4. Intégrales multiples

4.1. Intégrales doubles

Rappel. Nous avons vu que si f :[a,b] — R est
une fonction bornée, I'intégrale de Riemann

b
f f(x)dx

est la limite des sommes de Riemann
n
Sp = Z f(é-k)(xk _xk—l)’
k=1

ou {x,,x,...,%,} est une partition arbitraire de
I'intervalle [a,b] avec
a=xy<x,<...<x,=b

et ¢, €lx,_;,x,] pour tout £=1,2,...,n.

Propriétés

&)
f(&y)

f(&s)

1. Si f,g:la,b] — R sont deux fonctions intégrables sur [a,b], alors f + g est intégrable et

b b b
f (f(x)+g(x))dx=f fx)dx +f glx)dx.

2. Si f:la,b] — R est une fonction intégrable sur [a,b] et c € R, alors cf est intégrable et

fabcf(x)dx=cj;bf(x)dx.

3. Soit f :[a,c] — R une fonction intégrable sur [a,c] et soit b € ]a,c[. Alors

c b c
f f(x)dx:f f(x)dx+f f(x)dx.
a a b

Cas f(x) > 0 pour tout x € [a,c] :

Yy
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Théoréme de la moyenne

Théoreme. Soit f :[a,b] — R une fonction continue.

Alors il existe (au moins) un nombre c € [a,b] tel que

1 b b
flor=-— f fode e f F)dz = ()b —a)

Interprétation géométrique

Si f(x) > 0 pour tout x € [a,b], le théoréeme de la moyenne nous dit qu’il existe (au moins)

un nombre c € [a,b] tel que le rectangle de base (b —a) et hauteur f(c) posséde la méme

aire que le domaine délimité par le graphe de la fonction continue f, 'axe

verticales x=a et x =5.

Y

> <

Ox et les droites

© Pearson

But : Définir l'intégrale d’une fonction de deux variables sur un domaine D du plan R2.

Nous allons procéder ici de maniére analogue : z
Soit f une fonction réelle de deux variables.

Soit D < R? un domaine borné contenu dans D(f).

Lorsque la fonction f est continue et positive, nous pouvons

nous représenter 'intégrale de f sur le domaine D comme

le volume du corps délimité par le graphe de £, le plan Oxy

f(oZ,y)

et les droites verticales passant par le bord de D.

Partageons le domaine D arbitrairement en n morceaux
D,,D,,...,D, (par exemple des rectangles) d’aires A(D,),
AD,),..., AD,) et choisissons un point arbitraire (¢ 2o M)
dans chaque morceau D, .

Nous pouvons approximer le volume du corps délimité par

/ J

/f(f 777]3) /
-
- /

/

|

le graphe de f, le plan Oxy et les droites verticales passant / L,

par le bord de D, par le volume du parallélépipede de base NP
|

ch]R2 et de hauteur 1(5,,n,) : B \\: v
- L

£, m)AD,). -

D, 1A¢,.1,)
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Définition. La fonction de deux variables f est intégrable (au sens de Riemann) sur D
si pour toutes les partitions {D,...,D,} du domaine D telles que max(A(D,)) — 0 et

n’importe quel choix (¢,,n,) €D, , la somme de Riemann

Y £(&4m,)AD,)
k=1

tend vers une méme limite. Cette limite est appelée intégrale de Riemann de f sur D

j] fx,y)dxdy.
D

et notée

© Pearson

Théoreme. (sans démonstration)

Si f est continue sur D alors f est intégrable sur D.

Propriétés
1. Si f,g:D — R sont deux fonctions intégrables sur D, alors f + g est intégrable et

ffD (fx, )+ g(x,y))dxdy = ffD flx,y)dxdy + ffD glx,y)dxdy.

2. Si f:D — R est une fonction intégrable sur D et c € R, alors c¢f est intégrable et

ffcf(x,y)dxdy:cff f(x,y)dxdy.
D D

3. Si f:D — R est une fonction intégrable sur D = D, U D, (réunion disjointe), alors

fff(x,y)dxdy:ff fx,y)dxdy +[[ fx,y)dxdy.
D D, D,

4. Laire du domaine D peut étre calculée a l'aide de l'intégrale de la fonction constante

AD) = j] ldxdy.
D

5. S’il existe une constante M telle que | f(x, y)| < M pour tout (x,y) € D alors

f(x,y)=1 pour tout (x,y)eD :

U f(x,y)dxdy‘ <M AD).
D
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Théoreme de la moyenne. (sans démonstration)
Soit D c R? un domaine connexe. Soit f : D — R une fonction continue. Alors il existe un

point (£,1) € D tel que

fD fx,y)dxdy = f(&,nAD).

© Cengage

Calcul d’intégrales doubles

Nous avons défini I'intégrale double f f(x,y)dxdy.
D
Question. Comment la calculer?
Probleme. Contrairement au cas des intégrales définies du type f f(x)dx, ou le domaine

d’intégration est un intervalle fermé [a,b], le domaine D c R? peut étre trés général :

® 0D

connexe (par arcs) pas connexe (par arcs) connexe (par arcs)
convexe pas convexe pas convexe

« Un domaine D c R? est connexe (par arcs) si pour tout couple de points 3 1»D9 €D il existe
une courbe paramétrée @ :[0,1] — R? qui relie , & P, contenue dans D. Autrement dit,
telle que ¢(0)=p,, ¢(1) = p, et $(t) € D pour tout ¢ €[0,1].

