
4. Intégrales multiples

4.1. Intégrales doubles

Rappel. Nous avons vu que si f : [a,b]→RR est

une fonction bornée, l’intégrale de Riemann
∫b

a
f (x)dx

est la limite des sommes de Riemann

sn =
n∑

k=1

f (ξk)(xk − xk−1) ,

où {x0, x1, . . . , xn} est une partition arbitraire de

l’intervalle [a,b] avec

a = x0 < x1 < . . .< xn = b

et ξ
k
∈ [x

k−1
, x

k
] pour tout k = 1,2, . . . , n .

xa=x0 x1 x2ξ1 ξ2 ξ3 x3=b

y

f (ξ1)

f (ξ2)

f (ξ3)

Propriétés

1. Si f , g : [a,b]→RR sont deux fonctions intégrables sur [a,b], alors f + g est intégrable et
∫b

a

(
f (x)+ g(x)

)
dx =

∫b

a
f (x)dx +

∫b

a
g(x)dx .

2. Si f : [a,b]→RR est une fonction intégrable sur [a,b] et c ∈RR , alors c f est intégrable et
∫b

a
c f (x)dx = c

∫b

a
f (x)dx .

3. Soit f : [a, c]→RR une fonction intégrable sur [a, c] et soit b ∈ ]a, c[ . Alors
∫c

a
f (x)dx =

∫b

a
f (x)dx+

∫c

b
f (x)dx .

Cas f (x)! 0 pour tout x ∈ [a, c] :

x

y

a b c
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Théorème de la moyenne

Théorème. Soit f : [a,b]→RR une fonction continue.

Alors il existe (au moins) un nombre c ∈ [a,b] tel que

f (c)=
1

b−a

∫b

a
f (x)dx ⇐⇒

∫b

a
f (x)dx = f (c)(b−a)

Interprétation géométrique

Si f (x) ! 0 pour tout x ∈ [a,b], le théorème de la moyenne nous dit qu’il existe (au moins)

un nombre c ∈ [a,b] tel que le rectangle de base (b− a) et hauteur f (c) possède la même

aire que le domaine délimité par le graphe de la fonction continue f , l’axe 0x et les droites

verticales x = a et x = b .

y= f (x)
y= c

© Pearson

But : Définir l’intégrale d’une fonction de deux variables sur un domaine D du plan RR2 .

Nous allons procéder ici de manière analogue :

Soit f une fonction réelle de deux variables.

Soit D ⊂RR2 un domaine borné contenu dans D( f ).

Lorsque la fonction f est continue et positive, nous pouvons

nous représenter l’intégrale de f sur le domaine D comme

le volume du corps délimité par le graphe de f , le plan 0xy

et les droites verticales passant par le bord de D .
y

z

x

D
(x,y)

f (x,y)

Partageons le domaine D arbitrairement en n morceaux

D1,D2, . . . ,Dn (par exemple des rectangles) d’aires A(D1),

A(D2), . . . ,A(Dn) et choisissons un point arbitraire (ξ
k
,η

k
)

dans chaque morceau D
k

.

Nous pouvons approximer le volume du corps délimité par

le graphe de f , le plan 0xy et les droites verticales passant

par le bord de D
k

par le volume du parallélépipède de base

D
k
⊂RR2 et de hauteur f (ξ

k
,η

k
) :

f (ξk,ηk)A(Dk) .
D

k (ξ
k
,η

k
)

f (ξ
k
,η

k
)

y

z

x

D
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Définition. La fonction de deux variables f est intégrable (au sens de Riemann) sur D

si pour toutes les partitions {D1, . . . ,Dn} du domaine D telles que max
(
A(D

k
)
)
−→ 0 et

n’importe quel choix (ξ
k
,η

k
) ∈ D

k
, la somme de Riemann

n∑

k=1

f (ξk,ηk)A(Dk)

tend vers une même limite. Cette limite est appelée intégrale de Riemann de f sur D

et notée ∫∫

D
f (x, y)dx dy .

© Pearson

Théorème. (sans démonstration)

Si f est continue sur D alors f est intégrable sur D .

Propriétés

1. Si f , g : D →RR sont deux fonctions intégrables sur D , alors f + g est intégrable et
∫∫

D

(
f (x, y)+ g(x, y)

)
dxdy =

∫∫

D
f (x, y)dx dy +

∫∫

D
g(x, y)dx dy .

2. Si f : D →RR est une fonction intégrable sur D et c ∈RR , alors c f est intégrable et
∫∫

D
c f (x, y)dxdy = c

∫∫

D
f (x, y)dx dy .

3. Si f : D →RR est une fonction intégrable sur D = D1 ' D2 (réunion disjointe), alors
∫∫

D
f (x, y)dxdy =

∫∫

D1

f (x, y)dx dy +
∫∫

D2

f (x, y)dx dy .

4. L’aire du domaine D peut être calculée à l’aide de l’intégrale de la fonction constante

f (x, y) = 1 pour tout (x, y) ∈ D :

A(D)=
∫∫

D
1dx dy .

5. S’il existe une constante M telle que
∣∣ f (x, y)

∣∣" M pour tout (x, y) ∈ D alors
∣∣∣∣

∫∫

D
f (x, y)dx dy

∣∣∣∣ " MA(D) .
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Théorème de la moyenne. (sans démonstration)

Soit D ⊂ RR2 un domaine connexe. Soit f : D → RR une fonction continue. Alors il existe un

point (ξ,η) ∈ D tel que
∫∫

D
f (x, y)dxdy = f (ξ,η)A(D) .

© Cengage

Calcul d’intégrales doubles

Nous avons défini l’intégrale double

∫∫

D
f (x, y)dx dy .

Question. Comment la calculer ?

