3
Classe C!
sur B
Thm. Z\U/% Ex. 4
Thm. 1
Dérivable A Continue

end €E K= end €E

Ex. 5
Thm. 1\H/% Ex. 2 % % Ex. 1
o

Df( ) )_) — P ( )ex1stent

. Tk
existent Vo #0 <]§X? et Vf (7) existe
X.

Soit la fonction suivante :

flzyy) = ﬁxiily?’ (x,y) # (0,0)

0, (xv y) = (0, 0)

Nous allons montrer que toutes les dérivées partielles de cette fonction existent, mais
qu’elle n’est pas continue et que les dérivées directionnelles n’existent pas en (0, 0).

Continuité On remarque que f(z,y) n’est pas continue en (0,0) :
11 " 1
lim f() = lim +%+ =~
k—o0 k' k k—o0 = —+ = 2
1 0-1
lim f(o,) = lim —% =0
k—o0 k k—o0 %

Ceci implique que la fonction n’est pas dérivable, par la contraposée
de notre premier théoreme.

7
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Exemple 2

78

CHAPITRE 5. CALCUL DIFFERENTIEL

Dérivées par-  Calculons maintenant les dérivées partielles. Si (z,y) # (0,0), alors
tielles nous avons :

g _ y(m2 +y2) —2zay > — 23y
W@ @)

) N . - .
Or, on remarque qu’elle ne peut pas étre continue en 0 , puisque la
limite suivante n’existe pas :

1
lim af(o,l) = lim £ = lim &

k—oo O k k—o0 A k—o0

k

Si nous voulons trouver la dérivée partielle selon y, alors nous
pouvons utiliser la symétrie de notre fonction et échanger les x et
s L Of .

les y dans 5 :

of 2 — %z

o~ @ty
De maniére similaire, on trouve que cette dérivée partielle ne peut
pas étre continue en O .

Dérivées direc-  Calculons les dérivées directionnelles en (0,0). Ainsi, soit ¥ =

tionnelles (v1,v2) # (0,0), cela nous donne :
— —
flo+td)—f(0
Df(ﬁ*,?): lim ( ) ( )
t—0 t
1/ ¢
= lim — % -0
t—0 t \ t?(vi + v3)
V1V

150 (07 + 3)

Cette limite n’existe pas, sauf si v; = 0 ou v = 0, auquel cas elle
est égale a 0. Ainsi, seules nos dérivées partielles existent, et elles

sont égales a 0.

Soit la fonction suivante :

2,3
fla,y) = :cfifyﬁ (z,y) # (0,0)

0, (:E, y) = (0’ O)

Nous allons montrer que toutes les dérivées directionnelles de cette fonction existent
en (0,0), mais qu’elle n’est ni continue ni dérivable en ce point.

Continuité Nous remarquons qu’elle n’est pas continue en (0,0) :

Nous en déduisons que cette fonction n’est pas dérivable en (0,0).



5.3. DERIVEES PARTIELLES D’ORDRE SUPERIEUR Notes par Joachim Favre

tionnelles

Dérivées par-

tielles

Plan tangent

Dérivées direc-

Calculons maintenant les dérivées directionnelles en (0,0). Ainsi,
soit W = (v1,v3) # 0. Nous avons :

f(3’+t7) —f(?)

Df(ﬁ*,?) = lim

t—0 t
TN . T
=0 t(t*o] + t609)
viv

Ce qui nous donne que :

vivg
N 11)42:F’ sivy #0
Df(0’7>: "o
=0, siv; =

20T 203

Nous en déduisons que les dérivées directionnelles existent en (0, 0)
pour tout ¥ € R2, o # (0,0).

En particulier, nous avons :
of 1— —
g(o) _Df(o,(1,0)) =0

g—;(?) - Df(ﬁ*,(o,l)) -0

. - — e,
Ainsi, Vf ( 0 ) = 0. Nous pouvons montrer que les dérivées par-

tielles ne sont pas continues (cette propriété est nécessaire par notre
deuxiéme théoréme).

Nous savons que f n’est pas dérivable en (0,0), mais nous avons
que V£(0,0) = (0,0). Ainsi, nous pouvons essayer d’écrire tout de
méme 1’équation d’un plan :

Cependant, comme nous pouvons le voir sur l'image suivante, ce
plan ne fait aucun sens, ce n’est pas un plan tangent au graphique
de la fonction. Cela montre que, si la fonction n’est pas dérivable,
alors il n’existe pas de plan tangent.

3: O \\\\\\L e —o s .

“'QTL P«A {, /Jzan fmﬁwzz
Ceci nous amene a la remarque suivante.
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Remarque
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Nous avions trouvé que si f(x,y) est dérivable en (zg,yo), alors le plan tangent a la
surface z = f(x,y) au point (xg, yo, f(Zo,yo)) est défini par I’équation :

z = f(l‘o,yo) + <Vf(.%'0,y0)7 ($ —Zo,Y — y0)>

Si f n’est pas dérivable en ce point, alors ce plan n’est pas un plan tangent, méme
si le gradient V f(z, yo) existe. Le plan tangent n’est simplement pas défini dans ce
cas.

Mercredi 6 avril 2022 — Cours 14 : Toujours plus d’exemples

Démonstration
de la dérivabilité

Exemple 3

80

Voici deux méthodes pour démontrer qu'une fonction est dérivable.

Méthode 1 Nous savons que si toutes les dérivées partielles d’ordre 1 sont
continues au point donné, alors nous savons que cela implique que

f est dérivable.
Il est important de voir que le fait qu'une ou plusieurs dérivées
partielles % ne soient pas continues en a n’implique pas nécessai-

rement que f n’est pas dérivable en 7, comme nous le verrons dans
I’exemple 5, et comme nous pouvons voir sur le schéma de résumé.

Meéthode 2 Si le gradient V f ( ) n’existe pas, alors nous savons que f n’est

pas dérivable en . Sl existe, nous pouvons poser :

(@) = (@) - /(@) - (V/(@), 7 - @)
Alors, si limz_, 5 % = 0, nous savons que f est dérivable en

a par définition.

r(2
De maniere similaire, si limz_,& ﬁ # 0, alors f n’est pas

dérivable par notre premier théoreme. En effet, si une fonction est
dérivable, alors L— - v = <Vf (7)77>, et donc r(?) et telle que
donnée ci-dessus. Ainsi, si notre limite ne donne pas 0, c’est une
contradiction avec le fait que la fonction soit dérivable.

Soit la fonction suivante :

P 0.0
roy | @) £ 0.0
0, (x,y) = (070)

Nous allons montrer que cette fonction est de classe C'', mais pas de classe C2. De
plus, les dérivées partielles secondes existent, mais nous ne pouvons pas changer
lordre de dérivation.

Dérivées par-  Nous pouvons calculer ses dérivées partielles en (0,0) :
tielles pre-

miéres O (0 oy — 1y 4(5:0) = £(0,0) _ t-0 _
83:(0’0)_}5% t _tg%t(t2+0)_
of o fo)y—f00) 0.8
gy OO =l T = gy =0

Calculons aussi les dérivées partielles pour (z,y) # (0,0) :

of _
or

y® — 22y
(22 +y2)?

y*(¢* +y°) = 22(ay’)
(22 + y2)°
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87‘]0 B 3y2x(ac2y2) _ Qy(xyS) B y4x+3x3y2
dy (22 + y2)? (@2 +12)°

Nous pouvons aussi calculer leur limite :

borné
. af .. 1 (sin®(p) — cos® () sin®(p))
hm _— = hm - _ 0
(z,y)—(0,0) Ox  r—0 r
borné
. 1% (sin?(p) cos(p) + 3 cos® () sin®(p))
lim 2 — lim —0
(z,9)—(0,0) Dy 70 rd

Ainsi, puisque les dérivées partielles existent et sont continues sur
R?, nous savons que f est dérivable sur R? par notre deuxiéme
théoreme.

Dérivées par-  Calculons maintenant les dérivées partielles secondes :

tielles secondes 5 3 5
> —0-t 3
dy \ 9z 0 ¢(t2 40)° 5010

t-0-0-
oz \ 0y =0 ¢(0 + £2) t—0 t5
Nous avons donc trouvé une fonction telle que :
0*f
0zxdy

0*f
0yox

(0,0) #

(0,0)

2
Par la contraposée du théoréme de Schwarz, nous savons que 78‘1 gy

n’est pas continue en (0,0). En effet, pour (z,y) # (0,0) :
82f B 6x2y4 + y6 _ 3x4y2 62f

0xdy (z2 + y2)3 -~ Oyox

Or, la limite n’existe pas en (0,0), donc elles ne peuvent pas étre
continues a ce point.

Dérivabilité Nous savons déja que cette fonction est dérivable, puisqu’elle est de
classe C'!, mais utilisons la deuxiéme méthode pour I'illustrer.

Nous avions trouvé V £(0,0) = (0,0). Ainsi, posons :

T 3
(o) = flo,9) = £0.0) = (VF(0.0), @.y)) = flo.y) = 50—
=0 =0 ! Y

Nous pouvons maintenant calculer la limite :
r(z,y) . xy®

= lim
(z,)=(0,0) (22 + y2)\/2? + y?

lim —_ =
(@)= 0,0) [[(z,y) — (0,0)]]
4. .3
lim " cos(¢p) sin®(p)

r—0 r3
_ 1. .3
lim 7 cos(y) sin®(y)
borné
=0

Ainsi, cette fonction est bien dérivable.
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Exemple 4
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CHAPITRE 5. CALCUL DIFFERENTIEL

Prenons la fonction suivante :

Nous allons montrer que est dérivable en (0, o), mais qu’elle n’est pas de classe C'!
en (0,y0), pour yo € R.

Dérivée par- Clairement, f(x,y) est continue sur R?. Calculons la dérivée partielle
tielles selon z. Si z # 0 :
o (1 ) 1 1 A 1
— =2zsin| — )| +2°cos| — || ——= ) =2z sin| — | —cos| —
ox x x x2 z T
Et,six=0:
of . t*sin(3)-0 /1
gy = fim ———— = limtsin{ 5 ) =0
ors

Regardons maintenant si cette dérivée partielle est continue en
(O7y0) :

lim or (z,y) = lim | 2z sin L cos L
1 = N1 1 — | — —
(@,y)—(0,y0) O =25 T T

—0 n’existe pas

qui n’existe pas. Ainsi, g—f

.- n’est pas continue si z = 0.

Dérivabilité Si nous voulons savoir si cette fonction est dérivable, nous devons
faire la deuxiéme méthode (la premiére méthode ne peut pas fonc-
tionner puisque les dérivées partielles ne sont pas continues, et donc
la fonction n’est pas de classe C'!). Posons :

r(@) = F@.y) — F0.90) — (VFO,50), (2.y — o)) = 22 sin(l)
——

X

=0 =0

Nous avons maintenant :

- @yl sG]
@)= 00) [[(2,9) = (0,50)  @w=0w0) 12 4 (y — yo)?
———
>0
s (1
< g Zln()
z—0 |,’E|
. (1
= lim]|z| sm()‘
x—0 xr
——

borné

=0

Ceci implique que notre fonction est dérivable en (0, yo).

Plan tangent
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Exemple 5

Notes par Joachim Favre

_)
f est dérivable en (0,yp), et nous savons que Vf(0,yo) = 0 . Ainsi,
nous savons que le plan tangent en (0, yo, f(0,y0)) est :

z2=0+(Vf(0,90), (z,y —0)) =0

Ceci est cohérent, comme nous pouvons le voir sur 'image suivante :

i Af\\x“\‘~ZZj{m

=,

Prenons la fonction suivante :

xty
fla,y) = (@2 +y2)?
0, (z,y)=1(0,0)

(z,y) # (0,0)

Nous allons montrer que cette fonction est continue, mais pas dérivable en O .

Continuité Nous pouvons voir que f est continue sur R :

borné

—_——f~
1 |cos () sin(yp)|
li =1l
woim o |f (@)l = Timy o

=0

Dérivées par-  Regardons les dérivées partielles en (0,0) :

tielles .
t* —
ox =0 £(¢2 + 0)
-t
1 0,0 = tim — 21
dy =0 ¢(0 + ¢2)

Ceci nous donne que le gradient est donné par V f(0,0) = (0, 0).

Dérivabilité Nous voulons montrer que la fonction n’est pas dérivable en (0,0).
Pour ce faire, nous allons utiliser la deuxiéme méthode, puisque le
gradient et la fonction sont nuls & ce point. Ainsi, posons :

T(x,y) = f(way)_f(OaO)_<vf(OaO)7 (m,y)) = f(x’y) = %
(2 +9?)

Calculons maintenant la limite suivante :

r(z,y) . aty
im = lim 5
@y)—=0,0) (@, )| (@1=00) (22 +y2)° /22 + ¢2

.’E4y

= lim —2Y
(z,y)—(0,0) (332 +y2)§
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Le fait que le degré du dénominateur est égal au degré du numérateur
nous donne envie de montrer que cette limite n’existe pas :

11 L.l 1
ak=<E,E>=> lim 2k = —

1 0-1
bk=<0,E) = lim J:O

Ainsi, nous avons vu que la limite n’existe pas, et donc que f(x,y)
n’est pas dérivable en (0,0).

Plan tangent ~ En particulier, le plan z = 0 n’est pas le plan tangent a la surface
z = f(z,y) en (0,0) :

F6,5)

05 -0
10 th’F/DQA%/&/[M
mg&ﬁ

Résumé Nous pouvons & nouveau voir notre résumé. Soit f : F — R, ou E est ouvert, alors :
Thm. 0? 0?
Classe C? - 3 8f =3 g
sur B Schwarz Lot TjOti
pour i, =1,...,n
Déf.\U{% Ex. 3
Classe C'!
sur F
Thm. ZM% Ex. 4
Thm. 1
Dérivable — Continue

end €E K= end €E

Ex. 5
Thm. 1M% Ex. 2 % %EX. 1
A\

Déf.
i@ W) — %(7) existent

existent Vo #0 % et Vf (7) existe

Ce schéma est trés important, et nous devons le connaitre.
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Remarque Nous pouvons le comparer avec ce que nous avions en Analyse 1 :

Classe C? sur E
— Classe C*! sur F
— Dérivable en a € F
< f'(a) existe
—> Continue en a € £

Lundi 11 avril 2022 Cours 15 : Masterclass Jacob

5.4 Fonctions a valeurs dans R™

Exemple

Introduction

Définition : k-
éme dérivée
partielle

Soit E C R™ un ensemble ouvert, et soit f : E' +— R une fonction telle que le gradient
Vf(?) existe V& € E.

Alors, (V f)T : E — R"™ est une application a valeurs dans R”™.

Par exemple, si on prend f(z,y) = sin(x,y), nous avons f : R? — R de classe C™°
sur R?, et cela nous donne :

Vi) = (G0 5 0.0)) = eostan).acoston)

Ceci est une matrice ligne, et nous voulons un vecteur colonne a la fin, c¢’est pourquoi
nous devons le transposer. Nous pouvons dessiner notre champ de vecteurs :

» PR S S v )
L R D ~ r4 ,(
N > ™ - » « l

R U n_— p ¥

K B % - '

‘ ’ r
(I ' '

vyt ! ’ IR

' ' ' A A v

‘ 4 N ‘

4 4 ‘ \ Y

& o = s NN YN

¥ ¥ v - & b ‘
Vs o W v - - A L

«~ & o v - - A X Y

Plus généralement, nous pouvons considérer les fonctions a valeurs dans R™, ? :
E—R"™ouFE CR":
[ ()

F@)=| : |erm

fu(@)

Chaque composante f; est une fonction réelle de n variables réelles.

Soit £ C R™.
La k-éme dérivée partielle de ? E—R"end € E, est définie par :

o (@)
o7 s [

8$k
G (@)
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Définition :
Dérivée direc-
tionnelle

Définition : Li-
mite

Définition : Déri-
vabilité

Proposition :
Dérivabilité
pour chaque
composante
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. . P . E)
si chacune des fonctions f1,..., f,» admet la dérivée partielle e a.

_)
Soit E C R™, et soit ¥ € R™ tel que ¥ # 0.
La dérivée directionnelle de . E v+ R™ suivant ¥ en @ € E, est :

Dfi(d, )
p¥ (@ 7)Y :
Dfn(d, )

si Df; (7, 7) existent pour tout i =1,...,m.

Soit E C R™.
Une fonction ? : E— R™ admet 7 € R™ pour limite lorsque Z tend vers @ si
Ve > 0, 36 > 0 tel que pour tout T e E,ona:

0<|[@-2) <o = |1(@)-7 <=

Remarque En particulier, nous avons :

Jim, 71(@)

a0 7(@) - :
Jim, Jn (@)

En effet, nous voulons que la valeur suivante soit arbitrairement
petite :

H?(?) o 7H2 = (fl(?) —61)2 NI (fm(?) _gm)z

Or, puisque c’est une somme de carré, rendre la norme arbitrairement
petite est équivalent a rendre les composantes arbitrairement proche
al;.

En d’autres mots, 'existence de cette limite est équivalente a I'exis-
tence de la limite de toutes les composantes.

Sqit £ C R™.
: E — R™ est dérivable au point @ € E s'il existe une transformation linéaire
= :R" = R™ et une fonction T E— R™ telles que :

F(@)=TF(@)+L2(@-a)+7(F)

De plus, il faut aussi que :

lim ?(?) =0
e 7|

871? est dérivable, alors f? : R™ — R™ est appelée la différentielle de ? en

Soit £ C R™.
? = (f1,.-+ fm) : E — R™ est dérivable en @ € E si et seulement si chaque
composante f; : F — R est dérivable en dcE pour ¢ = 1,...,m. De plus, nous

pouvons construire :

L1,? (?)
Lo(v)= : . TERNT AT
L,=z(7)
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Notes par Joachim Favre

oulL, o (7) est la différentielle de f; calculée en d et appliquée en . En d’autres

mots :

Preuve

Définition : Ma-
trice Jacobienne

Observations

Remarque 1

Remarque 2

Lz (V) =Dfi(d.7) = (Vi(d), V)

La définition d’une fonction dérivable nous donne m équations, une
pour chaque composante. De plus, la contrainte avec la limite peut
aussi étre séparée en m sous-contraintes, en utilisant notre remarque
pour le calcul des limites.