« Un domaine D c R? est convexe si pour tout couple de points 5 1»D9 € D le segment qui
relie p, a p, est contenu dans D.
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4.2. Intégrales doubles sur des domaines rectangulaires

Commencons par considérer le cas simple d’'un rectangle fermé

D={xyeR?: a<x<b, c<y<d}=la,blxlc,dl.

y

Soit f : D — R une fonction continue définie sur le rectangle D.

Soit y € [c,d] fixé. La fonction x — f(x,y) est continue par rapport a la variable x.
Elle est donc intégrable par rapport a x sur I'intervalle [a,b].

b
Soit g(v) = f f(x,y)dx (aire de la section d’ordonnée y)
a

Théoreme. (sans démonstration)

b
La fonction y — g(y) = [ f(x,v)dx est continue par rapport a la variable y.
a

Conséquence. La fonction g est intégrable par rapport a y sur lintervalle [c,d].
Autrement dit, I'intégrale itérée

d d b
fg(y)dy=f U f(x,y)dx)dy

existe si f est continue sur D.
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Soit maintenant x € [a,b] fixé. La fonction y — f(x,y) est continue par rapport a la

variable y. Elle est donc intégrable par rapport a y sur l'intervalle [¢,d].

d
Soit A(x) = f f(x,y)dy (aire de la section d’abscisse x)
(4

Théoreme. (sans démonstration)

d
La fonction x — A(x) = f f(x,y)dy est continue par rapport a la variable x.
c

Conséquence. La fonction A est intégrable par rapport a x sur lintervalle [a,b].

Autrement dit, I'intégrale itérée

b b d
fh(x)dx:f (f f(x,y)dy)dx

existe si f est continue sur D.

Théoreme de Fubini. (sans démonstration)

Si f est une fonction continue sur le rectangle D =[a,b] x [c,d], alors nous avons

ffo(x,y)dxdy = fab (fcdf(x,y)dy)dx
:fcd(fabf(x,y)dx)dy.

Exemples

1. Calculer I'intégrale double

ff (16 — 2 —3y2)dxdy
D

ou D est le rectangle
D={x,y)eR?: 0<x<3,0<y<1}=[0,3]x[0,1].
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a) en intégrant d’abord par rapport & y et ensuite par rapport a x :

1 1
f(16—x2—3y2)dy= (16-x%)y -3 =(16-22)1-1-0+0=15-x>
0 0

3¢ rl 3
ff(lG—xz—Syz)dxdy =f U (16—x2—3y2)dy)dx=f (15— x2)dx
D o \Jo 0

%313
15x——] =45-9-0+0=36
3 Jo

d’ou

b) en intégrant d’abord par rapport a x et ensuite par rapport a y,

1 pr3
ff(16—x2—3y2)dxdy=f (f (16—x2—3y2)dx)dy
D o \Jo
1 x3 x=3
=f ([(16—3y2)x—— )dy
0 3 Jx=0

1
=f (3(16—3y2)—9—0+0)dy=/ (39-9y2)dy
0

1
0
1

=39-3-0+0=36

= [39y -3y3
0

2. Calculer l'intégrale double

[[ fle,y)dxdy
D

ou f(x,y)= x2y3 —2 et D est le rectangle D =[0,3] x[0,2],

a) en intégrant d’abord par rapport a x et ensuite par rapporta y :

2 3 2 1
fff(x,y)dxdyzf (f (x2y3—2)dx)dy:[ ( z
D 0 0 0 3

2 3 9 4 2
- [ -6rav= 246

x=3
x3y3 —2x

Jos
x=0

=36-12=24.
0

b) en intégrant d’abord par rapport a y et ensuite par rapport a x :

1 9 4 y=2
—x%y —Zy} )dx

3 2 3
fff(x,y)dxdyzf ( (x2y3—2)dy)dx=f ( Z
D 0 \Jo 0 y=0

3 3
= f (4x%—4)dx =
0

%x3—4x ~36-12=24.

0
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3. Calculer l'intégrale double

[[ xcos(xy)dxdy
D
ou D est le rectangle D =[0,7] x[0,3] = {(x,y)e]Rz: 0<x<m, 0<y<3}.

Nous avons

b4 3 bis y=3
[[ xcos(xy)dxdy :f ([ xcos(xy)dy) dx :f ( sin(xy) )dx
D o \Jo 0 y=0
T _ T _
:f sin(3x)dx = —cos(3x) 1 1.2
0 3 o 3 3 3

Remarque. Sila fonction a intégrer peut s’écrire comme un produit de la forme
fle,y)=g)hly),

alors I'intégrale double de f sur le rectangle D =[a,b] x [c,d] est égale au produit de deux

intégrales simples :

b d
ffD gh(y) dxdy = ( f g(x)dx)( f h(y)dy).
d b
[[ gx)h(y)dxdy :f (f g(x) h(y) dx) dy
D c a ~——

constante

d b
=f h(y)(f g(x)dx)dy

—_
constante

b d
= (f g(x)dx) h(y)dy.