Problème. Contrairement au cas des intégrales définies du type

∫b

a
f (x)dx , où le domaine

d’intégration est un intervalle fermé [a,b], le domaine D ⊂RR2 peut être très général :

connexe (par arcs)

convexe

pas connexe (par arcs)
pas convexe

connexe (par arcs)
pas convexe

• Un domaine D ⊂RR2 est connexe (par arcs) si pour tout couple de points !p1,!p2 ∈ D il existe

une courbe paramétrée !ϕ : [0,1]→RR2 qui relie !p1 à !p2 contenue dans D . Autrement dit,

telle que !ϕ(0)= !p1 , !ϕ(1)= !p2 et !ϕ(t) ∈ D pour tout t ∈ [0,1].

• Un domaine D ⊂ RR2 est convexe si pour tout couple de points !p1,!p2 ∈ D le segment qui

relie !p1 à !p2 est contenu dans D .
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4.2. Intégrales doubles sur des domaines rectangulaires

Commençons par considérer le cas simple d’un rectangle fermé

D =
{
(x, y) ∈RR2 : a" x" b , c" y" d

}
= [a,b]× [c,d] .

xa b

y

c

d

D

Soit f : D →RR une fonction continue définie sur le rectangle D .

Soit y ∈ [c,d] fixé. La fonction x )→ f (x, y) est continue par rapport à la variable x .

Elle est donc intégrable par rapport à x sur l’intervalle [a,b].

Soit g(y)=
∫b

a
f (x, y)dx (aire de la section d’ordonnée y)

Théorème. (sans démonstration)

La fonction y )→ g(y)=
∫b

a
f (x, y)dx est continue par rapport à la variable y .

Conséquence. La fonction g est intégrable par rapport à y sur l’intervalle [c,d].

Autrement dit, l’intégrale itérée
∫d

c
g(y)dy=

∫d

c

(∫b

a
f (x, y)dx

)
dy

existe si f est continue sur D .
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Soit maintenant x ∈ [a,b] fixé. La fonction y )→ f (x, y) est continue par rapport à la

variable y. Elle est donc intégrable par rapport à y sur l’intervalle [c,d].

Soit h(x)=
∫d

c
f (x, y)dy (aire de la section d’abscisse x)

Théorème. (sans démonstration)

La fonction x )→ h(x)=
∫d

c
f (x, y)dy est continue par rapport à la variable x .

Conséquence. La fonction h est intégrable par rapport à x sur l’intervalle [a,b].

Autrement dit, l’intégrale itérée
∫b

a
h(x)dx =

∫b

a

(∫d

c
f (x, y)dy

)
dx

existe si f est continue sur D .

Théorème de Fubini. (sans démonstration)

Si f est une fonction continue sur le rectangle D = [a,b]× [c,d], alors nous avons

∫∫

D
f (x, y)dx dy =

∫b

a

(∫d

c
f (x, y)dy

)
dx

=
∫d

c

(∫b

a
f (x, y)dx

)
dy .

Exemples

1. Calculer l’intégrale double∫∫

D
(16− x2 −3y2)dx dy

où D est le rectangle

D =
{
(x, y) ∈RR2 : 0" x" 3, 0" y" 1

}
= [0,3]× [0,1] .

x1 2 3

y

1

D
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a) en intégrant d’abord par rapport à y et ensuite par rapport à x :
∫1

0
(16− x2 −3y2)dy =

[
(16− x2)y− y3

]1

0
= (16− x2)1−1−0+0= 15− x2

d’où ∫∫

D
(16− x2 −3y2)dx dy =

∫3

0

(∫1

0
(16− x2 −3y2)dy

)
dx =

∫3

0
(15− x2)dx

=
[
15x−

x3

3

]3

0
= 45−9−0+0 = 36

b) en intégrant d’abord par rapport à x et ensuite par rapport à y,
∫∫

D
(16− x2 −3y2)dx dy =

∫1

0

(∫3

0
(16− x2 −3y2)dx

)
dy

=
∫1

0

([
(16−3y2)x−

x3

3

]x=3

x=0

)
dy

=
∫1

0

(
3(16−3y2)−9−0+0

)
dy =

∫1

0

(
39−9y2

)
dy

=
[
39y−3y3

]1

0
= 39−3−0+0 = 36

2. Calculer l’intégrale double
∫∫

D
f (x, y)dx dy

où f (x, y) = x2 y3 −2 et D est le rectangle D = [0,3]× [0,2],

a) en intégrant d’abord par rapport à x et ensuite par rapport à y :
∫∫

D
f (x, y)dx dy =

∫2

0

(∫3

0
(x2 y3 −2)dx

)
dy =

∫2

0

([
1

3
x3 y3 −2x

]x=3

x=0

)
dy

=
∫2

0
(9y3−6)dy =

[
9

4
y4−6y

]2

0
= 36−12= 24.

b) en intégrant d’abord par rapport à y et ensuite par rapport à x :
∫∫

D
f (x, y)dx dy =

∫3

0

(∫2

0
(x2 y3−2)dy

)
dx =

∫3

0

([
1

4
x2 y4 −2y

]y=2

y=0

)
dx

=
∫3

0
(4x2−4)dx =

[
4

3
x3 −4x

]3

0
= 36−12= 24.
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3. Calculer l’intégrale double
∫∫

D
xcos(xy)dx dy

où D est le rectangle D = [0,π]× [0,3]=
{
(x, y) ∈RR2 : 0" x"π , 0" y" 3

}
.

Nous avons
∫∫

D
xcos(xy)dx dy =

∫π

0

(∫3

0
xcos(xy)dy

)
dx =

∫π

0

([
sin(xy)

]y=3

y=0

)
dx

=
∫π

0
sin(3x)dx =

[
−cos(3x)

3

]π

0
=

1

3
−
−1

3
=

2

3
.

Remarque. Si la fonction à intégrer peut s’écrire comme un produit de la forme

f (x, y) = g(x)h(y) ,

alors l’intégrale double de f sur le rectangle D = [a,b]× [c,d] est égale au produit de deux

intégrales simples :
∫∫

D
g(x)h(y) dx dy =

(∫b

a
g(x)dx

)(∫d

c
h(y)dy

)
.