Soit £ C R™. Si ? : E — R™ possede toutes ses dérivées partielles en dcE , alors
sa matrice Jacobienne (matrice de Jacobi) est définie par :

8 1 8 1 3 1
D@ @) o @ S
Loy By . Ba| (VA
L 0xq 0xo Oxy, — 2.
: : : v m’ -
Om gy Oy . O f(@)

(@)

oxy 0xo Oy,

Cette matrice n’est pas forcément carrée.

De plus, nous pouvons voir que chaque colonne de la matrice Jaco-

bienne est la dérivée partielle ‘Z—(ﬁ) Aussi, chaque ligne est le
X

gradient Vf; (7) La Professeure utilise cet argument pour justifier
que le gradient devrait étre une matrice ligne (mais selon moi cela de-
vrait quand méme étre un vecteur colonne, car le Nabla doit étre un

vecteur colonne si nous voulons la mnémotechnie grad(?) = Vf,

diV(?) =V ? et rot(?) =V X ?)
Ainsi, nous avons que :
e Sig:R"™—= R, alors J, (?)
e Si ¢ : R R" alors Jg(x
e Sig:R~— R, alors Jy(z) =

= Vg(?).
)=22Z.
g ().

Si 7 est dérivable en @ € FE, alors nous avons :

Ll,_a’ (e_1>) L1,7 (e_)n)
Jp(@)=| :
L, = (e7) L,, = (en)

Ainsi, si 7 est dérivable en 7, la matrice Jacobienne nous donne
la matrice de la différentielle de f .
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Si ? est dérivable, alors :

Dfi(d, )
D7 (2. 7) :

Dfm (7 o)
(VA(T). V)

(Vin (), )
Vfi (7 V1

Vim (7) Un,
——
mxn nx1

= (z(@) 7

Cela rejoint notre premiere remarque.

D.eﬁnition sJaco- it - R, Si ? : E — R™ possede toutes ses dérivées partielles en = E et si
bien m = n, alors on définit le déterminant de Jacobi, aussi appelé le Jacobien, de

en 7 comime :

D@y o @)

|75 (@)] = det (7(@)) Catet| :

8fm afm —
(@) - (@)

aifl axn
Exemple Soient ?(m,y) = sin(zy) et 7 : R? — R? définie par :
B T ({ycos(zy)
7(1:,y) - (Vf(x, y)) - ((L‘ COS(.’I?y))

Calculons sa matrice Jacobienne :

e 0, : i o
Folang) = 687911 867{;1 _ 42 sm(xil_/) cos(gcy)Z— y sin(zy)\ obs @;
G 98 ) = Laontan) ~rysniey)  —rsinio) “

On remarque que J4 (v,y) = Hess(f) (?) Calculons maintenant le Jacobien :
|J? (z,y)| = 2%y? sin? (zy)— (cos(zy) — zy sin(ay))? = — cos?(zy)+2xy cos(zy) sin(zy)
Remarque Soit E C R™.

D’apres la définition, nous avons, pour toute fonction f : E — R (attention, R et
non pas R") de classe C? sur E :

Jvpr (?) = Hess(f) (?)
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5.5 Application des matrices Jacobiennes

Théoréme Soient A, B deux ensembles tels que A C R™ et 7(A) C B C RP. Soient ? :A— RP

et ? : B — RY. En d’autres mots, nous avons :

R" 3 RP z> R

_)
Soient @ € Aet b = 7(7) € B. Supposons que ? est dérivable en @ avec la
%
différentielle L5 & et ? est dérivable en b avec la différentielle L? -

Alors 7 o ? est dérivable en 7, et on a :
Lilygz=Lyzgelya
2 I35 (@) =J3(9(d)) Jg(a)
3. Sin=p=q alors )7 2 (@)| = /(7 ()] |J5 (@)]

Idée de la Nous savons que 7 est dérivable en 7, ainsi :

preuve 7(?(?)) :?(?(7)+f?7?(7—7)+7?(?))

Maintenant, nous savons que ? est dérivable en ?(7), ainsi, c’est
égal a :

F@@)+ T3 3(Tq2(@-3)+74(F))+72(7 ()

Ainsi, en utilisant la linéarité de f?7—b>, on obtient que c’est égal
F@@)+T33(Tg2(F-7))
+L33(F3(2)+ 757 (@)

Or, les deux termes de la deuxieéme ligne sont treés petits lorsque

z — 7, ainsi on obtient que ? o ? est dérivable en @ avec la
différentielle :

f?o?,?{ = f?,_b) o Lﬁﬁg

Exemple 1 Pour commencer, vérifions notre résultat en prenant n = p = ¢ = 1. Ainsi, par
exemple, soient :

FROR, fly) =y
g:R—=R, g(z)=sin(z)

Nous pouvons maintenant calculer la composée :

fog(x) = flg(x)) = f(sin(z)) = sin*(z)
Soit @ € R et b = g(a) = sin(a) € R, alors nous pouvons calculer les matrices
Jacobiennes, qui sont des matrices 1 x 1 et donc des scalaires :

Jy(a) = (sin(z))’

= cos(a)

r=a

/
Jp(b) = (%)
Notre théoreme nous dit que :

Tgog(a) = J¢(g(a)) - Jy(a) = 2sin(a) - cos(a)

= 2b = 2sin(a
y=b=sin(a) ( )
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Nous pouvons vérifier ce résultat :

Jtog(a) = (SinZ(x))/

= 2sin(a) cos(a)

r=a

Il est tres intéressant de remarquer que nous avons retrouvé la formule de dérivée
d’une fonction composée :

(fog)(a) = f'(9(a))g (a)

Exemple 2 Prenons les fonctions suivantes :
f:R=R, f(z)=2°
g:R* =R, g(z,y) = sin(zy)
Calculons nos matrices Jacobiennes :
Jo(2,y) = Vg(x,y) = (y cos(zy), z cos(zy))
Ji(z) = (22)/ =2z = Jy(g(z,y)) =22 sin(en) = 2sin(zy)
Calculons déja notre résultat, afin de savoir ce que nous devons obtenir :
fog(z,y) = sin®(z,y)
= Jtog(z,y) = V(f 0 g)(z,y) = (2sin(zy) cos(xy)y, 2sin(zy) cos(zy)x)
Notre théoreme nous dit que :
Jy(sin(z,y)) - Jo(x,y) = 2sin(zy)(y cos(zy), x cos(zy))
Ce qui est bien ce a quoi nous nous attendions.
Mercredi 13 avril 2022 — Cours 16 : Retour aux intégrales
Exemple 3 Prenons les fonctions suivantes :
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3

7@ = (1) s =uw?

1
T
Composée 1 Nous pouvons calculer leur composée dans un sens :
3 1 3 1
[0 @) = flor@),g2@) = (2% ) =a®—5 ==

Ainsi, nous savons que notre but est de trouver .J ;o (z) = (f o 7),(:1:) =

1. Calculons les matrices Jacobiennes de nos deux fonctions :

- (8)- ()
Ti (d (@) = Vf(“’”)‘(m(z),m(z))

151 1,
- (2 1) = ()

Ainsi, nous obtenons bien que :

= (vz, 2uv)

(91(2),92(2))

Ty (@) = T1(F (@) T () = (s 2932)(3”32) _3-2-1
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Composée 2 Nous pouvons aussi considérer la fonction composée dans I'autre
sens:?of:Rﬁ_»—HRﬁ_:

o f(e.y) =9 (wy) = <$?6>

Nous pouvons calculer la matrice Jacobienne, puisque la fonction
est dérivable sur Ri :

3I2y6 6x3y5
Jgor=__1  __2
x2y2 xy3

De plus, calculons les matrices Jacobiennes de nos deux fonctions :

Jp(z,y) = Vi(z,y) = (v°,2zy)

s = (2) = Tt - (3’52%4)

u2 22y%

Finalement, notre théoréme nous donne :

2 4 5 6 5
St = g ez = (M) 62 2m) = (270 0

- 12y4 w2y2 - wyS

comme attendu.

De plus, on peut remarquer que, puisque notre transformation Jﬁo ¥
représente une composition de Jy : Ri = Ry et Jy Ry — Rﬁ_,
elle passe par un ensemble qui restreint son espace image sur une
dimension, nous savons que rang(J?O f) < 1. Nous pouvons vérifier
que le déterminant est nul :

det Jg,; = —6zy” + 62° = 0

Application : Supposons que nous avons le schéma de fonction suivant :
Changement de

. -
variable R &% R® 3 R™

%
tels que h est un changement de variable et 7 est sa fonction réciproque, i.e. :

é
Goh(z,. .. ,x0) = (x1,...,2)

Nous savons donc que le Jacobien de notre composée est :

10 --- 0
01 --- 0
J?oi’: ST Bl 5

Supposons maintenant aussi que h et 7 sont dérivables sur leurs domaines. Par le
théoréme de la fonction composée, nous obtenons :

I3 (B (@) J3(@) = Lxn
h

— 1 (B (@) = (72(@)) et det(p) det () =1

Puisqu’une matrice est bijective si et seulement si elle est inversible, nous en déduisons
donc la proposition suivante.
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Proposition Soit 7 : R™ — R™ une fonction dérivable en @ . 7 est bijective
dans un voisinage de @ si et seulement si det(Jg (7)) # 0.

Exemple : Coor- Nous avons les fonctions de changement de variable suivantes :

données polaires
p —

h (x,y) = (Tv 90)7 ?(Tv 90) - (x,y)

Pour plus de simplicité sur la fonction qui nous donne ¢, prenons z > 0 (si on prend
R2\ {0}, cela fonctionnera de la méme maniére, mais la notation sera plus lourde) :

T = (20, R = (V200

rsin(yp) arctan ()
Nous savons que la propriété suivante tient :

(7o) =0) = Iz = (g 1) = Ipeple) T20:0)

La matrice Jacobienne de ? se calcule relativement facilement :

= (S8 T s de() = ) i) = 0

H
Pour calculer la matrice Jacobienne de h , utilisons le fait qu’elle soit 'inverse de

celle de
B -1 1{(rcos(p) rsin(p)) [ cos(p) sin(yp)
Jﬁ = (J?) = ; (_ sin((p) COS(QO) = 7sinﬁap) cosr(tp)
Or, puisque cos(p) = £ = —Z— et de maniere similaire pour sin(y), nous
) r W7 )
obtenons :

x y ony  om
2 2 2 2
Jploy)= (Vo Ve =G

X
TERE PP dx By

_>
Nous pouvons vérifier cette derniere égalité en utilisant la définition explicite de h .

5.6 Dérivée d’une intégrale qui dépend d’un parametre

Théoréme Soit I C R un ensemble ouvert, soit f : [a,b] x I — R telle que % est continue sur
[a,b] x I, et soit :

b
9(y) = / fz,y)da
a
Alors, g(y) est de classe C! sur I, et nous avons :

baf
! — _—
gy = ) ay(w,y)d% Vyel

Preuve
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Exemple

Considérons le quotient suivant :

Dy) = g(y; - zEyO)

1 b
= —— [ (@)~ faa)is

— /b f(xay)_f(xaQO)dx
a Y—%Yo

Par le théoréme des accroissement finis, nous savons qu’il existe un
y entre y et yo tel que :

0
) =

f(xay) — f(%yo)
Y—Yo

Ceci nous dit donc que :
b
of
D(y :/ —(z,y)dx
=] 5@

Or, puisque y est entre y et yg, que % est continue, nous savons

que, quand y — yo, %(x, Jo) — %(x, Yo) par le théoréme des deux
gendarmes. Ainsi, cela implique que :

b
¢'(yo) = lim D(y) = / Z—J;(x,yo)dx

Y—Yo

Considérons la fonction suivante :

Nous voulons calculer sa dérivée.

Théoréme Nous savons que, par notre théoréme :

™

4w = [ cos(aypads
0
Siy =0, alors :

, H 1 5% 1(7r)2 0
— do — = _ (T ™
9 /O =Ty T2\ 82

Si y # 0, nous pouvons faire une intégrale par partie :

jus
2

Jy) =+ / * rd(sin(ay)) = = sin(ay)

1 (3
- - / sin(zy)dz
Y Y Jo

0

Ce qui est égal a :
T T [Ty 1 TY
= — s1n<—) + —(cos(—) — 1)
2 12 2

Directement Calculons notre fonction directement :

1
i sin(%y) + 7 cos(yx)

2 . y#0 1 5 1 Yy
= de'Z" —= =—= (— — 1)
9(y) /0 sin(zy)dx y cos(zy) o " cos 2
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Calculons maintenant la dérivée :
1 1 Yy 1, /my\ w
PN
)= =+ eos() - sn() 5

1
= % sin(%) + y—z (cos(%) — 1)
comme attendu.

Notez que, si nous voulons calculer les limites de g(y) et ¢'(y) en
0, nous pouvons utiliser le développement limité de cosinus autour
de 0. Ceci nous permettrait de démontrer que cette fonction et sa

dérivée sont continues en y = 0.

Soit f une fonction continue. Alors, nous avons :

jt( / t f(y)dy> — 1), i( / bf(y)dl'> - jt( / tf(y)dfv) ——f()

Nous pouvons maintenant combiner nos résultats, et obtenir le théoreme suivant.

Soient I, J C R deux ensembles ouverts, soient g, h : I — R des fonctions continfiment
dérivables, et soit f:J x I — R une fonction telle que %{(x, t) est continue sur I.
Finalement, soit :
g(t)
At) = flz, t)dx
h(t)

Alors, A(t) est continiment dérivable sur I, et on a :

9) 9 f
A1) = 19006 0) - 10000 + [ D
h(t) ot
Remarque Ce théoreme doit étre connu, car il y a souvent un exercise oll nous
devons 'utiliser en examen.
Preuve Dans l'idée, nous pouvons définir F' : R? — R telle que :

F(gvhvt) = /hg f(a?,t)dx

De plus, nous pouvons définir 7 : R — R3 :

Alors, par le théoréeme de la dérivée d’une fonction composée, on a :

g'(t) oF oF oF
’ / _ / / .
A'(t) = Jpor = VF(g,h,t) hl(t) = agg(tH ahh(tH ot 1

Mais, par le théoreme fondamental du calcul intégral, nous obtenons :

, g(t) of
t),t)h(t)+/ E(m,t)dm

A1) = flg(t).t) g'(t) — f(h ht)

—~
—~

&
e

h
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tion

nelle :

Note person-

Intui-

L’intuition de cette formule est intimement liée avec sa preuve. Ainsi,
refaisons 1a en utilisant des étiquettes différentes sur ce que nous
pouvons reconnaitre, afin de voir que nous ne partons pas loin des
connaissances que nous avons déja. Pour commencer, il est possible
de démontrer que :

0f(9.h) 9g(z.y)  0f(g.h) Oh(z,y)
dg ox oh Ox

o (gl y), i) =

Ceci est une généralisation de la regle de la dérivée en chaine.
Définissons maintenant :

Pt - [ " f(ende = A(t) = F(g(t).t) — F(h(t).1)

Ainsi, en dérivant, nous obtenons :

wy— PE0t) 9 OF(9.t) OF(ht) Oh OF(h.1)
ag ot ot on ot ot

Par un argument similaire a la preuve, il est raisonnable de se
convaincre que, en utilisant le théoréme fondamental du calcul
intégral :

aFa(;/»ﬂ = ftg.y, 2D

Aussi, comme nous 'avons démontré dans un théoréme plus tot,
nous avons :

8F(§gz,t) ~ athz,t) = 9 (F(g,t) = F(h,1))

ot
bS] g

99f
=/ a(m,t)d:r

En mettant tout ensemble, nous obtenons le résultat que nous
cherchions. Notez que ce raisonnement peut se faire trés rapidement
sur une feuille de brouillon pendant un examen, en faisant toujours
attention selon quoi on dérive. Si les notations, comme %ﬁ’t), vous
semblent bizarre, n’hésitez pas a les comparer avec les notations

suivantes pour la dérivée en chaine classique :

df(g(z)) _ df(g(x)) dg(x) df(g) dg(x)

dx dg dx dg dx

Ces notations peuvent prend un peu de temps a assimiler, mais
elles sont trés pratiques (notamment en physique, par exemple
pour ’équation de Lagrange, ou on dérive une fonction “selon des
fonctions” (la position et sa dérivée)! @).

Exemple Calculons la primitive de la fonction suivante :

3t?
F(t) = / e dx
2

t

Nous allons appliquer notre théoréme. Nous avons :

h(t) =2t, g(t)=3t* f(x,t) ="t
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Ainsi, par notre théoréme :

Vérification

2
P\ 3t34t 2t4t 7./ 3 gette
F'(t)y=e¢ g'(t) =R (t) + dx
~—~— 2

~—— " ot
6t 2
, 3t2
=Tt 6t —e3t .24+ / e®eldr
2t

— LB _ 0Bt 4 ot (e3t2 _ ezt)
= (6t + 1)63t2+t .
De maniére générale, il n’est pas toujours possible de calculer F(t)

explicitement, mais ici c¢’est possible et donc nous pouvons 'utiliser
pour vérifier notre résultat :

3t°
2 Q42 <
F(t) = / ee”dr = €' (e?’t - th) = 3T 3e3t
2t

Ainsi : ,
F'(t) = (6t +1)e3" Tt — 33

comme attendu.

Lundi 25 avril 2022 — Cours 17 : Méthode de physicien

5.7 Application du gradient et du Laplacien en coordonnées

Définition : La-
placien

96

polaires

Soit £ C R™ un ensemble, et soit f : E + R de classe C? sur E.