En effet,

Attention: Cette formule est valable seulement si D est un rectangle.
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Nous pouvons faire le calcul suivant pour la fonction de 'exemple 2

3
f(x2y3—2)dxdy: [xzdx)(f ydy) f dxdy
D 0
3
= fxzdx)(f y*‘fdy)—zA(D)
0

[ ]—2@ 0)2-0)

x
3
=(9-004-0)-12=24.

4.3. Intégrales doubles sur des domaines non rectangulaires
Considérons maintenant le domaine délimité par les droites x =a, x = b et les courbes

y=g,&) et y=g,(x) avec g,(x) < g,(x) pour tout x €[a,b].

y
y= gg(x)

Bl ——— B — - — - ——— —

g == ——— =

|
|
|
|
|
|
a X b x

Pour chaque x € [a,b] fixé, y varie entre g, (x) et g,(x). Nous pouvons écrire
D={kx,yeR*: a<x<b, g,(x)<y< g, ()}
et I'intégrale double se calcule a 'aide de 'intégrale itérée

b gy(x)
ff f(x,y)dxdy=f (f f(x,y)dy)dx- (i)
D a g(x)

1

ne dépend plus de y
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Considérons a présent le domaine délimité par les droites y =c¢, y =d et les courbes

x=h(y) et avec /1, (y) < pour y € [c,d].

Pour chaque y € [c,d] fixé, x varie entre /2, (y) et . Nous pouvons écrire
D={yeR*: c<y<d, h()<x< }

et I'intégrale double se calcule a I’'aide de 'intégrale itérée

d
ff fGe,y)dxdy = f ( f f(x,y)dx)dy. (i)
D ¢ \Jnw

ne dépend plus de x

Remarque. Dans le cas général, nous décomposons le domaine D c R? en morceaux
ou nous pouvons appliquer soit la formule (i) soit la formule (ii). Le choix entre ces deux

formules est indiqué par la forme du domaine ou par la fonction a intégrer.
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Méthode de calcul
Soit f une fonction de deux variables et D un domaine du plan.

Pour calculer I'intégrale double

Izﬂ flx,y)dxdy,
D

« fixer les bornes d’'une des variables :
a<x<b ou c<y<d.

o Pour chaque valeur fixée de cette variable, déterminer les bornes d’intégration de la
deuxiéme variable :

g1x) <y < ou hi(y)<x<

o Intégrer d’abord par rapport a la deuxiéme variable et ensuite par rapport a la premiére
variable :

b d
I:f (f f(x,y)dy)dx ou I:f (f f(x,y)dx)dy
a g, (x) c hi(y)

S5

Remarque. Lordre d’intégration est arbitraire, déterminé en partie par la forme du

domaine et/ou de la fonction a intégrer.

Exemples

1. Soit D le triangle dont les sommets sont (0,0), (2,0) et (2,1).
Ecrire ff f(x,y)dxdy comme une intégrale itérée.
D
La droite qui passe par (0,0) et (2,1) a comme équation y = %x ou encore x =2y.

Nous avons deux possibilités :

o La variable x varie entre 0 et 2.

y
Pour chaque x € [0,2] fixé, y varie entre
g1(x)=0 et !
Ainsi, D
2
[ reevazay=[ ([ rena)ax
D o \Jo
1 x 2 x
o La variable y varie entre 0 et 1.
Pour chaque vy €[0,1] fixé, x varie entre ?
hiy)=2y et ) 1
Ainsi, D
1
ff £(x,y)dady = f ( f f(x,y)dx)dy ’
D 0 \J2y
2y 1 x
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2. Soit D le domaine de 'exemple 1 et f(x,y) = x +xy>.

Calculer ﬂ f(x,y)dxdy
D

Nous pouvons utiliser les deux formules trouvées dans ’exemple précédent :

2( 2 3
ff(x+xy2)dxdy=f (f (x+xy2)dy)dx:f ( xy+x— )dx
D o \Jo 0 y=0
20,2 44 3 4512 93 95
j(; (§+ﬂ—0+0)dx E+EO_E+EO
4 4 24 8
3 15 15 5

1 1
ff(x+xy2)dxdy=f (/ x(1+y2)dx)dy=[ (1+y2)([ xdx)dy
D 0 2y 0 2y
1 2 1 2 2
_ NS _ 2 2__4L)
—fo(1+y)( 2L_Zy)dy—fo(1+y)(2 5 dy
1 1
=2 a+yha-yhdy=2[ a-yhdy
0 0

5171 1
:2[1—1] :2(1—_):§
5 lo 5/ 5

3. Soit D le domaine de I'exemple 1 et f(x,y) = e2/*.

Calculer [[ fx,y)dxdy
D

Comme
i (eZy/x) — geZy/x
Oy x ’
nous avons
0 (x
(_ e2y/x) — e2y/x’

ay \2
d’out
2 2 x
ffezy/xdxdyzf (f ezy/xdy)dx:f ( —e2~"/x} )dx
D 0 0 0 y:O
2 2 212
B X 1 X9 _e—lf _e-1[x"
_,[0 (2(3 2e)dx— 5 Oxdx— 5 7 o
=e—-1
Remarque. Comme
i (eZy/x) - _ 2_y e2y/x
0x x2 ’

il n’est pas possible d’exprimer la fonction f comme la dérivée partielle par rapport a x

d’une fonction exprimée a I'aide de fonctions élémentaires.
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4. Inverser I'ordre d’intégration dans I'intégrale