En effet,
∫∫

D
g(x)h(y) dx dy =

∫d

c

(∫b

a
g(x) h(y)︸ ︷︷ ︸

constante

dx

)
dy

=
∫d

c
h(y)

(∫b

a
g(x)dx

)

︸ ︷︷ ︸
constante

dy

=
(∫b

a
g(x)dx

)∫d

c
h(y)dy .

Attention : Cette formule est valable seulement si D est un rectangle.
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Nous pouvons faire le calcul suivant pour la fonction de l’exemple 2 :

∫∫

D
(x2 y3 −2)dx dy =

(∫3

0
x2 dx

)(∫2

0
y3 dy

)
−2

∫∫

D
dx dy

=
(∫3

0
x2 dx

)(∫2

0
y3 dy

)
−2A(D)

=
[

x3

3

]3

0

[
y4

4

]2

0
−2 · (3−0)(2−0)

= (9−0)(4−0)−12= 24.

4.3. Intégrales doubles sur des domaines non rectangulaires

Considérons maintenant le domaine délimité par les droites x= a , x = b et les courbes

y= g1(x) et y= g2(x) avec g1(x)" g2(x) pour tout x ∈ [a,b].

xa x b

y

g1(x)

g2(x)

D

y = g2(x)

y = g1(x)

Pour chaque x ∈ [a,b] fixé, y varie entre g1(x) et g2(x). Nous pouvons écrire

D =
{
(x, y) ∈RR2 : a" x" b , g1(x)" y" g2(x)

}

et l’intégrale double se calcule à l’aide de l’intégrale itérée
∫∫

D
f (x, y)dx dy =

∫b

a

(∫g2(x)

g1(x)
f (x, y)dy

)

︸ ︷︷ ︸
ne dépend plus de y

dx . (i)
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Considérons à présent le domaine délimité par les droites y= c , y= d et les courbes

x = h1(y) et x = h2(y) avec h1(y)" h2(y) pour y ∈ [c,d].

xh1(y) h2(y)

y

c

y

d

Dx = h1(y) x = h2(y)

Pour chaque y ∈ [c,d] fixé, x varie entre h1(y) et h2(y). Nous pouvons écrire

D =
{
(x, y) ∈RR2 : c" y" d , h1(y)" x" h2(y)

}

et l’intégrale double se calcule à l’aide de l’intégrale itérée

∫∫

D
f (x, y)dx dy =

∫d

c

(∫h2(y)

h1(y)
f (x, y)dx

)

︸ ︷︷ ︸
ne dépend plus de x

dy . (ii)

Remarque. Dans le cas général, nous décomposons le domaine D ⊂ RR2 en morceaux

où nous pouvons appliquer soit la formule (i) soit la formule (ii). Le choix entre ces deux

formules est indiqué par la forme du domaine ou par la fonction à intégrer.

(ii)

(ii)

(i)

(i)

(i)
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Méthode de calcul

Soit f une fonction de deux variables et D un domaine du plan.

Pour calculer l’intégrale double

I =
∫∫

D
f (x, y)dx dy ,

• fixer les bornes d’une des variables :

a" x" b ou c" y" d .

• Pour chaque valeur fixée de cette variable, déterminer les bornes d’intégration de la

deuxième variable :

g1(x)" y" g2(x) ou h1(y)" x" h2(y) .

• Intégrer d’abord par rapport à la deuxième variable et ensuite par rapport à la première

variable :

I =
∫b

a

(∫g2(x)

g1(x)
f (x, y)dy

)

dx ou I =
∫d

c

(∫h2(y)

h1(y)
f (x, y)dx

)

dy

Remarque. L’ordre d’intégration est arbitraire, déterminé en partie par la forme du

domaine et/ou de la fonction à intégrer.

Exemples

1. Soit D le triangle dont les sommets sont (0,0), (2,0) et (2,1).

Ecrire

∫∫

D
f (x, y)dx dy comme une intégrale itérée.

La droite qui passe par (0,0) et (2,1) a comme équation y= 1
2 x ou encore x= 2y.

Nous avons deux possibilités :

• La variable x varie entre 0 et 2.

Pour chaque x ∈ [0,2] fixé, y varie entre

g1(x)= 0 et g2(x)= 1
2 x .

Ainsi, ∫∫

D
f (x, y)dx dy =

∫2

0

(∫x/2

0
f (x, y)dy

)
dx

x21 x

y

1

1
2 x D

• La variable y varie entre 0 et 1.

Pour chaque y ∈ [0,1] fixé, x varie entre

h1(y)= 2y et h2(y)= 2.

Ainsi, ∫∫

D
f (x, y)dx dy =

∫1

0

(∫2

2y
f (x, y)dx

)
dy

x212y

y

1

y

D
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2. Soit D le domaine de l’exemple 1 et f (x, y) = x+ xy2 .

Calculer

∫∫

D
f (x, y)dx dy

Nous pouvons utiliser les deux formules trouvées dans l’exemple précédent :
∫∫

D
(x+ xy2)dx dy =

∫2

0

(∫x/2

0
(x+ xy2)dy

)
dx =

∫2

0

([
xy+ x

y3

3

]y=x/2

y=0

)
dx

=
∫2

0

(
x2

2
+

x4

24
−0+0

)
dx =

[
x3

6
+

x5

120

]2

0
=

23

6
+

25

120

=
4

3
+

4

15
=

24

15
=

8

5

∫∫

D
(x+ xy2)dx dy =

∫1

0

(∫2

2y
x(1+ y2)dx

)
dy =

∫1

0
(1+ y2)

(∫2

2y
x dx

)
dy

=
∫1

0
(1+ y2)

([
x2

2

]x=2

x=2y

)
dy =

∫1

0
(1+ y2)