La fonction Af : F — R suivante est le Laplacien de f :

Remarque

personnelle

02 o

n

Définissons la Nabla de la maniere suivante :

0 0
V= <8x1,,axn>

Notez que c’est un vecteur d’opérateurs, le Nabla ne contient pas
des valeurs ou des fonctions, mais I'opérateur dérivée. Cela peut étre
défini formellement, mais nous allons 1'utiliser comme des physiciens.

Premiérement, remarquons que notre gradient est toujours cohérent

avec cette notation :
) of
V= ( ! )

Oxy’ " Oy,

Cette définition est tres pratique, notamment pour définir la diver-
gence et le rotationel, trés pratiques en physique (rot f = V x f,
divf=Vef).
Maintenant, pour le Laplacien, on voit que :

Af=V2f

ol un vecteur au carré est défini par :

@2=Teq = ||’
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Exemple

Proposition

Nous pouvons donc définir :
A=V?
Soit la fonction f : R? + R suivante :

f(z,y) = zy + 32°
Cette fonction est de classe C*° sur R, ainsi :

2 2
—af—i—ﬂ:l&c—l—():l&c

Af(x,y) - 81‘2 ayg

Soit f : R? + R une fonction de classe C?, et soit f: fog(r,¢), ou g est la fonction
changement de variable vers les coordonnées polaires. Alors :

V() = (cos«o)g:f - () gL sin(e) 2+ 1cos<so>af>

0%f 1 8*f 10f
Ay =55+ 252 7o

Nous savons que f(r,¢) = f o g(r,¢), ou :

Preuve

sin 7 cos(
De plus :
of of
Sry) = 109 (159) (m’w) = Jy(g(r, ) Jg(r, )
_ of of
= 3 y(r0) = (5. 50 ) )
Vi(zy)

Ceci est une équation matricielle, qu’on peut résoudre en utilisant
la formule pour I'inverse des matrices 2 x 2 :

af o
Vf(mvy) = (62’ 5;)

_ 8f 3]7 -1
_ (awag)“-qw”
_ @F if 1<r cos(¢) TSiH(‘P))
or’ 0 | r \—sin(p)  cos(yp)
= (cos(@)gr - - sin(@)%,sin(cp)% + icod@?i)

2
Pour calculer %, nous pouvons utiliser la méthode que nous venons
de calculer :

ﬁ = cos( )g or en coordonnées polaires
or? ?or \ oz P

- 1Sin( ) o (9f en coordonnées polaires
r v Jp \ Or P

Nous ferons ces calculs dans la série 9.
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O

J’espere que les dérivées selon des fonctions vous ont manquées,
parce qu’on y retourne! ®
Je trouve personnellement que c’est plus intuitif, mais il est na-
turellement complétement possible que vous préfériez la méthode
présentée pendant le cours.

Commencons par définir que :
'I(T, SD) =7 COS(SD), y(’]"7 Sp) =7r SIH(SD)
r(z,y) = 2 +y2?, o(z,y) = arctan(g)
x

Notez que ¢(z,y) devrait avoir une définition par partie plus gé-
nérale pour étre vraie pour tout z,y, mais prenons z,y > 0. Le
raisonnement est le méme si nous voulons prendre R? comme do-
maine (tout ce qu’il faut retenir pour utiliser cette méthode en
examen c’est que les dérivées de atan2(y, z) sont égales a celles de
arctan(%)), mais nous pouvons aussi le faire a 'aide de la méthode
de calcul de dérivée de 'inverse d’une fonction vue plus tot dans ce
cours.

Ainsi, si nous avons une fonction qui nous est donnée sous sa forme
polaire, nous pouvons écrire :

flr,o) = f(\/m, arctan(%))

Dérivons notre fonction par la formule vue plus tot dans une de mes
remarques :

0f(r,p) _ 0f(r¢) Or(wy)  Of(re) Op(z.y)
oxr  or Ox Oy ox
of 2 af 1

BRENCET am(gz)(‘fz)

Et nous pouvons maintenant repasser en variables polaires, en
prenant la définition de x(r, ¢) et y(r, ¢) :

Af(r,p) _ Of rcos(p) N Af —rsin(y)

ox ar r dp 1?2
_of ~ Of sin(p)
~or cos() dp T

Ce qui est exactement ce qui est exactement le résultat attendu. Il
est naturellement possible de faire exactement le méme raisonnement
pour la dérivée partielle selon y et pour les dérivées secondes.

Soit la fonction de classe infinie sur R? \ (0, 0) suivante :

Y

f(x,y):m

Ce n’est pas tres agréable de calculer les dérivées de cette fonction dans cette forme,
ainsi passons la en coordonnées polaires :

f(r, o) = rsin(p) _ sin(y)

72 r

Par notre proposition, nous obtenons :

82 F

A =5m

1 9%f lif_ 2sin(p) N 1 —sin(p) N 1 <_sin(<p)> _0

r2 092 1 Or 73 r2 r r
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Définition : Une fonction telle que Af = 0 sur £ C R? s’appelle harmonique.

Fonctions har-

moniques

Proposition Une fonction harmonique sur un domaine compact atteint son minimum et son

maximum sur la frontiére du domaine.

Preuve Nous acceptons cette proposition sans preuve. Cependant, nous
pouvons faire une justification rapide.
Nous pouvons remarquer que le Laplacien est la trace (la somme
des éléments diagonaux) de la matrice Hessienne. Or, un théoréme
d’Algebre Linéaire nous dit que la trace d’une matrice est égale a
la somme de ses valeurs propres, et nous verrons plus tard que les
valeurs propres de la matrice Hessienne définissent ’existence ou
non du maximum et du minimum.

Remarque Ceci implique qu’une fonction harmonique sur un domaine compact
est telle que, pour n’importe quel sous-ensemble compact, elle atteint
son minimum et son maximum sur la frontiere.

Exemple 1 Soit la fonction f : R% — R définie par :
flay) =" -y
Alors, nous avons :
Af(z,y) =2-2=0, VY(z,y)cR?

Ainsi, cette fonction est harmonique.

Exemple 2 Soit la fonction g : R? — R définie par :

g(z,y) =2 +y°

Alors :
Ag(z,y) =2+2=4#0, VY(z,y) €R?

Ainsi, elle n’est pas harmonique.
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5.8 Formule de Taylor

Théoréme Soit E C R™, et soit f : E — R une fonction de classe CP*! au voisinage de @ EcE.
Alors, il existe § > 0 tel que, pour tout Z e B(?, 6) N E, il existe 0 < 6 < 1 tel
que :

, 1 p 1
(@) = F(0) + F'(0) +...+;!F( )(0) + e

ou F:I— R, avec I C[0,1], est définie par F(t) = f(?—i—t(? - 7))

F(p+1)(9)

Preuve Nous remarquons que f(?) =F(1) et f(?) = F(0). Ainsi, F(t)
est de classe CP*! sur I.

Dans le cours d’Analyse 1, nous avions vu la formule de Taylor pour
les fonctions d’une seule variable, ce que nous pouvons appliquer
sur F(t) :

1 1
Ft)=F0)+ F Ot +...+ —F® ) + —— @t gyptl
(t) (0) + F'(0)t + +p! ()+(p+1)! (0)

ol 0 est entre 0 et t.
Or, nous voulons F(1), donc :

1 1
) = F(1) = F(0)+ F'(0)+...+ =F®(0)+ ——F®+)(p
f(#) = F() = FO)+ F'O)+..+ S FP(0) + =, ()
ou @ est entre 0 et 1.
(Il
Remarque Nous voyons que :
a4+t -a)) - f(d
F’(O):limf( aadl ) - I ):Df(7,7—7)
t—0 t
Terminologie Ce théoreme nous dit que nous pouvons écrire :
1
F(@) = F0)+ F'(0) +...+ HF(”) (0) + le reste

Nous l'appelons le polynéme de Taylor de f d’ordre p au point

Cas oun =2 Soit @ = (a,b), @ = (x,y) et f(z,y) : E — R une fonction de classe CP*! ou p > 2.
Nous cherchons le polynéme de Taylor d’ordre p autour de a.
Pour commencer, nous prenons :

F(t)= fla+tlx—a),b+tly—D))

Pour trouver F'(t) en termes de f, nous pouvons remarquer que nous avons F'(t) =
fog(t), ou:
g(t) = (a+t(z—a),b+t(y—b))

Ainsi, par le théoréme de la composée des matrices Jacobiennes :

991
P = 1510 = J1(00)-00) = (% $) (8 ) = Lok Do o+ L2 1)
Et ainsi : 5 b b
(o) = LD o)+ L )
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Nous voulons maintenant calculer F”(0). Nous venons de trouver que :

0f 091  9f O

Fl(t)y =299 9T
®) dxr Ot Oy Ot

Calculons la dérivée du premier terme :

of 99 0f\Og  Of (g1 _ (0°f0g1  0°f D92 0g
8t or Ot 815 oz ) ot oz \ o2 0z2 Ot  Oydx Ot ) Ot
%/—/

=0

La dérivée du deuxieme terme d’une maniere similaire :

0f 99>\ _ 0*f (001 (092  Pf (092\
8t oy ot ) Oydx \ ot ot oy \ ot
Nous pouvons mettre nos résultats ensembles pour obtenir que, avec le théoreme de
Schwarz (puisque notre fonction est de classe CP ou p > 3) :

o 82 2
F”(t):a—;(x—a)2+2axgy(x—a)( —b)—i-ai];( —b)2
Et ainsi :
0? b 0? b H? b
(o) = 2280 - a4 2D oy - )+ LDy

D’une facon similaire, on obtient :

o f o f

3 3
= gas = 0 4355, 5 o

(z—a)’(y— b)+38x8y2 (x—a)(y— b)2+873(y —b)°

N N . N !
Nous reconnaissons les coefficients binomiaux CI’f = ﬁ;k)!, et nous pouvons

démontrer par récurrence que :

F(p Z 8xk8yp k 5(1’ — a)k(y - b)pik

Souvent, on utilise 'approximation de Taylor d’ordre 2, donnée par :

Fa) = f@h)+ 5L ><x-a>+%§<a,b><y-b>

2 2
;(g )2+288xéfy(a,b)(x—a)( —b)+a—‘§(a b)(y b)2>
+e(ll (@ y) - <ab>||)

ou les deux premieres lignes sont Ps ¢ (41, le polynome de Taylor de f d’ordre 2
autour de (a,b), et la troisiéme ligne est le reste.

Remarque En manipulant les opérateurs comme de physiciens, il est tentant
personnelle d’écrire :

FO0) = (- ag+ -0 ) f

— Mercredi 27 avril 2022 — Cours 18 : Vous savez toujours calculer des valeurs propres ?

Exemple Considérons la fonction f:R? — R de classe C* suivante :

fla,y) = e "
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Nous voulons trouver le polynéme de Taylor de f d’ordre 2 autour de (0, 1). Calculons
nos dérivées :

Z%(O, 1) = —e_m+2y2+1‘(071) = ¢
%(0’ 1) = 4ye—$+2yz+1‘(0’1) — 4¢®
%(07 1) = 671+21y2+1‘(071) — 3
gzyf = e 4y(4y)6_m+2y2+1’(o,1) =20
aa;gy( 1) = éijafx .1)= 74y67w+2y2+1’(0’1) =

Et ainsi, on obtient :

1 ,
Pygon =€+ (—e)ztde(y—1)+ 5 (6?’%2 +2(—4e3)z(y — 1) + 2063 (y — 1)2)

€3<1 —z+4(y—1)+ %xQ —4x(y—1)+10(y — 1)2>

Remarque Il existe une autre méthode pour calculer les polynémes de Taylor, en utilisant les
developments limités d’une seule variable.

Exemple Reprenons 'exemple que nous venons de faire. Puisque nous faisons notre develop-
ment limité autour de (0, 1), nous avons que x et y — 1 sont petits. Ainsi, mettons-les
en évidence :

f(m y) _ e—ac+2y2+1 _ e—x+2((y—1)+1)2+1

s

2
s, +4(y—1)+2(y—1)

2
_ e—x+2(y—1) +4(y—1)+2+1 _ e

Ainsi, puisque s est petit, nous pouvons maintenant utiliser la développement limité
d’ordre 2 de e® autour de s = 0, en ignorant les termes d’ordre plus grand ou égal a
3:

1
P2,f,(0,1) = 63 <1 + s+ 232>

¢ {1 + (—:c Ty —1)+ 20y — 1)2) + %(mQ F16(y — 1)° — 8a(y — 1))}

e3<1 —rz+4y—-1)+ %x2 +10(y —1)* — da(y — 1))

Ce qui est exactement ce que nous avions obtenu.

Taylor en trois Considérons maintenant le cas ot n = 3. Ainsi, nous avons f(z,y, z), une fonction
dimensions de classe C?, et nous voulons calculer son développement limité autour de (a, b, c) €
E CR3.
En utilisant la méme méthode que dans le cours précédent, nous pouvons poser :
a+t(x—a) g1(t) [
gty =(brty-b) | = @], Fa=2L 20,00 20 0 0o

Ainsi, nous avons :
U b ) —a)+ La b5+ Lo o

F'(0) =
(0) dy 0z
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La dérivée seconde est donnée par :

2 2 2
F"(0) = %(a,b, o)z —a)’+ g—y];(cub, o)y —b)* + %(a,lx o)(z—c)?
0% f o0*f

0y0z 0x0z

(x—a)(y —b) +25—=-(y = b)(z = ¢) + 25——(z —a)(z — ¢)

Remarque Je vois un pattern avec la formule trouvée dans le cours précédent.
personnelle Ainsi, je ne sais pas du tout si c’est vrai, mais je conjecture que
nous avons, pour n variables :

F®(0) = ((wl —al)aigc1 +...+ (zn —an)ai) flz,. .. zy)

Méthodes Nous avons maintenant deux méthodes pour calculer une formule de Taylor :
1. Utiliser la formule de Taylor en plusieurs variables.
2. Utiliser les développements limités d’une seule variable.

Exemple Prenons la fonction suivante :

sin(x + i)

flz,y) = 12

Nous voulons calculer sa formule de Taylor d’ordre 2 autour de (0, 1).

Meéthode 1 Cette méthode est directe mais fastidieuse. Les dérivées deviennent
vite trés compliquées.

Méthode 2 Cette méthode nécessite un traitement soigneux et une maitrise des
développements limités.

Commengons pas tout réécrire en fonction de (y — 1) :

1 1 2
Q:mzl—(y—l)—i-(y—l) -

Nous pouvons aussi voir que :

1

=l—-z+22+...
1+

Regardons maintenant le sinus :
sin(x+1—(y—1)—|—(y—1)2—...>

=sin(l1+z—-(y—-1)+E-1)7>-...
= sin(1) cos(s) + cos(1) sin(s)

= sin(1)<1 - § +) +cos(1)(s—...)

En multipliant tout ensemble, on obtient (désolé pour le changement
de taille de police, c’est impossible de tout écrire sur une ligne comme
ca aussi) :

(1-2+22) {sm<1)(1 - %(z -+ (- 1>2)2) +cos(1) (2 = (v = ) + (v = 1)2)}
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Ce qu’on peut simplifier, nous donnant Pof(o,1) :

sin(1) (1 — %xQ - %(y 1 4ay—1)—z+ x2>

+eos() (2= (y =)+ (y = 1)~ 2+ a(y— 1))
= sin(1) + x(cos(1) — sin(1)) — (y — 1) cos(1) + 22 (% sin(1) — cos(l))

+(y—-1)7° (cos(l) — %sin(l)) + z(y — 1)(sin(1) + cos(1))

5.9 Extrema d’une fonction de plusieurs variables

Définition : Soit ECR" et f: E— R.
Point station- @ € E est un point stationnaire de f si et seulement si :
naire o of
—)
Vi@)=(-—(d),...,—~—(d) )| =0
1@) = (5= @) (@)
Définition : f: E— R admet un maximum local au point @ € E sl existe § > 0 tel que

Maximum local  f(7) < (@) pour tout @ € EN B(,9).

Définition : Mi- f: E — R admet un minimum local au point @ € E s'il existe § > 0 tel que

nimum local j(?) > j(?) pour tout @ € EN 3(7,5).
Exemple 1 Prenons la fonction f(z,y) = 22 + y2. Nous pouvons voir que (0,0) est un point
stationnaire : N
Y f(z,y) = (22,2 ) -0
f(z,y) = (22, 2y) 00)

Or, nous pouvons voir que ¢’est un minimum local sur le graphique :

T A

s o pome dhehwancire

Exemple 2 Prenons la fonction f(z,y) = 2%. Nous pouvons voir que (0,b) est un point station-
naire Vb € R : -
Y f(z,y) = (22,0 ’ -0
faw) = 2o0)|

De maniére similaire, nous pouvons aussi voir qu’ils représentent des minimum
locaux sur le graphique :

J M &Ca[

g s "')Pomé Statronraine

Proposition : Soit E C R™ et f : E — R une fonction admettant un extremum local au point
Condition né- @ € E et telle que % (7) existent Vi =1,...,n.

cessaire pour un

extremum local
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_)
Alors, @ est un point stationnaire de f, i.e. Vf(?) =0.

Preuve Soit la fonction suivante :
gi(z) = flar,...,qi—1,2,Qiq1,...,ap)

Nous savons que V f (7) existe implique que g;(z) est dérivable en
a; = x. De plus, nous savons qu’elle admet un extremum local en
ce point puisque f en a un & ce point (si g n’avait pas d’extremum
local, alors clairement f n’en n’aurait pas non plus). Or, par le cours
d’Analyse 1, cela implique que :

of (=

/

g. a;|) = O = = 0

z( 1) axl( )

Nous pouvons faire ce méme argument pour chaque i = 1,...,n,

ainsi on obtient bien que Vf(@) = 0.
O

Remarque 1 Cette proposition est parallele a celui qu’on a vu en Analyse 1 : si
une fonction d’une variable est dérivable a un point et elle admet
un extremum local en ce point, alors sa dérivée est nulle.