4 pvx
I:f ( f(x,y)dy)dx.
0 x/2

La variable x varie entre 0 et 4. Pour x €[0,4] fixé, y varie entre
x
gl(x)ZE et gz(x): VX.
Le domaine d’intégration est donc :

y
2t —————————— =

Par conséquent, la variable y varie entre 0 et 2. Pour y € [0,2] fixé, x varie entre
hiy)=y> et hy(y)=2y,

ce qui nous donne

2 2y
I:f ( f(x,y)dx)dy.
0 y2

5. Soit D le disque de rayon R centré a l'origine.

Ecrire j] f(x,y)dxdy comme une intégrale itérée.
D
Nous avons deux possibilités :

o La variable x varie entre —R et R.

Pour chaque x € [-R,R] fixé, y varie entre

g1x)==VR2-x2 et gyx)=VRZ2-x%. RZ—x2
Ainsi,
<,)dd:ff e, dy |dx (@)
ffoxy xdy=| 7mfxyyx N

o La variable y varie entre —R et R.
Pour chaque x € [-R,R] fixé, x varie entre

h)=-VRI-y2 et hy@)= VR~ 2.

Ainsi,

R VR2—y2
ffo(x,y)dxdy=f_R (f_ — f(x,y)dx)dy (2
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6. Soit D le domaine de ’exemple 5 et f(x,y) = VR2—y2.
Calculer [[ fx,y)dxdy
D

Comme f ne dépend pas de x, il convient d’intégrer d’abord par rapport a x :

f \/Rz_yzdx:\/R2_y2f ldx:\/RZ_ny :2(R2—y2)
—VR2-)2 —VR2-y2 -VR2-y2
D’ou
& SIR 4, 4 8
[ redzay= [ aw-hray=2|riy-| ~IRO+ 3RS -CRC.
D R 3]s 3773 3

Remarque. Si la fonction a intégrer est quelconque, l'intégration sur le domaine D

de 'exemple 5 peut s’avérer compliquée, d’ou I'intérét a considérer une autre méthode.

4.4. Changement de variables dans les intégrales doubles

Rappel. Nous avons vu qu’il est parfois utile de changer de variable pour calculer une

intégrale. Pour ce faire, nous avons utilisé la formule de changement de variables

b ()
f f(x)dx:f flew)g'wdu.

g o)
ol g est une fonction bijective de classe C1.

Si g :[c,d] — [a,b] est une fonction monotone croissante (avec g’(x) > 0), nous avons
g Ha)=c et g7 1(b) =d et la formule ci-dessus devient

b d
ff(x)dx:f flew)g'w)du.

Si g :[c,d] — [a,b] est une fonction monotone décroissante (avec g’'(u) < 0), nous avons

g Ha)=d et g71(b) = ¢ et la formule de changement de variables devient

b d
f f(x)dx=f f(g(u))g’(u)du=—f flew)g'w)du.

c
d
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Nous pouvons résumer les deux formules précédentes sous la forme :

b d
ff(x)dx:f flew)|g'w)|du,

ou la valeur absolue tient compte du signe de I'intégrale de droite dans le cas décroissant.

Si nous notons I =[a,b] et I =[c,d] et nous posons

fw =f(gw))

alors la formule précédente s’écrit :

fI fx)dx = fff(u)ig’(undu, (%)

Question. Quel est 'analogue de la formule (%) dans le cas des intégrales doubles?

Dans le cas des fonctions de deux variables, un changement de variables est une fonction

bijective de classe C! :
G :D(G) — Im(G)
(u,v) — (x(u,v), y(u,v))

Nous lui associons la matrice

0
_(uyv) _x(uav)
J(u.0) = ou ov
TN 2w L
ou ov
appelée matrice jacobienne.
0
Le déterminant de cette matrice, noté () :
o(u,v)
0x Ox
a(x,y) ou v | 0xody oxoay
—— =det( =det = -
S - deten)=det) 5 5y 1=50 5 =5 o

ou

ov

est appelé jacobien associé au changement de variables.
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Nous pouvons a présent donner 'analogue de

ﬁfqu=ﬁﬂw@ﬁmd% ()

Théoreme. Soient f :D — R une fonction continue de deux variables,
G :D(G) — Im(G)
(w,v) — (x(u,v),y(u,v))
un changement de variables et D < R? tel que G~X(D)=D. Soit f : D — R définie par
fu,v) = f(x(u,v), yu,v)).

Nous avons

~ 0
ff f(x,y)dxdy:f~ fu,v) (x’y)‘dudv.
D D o(u,v)
. |9(x,y) . ) . )
ou YO est la valeur absolue du jacobien associé au changement de variables G.
u,v

Méthode de calcul

Soit D un domaine du plan et £ : D — R? une fonction de deux variables.

Pour calculer I'intégrale double I = ff fx,y)dxdy
D

1. Trouver des variables u et v pour lesquelles le domaine d’intégration et/ou la fonction a
intégrer deviennent plus simples.