(
22

2
−

4y2

2

)
dy

= 2

∫1

0
(1+ y2)(1− y2)dy = 2

∫1

0
(1− y4)dy

= 2

[
1−

y5

5

]1

0
= 2

(
1−

1

5

)
=

8

5

3. Soit D le domaine de l’exemple 1 et f (x, y) = e2y/x .

Calculer

∫∫

D
f (x, y)dx dy

Comme
∂

∂y

(
e2y/x

)
=

2

x
e2y/x ,

nous avons
∂

∂y

( x

2
e2y/x

)
= e2y/x ,

d’où ∫∫

D
e2y/x dx dy =

∫2

0

(∫x/2

0
e2y/xdy

)
dx =

∫2

0

([
x

2
e2y/x

]y=x/2

y=0

)
dx

=
∫2

0

(x

2
e1 −

x

2
e0

)
dx =

e−1

2

∫2

0
x dx =

e−1

2

[
x2

2

]2

0

= e−1

Remarque. Comme
∂

∂x

(
e2y/x

)
=−

2y

x2
e2y/x ,

il n’est pas possible d’exprimer la fonction f comme la dérivée partielle par rapport à x

d’une fonction exprimée à l’aide de fonctions élémentaires.
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4. Inverser l’ordre d’intégration dans l’intégrale

I =
∫4

0

(∫*
x

x/2
f (x, y)dy

)

dx .

La variable x varie entre 0 et 4. Pour x ∈ [0,4] fixé, y varie entre

g1(x)=
x

2
et g2(x)=

*
x .

Le domaine d’intégration est donc :

x2 3 4y2 2y

y

y

1

2
y =

*
x ⇐⇒ x = y2

y=
x

2
⇐⇒ x = 2y

Par conséquent, la variable y varie entre 0 et 2. Pour y ∈ [0,2] fixé, x varie entre

h1(y)= y2 et h2(y)= 2y,

ce qui nous donne

I =
∫2

0

(∫2y

y2
f (x, y)dx

)
dy .

5. Soit D le disque de rayon R centré à l’origine.

Ecrire

∫∫

D
f (x, y)dx dy comme une intégrale itérée.

Nous avons deux possibilités :

• La variable x varie entre −R et R .

Pour chaque x ∈ [−R,R] fixé, y varie entre

g1(x)=−
√

R2− x2 et g2(x)=
√

R2 − x2 .

Ainsi,
∫∫

D
f (x, y)dx dy =

∫R

−R

(∫*
R2−x2

−
*

R2−x2
f (x, y)dy

)

dx (1)

xR−R x

y

−
*

R2−x2

*
R2−x2

D

• La variable y varie entre −R et R .

Pour chaque x ∈ [−R,R] fixé, x varie entre

h1(x)=−
√

R2− y2 et h2(x)=
√

R2 − y2 .

Ainsi,
∫∫

D
f (x, y)dx dy =

∫R

−R

(∫*
R2−y2

−
*

R2−y2
f (x, y)dx

)

dy (2)

xR−R

y

y

−
*

R2−y2
*

R2−y2

D
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6. Soit D le domaine de l’exemple 5 et f (x, y) =
√

R2 − y2 .

Calculer

∫∫

D
f (x, y)dx dy

Comme f ne dépend pas de x , il convient d’intégrer d’abord par rapport à x :
∫*

R2−y2

−
*

R2−y2

√
R2 − y2 dx =

√
R2 − y2

∫*
R2−y2

−
*

R2−y2
1 dx =

√
R2 − y2

[
x

]*R2−y2

−
*

R2−y2
= 2(R2 − y2)

D’où ∫∫

D
f (x, y)dx dy =

∫R

−R
2(R2 − y2)dy= 2

[
R2 y−

y3

3

]R

−R
=

4

3
R3+

4

3
R3 =

8

3
R3 .

Remarque. Si la fonction à intégrer est quelconque, l’intégration sur le domaine D

de l’exemple 5 peut s’avérer compliquée, d’où l’intérêt à considérer une autre méthode.

4.4. Changement de variables dans les intégrales doubles

Rappel. Nous avons vu qu’il est parfois utile de changer de variable pour calculer une

intégrale. Pour ce faire, nous avons utilisé la formule de changement de variables
∫b

a
f (x)dx =

∫g−1(b)

g−1(a)
f
(
g(u)

)
g ′(u)du .

où g est une fonction bijective de classe C1 .

Si g : [c,d] → [a,b] est une fonction monotone croissante (avec g ′(u) ! 0), nous avons

g−1(a)= c et g−1(b)= d et la formule ci-dessus devient
∫b

a
f (x)dx =

∫d

c
f
(
g(u)

)
g ′(u)du .

Si g : [c,d] → [a,b] est une fonction monotone décroissante (avec g ′(u) " 0), nous avons

g−1(a)= d et g−1(b)= c et la formule de changement de variables devient
∫b

a
f (x)dx =

∫c

d
f
(
g(u)

)
g ′(u)du =−

∫d

c
f
(
g(u)

)
g ′(u)du .
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Nous pouvons résumer les deux formules précédentes sous la forme :
∫b

a
f (x)dx =

∫d

c
f
(
g(u)

)∣∣g ′(u)
∣∣du ,

où la valeur absolue tient compte du signe de l’intégrale de droite dans le cas décroissant.

Si nous notons I = [a,b] et Ĩ = [c,d] et nous posons

f̃ (u) = f
(
g(u)

)

alors la formule précédente s’écrit :∫

I
f (x)dx =

∫

Ĩ
f̃ (u)

∣∣g ′(u)
∣∣du , (")

Question. Quel est l’analogue de la formule (") dans le cas des intégrales doubles?

Dans le cas des fonctions de deux variables, un changement de variables est une fonction

bijective de classe C1 :

G : D(G) −→ Im(G)

(u,v) )−→
(
x(u,v), y(u,v)

)

Nous lui associons la matrice

JG(u,v)=





∂x

∂u
(u,v)

∂x

∂v
(u,v)

∂y

∂u
(u,v)

∂y

∂v
(u,v)





appelée matrice jacobienne.