Remarque 2 La réciproque est fausse. Si le gradient est nul en un point, alors
cela nous donne par forcément un extremum local. Nous pouvons
prendre un contre-exemple paralléle & celui typique en Analyse 1 :

fla,y) =2°

Il y aura un autre contre-exemple dans ’exemple suivant.

Remarque 3 Méme si f(@) admet un minimum local le long de toute droite
passant par 7, cela n’implique pas que f (?) admet un minimum
local en @. Nous avons un résultat similaire pour les maximum
locaux.

Exemple Prenons f(z,y) = 2% — y?. Ainsi, nous avons :

_)
0,0) = (2x, -2 =0
VI0.0)= @r )|

Ainsi, 0 est un point stationnaire, mais comme on peut le voir sur le graphique
suivant, ce n’est pas un extremum :

Définition : @ € E est un point critique de f:E—Rsi @ est un point stationnaire, ou si
Point critique au moins une des dérivées partielles de f n’existe pasen @ = @
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Remarque En utilisant notre théoréme, nous avons la proposition suivante :

Si @ est un point d’extremum local, alors @ est un point critique.

Théoréme : Soit f : E — R une fonction de classe C2 sur E, et soit @ € E un point stationnaire
Condition suffi- (vf(q) = 0).
sante pour un Si toutes les valeurs propres de la matrice Hessienne de f en @ sont strictement

extremum local positives, alors f posséde un minimum local en a.
Si toutes les valeurs propres de la matrice Hessienne de f en @ sont strictement
négatives, alors f possede un maximum local en a.
S’il y a au moins une valeur propre strictement négative et au moins une strictement
positive, alors d nest pas un point d’extremum local.

Justification Nous n’allons pas démontrer ce théoréme, mais justifions le de
maniére & comprendre ce qui se passe derriére.

La matrice Hessienne est symétrique par le théoreme de Schwarz,
puisque f € C%(E) :

Hess ¢ (7) = (Hess'f (7))T

Par le théoréeme spectral d’Algebre Linéaire, nous savons donc
que Hessy (7) a toutes ses valeurs propres réelles, et qu’elle est
diagonalisable & ’aide d’une matrice orthogonale O :

Hessy (7) =0DO"

A - O
D=|: -~ |, o'=0"
0 - A\
Ainsi, il existe un changement de variable linéaire orthogonal (x4, ..., z,) —
(y1,-..,yn) tel que la matrice Hessienne devient diagonale, avec
AL, ..., A € R étant ses valeurs propres :

D = Hessf(yl,i..,yn)(ﬁ)

Alors si nous supposons que f est de classe C3, nous pouvons écrire
par la formule de Taylor :

F@) = £(@) ~ (Ml = a0 + oo+ dal— 0,)?)
+=(I7 - 2"

De 1a, nous pouvons voir que, clairement, si Ay > 0,..., A, > 0,
alors f(?) — f(?) > 0 pour tout ? dans un voisinage de @, et
donc est un point de minimum local.

De maniere similaire, si A; < 0,..., A, <0, alors f(?) —f(?) <0
et donc @ est un point de maximum local.

Finalement, nous voyons que s’il existe i, tels que A\; > 0 et
Aj <0, alors @ nest pas un point d’extremum local (nous pouvons
trouver une inégalité dans chaque direction en mettant toutes les
composantes & 0 sauf la i-éme ou la j-éme).

Lundi 2 mai 2022 — Cours 19 : Fin des études d’extremums
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Proposition : Dans le cas ou n = 2, nous pouvons réécrire les conditions de notre théoreme.
Hypothéses équi- Notre matrice Hessienne est donnée par :
valentes pour le

’ . 82 82 g
théoréme de la Hess (7) _ (61]; 6y6fz> _ <7; s>

condition suffi- o*f  9%f t
dx0y oy?
sante pour un

extremum local  Nous avons les équivalences suivantes :
quand n = 2 1. A >0, >0 detHessf(7)>0etr>0
2. M1 <0, <0 = detHessf(ﬁ) >0etr <0
3.A0 >0, <00u) <0,) >0 <= detHessf(ﬁ) <0

La démonstration de ce théoréme doit étre connue pour I’examen.

Preuve Pour commencer, nous savons que le déterminant et la trace d’une
matrice sont des invariants de conjugaisons. Ainsi, si on a :

T 8\ -1 _ (A1 O r s\ _ -1f{M O
o7 Jor=(u n) = (L 3)=0( n)e

Alors, on obtient :
rt — s = det Hess ¢ (7) = det(O) A1 A2 det (0_1) = A1)o

r+t = TrHess; (@) = Tr(ODO™Y) = Tr(07'0D) = Tr(D) = Ai+)s

Preuve point 1 Commencgons par montrer la direction = . Ainsi, nous supposons
= que A > 0,y > 0.
Alors, clairement, det Hessf (@) = AAg > 0. Aussi, nous voyons
que :

Mo =rt—s2>0 = rt>s2>0 = rt>0

donc r et t sont de méme signe.
Nous pouvons aussi voir que :

TrHessf(ﬁ): A1 +\/\/2/:r—|—t>0

>0 >0

donc r et t doivent étre les deux strictement positifs, puisqu’ils ont
le méme signe.

Nous en déduisons bien que det Hessy (7) >0etr>0.

Preuve point 1 Supposons que det Hessy (7) >0etr>0.

= Alors, puisque det Hessy (7) = A1 A2 > 0, nous en déduisons que

A1 et Ao sont de méme signe. De plus, nous voyons aussi que rt >
s2>0 = rt>0.

Ainsi, puisque rt > 0 et » > 0, nous obtenons que ¢t > 0. De plus,
cela implique que :

TrHess; (@) =M+ =_r_+_t_>0
>0 >0

Puisque A1 et Ay sont de mémes signes, et \; + A2 > 0, nous en
déduisons bien que A1 > 0 et Ay > 0.
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Preuve point 2 Commengons par montrer la direction = . Ainsi, nous supposons
= que A1 < 0,2 < 0.
Alors, clairement, det Hessy (7) = A1z > 0. Aussi, nous voyons
que :

Ma=rt—s>>0 = rt>s>2>0 = rt>0

donc r et t sont de méme signe.
Nous pouvons aussi voir que :

TrHess; (@)= M + Ao =7 +t<0
<0 <0

donc r et t doivent étre les deux strictement négatifs, puisqu’ils ont
le méme signe.

Nous en déduisons bien que det Hessy (7) >0etr<O.

Preuve point 2 Supposons que det Hess (7) >0etr<O0.

= Alors, puisque det Hessy (7) = A2 > 0, nous en déduisons que

A1 et Ao sont de méme signe. De plus, nous voyons aussi que rt >
$2>0 = rt>0.
Ainsi, puisque rt > 0 et r < 0, nous obtenons que ¢t < 0. De plus,
cela implique que :

ﬁHessf(7)2A1+A2: r + t <0
<0 <0

Puisque A\; et Ay sont de mémes signes, et \; + A2 < 0, nous en
déduisons bien que A1 < 0 et Ao <O0.

Preuve point 3 Nous voyons que :

det Hess ¢ (7) <0 < MM <0 <= )\ et Ay sont de signes opposés

Note person-  La démonstration de ce théoréme peut sembler tres longue et com-

nelle pliquée, mais elle ne l'est pas! A partir du moment ol on sait que
le déterminant est donné par ad — bc et que la trace est donnée par
la somme des éléments diagonaux, il suffit de poser nos hypotheses
et de simplement voir ce que nous pouvons en déduire, en gardant
en téte ou nous voulons aller.

Résumé du cas  Soit f une fonction de classe C? au voisinage de @ = (ay,az), et soit sa matrice
n=2 Hessienne :
ros
Hess; (@) =
= (0 )

1. Si det Hessy (7) =7t —s2>0etr >0, alors nous avons un minimum local :

fu,v) — f(?) ~ %Al(u —a1)’+ %)\2(’[} —a3)’ >0

>0 >0

2. Si det Hessy (7) =17t — 52> 0 et r <0, alors nous avons un un maximum local :

flu,v) — f(?) ~ %Al(u — a1)2 + %)\2(1} —a2)’ <0

<0 <0
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Conditions équi-
valentes aux
conditions suf-
fisantes pour
n=3

Exemple

3. Si det Hessy (7) =t — s < 0, alors il existe u, v dans tout voisinage de a tels
que nous n’avons pas d’extremum local :

flu,v) — f(@) =~ %Al(u —a)’+ %)\2(1} — ag)

>0 <0

4. Sidet Hessy (7) = 0, alors nous n’avons pas de conclusion. Par exemple, f(x,y) =
% +9* a un maximum local en 0, f(z,y) = —2* — y* a un minimum local en

= , .
0,et f(x,y) = * —y* n’a pas d’extremum local en 0, alors que le déterminant
de toutes leurs matrice Hessiennes est nul en ce point.

Soit f une fonction de classe C? au voisinage de 7, et soit sa matrice Hessienne :

f o f f
&Ef O0x2011 Ox30T1
. — *f >*f 2’ f
HeS&f (7) - awlawz aw% 8I38w2
8% f 8% f 8%f
Ox10x3 Oxo0x3 ox2

Nous définissons A; le déterminant de la matrice 1 x 1 avec le coin en haut a gauche
(mineure principale de taille 1 x 1), Ag le déterminant de la matrice 2 x 2 avec le
coin au méme endroit (mineure principale de taille 2 x 2), et Az = det Hessy (7) :

o | 2
0K, | MK,
')1 DL D;

W 0% | 250X

oL 2
'D)(,?Xi Wik 0¥

Ay

A,

Ay

Nous avons donc :

0% f 0%f O*f 0% f 0% f
— 4 = 7 . _ . NAa = H
8.%%’ 2 835% 8.’E§ a$231'1 8x18x2’ 3 det 55

Ay

1. SiA; > 0,A > 0,A3 > 0, alors @ est un point de minimum local (et Hessy (7)
est dite définie positive).

2. Si A1 <0,A9 > 0,A3 <0, alors @ est un point de maximum local.

Autrement, si Az # 0, alors il n’y a pas d’extremum local en a.

4. Si Az = 0, alors nous ne pouvons rien conclure.

@

Preuve Nous acceptons ce théoreme sans preuve.

Prenons la fonction suivante :
flz,y) =9 +3y° — day + 2°

Nous pouvons remarquer que f est de classe C*°(R?), donc ses points critiques sont
ses point stationnaires. Nous cherchons de tels points, ainsi calculons le gradient :

Vi(z,y) = (—4y + 22,3y> + 6y — 4x)

En posant V f(x,y) = (0,0) on obtient :

4y = 2x r =2y
<~
3y? +6y —4xr =0 y(3y —2) =0
Et donc, nous avons deux solutions. Soit y = 0, ce qui implique = 0, soit y = 2

)
ce qui implique x = %. Nous avons donc deux points stationnaires : (0,0) et (%, %3
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Regardons le premier point :

Hess;(0,0) = (_24 _64> = det Hess;(0,0) =12—16 = -4 <0

Nous pouvons en déduire qu’il n’y a pas d’extremum local en (0,0). Regardons
maintenant le deuxieme point :

4 2 2 -4 4 2
Hessf<3,3> = (_4 10> = det Hessy (3,3) =20-16=4>0

Or, puisque r = 2 > 0, nous avons un minimum local en (%, %)

5.10 Minimum et maximum d’une fonction continue sur un
compact

Rappel : Théo-
réme

Méthode

Exemple
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Une fonction continue sur un sous-ensemble compact D C R™ atteint son minimum
et son maximum. En d’autres mots, Elc_l)7 T tels que :

f(@) = min f(@), f(eh) = max [(F)

Nous voulons une méthode pour trouver ces c_l), c_2> Pour faire cela, il faut :
1. Trouver les points critiques {EZ} de f sur D (Pintérieur de D). Calculer les
valeurs f (EZ)

—
2. Trouver les points {dj} de minimum et maximum de f(0D) (0D est la

frontiére de D). Calculer les valeurs f (dj).

3. Choisir le minimum et le maximum parmi les valeurs qu’on a trouvées.
Notez que le deuxieme point peut étre trés dur a calculer. La frontiere peut par
exemple étre donnée par morceaux, auquel cas il ne faut pas oublier les coins. Ensuite,
nous évaluons f sur la frontiére & ’aide de cette dépendance entre x et y.

Soit la fonction f(x,y) = x? + 2y? — 2y + 3. Nous voulons trouver son minium et
maximum absolus sur le disque fermé suivant :

D:{x2+y2§4}

50mt8 ori- Notre fonction est de classe C'**° (D), donc les points critiques sont
wqques
7 les points stationnaires.
Le gradient de notre fonction est donné par V f(z,y) = (2z,4y — 2),
ainsi en posant V f(z,y) = (0,0), nous trouvons :
1
z=0 = -
) 9
Ainsi, (O, %) € D est le seul point critique. Notez que nous n’avons
pas besoin de faire d’analyse supplémentaire pour savoir si c’est
réellement un extremum ou non, puisque nous allons comparer la
valeurs avec celles de la frontiere de toutes fagons.
Frontiére Notre frontiere est donnée par 9D = {1’2 +y? = 4}, donc nous
avons la contrainte suivante :
22 =4- y2
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Donc, la fonction sur notre frontiére est donnée par :

F)=4-y"+2% —2y+3=9" -2y +7, sur[-2,2
N——

=x2

Cette une fonction d’une seule variable, donc nous pouvons la dériver
et faire notre analyse habituelle (qui semble si triviale maintenant) :

fy)=2y—2=0 = y=1 —= z==+V3

Nous avons donc deux points candidats : (+v/3,1). Aussi, nous ne
devons pas oublier les points au bord, avec y = 2 et y = —2.

Comparaison  Calculons la valeur de nos fonctions a nos différents points :

1 5
f(0’2>:2
f(i\/g,l) —f1)=1-2+7=6
f(=2)=4+4+7=15=f(0,-2)

f2)=4—4+7=7=f(0,2)

Nous trouvons donc finalement que le minimum global (absolu) de
f sur D est en (O7 %), et que son maximum global (absolu) sur D
est en (0, —2).

(R, 7 AN
Xl’lz/

mn a/éoé{ /0,? =

5.11 Théoreme des fonctions implicites

Définition :
Fonction impli-
cite

Exemple 1

Une fonction implicite est une dépendance f = f(?) qui est définie par une
équation.

Prenons F(x,y) = 2z + 3y. Alors, F(x,y) = 0 définit une fonction implicite y = f(z)
pour tout z € R. En effet, cela nous donne :

2
20+ 3f(z) =0 — f(z) = —3% Yz € R
Nous aurions aussi pu considérer z = g(y) :

3
29(y) +3y =0 <= g(y) = —5¥ WeER
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Nous obtenons la méme fonction, décrite différemment.

Prenons F(z,y) = 2 + y* — 1. Nous nous demandons si F(x,y) = 0 nous définit
une fonction.

Soit (a,b) un point sur le cercle de rayon 1, donc tels que a? +b% = 1. Si b > 0,
alors nous trouvons y = v/1 — z2 au voisinage de (a,b). Si b < 0, alors nous trouvons
y = —V1 — 22 au voisinage de (a, b).

Cependant, si b = 0, nous avons deux solutions pour chaque z dans tout voisinage
de b. Par exemple, en considérant un voisinage de (—1,0), nous pouvons voir que
tout y aurait besoin de deux valeurs pour un z :

A

Donc, puisqu’il faudrait avoir deux valeurs pour un x, nous ne pouvons pas avoir
une fonction y = f(x) au voisinage de b = 0.

Mercredi 4 mai 2022 — Cours 20 : Fonctions implicites

Définition : Sur-
face de niveau

Exemple 3

112

Une surface de niveau d’une fonction F(z,y, ) est la surface définie par I’équation
F(z,y,z) = C € R. C s’appelle le niveau.

De manieére similaire, une ligne de niveau d’une fonction F(z,y) est la ligne définie
par I’équation F(z,y) = C € R. C s’appelle le niveau.

Ezemple Par exemple, sur une carte géographique, il y a les courbes d’alti-
tudes, qui sont les ensembles de points situés a la méme altitude.

=) //l ) \\

%

s «
— 2 \
— 5251

Prenons F(x,y) = 1 —ye® +xe¥ = 0. Nous nous demandouns si nous pouvons prendre
y = f(x) autour d’un point donné. Nous ne pouvons pas résoudre cette équation
d’une maniére explicite, mais la fonction est bien définie autour de tout point donné.
Nous pouvons considérer F'(z,y) comme une fonction de deux variables de classe
Cc*> (Rz) qui défini une surface z = F(z,y). Nous considérons 'intersection de cette
surface avec le plan z = 0. La courbe obtenue s’appelle la ligne de niveau de
F(z,y)az=0.
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Prenons par exemple le point (0,1), qui est bien tel que F'(0,1) = 0. Nous cherchons
donc y = f(x) telle que F(z, f(z)) = 0 pour tout x proche de 0. Ainsi, supposant

que y = f(x) existe, nous pouvons trouver sa dérivée :

F(z, f(z)) =0
=0

= F'(z, f(2))
— S @) + G f@)f (@) =0
5 (@, f(2)) ye® +e¥
/ ) = — ox —
== ) T et aer

Si nous regardons en (0,1) :

, —ye“”—i—ey‘ —1+e
= = — = —1
1(0) —e® + ze¥ 1(0,1) -1 te

qui est la pente de la tangente & y = f(z) au point (0, 1).

| | |
\ J
y:;(x)\tl; \

A @%k&@é
746 @«/@Mf (01)

Théoréme des Soit n > 2 et E C R™. Soit aussi F : E — R une fonction de classe C! au voisinage

fonctions impli- de @ = (ay,...,a,) € F telle que :
cites (TFI) 1. F(?) =0
2 2(@) 40
S ap—1) € R"! (remarquez que

Alors, il existe un voisinage B(a,d) de @ = (aq, ..
& an — 1 composante et non pas n) et une fonction f : B(d,d) — R telle que :

1. an = flay,...,an—1)
2. F(:Z’,’l, ey 1, f(:L‘l, .. .,mn_l)) = O, V(l‘l, e ,xn—l) S B(d, (5)
3. f est de classe C'!' dans un voisinage de &, et on a :

of ( ) gTF;(xl,...,xn_l,f(xl,...,xn_l)) Vo 1 .
A Ll Tn—1) = — ) p=1L1...,n—
al'p 887}1(1'1"’ . axnfl,f(xla v 7xn71))

Puisque la fonction est de classe C*, elle se comporte comme une

Intuition
droite dans un voisinage de chaque point. Il est facile de voir pourquoi
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gTF(ﬁ) doit étre non-nulle en considérant le cas de n = 2. Si

%—Z = 0, alors la droite est verticale, ce qui est un probleme.
De plus, nous pouvons remarquer que si nous voulions que la fonc-
tion f n’existe pas, c’est qu’il faudrait un point ou elle devrait
prendre deux valeurs différentes. Pour arriver a cela, sa dérivée doit
clairement passer de positive a négative ou inversement, ce qui est

impossible par le TVI puisqu’elle est non-nulle et continue partout.