2. Calculer le jacobien associé au changement de variables G : (u,v) — (x,y).

3. Déterminer les bornes des variables u et v :
a<u<b et gw)<v<gyw) ou e<v<d et hy()<u<hy0).

4. Déterminer f(u,v) = f(x(u,v), y(u,v)).

a(xy)
I= [[ f( )’6(u v)

0(x ,y)
I= .[[ Fla, )’6(u v)

5. Calculer

b (u) _
:f (fgz )‘6( ’y)‘ v)du
a g,w)
( Ry( )
hy()

ou
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4.5. Coordonnées polaires (r,@)

avecr >0 et 0 < <2m (ou —7m < <m).

{x =rcos(p), y

y =rsin(p),

La matrice jacobienne associée a ce changement de variables est
Ox Ox

or % cos(p) —rsin(p)
dy Oy | sin(p)  rcos(p)
or O¢p

et le jacobien,
o(x,y)

o(r,p)
Le théoréme nous donne alors

ffo(x,y)azxaly=ffl3 fr,p)rdrde
ot f(r,) = f(rcos(¢),rsin(¢p)).

0(x,y)
=r
a(r, p)

=r cos2((p) +r sin2((p)

Quelques domaines en coordonnées polaires

1. Disque de rayon R centré a l'origine
D :{(x,y)E]Rz: xz+y2 <R2}
Le domaine D exprimé en coordonnées polaires est donc un rectangle :

52{(r,<{))€R2: 0<r<R, 0§(/)<2n}~

y

2

)
e
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2. Secteur circulaire de rayon R
D= {(x,y)ERZ: 2 +y2 <R?, |yl <}
Le domaine D exprimé en coordonnées polaires est donc un rectangle :
D={(r,eR*: 0<r<R, -7<¢p<7%}

/4

—n/4

3. Couronne centrée a l'origine

D={(x,y)€]R2:R%<x2+y2<R§}

y

Le domaine D exprimé en coordonnées polaires est donc un rectangle :
5:{(r,(p)€R2: R, <r<R,, 0§<,0§2JT}

2

y

A
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4. Demi-couronne centrée a l'origine

D={(x,y)€]R2:R%<x2+y2<R§, x<0}

Le domaine D exprimé en coordonnées polaires est donc un rectangle :

D={r,p)eR?*: R, <r<R,,

2w
3n
2

[JE]

5. Triangle D de sommets (0,0), (1,0) et (1,1)
Dans ce cas, 'angle ¢ varie entre 0 et 7.
Pour chaque, ¢ € [0,%] fixé, r varie entre

r=0 et r=r,

ou r, est tel que
1
cos(p) = —
T

Par conséquent, le domaine D exprimé en coordonnées

polaires s’écrit

ﬁ:{(r’ JeR?: , 0<r< : }
cos(¢p)

T
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Exemples
1. Calculer l'aire du disque D de rayon R centré a l'origine.

Nous avons
Dz{(x,y)E]RZ:x2+y2<R2} et ﬁz{(r, )YeR%2: 0<r <R, }

AD) = ffldxdy ﬂlrdrd(p (/ rdr)(j:nld(p)
(1515

2m
) = (— —0) (27 —0) = 7R?
2. Calculer I = ff 3@+ gy d y ou D est le disque de rayon R centré a l'origine.
D

d’ou

2

0 2

Comme x2 + y2 = r2 nous avons

_ 3(x2+y2) _ 3r2 _ R 3r2 2m
I= e dxdy= || e’ rdrde= e’ rdr 1dy
D D 0 0

3oy

3. Calculer l'intégrale double

1 V1-x2
I :f (f (a2 +y2)3/2dy) dx
-1\Jo

1
a l'aide des coordonnées polaires.

La variable x varie entre —1 et 1.
Pour x €[-1,1] fixé, y varie entre
g,x)=0 et gylx)=V1-a2 D
Le domaine d’intégration est donc le demi-disque
D={(x,y)€R2:x2+y2<1,y20} -1 L=
Le domaine D exprimé en coordonnées polaires est le rectangle :
5:{(1", )€R2:0§r§1, }

I:ﬂ(x2+y2)3/2dxdy=ff~r3.rdrd<p=(folr“dr) (foﬂld(p)
(15 L[]} -o)er-o-

d’ou
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4. Calculer le volume de la région limitée par le cylindre de rayon 1 et d’axe 0z, le plan Oxy
et le plan d’équation z=x+y+2.

Le volume cherché est V = ff (x+y+2)dxdy, ou D ={(x,y) e R?: x? + y2 < 1}.
D

Le calcul nous donne

V= [[xdxdy+ff ydxdy+[[ 2dxdy

1-y* V1-x2
:f f xdx dy+f f ydy dX+2./4(D):0+0+27'[~12:27[,
—1\J-vi-y? ~1\J-vit?

ou nous avons utilisé le fait que l'intégrale d’'une fonction impaire sur un domaine

symétrique est nulle. Le calcul peut aussi étre fait a 'aide des coordonnées polaires :
5={(r, )€R210§r§1, }

d’ou

VZﬂ(x+y+2)dxdy=ff~(rcos((p)+rsin((p)+2)rdrd(p
D D

_ ( fo 13r2dr) ( fo 2 Cos((P)d(p) : ( fo lrzdr) ( fo s1n((p)d(p) ( fo 12rdr) ( )
- ([Fh(sm])+([F L) -eos ], o ([ o] )= 505 022