Le déterminant de cette matrice, noté
∂(x, y)

∂(u,v)
:

∂(x, y)

∂(u,v)
= det

(
JG(u,v)

)
= det





∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v




=

∂x

∂u

∂y

∂v
−
∂x

∂v

∂y

∂u

est appelé jacobien associé au changement de variables.
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Nous pouvons à présent donner l’analogue de
∫

I
f (x)dx =

∫

Ĩ
f̃ (u)

∣∣g ′(u)
∣∣du , (")

Théorème. Soient f : D →RR une fonction continue de deux variables,

G : D(G) −→ Im(G)

(u,v) )−→
(
x(u,v), y(u,v)

)

un changement de variables et D̃ ⊂RR2 tel que G−1(D)= D̃ . Soit f̃ : D̃ →RR définie par

f̃ (u,v)= f
(
x(u,v), y(u,v)

)
.

Nous avons ∫∫

D
f (x, y)dx dy =

∫∫

D̃
f̃ (u,v)

∣∣∣∣
∂(x, y)

∂(u,v)

∣∣∣∣du dv .

où

∣∣∣∣
∂(x, y)

∂(u,v)

∣∣∣∣ est la valeur absolue du jacobien associé au changement de variables G .

Méthode de calcul

Soit D un domaine du plan et f : D →RR2 une fonction de deux variables.

Pour calculer l’intégrale double I =
∫∫

D
f (x, y)dx dy

1. Trouver des variables u et v pour lesquelles le domaine d’intégration et/ou la fonction à

intégrer deviennent plus simples.

2. Calculer le jacobien associé au changement de variables G : (u,v) )→ (x, y).

3. Déterminer les bornes des variables u et v :

a" u " b et g1(u)" v" g2(u) ou c" v" d et h1(v)" u" h2(v) .

4. Déterminer f̃ (u,v)= f
(
x(u,v), y(u,v)

)
.

5. Calculer

I =
∫∫

D̃
f̃ (u,v)

∣∣∣∣
∂(x, y)

∂(u,v)

∣∣∣∣du dv =
∫b

a

(∫g2(u)

g1(u)
f̃ (u,v)

∣∣∣∣
∂(x, y)

∂(u,v)

∣∣∣∣dv

)

du

ou

I =
∫∫

D̃
f̃ (u,v)

∣∣∣∣
∂(x, y)

∂(u,v)

∣∣∣∣du dv =
∫d

c

(∫h2(v)

h1(v)
f̃ (u,v)

∣∣∣∣
∂(x, y)

∂(u,v)

∣∣∣∣du

)

dv .
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4.5. Coordonnées polaires (r ,ϕϕϕϕ )

{
x = r cos(ϕ) ,

y= r sin(ϕ) ,
avec r ! 0 et 0"ϕ" 2π (ou −π"ϕ"π).

x

y

ϕ

r
La matrice jacobienne associée à ce changement de variables est





∂x

∂r

∂x

∂ϕ

∂y

∂r

∂y

∂ϕ




=

(
cos(ϕ) −rsin(ϕ)

sin(ϕ) r cos(ϕ)

)

et le jacobien,
∂(x, y)

∂(r,ϕ)
= r cos2(ϕ)+ rsin2(ϕ) =⇒

∂(x, y)

∂(r,ϕ)
= r .

Le théorème nous donne alors∫∫

D
f (x, y)dx dy =

∫∫

D̃
f̃ (r,ϕ) r dr dϕ

où f̃ (r,ϕ)= f
(
r cos(ϕ), r sin(ϕ)

)
.

Quelques domaines en coordonnées polaires

1. Disque de rayon R centré à l’origine

D =
{
(x, y) ∈RR2 : x2 + y2 " R2

}

Le domaine D exprimé en coordonnées polaires est donc un rectangle :

D̃ =
{
(r,ϕ) ∈RR2 : 0" r " R , 0"ϕ" 2π

}

rR

ϕ

2π

D̃ xR−R

y

D
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2. Secteur circulaire de rayon R

D =
{
(x, y) ∈RR2 : x2 + y2 " R2, |y|" x

}

Le domaine D exprimé en coordonnées polaires est donc un rectangle :

D̃ =
{
(r,ϕ) ∈RR2 : 0" r " R , −π

4 "ϕ" π
4

}

rR

ϕ

π/4

−π/4

D̃
xR

y

D

3. Couronne centrée à l’origine

D =
{
(x, y) ∈RR2 : R2

1 " x2 + y2 " R2
2

}

Le domaine D exprimé en coordonnées polaires est donc un rectangle :

D̃ =
{
(r,ϕ) ∈RR2 : R1 " r " R2 , 0"ϕ" 2π

}

rR2R1

ϕ

2π

D̃ xR2−R2 −R1 R1

y

D
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4. Demi-couronne centrée à l’origine

D =
{
(x, y) ∈RR2 : R2

1 " x2 + y2 " R2
2 , x" 0

}

Le domaine D exprimé en coordonnées polaires est donc un rectangle :

D̃ =
{
(r,ϕ) ∈RR2 : R1 " r " R2 , π

2 "ϕ" 3π
2

}

rR2R1

ϕ

2π

π
2

3π
2

D̃ x

R2

−R2 −R1

R1

y

D

5. Triangle D de sommets (0,0), (1,0) et (1,1)

Dans ce cas, l’angle ϕ varie entre 0 et π
4 .

Pour chaque, ϕ ∈
[
0, π4

]
fixé, r varie entre

r = 0 et r = rϕ

où rϕ est tel que

cos(ϕ)=
1

rϕ

Par conséquent, le domaine D exprimé en coordonnées

polaires s’écrit

D̃ =
{

(r,ϕ) ∈RR2 : 0"ϕ"
π

4
, 0" r "

1

cos(ϕ)

}
x1

y

1

ϕ

D

rϕ

︷
︸︸

︷
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Exemples

1. Calculer l’aire du disque D de rayon R centré à l’origine.

Nous avons

D =
{
(x, y) ∈RR2 : x2 + y2 " R2

}
et D̃ =

{
(r,ϕ) ∈RR2 : 0" r " R , 0"ϕ" 2π

}

d’où

A(D) =
∫∫

D
1dx dy =

∫∫

D̃
1 · r dr dϕ=

(∫R

0
r dr

)(∫2π

0
1dϕ

)

=
([

r2

2

]R

0

)([
ϕ

]2π

0

)
=

(
R2

2
−0

)
(2π−0)=πR2

2. Calculer I =
∫∫

D
e3(x2+y2) dx dy où D est le disque de rayon R centré à l’origine.