Considérons le cas ot n = 2. Reformulons notre théoreme.

Soit E C R?, et soit F(z,y) : E +— R une fonction de classe C! telle que F(a,b) =0
et aF ,(a,b) 79 0.

Alors I'équation F'(x,y) = 0 définit localement autour de (a, b) une fonction y = f(x)
telle que f(a) =b, F(z, f(x)) = 0 pour tout z dans un voisinage de = a, et :

% (@, f(2))

T = =9 5w

Nous pouvons donc calculer f/(a) sans savoir la formule pour f(z).

Nous pouvons faire le schéma suivant, ou la fonction est bien définie dans les
voisinages rouges, mais pas dans le voisinage vert (puisqu’elle n’y respecte pas les
hypothéses de notre théoréme) :

Yy

CWU/C GéL B
hveae Flxy)=0

> X

Reprenons I'exemple du cercle, F(x,y) = 22 4+ y* — 1. Nous avons :

OF
=2y#0 <= y#0
EN
Ainsi, prenons y > 0, ce qui implique que F(z,y) =0 <= y =1 — 22. Calculons
sa dérivée directement :

=V1-22 = f'(z 2 a
TV Vi
Cependant, nous pouvons aussi utiliser notre théoreme. En effet, par le TFI, il existe
y=f(z)ou:
f/(m):w:,% -
Wy f@) =i V-
comme attendu.

Considérons le cas n = 3, reformulons notre théoreme.
Soit E C R3 et F(x,y,z2) : E — Rde classe C! telle que F(a,b,c) =0 et %—I;(a, b, c) #
0.
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Alors, il existe localement une fonction z = f(z,y) telle que f(a,b) = ¢,
F(z,y, f(x,y)) = 0 pour tout couple (z,y) dans un voisinage de (a,b) et :
af _ a (.’E y7f( 7y))
R
& 5 (z,y, f(2,y))
O () = F @y f(y)
oy 9L (x,y, f(z,y))
Exemple Soit la fonction suivante :

F(z,y,z) = xzcos(y) + ycos(z) + zcos(z) — 1
Pour commencer, on remarque que F(0,0,1) =0 :
F(0,0,1)=04+0+41cos(0)—1=0

Nous voulons maintenant savoir si F'(z,y,z) = 0 définit autour de (0,0,1) une
fonction z = f(x,y) telle que F(x,y, f(x,y)) = 0, et, si oui, quelles sont ses dérivées
partielles.

On remarque que :

oF

E(O’O’ 1) = —ysin(z) + cos(:c)‘ =cos(0)=1+#0

(0,0,1)

Ainsi, par le TFI, la fonction z = f(x,y) est bien définie au voisinage de (0,0) et est
de classe C'. Calculons les dérivées partielles de (z,y) au point (0,0) :

af B8 (2,y, f(2.y)) _ cos(y) — zsin(x) 1
a0 = aF(w y fxy) —ysin(z)-f—cos(m)‘(wvl) ST

af oo @y @) —wsin(y) + cos(2) __os)

00 = "By Ty ~ Sy eota) oo = 1 = oW

Ceci nous donne donc le gradient de f en (0,0) :

V£(0,0) = (gf(o 0), 8f(o 0)) (~1, — cos(1))

Ceci nous permet de calculer ’équation du plan tangent :

z:f(a,b)—|—<Vf(a,b),(x—a,y—b)>

Application : Reconstruisons la formule pour trouver un hyperplan tangent.
Equation de I’hy- Soit F(xy,...,x,) une fonction de classe C* sur E C R” telle qu’il existe un i, ot
perplan tangent 1 <1 < n, tel que, pour un € FE, nous avons F(?) =0et:

oF
8£EZ‘

(@) #0
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Par le TFI, nous savons que I’équation F(z1,...,z,) = 0 définit une hypersurface
x; = flay,...,ai-1,Gi41,--.,an) (f ne contient pas a; dans son parametre) qui est
de classe C.

Or, nous savons que 3¢ pour lequel gTF(?) = 0, est équivalent a VF (7) # 0. Ceci

implique que DF (7, 7) = <VF(E>), 7> =0 si et seulement si U est tangent a
I’hypersurface de niveau. En d’autres mots, pour tout vecteur o dans I’hyperplan

tangent a F(?) = 0 au point z = 7, nous devons avoir :

DF(@,T) = <VF(7), 3> o
j%—’ #-a

L’équation de I'hyperplan tangent a F(?) = 0 au point @ tel que F(?) =0 est

donc :
(VF(@), 7 -d)=0

Observation Nous pouvons voir que, parfois, nous avons besoin d’utiliser diffé-
rentes variables pour représenter le plan tangent d’une fonction a
chacun de ses points. Par exemple, pour une sphere, a chaque pole
il y a une variable que nous ne pouvons pas utiliser (puisque sa
dérivée est nulle). Ainsi, nous ne pouvons pas écrire le plan tangent
a chaque point d’une spheére sous la forme z = h(z,y).

Remarque Notez qu’un hyperplan est ’équivalent d’un plan en dimension n.
Par exemple, en dimension 2 c’est une droite, en dimension 3 c’est
un plan, etc.

Exemple 1 Nous avions trouvé que pour F(z,y,z) = xcos(y) + ycos(z) + zcos(z) — 1, nous
avons :

VF(0,0,1) = (1,cos(1),1) £ O

Ainsi, le plan tangent nous est donné par :
((1,co8(1),1),(x =0,y — 0,2 — 1)) =0 = z+ycos(l)+2—1=0 = z=1—z—ycos(l)

11 est possible de vérifier que nous pouvons obtenir la méme équation en prenant

= f(0,0) + <Vf(0,0),(1’70,y70)>

Exemple 2 Considérons 1’équation d’une sphére de rayon 1, donc F(z,y,2) = 2 + y*> + 2% —
1 = 0. Nous cherchons une équation du plant tangent en (a,b,c) € R? tels que
a?+b+c2-1=0.

Premierement, remarquons que :

VF(a,b,c) = (2z,2y,2z) = (2a,2b,2c) # I

(a,b,c)
puisque a = b = ¢ = 0 n’appartient pas a la sphere.
L’équation du plan tangent au point (a, b, c) est donc donné par :
((2a,2b,2¢), (x —a,y —b,z—¢)) =0
<= 2a(x —a)+2b(y —b) +2c(z—¢c) =0
= ar+by+cz— (a2+b2+02) =0

—_———
=1

<~ ar+by+cz=1
Exemple 3 Considérons 1’équation suivante :

Flz,y) =27 +y5 —4=0
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Nous voulons trouver I’équation de la ligne tangente au point (a,b) = (2%,2%>.
Commengons par vérifier qu’il appartient bien a la courbe :

(2%)%+ (2*)7 =242=4 = F(a,b) =0

Calculons maintenant le gradient a ce point :

) -G 300 ) (2.2 43

Nous pouvons donc appliquer notre formule, pour trouver que I’équation de la
tangente est :

Wl

VF(a,b) = (gx_é, gy_

(VF(a,b),(x —a,y—10))=0
V2 V2 5 5 V2 5\, V2 5
() e ) e ) )

5

— r4y=2.23 =23
—y=2" —r=32—2z

 la %D\A 71@ é
\ %/37*%%

<]
A
/ \\ \[2% ) 9%

Notez que ’équation z3 + y§ = 8§, celle qui est dessinée ci-dessus, donne une figure
appelée un astroide.

Remarque Considérons le cas n = 3, et faisons le lien avec ’équation du plan tangent au
graphique de z = f(z,y).
Si F(x,y,2) = 2 — f(x,y), ou f est une fonction de classe C*, alors nous avons
% =1, et donc VF(z,y, z) # 0 pour tout (z,y,2) ot z = f(x,y) est bien définie.
Ainsi, si ¢ = f(a,b), c’est a dire si a, b, c appartient a la surface de niveau F'(z,y,2) =
0, on trouve par le TFI que I’équation du plan tangent au point (a,b,c) est :

(VF(a,b,c),(x —a,y—b,z—c)) =0

oF OF OF

ax(a,b,c)(xfa)Jra—y(a,b,c)Jra(a,b,c) = _C =0
—_— f(a,b)
5% (a,d) — 25 (a,b) !

Nous retrouvons donc 1’équation :
=m0y~ Lanyw -0+ - rap =o
ax ) ay ) y ) -
— z= f(a'vb) + (Vf(a,b),(x—a,y—b)}
Examen Notez qu’a I’examen qu’il y a toujours une question sur les plans tangents, ou sur le

calcul d’une dérivée d’une fonction dont on n’a pas la forme explicite.
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Mercredi 11 mai 2022 — Cours 21 : Lagrange a Laferme avec Lescochons

5.12 Extrema liés — Méthode des multiplicateurs de Lagrange

Théoréme :
Condition né-
cessaire pour
un extremum
sous contrainte
quand n = 2
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Soit ’'ensemble E C R? et soient les fonctions f,g : E — R de classe C'. Supposons
que f(z,y) admette un extremum en (a,b) € E sous la contrainte g(z,y) = 0, et

%
que Vg(a,b) # 0.
Alors, il existe A € R, appelé le multiplicateur de Lagrange, tel que :

Vf(a,b) = AVg(a,b)

La démonstration de ce théoréme doit étre connue pour I’examen.

Preuve

Nous savons que Vg(a,b) # ﬁ, donc au moins 'une des dérivées
partielles est non-nulle. Supposons que g—f}(a, b) # 0 (le cas %(a7 b) #
0 est similaire). (

Nous avons g(a, b) = 0 puisque (a, b) satisfait la contrainte g(x,y) =
0. Ainsi, par le TFI, il existe une fonction y = h(x) de classe C! au
voisinage de = = a telle que :

9g

—~

! ——M avec g(z, h(z)) =
() =~ e g hle) =0

dy
Aussi, pour (z,y) satisfaisant notre contrainte g(x,y) = 0, nous
pouvons remplacer y = h(z) dans Uexpression f(z,y) pour obtenir
une fonction d’une seule variable :

Nous savons que les extrema de cette fonction, respectent :

_of of .
= 8?(13, h(z)) + 87/(33’ h(z))h' () =0

f'(z, h(x))
Par hypothese, (a,b) est un point d’extremum, et il respecte la
contrainte g(a,b) = 0, donc les hypotheses de I’équation que nous
venons d’obtenir sont bien respectées, ce qui nous permet de trouver
que :

of, . of .,
8.T (a,b) - ay (a?b)h (a)
Pour résumer, nous avons trouvé jusque la que :
of af , ,, \ TFI %g(a,b)
—(a,b) = —==(a,b)h'(a), h'(a) = —5=
(1) = gy @@, W@ g
Ceci implique que :
Ul
% (a.t)
8—f(a, b) = al(a’ b) ox 7
oz dy dg b
p Hv,_/ ay(cu )
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Théoréme :
Condition né-
cessaire pour un
extremum sous
contrainte

Intuition de la

preuve

Remarque

Note per-
sonnelle :
Exemple

Séparons notre preuve en différents cas. Si u; = 0, alors v; = 0
et donc Vf(a,b) = (0,v2) et Vg(a,b) = (0,uz). Ceci implique bien
qu’il existe un A € R tel que v = A ug et donc :

~—

#0
Vf(a,b) = AVg(a,b)

. . A s v __ Y2 .
Sinon (si w1 # 0), alors, en définissant ;- = 32 := A € R, nous
trouvons :

(v1,v2) = AMug,u2) <= Vf(a,b) = AVg(a,b)

O

Nous trouvons f(z,y) sous la forme d’une fonction d’une seule
variable et la dérivons, puis nous utilisons le théoréme des fonctions
implicites, ce qui nous permet de trouver un lien entre les dérivées
de f et celles de g.

Géométriquement, g(z,y) = 0 est une courbe de niveau. Or, on sait
que Vg(z,y) est toujours orthogonal & cette courbe. Maintenant, si
(a,b) est un extremum local de f(x,y) sur cette courbe, cela implique
que, pour un ¥ tangent & la courbe, D= f(a, b) = (Vf(a,b), 7> =
0 puisque c’est un extremum (ce point est visible sur l'image ci-
dessous).

Ainsi, ceci nous avons plusieurs possibilités. Soit Vf(a,b) = 0,
auquel cas nous pouvons prendre A = 0, et I'extremum est un
extremum local de la fonction, méme sans contrainte. Sinon, V f(a, b)

est orthogonal a la courbe, et donc il est parallele au gradient de g,
nous disant V f(a,b) = AVg(a,b) out A # 0.

Regardons par exemple la fonction f(x,y) = = avec la contrainte
g(z,y) = 2% + y?> — 4 = 0. La courbe sous contrainte est présentée
en violet, et il est clair que, aux extrema, Vg (les vecteurs en noirs)
est colinéaire a V f (le vecteur en bleu) :

Soit E C R™ et soient f,g1,...,¢mnE — R des fonctions de classe C*, ot m < n — 1.
Soit @ € E un extremum de f() sous les contraintes g1 (@) = ... = g, (Z) = 0.
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Supposons que les vecteurs Vg, (7)7 ey Vagm (7) sont linéairement indépendants.

Alors, il existe un vecteur X = (A1, ..., Am) € R™ tel que :
VH@) =D MVoe(@) =MV (@) +...+ A Vom (@)
k=1

En particulier, si on cherche un extremum de f(?) sous une seule contrainte
g(?) = 0, on obtient les équations :

{Vf(?

o(@) =0 I wg(@) 20

Nous voulons trouver toutes les extrema de la fonction f(z,y,z) = x — 2y + 2z sous
la contrainte g(z,y,2) = 2% +y> + 22 — 9= 0.
Commengons par remarquer que pour (x,y, z) sur notre sphére de rayon 3 :

Vy(z,y,z) = (2z,2y,22) # (0,0,0)
puisque (z,y, z) = (0,0,0) n’appartient & pas la spheére de rayon 3.

Par le théoreme des multiplicateurs de Lagrange, si un point (x,y, z) appartenant a
la sphére est un point d’extremum de f(z,y, z), alors il existe X € R tel que :

Vf(z,y,z) = AVg(z,y,z2) (1,-2,2) = A\(22, 2y, 22)
<
24y’ +22=9 22 +y?+22=9

Clairement, A # 0, donc nous pouvons diviser la premiére équation par A :

_ 1
T = 3% _

1 T =
Yy=—x :>{

y=—z
z =

N |—=

1
Py
En mettant ceci dans notre contrainte, on obtient :

1 9
9:x2+y2+z2:122+22+22:122 = ’=4 = z=42
Ainsi, si z =2, on obtient x = 1, y = —2 et donc on a le point (1,-2,2). Si z = -2,
on obtient le point (—1,2, —2). Nous pouvons maintenant regarder leur image par
I
f(1,-2,2)=14+4+4=9, f(-1,2,-2)=-1-4-9=-9

Nous devons encore vérifier que ce sont bien des extrema. Cependant, puisque la
sphére est un compact et f est continue, nous savons que f atteint son minimum et
son maximum. On sait aussi qu’elle est de classe C'!, donc les points critiques sont
les point stationnaires. Donc, parmi les points stationnaires il existe forcément les
points de minimum et de maximum sous la contrainte. Mais, nous n’avons trouvé
que deux points, nous savons donc que ce sont notre minimum et maximum.