3
=2n

5. Soit D le triangle de sommets (0,0), (1,0) et (1,1).

1
Calculer szf ————dxdy.
D | /x2+y2

Nous avons
1 1
= ——dxd :j] —-rdrd :ff 1drd
ffD ‘/x2+y2 Y br ¢ D ¢

ﬁ:{(r, )eR?: , 0<r< }
cos(¢p)
Par conséquent,
1/cos(¢p) : /4
I= (f 1dr) - 1 :[mw]
0 cos(¢p) cos(ep) |lo
1+ !
NG 1+0
=1In 1\/5 —In|— i (1+\/_)
V2
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4.6, Infe,gmf‘fov\ sur des ?exaﬂt/[oﬁmmmas d} dag fn'ahfL&S.

Si o domaine dinfegration est un aralllogramme ou e Friangle
L o slavérer ultle do paire un chargoment de variables.
Pxemple 1.

Seit D (o ?amlb:(osmmwa, M&Qmo‘!‘;_,/ par s ve cheurs

~_|[Z —
aﬂ=(4) Zt az=(4), V]|
5 ....................
Col cular I‘-“ffb(xd(a) (Lxd?, al
3. :
D
Z" '.
1
) z 3 T & x
s xS
Premaere ?ossi‘oiweef: calowl dicedt 4 ?/_ 2,
5 ................... 2
X vorie entre 0 et 5. Ay gy
iV 7 . 3 k0=3\i
four ace [.0,’2,-) i-l'}(-e) U varie entre .1 D \(7: 4% =3
[ _4 . : s
ﬁ\Cx)f‘Zw ek 32(.%) =3 X 1t \\-: : .
T)D\A,Y‘ 966[,’2,,3-.) }_{}(Q/) ﬁ VoYt %‘km’ l} 2 3 4 s x
q.00=%z-F o q,09=32 =%

?mu‘ 2(E [3,5-) }-t’}uz/, U Varie u\,‘kre,

4 __5 4. .S
«3\0:.) S L3 et 326%) ——Zoc,+z

QIIO?A,: '[:/Z(jxax/3(x¥ 3\()) dj)d;x; +/z3(j4x/3 (x+33) dj)dx

0 3 tr-s)13

+[35(L(x+s)/z (x+33) dj)dnc -

76‘5)/3
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Deuxieme posslbfu{-e/ : oka.wji’m.w{‘ da
Sok G :R*
vers (g_ pamuof,(ol:‘)r&wme, D"

: 3 PN
()]- I,> "
emwz)%‘ S

varicblas

—->'|R’L L’&PP[LC,M‘{ON (A,Y\Q,/GAI‘E/ lei envoie le CN‘PC/ 'S-‘- [O,ﬂXEO,Q

I 2 3 4 s %

m‘l‘nca, cmuo W%‘l’
a.S'«fouw N m

3
s (el =Ad8)=(T 2)(V)=("2)
, ] eluy)= 2us3v
Ck%3aw do variebles {3 (w,v)= w+dv
Mat~ ce daw‘oie,vwxﬂ. g
TV z 3
JG“‘M:<% oy >: ( 1 4)=Ae
. oV
Jacobion, - S < ik (Jq )] = 24 31 = 5
ot ,ﬂ)
Buji,v) =9
“>f/ }(x,y) dx dy = ffN flw M\acw) dw dv

f/b} (x,y) dx‘i‘ﬁ= Sﬂﬁ Flww) dan v

s% D est & cand [0,4Ix00,1]) .
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Tek %C)(,,lo )= + 3|3,
d o 'J}'(u,v\= (Zur3v) +3(urtv) = Su+ 15 v
o T=5/[,5ur15v)dudy

D

=25 floududy +75 [f voudy
=25 ([ ud)(f, v )45 () [ vt

—

S T L = ‘o = —
Tz lo—i Vl°—& 1 _Lz

> ffb(ou?na) o('x,d?,——-SO

Exm?&z.

Seit D 'trl'm\.SLL o sommels
00), (2,1) e (3,4)

Coledor  [] f+3y) dae dy
Prenwsere possibilite - calel diced:

-— N » &> O ¢

D

Il 2 3 4 s x

X verle entre 0 e;t 3
Pour 2e [O,’Z:) i“'}(“/, 3 varit entre et 32(_%).—_4? -
?""W 966[/2')3-\) i—l'}@/) lJ varie ‘%\,*re, 3\(,'%)‘: 30 ek 32('%):% x

i fjersg g [ s aane [ rsg

3

_ .. .
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':Dewxi%wu. possfbfu{-e/: Lz, cka.mgmw{‘ oe.& vav-l'a.'o[.&.( (10, /,QXEMA,P(L A‘.

