Cours 6 - Méthode des coefficients indéterminés
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1. Oncherche les racines a, b de I'équation caractéristique. F 07/

2. Trois cas pour la solution générale de I'équation homogéne associée (f = 0).
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1. On calcule le Wronskien de v1(x) et v2(x). \/\/E\/. el = det V.J \/7; - K é _ __n
2. On calcule les fonctions c1(x) et c2(x). V, Vg
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~ Méthode. (Coefficients indéterminés) (Pour chercher la solution particuliere) O\ — =,
Pour des fonctions f(x) spéciales, une méthode alternative ("plus rapide") existe !
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T_n(x) un polynébme a détgrminer de degré n. 2,
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T_N(x) et S_N(x) des polyndmes a déterminer de degré N = max(k, m). —

2 Pour déterminer les coefficients des polynémesincoTu#s/;—\é’r ) —pa‘r ,3_?3 —>(EDLL

1. Calculer les dérivées de la solution particuliere.
2. Remplacer dans I'équation initiale, et résoudre |'équation. ~3x -3
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