Nous voulons trouver les extrema de la fonction f(x,y, z) = zyz sous les contraintes :
a(z,y,2)=c+y+2—-5=0, go(z,y,2) =axzy+yz+22—8=0
Commencons par vérifier que les gradients de g; et go sont linéairement indépendants :
Vai(z,y,2z) =(1,1,1), Vga(z,y,2) =y +z,2+z,2+y)

Pour savoir s’ils sont linéairement indépendants, nous posons :

v.gQ('rayaz):ngl(xayaz) = (y+Z:I+Z,I+y):(l€,k7k) == r=Yy=2z
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Cependant, nous pouvons voir que z = y = z ne marche pas avec nos contraintes :

gz, z,2)=3-5=0 = z=2
ga(x,z,0) =322 —8=0

mais 3(%)2 =243
Nous en déduisons que le théoreme des multiplicateurs de Lagrange s’applique, et
on obtient les équations :
Va Vg2
——

Vf(x,y,z) = (yz,xz,xy) = )\1 (17 13 1) +)\2 (y + zZ,x + zZ,T + y)

gi(z,y,2)=x+y+2—-5=0

g,y 2) =zy+yz+22—-8=0

Ceci nous donne le systeme de 5 équations & 5 inconnues suivant :

yz =M + Aoy + 2)
xz = A1 + Xz + 2)
Ty = A1 + A2 +y)
r+y+z2=5

Ty +yz+z2=38

On voit que la quatriéme équation nous donne = + y = 5 — z. Ainsi, en additionnant
les deux premiéres équations :

zZx+y) =2+ (z+y+2z) = 2(5—2)=2 1+ X(b+2)

Nous pouvons utiliser la méme idée en additionnant la deuxiéme et la troisiéme
équation, et en additionnant la premiere et la troisieme équation. Ceci nous donne

le systeme :
z2(5—2) =2 \1 + X2(5+2) 224+ (A2 —5)z+5X+2)\ =0
r(5—2) =2\ +X(Bb+2) = {22+ N —5)r+5A+2)\ =0
y(5—1y) =2X\ + A2 (5 + y) Y4+ (A2 = 5)y + 55X + 20 =0

Nous savons qu’une équation quadratique a au plus deux solutions différentes. Nous
savons déja que x = y = z n’est pas possible, donc la seule possibilité qui nous
arrangerait (qui dirait que des solutions existe) serait qu'une variable est différente
des deux autres. Prenons par exemple x = y # z. Alors, les équations 4 et 5 de notre
premier systeme nous donnent :

2r4+2=05 z=0—-2x
=
224+ 272 =8 22 4+22(5-22) —8=0 = 322 +10x —8=0
Nous pouvons donc résoudre :

10+ +/100—-96 10£2 4 7
Xr = = E

6 6 I1:2,l‘2:§:>2’1:1,22:§

Ceci nous donne 6 points candidats pour un extremum de f sous les contraintes (en
considérant aussix =z £ yety=2#zx) :

(272a1)a(17272)7(2a172)a é7éaz ) zaévé ) éaz7é
3°'3°3 3°'3°3 3'3°3

Calculons les valeurs de nos fonctions :

f(2,2,1) = f(1,2,2) = f(2,1,2) = a:yz‘(Qg 1) =4
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4 4 7 4 7 4 7 4 4 112 4
f<y3%)—f(y3g)—fﬁyy3>—27—4+27

Par un argument similaire a 1’exemple précédent, si nous arrivons a démontrer que
les contraintes définissent un compact dans R3, nous pourrons en déduire que les
premiers points nous donnent un minimum de f sous les contraintes, et les deuxiéme
nous donnent un maximum de f sous les contraintes. En effet, nous savons déja que
f est continue, ainsi, si les contraintes définissent un compact, cela implique que f
atteint son minimum et son maximum, qui sont a des points stationnaires puisqu’elle
est de classe C'!, qui sont donnés par le théoréme des multiplicateurs de Lagrange.
Démontrons donc que les contraintes forment un compact. Il est possible de trouver
a partir des contraintes que :

1
Tty -5 =17

1 s 1

—(z+ +=(x—-5

S +y)’ + 5 - 5)
Ceci nous dit que %(m — 5)2 <17 et %(y — 5)2 < 17, et donc que x et y sont bornées.
De plus, puisque z = 5 — x — y, cette variable est aussi bornée. Ceci nous permet en
effet de conclure que notre ensemble est en effet compact.



Lundi 16 mai 2022 — Cours 22 : Mon intégrale elle est douce

Chapitre 6

Calcul intégral des fonctions de
plusieurs variables

6.1 Intégrale sur un pavé fermé

Définition : Pavé Un pavé fermé est un sous-ensemble de R™ qui est le produit Cartésien de n
intervalles fermés bornés :

P =la;, b X [ag,ba] X ... X [an,by], a; <b;Vi=1,...,n
Nous notons le pavé ouvert par :
P =Jay,bi[ x ... X |anbn|
Ezemple Un pavé de dimension 1 est donné par :
Py = [a,}]

c’est un intervalle fermé borné.

Un pavé de dimension 2 est donné par :
Py = [a1,b1] X [ag, ba]

Nous pouvons les représenter géométriquement :

Définition : Vo- Le volume d’un pavé fermé est défini par :
lume

|P| = (b1 —a1)(b2 — az) -+ (b — ay)
Ezemple En reprenant nos deux pavés ci-dessus, nous avons :

|Pil=0b—a, |P]=(b1—a1)(bs—az)
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Définition : Sub-
division

Définition :
Sommes de Dar-
boux
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Soit o une subdivision de [a;,b;] (comme nous 'avions définie en Analyse 1), ol
a; < bj. Notez que chaque subdivision n’a pas besoin d’étre réguliere. Nous avons
donc :

o = {CLJ' =Tj0 < Tj1 <...<Tjn, < b]}

Alors, 0 = (01, ...,0,) est appelée une subdivision de P.
Nous notons D(o) la collection des pavés engendrés par la subdivision.

Ezemple Considérons P» = [a1, b1] X [ag, bs]. Alors, nous pourrions prendre :
o = {{a, 21, 22,0}, {az,y1,y2,y3,b2}}

Nous pouvons représenter cela graphiquement

b
Quf Q?.t/ Qﬂ/
Y,
Y Q(.’b QZ} 0‘13
Qn | Qu | On

Y,
o, Q,, Q.

a,
a, X, Xo g/

La subdivision nous donne :

Py, = U Q= U Qij
) 3

QeD(c i=1,...,
j=1....4

Nous pouvons aussi calculer le volume du pavé :

Pol= > Q= > 1@yl

QeD(o) i=1,...,3
J=1,004

Soit, P un pavé fermé et soit f : P — R une fonction bornée sur P. Alors, on définit
les sommes de Darboux de f sur P.
Soit D(o) une collection de pavés fermés engendrée par la subdivision o. Alors :

S,(HE Y m@IQlL oum(Q) = inf (f(7))

QeD(o) weQ
S.(HE Y M@QIQl, on M(Q) = sup (F(7))
QeD() ZeQ

Notez que nous ne savons pas s’il existe un minimum et un maximum, puisque la
fonction n’est pas supposée continue. Cependant, puisqu’elle est bornée, nous savons
qu’il existe un infimum et un suprémum. Aussi, nous remarquons que plus nous
rajoutons de points, plus S (f) augmente et plus S, (f) diminue, ce qui nous ameéne
aux définitions suivantes.

La somme de Darboux inférieure est définie par :

S(f) L sup{S,(f) : o est une subdivision de P}

La somme de Darboux supérieure est définie par :

S(f) wf inf{S,(f): o est une subdivision de P}



6.1. INTEGRALE SUR UN PAVE FERME

Définition :
Fonction inté-
grable

Exemple

z

Observations

Notes par Joachim Favre

Ezemple La somme de Darboux inférieure S associé a une subdivision donnée
est la somme des parallélépipedes rouges sur 'image suivante :

z= f(z,y)

Nous remarquons que, toujours S(f) < S(f).

Soit P C R™ un pavé fermé et f : P — R une fonction bornée.

f est intégrable sur P si et seulement si :

S(f)=S(f)

Dans ce cas, ’intégrale de f sur P est définie par :

/Pf<?)d?:/'Lf(mh...,mn)dxl...dxn

Notez que le deuxiéme terme n’est qu’une notation, donc nous ne pouvons par
échanger les intégrales par exemples (pour l'instant). Nous verrons avec le théoréme

de Fubini que cette notation est, en fait, trés cohérente.

Remarque

Quand nous définissons un objet en mathématiques, il faut toujours

mathématique  donner un exemple immédiatement apres, car nous pourrions avoir
défini un objet qui n’existe pas. Il est mieux que cet exemple soit

trivial.

Soit P C R™ un pavé fermé, et soit f : P +— R une fonction constante, i.e. f(?) =
C € R. Clairement, f est bornée sur P. Nous allons montrer qu’elle est aussi

intégrable sur P.
Soit o une division de P. Alors, nous avons :

S,(H= > inf(f)lQ] = ¢ Z Q=

QED(0) — —
=C

C|P|

Se(f)=> sup(/)|Q| = € > 1Ql=c|p|

QED(o) | y
=C

pour n’importe quelle subdivision o.
Donc, nous avons :

S(f) =5(f) = C|P| = /P Cd@

Nous avons bien démontré que f était intégrable.

Observation
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En particulier, si C' =1 :

/ da = // dxy ...dx, = |P|
P P
Ceci nous donne donc le volume de P :
b
P=lab — |P| :/ lde =b—a
P = lanbi) x az,ta] — [ 1dady = (b~ a1)(t2 -~ 02)
P

Théoréme Toute fonction continue est intégrable sur un pavé fermé.

Idée de preuve
(assez com-
pléte)

126

Soit P C R™ un pavé fermé, et soit f : P — R une fonction continue.
Pour commencer, puisque P est un sous-ensemble compact et f est
une fonction continue, elle atteint son minimum et son maximum,
et donc, en particulier, f est bornée sur P.

Considérons maintenant intégrabilité, nous voulons montrer S(f) =

S(f)-

Soit € > 0 (“I’Analyse sérieuse commence si on commence & parler
d’epsilons” Prof. Lachowska). Puisque f est continue en chaque
point de P, nous savons que pour tout z$ € P, il existe 0z tel que :

|2 -2 <om = |£(@) - F@) <3

Notez que nous pouvons prendre % car cette proposition est vraie
pour toute constante positive.

Nous considérons maintenant le recouvrement de P par les boules
ouvertes B(Z§, 633 ). C’est bien un recouvrement car chaque point
de P est contenu dans une boule. Il y a beaucoup d’intersections,
mais nous avons bien :

PcC U B(x4,05)

zHeP
Par le théoréeme de Heine-Borel-Lebesgue, il existe un sous-recouvrement

fini :
PcC U B(zc_;,ég;)

zZeP

Or, si z1, %5 € B(:F;-,éj)7 nous avons :

@)~ @) < [F@) - 1@ + /(@) - £(@3)

IN

ou l'inégalité 1 est I'inégalité triangulaire.

Il existe une subdivision de P qui correspond & ce recouvrement fini
(cette affirmation est la partie de la preuve o nous ne donnons pas
Pargument complet). Ainsi, soit o une telle subdivision. Puisque,
sur chaque sous-pavé, le minimum et le maximum sont dans la boule
ouverte, nous pouvons utiliser notre inégalité ci-dessus, ce qui nous
donne :

mgxf—ménf <e VQe€D(o)
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Propriétés de
Pintégrale

Additivité

Linéarité

Propriété 3

Propriété 1 :

Propriété 2 :

Nous trouvons donc que :

Se(£)=8,(H) = > (mgxfménf>Q| <e 3 |Ql=¢lP|

QeD(o) QeD(o)

Mais, nous savons que S, (f) > S(f) et S, (f) < S(f), ce qui nous
dit que :

< S(f) = S8(f) < So(f) = 8,(f) < el P|

Cependant, c’est vrai pour tout € > 0, et le seul nombre qui est tel
que 0 < z < a pour tout a > 0 est x = 0, donc nous avons bien
trouvé que :

S(f)=8(f) =0 <= S(f) =5(f)

Soit P un pavé fermé, et {P;},.; une famille dénombrable de pavés
fermés disjoints (l’mtersectlon entre l'intérieur de n’importe quel
deux pavé est vide, P, N P = ¢ pour i # j) telle que P =
Par exemple, cela pourrait ressembler & :

=

ZEI

O
-

—— ¢
Pt e

Alors, pour toute fonction continue f : P +— R, nous avons :

-3 1o

el

Soit P un pavé fermé, et soient f, g : P — R deux fonctions continues.
Alors, pour tout a, 8 € R :

/P(af(?)Jrﬂg(?))d?:a Pf(?)d?Jrﬁ/Pg(? a7

Soit P un pavé fermé, et soit f : P +— R une fonction bornée,
intégrable sur P, et telle que :

f(F)|<KeRsg —= -K<f(Z)<K, VZecP

Alors :
~K|PI < [ 1()d@ < K|P)
P

Les deux premieres propriétés découlent directement de la définition des sommes de

Darboux.
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Définition : Vo-
lume

Théoréme de
Fubini

Casn =2
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Soit P C R? un pavé fermé de dimension 2, et soit f : P + R, une fonction
intégrable. Alors, le volume de I’ensemble sous la surface z = f(x,y) > 0 est défini

par :
V(Ef// f(z,y)dady
P

En d’autres mots, V est le volume du sous-ensemble entre z =0 et z = f(z,y) >0
au dessus du pavé fermé P C R2.

Soit P = [a1,b1] X ... X [apn,by] C R™ un pavé fermé, et soit f : P — R une fonction
continue.
Alors, f est intégrable sur P, et on a :

/pf(?)d?:/ain </ab_< : f(xl,...,xn)dx1> ~--dxn_1>dxn

n—1

Ceci marche pour n’importe quel choix de 'ordre d’intégration.

Reformulation  En d’autres mots, nous pouvons calculer :

by

g1(z2, ... xy) = fz, ... xn)day
ay

ou x; est une variable d’intégration, et xo,...,x, sont des para-
metres. Nous pouvons ensuite prendre :

b2
ga(x3, ..., xp) = / g1(z2,. .., zn)dxs
as
Nous pouvons continuer ainsi de suite, jusqu’a calculer :

bW,
/ In-1(xn)de, =a €R
a

n

Remarque Ce théoréme n’est uniquement valide sur un pavé fermé, nous verrons
ensuite une autre version de ce théoréme pour d’autres ensembles.

Soit P = [a,b] X [¢,d] C R? un pavé fermé de dimension 2, et soit f : P — R une
fonction continue. Alors, nous avons :

/Cd </ab f(x,y)dm> dy = /ab (/Cd f(x7y)dy> dr — //Pf(g;,y)dxdy

Idée de prewve Nous pouvons trouver une subdivision de P assez fine telle que
P=,;Pjet fz,y) = Ci; € Rsur P;; (en d’autres mots, f est
presque constante sur chaque subdivision).



6.1. INTEGRALE SUR UN PAVE FERME Notes par Joachim Favre

Dans ce cas, nous pouvons écrire :

[(Lremr)or S [} (£ )i
fin- Z/y /x f(z,y)dzdy
ZCZJ —2i—1)(Yj — Yj—1)

ZCU —yi-1) (i — i)

Z/ <yjlfxy>dy>dx
_ / ( / f(ay)dy)dw

Mercredi 18 mai 2022 Cours 23 : Fubini on steroids

Exemple

Nous voulons calculer le volume du sous-ensemble de R3 défini par :
{(x,y,z) ER?:0<2<4,0<y<3,0<z2< (1+3x—|—xsin(xy))}

Nous remarquons que f(z,y) =1+ 3z + zsin(zy) est continue, et que f(z) > 0 sur
cet intervalle. Ainsi, nous pouvons utiliser le théoréme de Fubini sur le pavé fermé
P =10,4] x [0, 3]. Pour commencer, utilisons la linéarité et 'additivité de I'intégrale :

V= // (14 3z + zsin(zy))dzedy = // ldzdy + 3 // rdxdy + // zsin(zy)dzdy
P P P P

La premiere intégrale est le volume du pavé fermé, qui est (4 —0)(3 —0) = 12.
Regardons maintenant la deuxieme intégrale. Nous pouvons choisir I'ordre des
variables, et il est souvent mieux d’utiliser la variable “qui participe le moins”, donc
commencgons par y :

4, 13 4y
3// xdxdy:3/ (/ xdy)dmzi%/ Ty
P 0o \Jo 0

=3 4

4 9
dx:?)/ 3xdx:fx2‘ =72
0 2

y=0 0

Pour I'exemple, calculons cette méme intégrale en intégrant d’abord par x :

3 4 3/3 a=d 3 3
3 // xdxdy = / (/ 3xdx> dy = / (x2 )dy = / 24dy = 24y‘ =
P 0 0 0o \2 lz=0 0 0

comme attendu.
Calculons maintenant notre troisieme intégrale, en commencant par intégrer par y
puisqu’elle est plus simple :

//Pmsin(xy)dxdy = /04 (/03 xsin(xy)dy> dx

Prenons maintenant le changement de variable u(y) = xy, ce qui nous donne :

/04 </03 sin(U)du) dr = /04 - cos(xy)’zdx = /04( cos(3z) + 1)dx

Nous trouvons donc finalement que notre troisieme intégrale est égale a :

~ sin(3)| = 14— sin(12)
X 3Sln X 0_ 3Sln

129



Analyse II

130

CHAPITRE 6. CALCUL INTEGRAL

Considérons encore cette troisieme intégrale, mais en prenant un autre ordre d’inté-

gration :
3, p4
// zsin(zy)dzdy = / (/ xsin(a:y)dac) dy
P 0o \Jo

Calculons 'intégrale intérieure :

r=4 1 sin(xy) |#=4
, Lsin(ey)

z=0 Y Y z=0

4 41 4
/ zsin(zy)dr = _— cos(xy)‘ +- / cos(zy)dx = - cos(zy)
0 Y 0 ¥Jo Y

Ce qui est égal a :
4 1
——cos(4y) + — sin(4y)
y y?

Nous voulons intégrer ce résultat entre 0 et 3, donc regardons sa limite :

(4y)* 1 2
. sin(4y) — 4y cos(4y) dy— - +...— 4y<1 —5(4y)" +.. )
im

= 1.
y—0 y2 1/1—1;% y2
3 B
= lim 77(4? +32y°
- y—0 y2
=0

Calculons finalement notre intégrale extérieure (qui, malheureusement, ne peut pas
étre séparée en deux intégrales, puisque celles-ci ne s’expriment pas en fonctions
élémentaires) :

/03 (3 cos(dy) + % sin(4y)) dy

/3 sin(4y) — Ziy cos(zy) dy
0 Y

/ " (ay cos(y) - sin<4y>>d(;)

3 /3 4 cos(4y) — 16y sin(4dy) — 4 cos(4y)
0 0 Yy

in(4
= — sm(yy) +4cos(4y)‘

dy

in(12 in(4 ’
- _ sm(i) + 4 cos(12) + lim M —4 +/ 16 sin(4y)dy
3 y—=0 y 0
=4
in(12 3
= — smé ) +4cos(12) — 4cos(4y)’0

1
= -3 sin(12) 4+ 4 cos(12) — 4 cos(12) + 4
14— Lana2)
=4 — -sin
3
comme attendu. Cependant, clairement, le choix prudent de 'ordre d’intégration
est important, car nous sommes allé beaucoup plus rapidement en intégrant par y

d’abord.
Nous trouvons donc finalement que notre volume est donné par :

1 1
V=124+72+4~- 3 sin(12) = 88 — 3 sin(12)
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6.2 Intégrales sur un ensemble borné

Définition : Soit E C R™ un ensemble borné. Clairement, puisqu’il est borné, il existe un pavé
Fonction inté- fermé tel que £ C P C R™. Soit aussi f : F +— R une fonction bornée sur E.
grable sur un Posons maintenant la fonction suivante :

ensemble borné

quelconque f(?) _ {f(7), si®EcE

0, siZeP\E
La fonction f est intégrable sur E, si f est intégrable sur P. Dans ce cas, on pose :

/E @)z [ j@)az

P

Remarque La définition ne dépend pas du choix du pavé fermé autour de notre
sous-ensemble F.