Ji
dh:LQ,va%u-}-'ow ad...........
\//\ V=l-w,
A 2 < *1
/Q—\ 21
‘ ....... .
T w 2 3 >
Ici.uva.m'{, ankre 0 ot 1.

our welo)) pixe’, v varie eante g (0)=0 o& g, (w=l-w
ffb(ou?)g) o('x,d?,= Sﬂ‘g(i&:?v)mo{v

:25J:Uo (u.+3v)dv)ch~

=25 j‘oA [u'v-l-%vz]vcl—w

= 2.5 j;(u,({-‘b\:) +3E(A_l"-)7_)duv= = 539

v=o0

42, Coordonnées a,wv(bfme\?.
COVLSL'(ﬁ{MV\S MMV\LQ/V\M'l' wm domaine du P(aw\, (MM}‘C/ er* (IJ
courbes do ~ivean do. donx {,o»\c'f'\’ov\s 8 4 h:
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Si U veut caloaler ] ¢ey)dudy il pod shurer uble
d utiliser lo okm3emw de variables suivamd:
{ n =3(x,xo)
V=WI,\O)
Comme w varke entre a ef b ef v vane enfre « <t ol | (4
dlomaine o('l'«ir§mﬁ’om est (o,redm\s(,e, 3=£a7b1x{ L]
7

D
- o

c

>
w

Le)
a(w,v)

On o oonc j[b {_(’)()l,.) o(.ﬁ(o(ﬂ =ﬂ3 :r(ut,\/)

ou 6:D —D
() —> (¢ (u ,v),lg(\/\,v))

Le WM\‘ do vaxh‘oJQQS mverse Uf‘ Johmj pN\:

- )
G :D—D>D

Ragpel. Si Aek B sont der matates carreer oo mime faille
alovs dut (A)= dat(A)det(®) .

. 1
EV\- pmrﬁwli{r) Si ‘gaA_\) on a AB:I —?/f QL(X;(A )cd,ej,‘(A

Con %—Q%umcxz.:

dun oV’

)

2ty _ | of |29 |
3lw,v) 9lw,V) B('X,Lg) B(xl!g)
o0&, Lﬂ-) a(uw,v)
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£xmﬁ(@x-

L Colewler ['aire dic domaine D (Lmitb/far

z

les courbes /\3—_:;(,1 =S 3:6-=1

La——Zx'" <= —tf:i
z N &

x=y = -;9(:'—

e

le. CMMM& du vapic_.‘ol-&i-. {

&

-—

S
x"
3
3

avec 1,y > 0

est ]9 TULEI\)/ est un T‘ed’a/v\,\j*(ﬂ: g’:[lz,'\—)’([%—,A’)

Cor W vare enfre iz-ei"ll d v Ve em)f/e,%-d‘1

Tafrice facobionne: <%% %’ =<TJ£ ——%)
N e

Uoire o domaire D vaut donc:

f&(:a)=/j2)1m® r]f$4

=Ll =5 A) -

=| A (D)

1
9

SUNg) =455

MN— LN
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Remarque.

W est aussi possille di calemler (o jacobitrs S direchoment,
Ynois il b Commencer pas- Gxprimer x &b y comine oles {.onc‘{'lb*\f
do w & v:

O oblNewt (o meme_ ~eSultad mais avec plus d ’e)r_for‘{‘,

. Colewder | 't’vule’gmh, 7
I= ﬁb 6=y") e obcotj 5
P&F (-Z,S c»wf‘l:ﬂ»&:
'Jctj:& l3=vc,

0

v yeasZ I
le ckamsmemk da varia.loLu-. { w= 76&9

V=Y
et bl qu D et un redagle: T=[ 1,41« [0 2]
car w vare endre 1 of 4 et v varme enfre 0 ot 2
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. or
wefriee Amcolo'\ovw\l,'- )8 35 _|ly %
e
\io\oobie/m: gf—;\:% '—”—x—\—ta 50 sur D.

L Aey) A 9(x,v) !
Ains i Alw,v) uv) = [N x(u,v)a\—td(u,\/)
ab(.;n)

C,omw., {—(')L,j) = (’)cz—t:)z) e%U = (’mi—m\j)(l—v) €'up

(o &,m\d‘;o.,\, 2 '\)‘\:Le%rer dens @3 wouvelles varizbles w—*—xy
et v= La—'k_ fo

:f (uv)= (‘DC(.u.,v) > :)(u)v)) (=) e

NOMS avons G(xmc

I= ﬂ (1:—3)8 o(x:o(j ﬂN ]f (u,v) du dv
= ﬁg ('X_(u. v) 3> U(u)v)) (—v) 8 duw d\/

=H‘S -ve dudv =(f e )U—vdv)
= [e“]‘f - g]:}(e —e )(-2+0)

= |I= 2e(]-e3)
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4.8. Intégrales triples

But : Définir 'intégrale d’une fonction de trois variables sur un domaine borné D c R3.

Nous procédons comme avant : Nous partageons le domaine D de maniére arbitraire en n
morceaux D,...,D, de volume V(D,),...,V(D,) et choisissons un point ({,,n,,{,) dans
chaque morceau D, .

Définition. La fonction de trois variables f : D — R est intégrable (au sens de Riemann)
sur D si pour toutes les partitions {D,,...,D,} du domaine D telles que max (V(D k)) -0
et n’importe quel choix (¢,,7,,(,), la somme de Riemann

k=1

tend vers une méme limite. Cette limite est appelée iniégrale iriple de f sur D et notée

f/ f(x,y,2)dxdydz.
D

Théoreme. (sans démonstration)

Si f est continue sur D alors f est intégrable sur D.