Comme x2 + y2 = r2 nous avons

I =
∫∫

D
e3(x2+y2) dx dy =

∫∫

D̃
e3r2

r dr dϕ=
(∫R

0
e3r2

r dr

)(∫2π

0
1dϕ

)

=
([

1

6
e3r2

]R

0

)([
ϕ

]2π

0

)
=

1

6

(
e3R2

− e0
)
(2π−0)=

π

3

(
e3R2

−1
)

3. Calculer l’intégrale double

I =
∫1

−1

(∫*
1−x2

0
(x2 + y2)3/2dy

)

dx

à l’aide des coordonnées polaires.

La variable x varie entre −1 et 1.

Pour x ∈ [−1,1] fixé, y varie entre

g1(x)= 0 et g2(x)=
√

1− x2

Le domaine d’intégration est donc le demi-disque

D =
{
(x, y) ∈RR2 : x2 + y2 " 1, y! 0

} x1−1

y

D

Le domaine D exprimé en coordonnées polaires est le rectangle :

D̃ =
{
(r,ϕ) ∈RR2 : 0" r " 1, 0"ϕ"π

}

d’où

I =
∫∫

D
(x2 + y2)3/2 dx dy =

∫∫

D̃
r3 · r dr dϕ=

(∫1

0
r4dr

)(∫π

0
1dϕ

)

=
([

r5

5

]1

0

)([
ϕ

]π

0

)
=

(
1

5
−0

)
(π−0)=

π

5
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4. Calculer le volume de la région limitée par le cylindre de rayon 1 et d’axe 0z , le plan 0xy

et le plan d’équation z = x+ y+2.

Le volume cherché est V =
∫∫

D
(x+ y+2)dx dy , où D =

{
(x, y) ∈RR2 : x2 + y2 " 1

}
.

Le calcul nous donne

V =
∫∫

D
x dx dy+

∫∫

D
ydx dy+

∫∫

D
2dx dy

=
∫1

−1

(∫*
1−y2

−
*

1−y2
x dx

)

dy+
∫1

−1

(∫*
1−x2

−
*

1−x2
ydy

)

dx+2A(D) = 0+0+2π·12 = 2π ,

où nous avons utilisé le fait que l’intégrale d’une fonction impaire sur un domaine

symétrique est nulle. Le calcul peut aussi être fait à l’aide des coordonnées polaires :

D̃ =
{
(r,ϕ) ∈RR2 : 0" r " 1, 0"ϕ" 2π

}

d’où

V =
∫∫

D
(x+ y+2)dx dy =

∫∫

D̃

(
r cos(ϕ)+ rsin(ϕ)+2

)
r dr dϕ

=
(∫1

0
r2dr

)(∫2π

0
cos(ϕ)dϕ

)
+

(∫1

0
r2dr

)(∫2π

0
sin(ϕ)dϕ

)
+

(∫1

0
2r dr

)(∫2π

0
dϕ

)

=
([

r3

3

]1

0

)([
sin(ϕ)

]2π

0

)
+

([
r3

3

]1

0

)([
−cos(ϕ)

]2π

0

)
+

([
r2

]1

0

)([
ϕ

]2π

0

)
=

1

3
·0+

1

3
·0+1·2π

= 2π

5. Soit D le triangle de sommets (0,0), (1,0) et (1,1).

Calculer I =
∫∫

D

1
√

x2 + y2
dx dy.

Nous avons

I =
∫∫

D

1
√

x2 + y2
dx dy =

∫∫

D̃

1

r
· r dr dϕ=

∫∫

D̃
1dr dϕ

où

D̃ =
{

(r,ϕ) ∈RR2 : 0"ϕ"
π

4
, 0" r "

1

cos(ϕ)

}

Par conséquent,

I =
∫π/4

0

(∫1/cos(ϕ)

0
1dr

)
dϕ=

∫π/4

0

1

cos(ϕ)
dϕ=

[
ln

∣∣∣∣
1+sin(ϕ)

cos(ϕ)

∣∣∣∣

]π/4

0

= ln

∣∣∣∣∣∣∣

1+
1
*

2
1
*

2

∣∣∣∣∣∣∣
− ln

∣∣∣∣
1+0

1

∣∣∣∣= ln
(
1+

*
2

)
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4.8. Intégrales triples

But : Définir l’intégrale d’une fonction de trois variables sur un domaine borné D ⊂RR3 .

Nous procédons comme avant : Nous partageons le domaine D de manière arbitraire en n

morceaux D1, . . . ,Dn de volume V(D1), . . . ,V(Dn) et choisissons un point (ξ
k
,η

k
,ζ

k
) dans

chaque morceau D
k

.

Définition. La fonction de trois variables f : D → RR est intégrable (au sens de Riemann)

sur D si pour toutes les partitions {D1, . . . ,Dn} du domaine D telles que max
(
V(D

k
)
)
→ 0

et n’importe quel choix (ξ
k
,η

k
,ζ

k
), la somme de Riemann

n∑

k=1

f (ξk,ηk,ζk)V(Dk)

tend vers une même limite. Cette limite est appelée intégrale triple de f sur D et notée
∫∫∫

D
f (x, y, z)dx dy dz .

Théorème. (sans démonstration)

Si f est continue sur D alors f est intégrable sur D .