Définition : Une frontiére est dite réguliére (de mesure nulle) si, pour tout € > 0, il existe un
Frontiére régu-  ensemble de pavé fermés {q1, ¢z, ...} tels que :
liere
Z"M <e et OFEC qu
el iel
Intuition En gros, cela veut dire que la frontiere n’a pas d’aire.

Voici un exemple d’une frontiére qui n’est pas réguliére :

P

5{ n' 4+ /DM {(jﬂé’é/g

De maniére similaire, la courbe d’Osgood n’est pas réguliére (je vous
laisser aller jeter un ceil sur Wikipédia, Osgood Curve en anglais).

Théoréme Si f: E — R est bornée sur F, continue sur l'intérieur E°, et la frontiere OF est
assez réguliére, alors f (?) est intégrable sur FE.

Théoréme de 1. Soient :

Fubini pour les e [a,b] C R un intervalle, ot a < b.

domaines a fron- ® ©1,p2 : [a,b] — R deux fonctions continues telles que @1 (x) < pa2(x) pour
tiére réguliére tout = € Ja, b|.

e D = {(z,y) eR?*:a<z<byi(zr) <y<ypaz)} (appelé le domaine &
frontiere réguliere de type 1). o
Alors, pour tout fonction continue f : D — R, nous avons :

|| s = [ b ( / W(()) f(smy)dy) &z

Le choix du sens des variables d’intégration ne peut pas se faire arbitrairement.
2. Soient :
e [¢,d] C R un intervalle, ol ¢ < d.
e 1,19 : [¢c,d] — R deux fonctions continues telles que 91 (y) < 12(y) pour
tout y € e, d|.
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e D = {(z,y) eR?*:c<y<dvi(y) <z <s(y)} (appelé le domaine a
frontiere réguliere de type 2).
Alors, pour toute fonction continue f : D +— R, nous avons :

sapdzdy = [ [ fepydr )y
A [ (L

Le choix du sens des variables d’intégration ne peut pas se faire arbitrairement.

Exemple Voici un exemple de type 1 (a gauche) et un exemple de type 2 (&
droite) :
/ /

. %&2

Soit la fonction f(x,y) = 22y et le domaine suivant :
D={(z,y) eR*:0<2<1,0<y<1l-—uz}

Ceci nous donne le graphe suivant :
y

BRR
M
J‘M‘Hi[

O i\ X
Nous pouvons l'interpréter comme un domaine de type 1, donc le théoréme de Fubini
nous dit que :

//D [z, y)dzdy = /01 (/01_” ﬁydg) dy = /01 %12 (1—2%)dz

Ce qui est égal a :

1t 1 11 1 1 10-15+6 1
f/ (m2—2x3+m4)dm:fx3—fx —&——xS‘ ==-—=-4+—= 0
0

2 o 6 4 10 60 60

Cependant, nous pouvons aussi réécrire notre domaine de maniere a ce qu’il soit de
type 2 :
D={(z,y) eR*:0<y<1,0<z<1l-—y}

Ainsi, le théoréme de Fubini nous dit que :

//D fla,y)dedy = /01 </01—y x2ydx> dy = /01 é(l — ) ydy

Ce qui est égal a :

1t 1 1 1 1 1 10-20+415-4 1
*/ (v =3y +3y° —yh)dy = v’ — 2+ ' — 5‘ = . =
0

3 6/ "3V 1Y T 1Y o 60 60

comme attendu.
Parfois, il est donc possible de changer notre domaine d’un type a I’autre, mais le
choix est souvent forcé.
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Remarque Regardons le domaine D suivant, qui n’est malheureusement ni de type 1 ni de type

2:
e )

% ()

Nous pouvons le séparer en trois sous-ensembles de type 1 :

De maniere générale, il est possible de diviser le domaine en réunion de domaines

de type 1 ou 2, et nous pouvons ensuite utiliser I’additivité de l'intégrale. Ici, nous
aurions, pour une fonction f : D — R continue :

17;.f(x,y)dwdy

=/‘fmwmw+/ ﬂmwmw+/ £, y)dady
Dy Do D3

T2 p1(x) z3 p2(x) T4 p2(z)
=/ / flz,y)dy d:r+/ / f(z,y)dy dw+/ / f(z,y)dy | dx
T1 p3() T2 w3 (x) z3 pa(z)

Il peut arriver qu’il y ait certains sous-ensembles qui soient de type 1, et certains de

type 2.

Exemple 1 Nous voulons calculer I'aire du domaine entre y = 22 et y = z+2, quand —1 < z < 2.
Il est souvent une bonne idée de se faire un dessin pour comprendre ce qu’on nous
demande :
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Il est plus simple de considérer ce domaine comme un ensemble de type 1 :
D:{(x,y)€R2:—1§x§2,x2§y§w—|—2}

Nous cherchons l’aire, donc :

2 z42 2 1 1 .2
// 1da:dy:/ / dy =/ (m+2—x2)dx:fx2+2x—fx3‘
D —1\Ja? -1 2 3 I

Ce qui est égal a :

8§ 1 1 19
244 - - —-4+2—--=8-3—-—- =
+ 3 2 + 3 2 2
Cependant, nous aurions aussi pu considérer notre domaine comme une réunion de
deux domaines de type 2 :

D={(z,y) eR*:0<y<1l,—\y<a< y}U{(z,y) eR*:1<y<4,y—2<z <.y}

Nous avons alors :

// ldxdy = // 1d:£dy—|—// ldxdy
D Dy D»
1 Vol 4 Vi
:/ / ldx dy+/ / 1dx | dy
0 -y 1 y—2

1 4
=/2ﬂdy+/(\/§—y+2)dy
0 1

s 1,
-3+,

Lundi 23 mai 2022 — Cours 24 : Changements de variables

Exemple 2 Nous voulons calculer 'intégrale de f(z,y) = z—z sur le domaine suivant :

1
D{(x,y)€R2:1<x<2,x<y<x}

Nous pouvons voir notre ensemble comme un domaine régulier de type 1 :
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y=r

Clairement, puisque (z,0) ¢ D, notre fonction est continue et donc nous pouvons
appliquer notre théoreme :

.Z’Q 2 x .272 2 —.TQ
// —dedy:/ (/ 2dy)dgc :/ (
DY 1 Ly 1 Y

Ce qui est égal a :

y=x 2
)dm:/ (—x—l—mg)dm‘
1

y=1

15, 1 4‘2 1 1 9
——z* - -2 =24+ -4+4--=-
2 4 I + 2 + 4 4
Nous pouvons maintenant aussi considérer notre ensemble comme deux domaines

réguliers de type 2 :

Appliquons notre théoréme sur cette autre vision du méme ensemble :

x? 1 2 g2 2 2 g2 9
// —dedy:/ / —dx dy+/ (/ 2d:zc>dy—...—4
DY 1 1y 1 y Y

Ici, cela ne change pas grand chose de savoir interpréter notre domaine de deux
manieres différentes, mais, méme si ce n’est pas toujours possible, cela permet parfois
de grandement simplifier notre intégrale

Théoréme de Soient :

Fubini pour les e Un intervalle [a, ], ol a < b.

intégrales triples e Deux fonctions o1, 2 : [a,b] — R continues telles que ¢i1(x) < @2(z) pour
tout x € Ja, b]

e [’ensemble défini par :
D= {(x,y) eER’:a<z< byp1(x) <y < cpg(x)}

e Deux fonctions G, H : D ~— R continues telles que G(z,y) < H(x,y) pour tout
(x,y) € D.
e [’ensemble défini par :

E={(z,y,2) €ER?: (z,y) € D:G(x,y) <z<H(z,y)}
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e Une fonction f : E +— R.
Alors, f est intégrable sur F, et on a :

b w2 (x) H(z,y)
/ F(w,y, 2)dadydz = / / / F(a,y,2)dz |dy | do
E a w1(x) G(z,y)

Nous ne pouvons pas choisir I'ordre d’intégration.

Notation Pour simplifier la notation d’intégrales multiples, nous pouvons

écrire :
b p2() H(z,y)
/ / / f(z,y,2)dz |dy |dx
a w1 (x) G(z,y)
P2 ﬂﬂ) (z,y)
/ dx/ / f(z,y, z)dz
v1() G(z,y)

Remarque Si nous voulions formuler ce théoreme de la méme maniére que pour
le théoréme pour les intégrales de deux variables, nous aurions besoin
de définir 6 types différents de domaines. En d’autres mots, le nom
des variables dans le théoréme n’est pas important (il serait donc
valide pour un D = {(z,2) € R? 1 a < 2 < b, p1(2) < & < p2(2)} si
tout le reste est cohérent avec).

Exemple Nous voulons intégrer f(z,y,z) = e*” sur le domaine suivant :
E={(z,y,2) ER*:0<z2<y<az <1}

Nous remarquons que f(z,y, z) n’a pas directement de primitive selon z, donc nous
voudrons intégrer selon cette variable en dernier. Nous faisons ensuite un choix
arbitraire pour I'ordre en y et z, afin de réécrire notre domaine comme :

E={(z,y,2) ER*:0<2<1,0<y<z,0<z<y}

Calculons maintenant notre intégrale :

3 1 T Yy 3 1 T 3
/e”” dxdydz = / dx/ dy/ e’ dz:/ dx/ dy(ze"”)
E 0 0
1
1
/ dm/ dy | ye® :/ da:nyexa !
0 2

y=0
1t s
dm—f/exd(x)
6o

I e—-1
0 6
Notez qu’il est absolument nécessaire d’intégrer selon z en dernier (comme mentionné

zZ=y

z=0

I
ol =
o\

1 s

. JE o . . (12 .
ci-dessus, e n’a pas de primitive exprimée en fonctions élémentaires). Cependant,
nous pouvons échanger l'ordre d’intégration entre y et z :

E:{(:r:,y,z)€R3:O<x<1,0<z<x,z<y<x}

Ceci nous donne ainsi que :

! * 3|Y=2
/e drdydz = x/ dz/ e’ d /dm/ dzye”
0 0 y==
Z=T
]
0 z=0
x

1
1
dz(x — z)e‘” = / dx (:vz - 22>
0 2
1
z? — lxz e’ = 1/ 22 dx
2 2 /o

_1 z 31w3
—6/6 d(x)6e

/d
_/01
b

136
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Notes par Joachim Favre

comme attendu.

6.3 Changement de variables dans une intégrale multiple

Théoréme

Exemple 1

Exemple 2

Soit E C R™ un sous-ensemble tel que E est compact. Soit aussi ¢ : E — R»
telle que v € CY(E) et ¢ : E — (E) est bijective (ce qui est équivalent a
Jy (7) est inversible pour tout € E, comme vu précédemment). Soit finalement
f: D ¢(E) ~ R une fonction continue.

Alors :
[ @) = [ () der (0, (i)t

£ D=YE

2 X

Nous voulons intégrer f(x,y) =1 = f(u,v) en utilisant un changement de variable
(clairement non nécessaire, mais c¢’est pour 'exemple). Soient les deux sous-ensembles
suivants :

E= [Oa 1]2’ D = 1/)(E) = [032]2

Prenons la fonction de changement de variable suivante :

Y(u,v) = @Z) _ (z) Ty = ((2) g) — |det(Jy)| = 4, V(u,v) € E

Calculons finalement notre intégrale :

1 1
/ flz,y)dady = / 1|det Jy |dudv = / du/ dvl-4=4(1-0)(1-0)=14
D E 0 0

Ce qui est cohérent avec le résultat que nous aurions obtenu sans changement de
variable :

/Df(x,y)dxdy—/02dx/021dy—1(20)(20)—4

Nous voulons intégrer la fonction f(z,y) = 22 sur le domaine suivant :

D={(z,y) eR*:0<az<l,—z<y<zjU{(z,y) eR*:1<2<2,2-2<y<2—uz}

Nous pouvons dessiner notre domaine D = D1 U Dy de la maniére suivante :

D S22

//\{\

\r (\ “(r,

| I

= ,,‘V\"
A §
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Clairement, Dy et Dy sont des domaines réguliers de type 1. Ainsi, utilisons le
théoreme de Fubini :

/Df(x,y)dxdy: / dx/_x 2dy+/ dﬂc/2 ’

/0 dx(yx )‘y_x +/1 da:(yx )’y o

y=—1x y=r—2

1 2
= / 223 dx + / (4 — 2x)z dx
0 1

Lot 4 ‘2 14‘2

Cependant, il est plus simple de voir notre ensemble comme un carré, que nous
b b
pouvons tourner. Ainsi, nous pouvons introduire les variables suivantes :
(u+v)

u=zx—y T =
<
v=x+y y=s(v—u

En d’autres mots, nous avons trouvé :

= 0<u<2,0<v<?2

N D=

1 1
$lu) = @) = (Gl 0, - 0)
Calculons le déterminant de son Jacobien :

11
Jy(u,v) = (_25 z) = det(Jy(u,v)) = i + i ==-40

donc v : E +— D est bien bijective.
Nous pouvons maintenant calculer notre intégrale :

//xzdxdy— // (u + v)?|det(Jy (u, v)) |dudv—/ du/ dv - u+v)
D

_ 1 g|v=2 _ 1 3.3
= 4/d(u+v) v—o 71 0((u+2) u)du
_il 21 L g o

21 4(1“r2 )‘0_6 -2 =240
11 1 7
=5 *6( 6(2' -2)) = g 4=3

comme attendu.

Par définition, le changement de variable polaire nous donne :

¥Ry x [0,27] = R2\ {0}, (r,¢) = (rcos(p), rsin(p))

Calculons son déterminant Jacobien :

Jy(r, ) = <:f§((z§ ;’;Z:Efp?) —> det(Jy(r,p)) = r(cos?(p) + sin®()) =7

Elle est donc bien bijective lorsque 7 # 0.
Si nous avons un domaine circulaire dans R?, il est souvent une bonne idée de faire
un changement de variable polaire.

Nous voulons calculer l'aire du secteur circulaire S, , d’angle a et rayon R, ol
O<a<2mret R>0:
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- Yw
NI v / %

>

o R r

Soit le domaine suivant :
Eor={(rp):0<r<RO0<ep<a}l

Ainsi, I'aire est donnée par :

a R
Aar = // d:cdy:// 1|det(J,¢,)|drd<p:/ dgo/ rdr
Sa,R Ea,r 0 0
@ 1 B 1 @ 1
= d-—Q‘ :fRQ/dszQ
/0 7l Tt ), T

En particulier, si a = 27, l'aire du disque de rayon R est donnée par :
L. 2
AQTnR = iR 2r =R
comme attendu.
Remarque Notez qu’il aurait été possible de calculer ’aire d’un cercle en
coordonnée cartésienne — il est d’ailleurs un bon exercice de le faire

pour un cercle de rayon 1 — mais le changement de variable nous
simplifie grandement la tache.

Mercredi 25 mai 2022 — Cours 25 : w apparait de nulle part

Exemple 2 Nous voulons calculer l'intégrale de f(z,y) = /4 — 22 — y? sur le domaine suivant :

D:{(x7y)eR2:x>0,y>0,1<\/ﬂc2+y2<2}

Clairement, il est plus simple d’exprimer notre domaine en coordonnées polaires :

D:{(r,(p)ER2,O<<p<g,1<T<2}

/

Ay,
=D

Ny =€

Calculons donc notre intégrale :
// \/4—x2—y2dxdy://\/4—r2~rdrd<p=/5dcp/ ry/4 = r2dr
D E
2 2
T L i) - ”(/ (4r2)5d(4r2))
1

w2 Qérzz_z_g
—4(3)(4"">2r_1 5 (-3)
i
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Le résultat de cette intégrale est positif, comme ce a quoi nous pourrions nous
attendre. Il n’est jamais une mauvaise idée de vérifier le signe apres avoir calculé
une intégrale.