Propriétés

1. Si f , g : D →RR sont deux fonctions intégrables sur D , alors f + g est intégrable et
∫∫∫

D

(
f (x, y, z)+ g(x, y, z)

)
dx dydz =

∫∫∫

D
f (x, y, z)dx dydz +

∫∫∫

D
g(x, y, z)dx dy dz .

2. Si f : D →RR est une fonction intégrable sur D et c ∈RR , alors c f est intégrable et
∫∫∫

D
c f (x, y, z)dx dydz = c

∫∫∫

D
f (x, y, z)dx dy dz .

3. Si f : D →RR est une fonction intégrable sur D = D1 ' D2 (réunion disjointe), alors
∫∫∫

D
f (x, y, z)dx dydz =

∫∫∫

D1

f (x, y, z)dx dydz +
∫∫∫

D2

f (x, y, z)dx dydz .

4. Le volume du domaine D est l’intégrale de la fonction constante f (x, y, z) = 1 :

V(D)=
∫∫∫

D
1dx dydz .

5. S’il existe une constante M telle que
∣∣ f (x, y, z)

∣∣" M pour tout (x, y, z) ∈ D alors
∣∣∣∣

∫∫∫

D
f (x, y, z)dx dydz

∣∣∣∣ " MV(D) .

6. Si f (x, y, z) décrit la densité du corps D , alors

∫∫∫

D
f (x, y, z)dx dydz est la masse du

corps D .
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Calcul d’intégrales triples

Nous procédons de manière analogue au cas des intégrales doubles :

• Fixer les bornes d’une des variables :

a" x" b .

• Pour chaque x ∈ [a,b] fixé, déterminer les bornes d’intégration de la deuxième variable :

g1(x)" y" g2(x) .

• Pour chaque (x, y) fixé, déterminer les bornes d’intégration de la troisième variable :

h1(x, y)" z " h2(x, y) .

• Calculer l’intégrale itérée :
∫∫∫

D
f (x, y, z)dx dydz =

∫b

a

[∫g2(x)

g1(x)

(∫h2(x,y)

h1(x,y)
f (x, y, z)dz

)

︸ ︷︷ ︸
ne dépend plus de z

dy

]

︸ ︷︷ ︸
dépend seulement de x

dx .

L’ordre d’intégration est arbitraire, déterminé en partie par la forme du domaine et/ou de la

fonction à intégrer.

Remarque. Si le domaine d’intégration est de la forme

D = [a1,a2]× [b1,b2]× [c1, c2]

et si la fonction à intégrer peut s’écrire comme un produit de la forme

f (x, y, z)= f1(x) f2(y) f3(z) ,

alors l’intégrale triple de f sur D est égale au produit de trois intégrales simples :

∫∫∫

D
f (x, y, z)dx dy dz =

(∫a2

a1

f1(x)dx

)(∫b2

b1

f2(y)dy

)(∫c2

c1

f3(z)dz

)

.
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Exemple

Soit D le tétraèdre de sommets (0,0,0), (1,0,0), (0,1,0) et (0,0,1).

y1

z

1

x

1 xx 1

y

1−x

1

y= 1− x

yy 1−x 1

z

1−x

1−x−y

1

z = (1− x)− y

La variable x varie entre x = 0 et x = 1

Pour x ∈ [0,1] fixé, y varie entre g1(x)= 0 et g2(x)= 1− x .

Pour (x, y) fixé, z varie entre h1(x, y)= 0 et h2(x, y) = 1− x− y.

Ainsi, pour calculer l’intégrale triple d’une fonction f , nous pouvons utiliser la formule

∫∫∫

D
f (x, y, z)dx dy dz =

∫1

0

(∫1−x

0

{∫1−x−y

0
f (x, y, z)dz

}
dy

)
dx .

Soit par exemple

f (x, y, z) = x .

Le calcul nous donne
∫∫∫

D
x dx dydz =

∫1

0

(∫1−x

0

{∫1−x−y

0
x dz

}
dy

)
dx

=
∫1

0
x

(∫1−x

0

{∫1−x−y

0
dz

}
dy

)
dx

=
∫1

0
x

(∫1−x

0

[
z

]1−x−y

0
dy

)
dx

=
∫1

0
x

(∫1−x

0

{
(1− x)− y

}
dy

)
dx

=
∫1

0
x

[
(1− x)y−

1

2
y2

]1−x

0
dx

=
∫1

0
x
(
(1− x)2 −

1

2
(1− x)2

)
dx

=
1

2

∫1

0
x(1− x)2 dx =

1

2

∫1

0
(x−2x2 + x3)dx

=
1

2

[
1

2
x2 −

2

3
x3 +

1

4
x4

]1

0
=

1

24
.
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Changement de variables dans les intégrales triples

Dans ce cas, un changement de variables est une fonction bijective de classe C1 :

G : D(G) −→ Im(G)

(u,v,w) )−→
(
x(u,v,w), y(u,v,w), z(u,v,w)

)

Comme avant, nous lui associons la matrice jacobienne

JG(u,v,w)=





∂x

∂u
(u,v,w)

∂x

∂v
(u,v,w)

∂x

∂w
(u,v,w)

∂y

∂u
(u,v,w)

∂y

∂v
(u,v,w)

∂y

∂w
(u,v,w)

∂z

∂u
(u,v,w)

∂z

∂v
(u,v,w)

∂z

∂w
(u,v,w)





et le jacobien

∂(x, y, z)

∂(u,v,w)
= det

(
JG(u,v,w)

)
= det





∂x

∂u

∂x

∂v

∂x

∂w

∂y

∂u

∂y

∂v

∂y

∂w

∂z

∂u

∂z

∂v

∂z

∂w





.

Théorème. Soient f : D →RR une fonction continue de trois variables,

G : D(G) −→ Im(G)

(u,v,w) )−→
(
x(u,v,w), y(u,v,w), z(u,v,w)

)

un changement de variables et D̃ ⊂RR3 tel que G−1(D)= D̃ . Soit f̃ : D̃ →RR définie par

f̃ (u,v,w)= f
(
x(u,v,w) , y(u,v,w) , z(u,v,w)

)
.