Nous voulons calculer l'intégrale de f(z,y) = v/a? — 22 —y?, ot a > 0, sur le
domaine D (qui représente une boucle de Lemniscate de Bernoulli; une figure
géométrique sur laquelle il a travaillé en 1694) :

D = {(z,y) eR?:2>0, (a:2+y2)2 :a2(:c27y2)}

Ecrivons ce résultat en coordonnées polaires, car cela semble infiniment plus facile :

r#0 o

rt = a®(r? cos®(p) — r¥sin’(p)) = r? = a*(cos®(p) — sin’(p)) = a® cos(2p)
Ainsi, nous avons deux conditions sur ¢ :
_ 3 5
a?cos(2p) =12 >0 . —I<p<TouT<p<A . T, T
x>0 5 <p<3 4 4

Ceci nous donne ainsi :

E = {—% <p< g,r <a cos(2gp)}

Nous pouvons dessiner la lemniscate (nous ne travaillons que sur la boucle de droite) :

s T ,,,»"/) > —
Cly) T

e e D

{

iy
S

<y

Nous avons un domaine régulier de type 2, donc nous pouvons calculer notre
intégrale :

z a4/ cos(2¢)
’ dcp/ Va2 —r2rdr
0

I:// \/aQ—xQ—y2dxdy:// \/@2—7“27‘de£,0=/
D E _

Commencons par calculer I'intégrale interne. Pour y arriver, nous devons remarquer
que :

jus
4

3 4 3
(1- cos(Q@))% = (1= cos®(p) +sin*(p)) 2 = 22 (sin®(p))* = 2%|Sin(<,0)|3
Ainsi, calculons notre intégrale interne :
ay/cos(2¢p) 1 cos(2¢)
/ Va2 —rirdr= — f/ a? — r2d(a2 - 7‘2)
0 2 Jo
1/2 3 1ay/cos(2¢p)
_ _ (= (a2 _ 7n2) 2
2\3 0
1 3 1
= — g(a2 —a’cos(2¢))? + gaz
LPEPE I 3, 13
= — —aq°22|s —
39 [sin(p)]” + 39

Calculons maintenant I'intégrale extérieure :

i1 1 1 1 i
I= /3; (3(1323|Sin(<,0)|3 + 3a3) dp = gag(% + Z) - ga32% /z|sin(<p)|3dcp
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Cependant, la fonction que nous voulons intégrer est paire, et nous savons que pour
. a
f(x) paire, [* f(z)de =2 [} f(z)dx :

Calculons cette derniére intégrale. Puisque nous avons la puissance d’un sinus ou un
cosinus impaire, nous devons changer vers I’autre fonction :

™ s

% sins = B — COS2 COS = B COS2 — COS
/0 () /0(1 (¢))d(~ cos() /( () — 1)d(cos())

% 1 1

== —=+1
0 3( ) ?)jL
_2 L1 N2 5

3 V2\6 3 f

Ainsi, nous trouvons finalement que :

Ii7r7a37a32%2 2 5 \_d(r 8/2-10)_
6 3 \3 62/ 31\2 3

Notre fonction f(z,y) est toujours positive, donc notre résultat est cohérent.

1 .
=3 cos®(p) — cos(

Remarque per- J’ai un exemple que je trouve personnellement incroyable et, vu que nous ne l'avons
sonnelle pas vu en classe, je vais le mettre la. Nous voulons calculer I'intégrale suivante :

I = / e~ dx

Cependant, nous savons que les primitives de la fonction f(z) = e~ ne peuvent
pas s’exprimer avec des fonctions élémentaires. Ainsi, nous allons devoir utiliser un
trick de Shead. Commencons par remarquer que, dans notre intégrale, x est juste
une variable fictive, ainsi nous pouvons écrire :

o0 2 o0 2
I:/ e " dx:/ e Y dy

Maintenant vient le coup de génie, auquel vous n’avez probablement pas pensé (et
c’est bien normal, c’est non-trivial). Calculons le carré de notre intégrale :

2 * —1;2 * —y?

I“ = dx e Y dy
= / / —2* v’ dzdy
:/ / —(a+y dmdy

Faisons maintenant un changement de variable polaire; le r qui apparait nous aide

infiniment :
r—00 27 1
dp = / —dp=m
0 2

2m oo 2m
2 1 _2
:/ / rerdrdgo:/ —— e "
o Jo 0 2 r=0

Ceci nous permet finalement de trouver que :

I:/ e dy = 7

— 0o

Le fait que 7 apparaisse dans cette intégrale est tout simplement magnifique.
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Remarque Cette intégrale peut sembler anodine, mais étre capable de la calculer
de maniere formelle comme cela est notamment tres important en
statistique. Nous voulons que l'intégrale entre —co et +o0o de la
Gaussienne nous donne 1, donc vous savez pourquoi on divise par
/7 dans cette formule.

Application : Le changement de variable vers les coordonnées sphériques est défini par :
Changement

de variables en z = rsin(f) cos(y)

coordonnées G(r,0,¢) = < y = rsin(d) sin(p)

sphériques z = rcos(0)

ott G :]0,+oo[ x [0, 7] x [0, 27 — R3\ {0}.
Nous pouvons illustrer ceci de la maniere suivante :

\Z

Sir > 0, nous avons :
z
r=+z2+9y%2+22, 0= arccos<7>
r

De plus, si sin() # 0, nous pouvons trouver ¢ en voyant que :

cos(¢p) = rsin(f)’ sin(y) rsin(6)
Calculons la matrice Jacobienne de notre fonction G :

sin(f) cos(yp) rcos(f) cos(p) —rsin(f
Ja(r,0,0) = | sin(0)sin(p) rcos(f)sin(p) rsin(h)
cos(0) —rsin(6) 0

) sin(p)
cos(yp)

Nous pouvons maintenant calculer la valeur absolue de son déterminant :

|det JG(Tv ,W)‘
= |r? cos® () sin(0) cos® () + r? sin®(0) sin®(¢) + r* cos®(9) sin(8) sin® () + r* sin®(6) cos®(¢)|
= |7"2 cos?(#) sin(6) + 72 sin3(0)|
= |r?sin(6)]

Puisque 0 < 6 < 7, nous savons que sin(f) > 0, ainsi :
|det Jo(r, 6, )| = 72 sin(6)

Nous en déduisons que quand r > 0 et sin(f) > 0 (c’est-a-dire 0 # 0 et 6 # ), alors
G est bijective.

Remarque
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Exemple

Application :
Masse totale
d’un objet so-
lide de densité
donnée

Il est important de se souvenir de ce résultat.

Calculons le volume d’une boule de rayon a > 0. Pour commencer, regardons notre
domaine : N
E={0<T<a,0<9<7r,0<90<27r}=B(0,a)

Nous trouvons donc :

V= /// 1da:dydz:///\det Ja(r,0,0)|dpdidr
B(ﬁ> a)
2 o
/ d(p/ d9/ sin(0 2dr_/ dep - / sin(0)do - /

—or G ‘ Lal" Zora gt
(— cos( ))O 370, m(l+ 3
4 3

= —-Ta

3

comme attendu.

Pour calculer la masse totale M d’un objet solide de volume V' et de densité p(x, y, 2),

nous pouvons calculer :
M = /// p(z,y, z)dxdydz
1%

Note person-  Nous prenons une grande somme des morceaux de masses infinitési-
nelle : Intui-  maux dm = pdV sur les petits morceaux de volumes dV = dxdydz.
tion

Exemple Nous voulons trouver la masse totale d’un secteur sphérique, ou :
S = {x,y,z > 0,22+t + 22 < az}, plx,y,2) = 2% + 52
Nous pouvons tout écrire avec des coordonnées sphériques :
7r 7r 9 . 9
E:{O<7‘<a,0<9<§,0<90<§}, p(r,0,0) = r*sin”(9)
Ainsi, nous pouvons calculer notre masse :
M = /// x? + o da:dydz-/ / d9/ r? sin?(6) r bln(@)dr
p(r,0 w) IJG\
P P 1
= I/ sin®(6)df / ridr = I/ (cos*(f) — 1)d(cosb) - —a®
ma® (1 4 3 7a® 1
=—|z 0) — 0 =——=+1
10 (3COS (6) = cos( )) o 10 ( 3" )
_ ma®
15
Lundi 30 mai 2022 — Cours 26 : Toutes les bonnes choses ont une fin
Exemple Nous voulons calculer le volume d’une ellipsoide, c’est a dire :

2 2 2,2

D{(m,y, ) eR: S z Z2+<1} a,b,¢> 0
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Commencons par faire le changement de variable suivant, nous permettant d’obtenir
une sphere :

(z,y,2) = H(u,v,w) = (au,bv,cw) = E = {(u,v,w) € R® : v* +v* + w* < 1}

Notre Jacobien est donc :

Ju(u,v,w) = = |det Jg(u,v,w)| = abc > 0

o O Qe
o o O
o OO

Nous pouvons ensuite faire un changement de coordonnées sphériques, nous donnant :
P={(r6,p)eR*:0<r<1,0<60<70<¢p<2r}

Pour résumer, nous avons :

A

/

4
r

Y
<
S

Clarinda-Academy Artworks

Calculons maintenant notre volume :

/// ldzdydz = /// abcdudvdw—abc/// r* sin(0)drdpdd

2 ) 1 3 4
dg@ sin(0)dd [ rdr = abe2mw(— cos(p )) ‘

-=r°| = —mabc
3
Nous définissons le changement de variables en coordonnées cylindriques par :

3

x = rcos(yp)

G(r,p,z) =y =rsin(p)

zZ=Zz

ot G : [0, +o0o[ x [0,27] x R — R3.
Nous pouvons faire le schéma suivant :

y
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Exemple

Calculons maintenant la matrice Jacobienne :

cos(p) —rsin(p) 0
Ja(r,p,z) = | sin(p)  rcos(p) 0
0 0 1

cos(p) —rsin()| _

= det Jg(r,p,2) =1 sin(p) reos(e) |~ 7"(0082(80) + sinz(go)) =r

Soit a > 0. Nous voulons trouver le volume du domaine ayant les frontiéres suivantes
et qui contient (0,0, a) :

2

224+ y? + 22 =2za
22 g2 =2

On voit que z est un peu spécial par rapport a x et y (qui elles cependant jouent un
role symétrique), mais nous voyons tout de méme qu’il semble y avoir un lien avec
un cercle. Essayons de réorganiser nos équations :

22 +y? + 22 —2za+a? =a? m2+y2+(z—a)2=a2
2, .2 2 = 24 .2 2

Tty =z Ty =z
Faisons maintenant un changement de variables vers les coordonnées cylindriques :

{r2 + (z—a)2 =a?

r=z,2>0o0ur=-z22<0

Cependant, le volume dont nous voulons calculer le volume contient (0,0,a) o
a > 0, donc seul le cone r = z > 0 est valide, 'autre cone définit un autre volume.
Nous obtenons que notre domaine est borné par la spheére de rayon a et de centre
(0,0,a) et par le cdone r = z (ou z > 0). Calculons 'intersection entre ces deux
surfaces (donc nous prenons r = z) :

2

r2+(r—a)2:a :}2T2:2Ta:>T:a:ZOuT:O:Z

Le point 7 = 0 = z est une solution triviale, donnée par le bas du céne. Cependant,
le deuxiéme résultat = a = z est beaucoup plus intéressant. C’est un un cercle de
rayon a et de centre (0,0, a), ce qui est le cercle équatorial de notre sphére. Nous
pouvons le voir sur I'image ci-dessous :

Nous pouvons maintenant séparer notre volume en deux calculs : la demi-sphere
du haut et le cone du bas. Le volume de la premiére est donné par £ 27a® = %wag,

23
auquel nous devons calculer le volume de notre cone :

21 a z a a
1,7 1 a 1
Veone =/ d@/ dz/ r dr= 27r/ dz-fTQ‘ = 7r/ 22dz = =722 = Z7mdd
0 0 0o =~ 0 2 o 0 3 o 3
|det(Jg)

En additionnant nos deux volumes, nous obtenons que le volume total est donné

par :
2 1
V = §7TG;3 + §7Ta3 = 7Ta3
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Remarque Dans les changements de variables sphériques et cylindriques, la coordonnée z joue
un roéle spéciale (son expression est plus simple que les deux autres). Cependant,
selon la géométrie du domaine et selon la fonction donnée, nous pouvons choisir une
autre coordonnée cartésienne pour avoir cette forme spéciale. Par exemple, pour un
changement de variable sphérique avec y ayant la forme spéciale, nous aurions :

x = rsin(f) cos(p)
Gspn = { z = rsin(0) sin(p)
y = rcos(d)

ot Gypp, : [0, +00[ % [0,7] x [0, 27] — R3 comme d’habitude, et :

e

_ | = 2
= ‘*JG‘ = r<sin(0)

sph

puisqu’échanger deux lignes d’une matrice correspond a multiplier son déterminant
par —1, mais nous ne considérons que la valeur absolue de notre déterminant.
Nous pouvons bien sir faire la méme chose avec un changement de variable cylin-

drique. Par exemple :
x = rcos(p)

Geyr = § 2 = rsin(p)
y=y
olt Geyr = [0,+00[ X [0,27] x R — R3, et :

RE

cyl‘ = |—’I“| =T

pour la méme raison.

Observation Une autre maniere de voir ceci, est que nous pouvons faire un
changement de variable afin de réordrer nos variables :

z

T =
G(,y,2)=qy==2
z2=7
Clairement, det Jo = —1, donc nous avons bien |det Jg| = 1, ce

qui nous permet en effet de réordrer nos variables sans conséquence
(sans avoir & multiplier par quoi que ce soit).

Exemple Soit @ > 0. Nous voulons trouver le volume du domaine ayant les frontiéres suivantes
et qui contient (0,a,0) :

2?2+ 22 +y% = 2ya
2?4 22 = g2

C’est exactement les mémes frontiéres que dans notre exemple ci-dessus, en prenant
(z,y,2) — (Z,Z,y). Ainsi, nous trouvons de la méme maniére que :

Vp = 7a®
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Résumé des Nous avons vu les changements de variables remarquables suivants :
changements de
variables x = rcos(p)

= |det(Jg)| =7

Gpolaire(ra 90) = { o .
y = rsin(p)

x = rsin(f) cos(y)
Gspherigue(T,0,¢) = S y = rsin(f) sin(p) — |det(Jg)| = r*sin(6)
z = rcos(f)

x = rcos(p)
chlindrique(ra @, Z) =Ny = TSiH((p) = |det(JG)| =T

zZ=Zz

Avec :
r>0, 0<0<7m 0<p<2r

6.4 Exemples d’examen pour terminer

Exemple 1 Nous voulons calculer I'intégrale suivante :

1
I:///—dedydzg onD={zx>0,y>0,z>0,z+y+2z<1}
p(l+z+y+2)

Le domaine D est un tétraedre :

X D

Il n’y a pas vraiment de ressemblance avec un cercle ou une sphere (il n’y a pas
de carré), donc cela semble peu judicieux de prendre un changement de variables
sphérique ou cylindrique.

Coupons le volume sur le plan zy :

y

X

/////\//: —

O 1{

Nous pouvons ainsi voir que :

D:{(Jc,y,z)6R3:OSxSl,OSySl—x,OSzgl—x—y}
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Ainsi, calculons notre intégrale :

1 1—x l-xz—y 1
I:/ dm/ dy/ —gdz
0 1+:v+y+z)

z=l—xz—y

o3
2 1+x+y+z) =0
1
2

/
A )
- [l am )l
/
/

-1 1 1 1
(8(1_x)_4+2'm:>dx

1 2 1 z=1
1 1 1

b slog(2) — —
1l g

1 5

= — 2) — —

21082~ 35

Nous pouvons vérifier que, comme ce a quoi nous pouvions nous attendre en regardant
I'image ci-dessus, notre résultat est bien positif.

Exemple 2 Il arrive que nous pouvons calculer certaines intégrales multiples sans calcul (y
compris & l'examen!), voici un exemple. Considérons 'intégrale suivante :

_ [ 11 dy /y 1 sin(y) cos(x)dz

Comme souvent, il est une bonne idée de dessiner notre domaine :

y=rlc

Y
-

Essayons de calculer notre intégrale :

/ / sin(y) cos(z)dz — /_ sin(y) (sin(1) — sin(y?))dy = / fy

L’intégrale de sin(y?) ne s’exprime pas avec des fonctions élémentaires, donc nous
avons un probleme. Cependant, nous pouvons voir que :

F(=y) = sin(—y) - (sin(1) = sin((~y)*) ) = —sin(y) (sin(1) - sin(y?)) = —£(y)

Donc f(y) est impaire. Or nous savons que, pour g(x) une fonction impaire,
ffa g(z)dz = 0. Ainsi, nous avons trouvé que :

I=0
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Exemple 3

Exemple 4

Exemple 5

Une autre maniere pour arriver a ce résultat est de changer l'ordre d’intégration :

1 NG 1
I= /0 dx/_ﬁsm(y) cos(glc)dy:/0 dz | cos(z) (— cos(v/z) + cos(—v/z))

=0
= / O0dx =0
0

Nous allons voir un autre exemple d’intégrale qui pourrait apparaitre en vrai-faux
(intégrales qui demandent généralement peu de calculs, mais plutoét une bonne com-
préhension du domaine). Nous nous demandons si 'intégrale suivante est positive :

3 ! sin(’r2)
I:/ / ———=r |drdy
0 0 1+e3

Nous remarquons que le r vient d’un changement de variable polaire, ainsi nous
pouvons écrire :
sin(rQ)
frip) = ;
1+e

Clairement f(r, ) > 0. Ainsi, nous intégrons une fonction positive, ce qui veut bien
dire que I'intégrale est positive.

Nous voulons écrire I'intégrale suivante en coordonnées polaires :

// (2® +y*)dzdy, ou D= {(m,y) ER?:(z+1)12+y2<1,y< O}
D

La premieére inégalité nous donnée :

=<2 cos(yp)

Puisque nous voulons r > 0, cela nous donne § < ¢ < 37” De plus, nous voulons
aussi y < 0, ce qui force 7 < ¢ < 27. En mettant ces deux conditions en commun,

nous trouvons :
3T
TSe< g

Ainsi, nous avons :

// rzdxdy = // r? -rdrdy :/
D E g

Nous voulons dessiner le domaine suivant :

37
2

—2cos(p)
dy / r3dr
0

D={(z,y) eR*:z>—1,|y| <1—2x}
Séparons notre dessin en deux cas :
y>20 = y<l-x

Yy<0 = —y<l—-2z = y>zr-1

Ceci nous permet de dessiner :
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/

Nous nous demandons l'aire de quelle figure géométrique l'intégrale suivante exprime :

I:/ d<p/ rdr
T 0

Clairement, r vient d’'un changement de variable depuis les coordonnées cartésiennes,
ainsi essayons de trouver les inégalités sur z et y. Pour commencer, nous voyons
que :
s
4
Ceci nous permet de voir que :

<g0<g = sin(p) >0

1
0<r<—— <= 0<rsin(p) <1l <= 0<y<1

sin(p) )
=y

Ainsi, nous pouvons faire notre dessin :

p-L
Y w-E
14
A/—%\ y=1
\\
\

Nous trouvons donc que notre intégrale représente 1'aire d’un triangle.

Pour conclure, il faut toujours dessiner le domaine quand on fait une intégration de
plusieurs variables (sur deux variables, mais aussi sur trois variables).
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