Nous avons ∫∫∫

D
f (x, y, z)dx dy dz =

∫∫∫

D̃
f̃ (u,v,w)

∣∣∣∣
∂(x, y, z)

∂(u,v,w)

∣∣∣∣du dv dw .

où

∣∣∣∣
∂(x, y, z)

∂(u,v,w)

∣∣∣∣ est la valeur absolue du jacobien associé au changement de variables G .
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A. Coordonnées sphériques (r , ϕϕϕϕ , θθθ )





x= r sin(θ)cos(ϕ) ,

y= r sin(θ)sin(ϕ) ,

z = r cos(θ)

avec r ! 0, 0"ϕ" 2π et 0" θ"π.

y

z

x

ϕ

θ r

z

θ

r

x

y

r sin(θ)

ϕ

La matrice jacobienne associée à ce changement de variables est




∂x

∂r

∂x

∂ϕ

∂x

∂θ

∂y

∂r

∂y

∂ϕ

∂y

∂θ

∂z

∂r

∂z

∂ϕ

∂z

∂θ





=





sin(θ)cos(ϕ) −rsin(θ)sin(ϕ) r cos(θ)cos(ϕ)

sin(θ)sin(ϕ) rsin(θ)cos(ϕ) r cos(θ)sin(ϕ)

cos(θ) 0 −rsin(θ)





et le jacobien,
∂(x, y, z)

∂(r,ϕ,θ)
=−r2 sin(θ) .

Le théorème nous donne alors
∫∫∫

D
f (x, y, z)dx dy dz =

∫∫∫

D̃
f̃ (r,ϕ,θ) r2 sin(θ) dr dϕdθ

où f̃ (r,ϕ,θ)= f
(
rsin(θ)cos(ϕ) , r sin(θ)sin(ϕ) , r cos(θ)

)
.

B. Coordonnées cylindriques (ρρρ , ϕϕϕϕ , z)





x= ρ cos(ϕ) ,

y= ρ sin(ϕ) ,

z = z

avec ρ! 0, 0"ϕ" 2π et z ∈RR .

y

z

x

ϕ

z

ρ

x

y

ϕ

ρ

La matrice jacobienne associée à ce changement de variables est




∂x

∂ρ

∂x

∂ϕ

∂x

∂z

∂y

∂ρ

∂y

∂ϕ

∂y

∂z

∂z

∂ρ

∂z

∂ϕ

∂z

∂z





=





cos(ϕ) −ρ sin(ϕ) 0

sin(ϕ) ρ cos(ϕ) 0

0 0 1





et le jacobien, ∂(x, y, z)

∂(ρ,ϕ, z)
= ρ

Le théorème nous donne alors
∫∫∫

D
f (x, y, z)dx dy dz =

∫∫∫

D̃
f̃ (ρ,ϕ, z)ρdρdϕdz

où f̃ (ρ,ϕ, z)= f
(
ρ cos(ϕ) ,ρ sin(ϕ) , z

)
.
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Exemples

1. Calculer le volume de la boule D de rayon R centré à l’origine :

D =
{
(x, y, z) ∈RR3 : x2 + y2 + z2 " R2

}
.

a) En utilisant les coordonnées cartésiennes :

La variable x varie entre −R et R

Pour x ∈ [−R,R] fixé, la variable y varie entre

g1(x)=−
√

R2− x2 et g2(x)=
√

R2 − x2

Pour (x, y) fixé, la variable z varie entre

h1(x, y)=−
√

R2 − x2 − y2 et h2(x, y) =
√

R2 − x2 − y2

Nous avons donc

V(D) =
∫∫∫

D
1dx dydz =

∫R

−R

(∫*
R2−x2

−
*

R2−x2

(∫*
R2−x2−y2

−
*

R2−x2−y2
1dz

)

dy

)

dx

=
∫R

−R

(∫*
R2−x2

−
*

R2−x2

([
z

]*R2−x2−y2

−
*

R2−x2−y2

)

dy

)

dx

=
∫R

−R

(∫*
R2−x2

−
*

R2−x2
2
√

R2 − x2 − y2 dy

)

dx = . . .

b) En utilisant les coordonnées sphériques :

Nous avons

D̃ =
{
(r,ϕ,θ) ∈RR3 : 0" r " R , 0"ϕ" 2π , 0" θ"π

}

d’où

V(D) =
∫∫∫

D
1dx dydz =

∫∫∫

D̃
1 · r2 sin(θ) dr dϕdθ

=
(∫R

0
r2 dr

)(∫2π

0
1dϕ

)(∫π

0
sin(θ) dϕ

)

=
([

r3

3

]R

0

)([
ϕ

]2π

0

)([
−cos(θ)

]π

0

)

=
(

R3

3
−0

)
(2π−0)(1+1)

=
4

3
πR3
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c) En utilisant les coordonnées cylindriques :

La variable ϕ varie entre 0 et 2π

La variable ρ varie entre 0 et R

Pour ρ ∈ [0,R] fixé, la variable z varie entre

g1(ρ)=−
√

R2 −ρ2 et g2(ρ)=
√

R2 −ρ2

Nous avons donc

V(D) =
∫∫∫

D
1dx dydz =

∫∫∫

D̃
1 ·ρdρdϕdz

=
∫R

0
ρ

(∫*
R2−ρ2

−
*

R2−ρ2

(∫2π

0
1dϕ

)
dz

)

dρ =
∫R

0
ρ

(∫*
R2−ρ2

−
*

R2−ρ2

[
ϕ

]2π

0
dz

)

dρ

= 2π

∫R

0
ρ

(∫*
R2−ρ2

−
*

R2−ρ2
1dz

)

dρ = 2π

∫R

0
ρ

[
z

]*R2−ρ2

−
*

R2−ρ2
dρ

= 2π

∫R

0
2ρ

√
R2 −ρ2 dρ = 2π

[
−

2

3
(R2 −ρ2)3/2

]R

0

=
4

3
πR3
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