Propriétés
1. Si f,g:D — R sont deux fonctions intégrables sur D, alors f + g est intégrable et

fff (f(x,y,z)+g(x,y,z))dxdydz:[[ f(x,y,2)dxdydz +ff gx,y,z)dxdydz.
D D D

2. Si f:D — R est une fonction intégrable sur D et c € R, alors c f est intégrable et

fff cf(x,y,z)dxdydzzcﬂ f(x,y,2)dxdydz.
D D

3. Si f:D — R est une fonction intégrable sur D =D, U D, (réunion disjointe), alors
ff f(x,y,2)dxdydz = [[ f(x,y,2)dxdydz +ff f(x,y,2)dxdydz.
D D, D,

4. Le volume du domaine D est I'intégrale de la fonction constante f(x,y,z) =1 :

V(D)= fff ldxdydz.
D

5. S’il existe une constante M telle que | f(x, y,z)| < M pour tout (x,y,z) € D alors

‘ff f(x,y,2)dxdydz
D

6. Si f(x,y,z) décrit la densité du corps D, alors f[ f(x,y,z)dxdydz est la masse du
D

<MVD).

corps D.
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Calcul d’intégrales triples
Nous procédons de maniere analogue au cas des intégrales doubles :
« Fixer les bornes d’'une des variables :
a<x<b.
e Pour chaque x € [a,b] fixé, déterminer les bornes d’'intégration de la deuxiéme variable :

g1(x) <y < galx).
e Pour chaque (x,y) fixé, déterminer les bornes d’intégration de la troisiéme variable :

hi(x,y) <z < ha(x,y).
fgz(x)
g1(x)

dépend seulement de x

e Calculer I'intégrale itérée :

b
j] f(x,y,z)dxdydz:f
D a

dx.

ho(x,y)
f f(x,y,z)(lz) dy
7

11(x,y)

ne dépend plus de z

Lordre d’intégration est arbitraire, déterminé en partie par la forme du domaine et/ou de la
fonction a intégrer.

Remarque. Sile domaine d’intégration est de la forme
D =laj,a9lx[by,by] x[cq,c5l
et si la fonction a intégrer peut s’écrire comme un produit de la forme
flx,y,2) = f1(0)f5(y)f5(2),

alors I'intégrale triple de f sur D est égale au produit de trois intégrales simples :

fffo(x,y,Z)dxdydz = (fa% 1”1(96)(196)(5)2 /"z(y)dy)(fc('z f:a(z)dz).

1
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Exemple

Soit D le tétraedre de sommets (0,0,0), (1,0,0), (0,1,0) et (0,0,1).

La variable x varieentre x=0et x=1

Pour x €[0,1] fixé, y varie entre g,(x) =

Pour (x,y) fixé, z varie entre A (x,y) =

PRy I

0 et

O0ethylx,y)=1-x—y.

Ainsi, pour calculer I'intégrale triple d’'une fonction f, nous pouvons utiliser la formule

1 1-x—y
/f f(x,y,z)dxdydzzf (f {f }f(x,y,z)dz}dy)dx.
D o Jo 0

Soit par exemple

Le calcul nous donne

fff])xdxdydz—fol(f

)
)
J
Jo<|

(=)

o

o

(=)

S—

N =

N =

1

1

1

1

1

X
X
X
X

x

1
2

flx,y,2)=x

1-x-y
{f xdz}dy)dx
1-x 1-x—y
[ o)
0 0
1-x 1-x—y
(A

1-x
fo {1-x)- y}dy) dx

z

dy) dx

1-x
1- x)y——y] dx

0
(1 x)? — (1—x)2)dx

1
fx(l—x)2dx:1f (x—2x2+x3)dx
0 2 Jo

1
2 3,1 4
— +_
3% Tg*

xz-—

1
T4
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Changement de variables dans les intégrales triples

Dans ce cas, un changement de variables est une fonction bijective de classe C1 :
G: D(G) — Im(G)

(u,v,w)— (x(u,v,w), y(u,v,w),z(u,v,w))

Comme avant, nous lui associons la matrice jacobienne

x x x
—(u,v,w) —w,v,w) —(u,v,w)

ou ov ow
y y dy
Jo(w,v,w) = 6u(u,v,w) aU(u,v,w) aw(u,v,w)
0 0 0
i(u,v,w) i(u,v,w) ﬁ(u,v,w)
et le jacobien ox ox Ox
ou Ov Ow
ox,y,2) |9y Oy oy
6(u,v,w)_det(JG(u’U’w))_det du v Ow
0z 0z Oz
ou Ov Ow

Théoreme. Soient f :D — R une fonction continue de trois variables,
G: D(G) — Im(G)

(u,v,w) — (x(u,v,w), y(u,v,w),z(u,v,w))

un changement de variables et D < R? tel que G~'(D)=D. Soit f : D — R définie par
flu,v,w)= f(x(u,v,w), y(u,v,w), z(u,v,w)).

[[ fx, y,Z)dxdydz_ﬂ f(u, v,w )‘g((x ,¥,2)

Nous avons

dudvdw.

. ' o(x,y,2)
" oG, v,w)

est la valeur absolue du jacobien associé au changement de variables G.
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A. Coordonnées sphériques (r, ¢, 0)

x =rsin(f)cos(yp),
y =rsin(0)sin(p), avec r >0, 0 <o < 21 et

z =rcos(?)

La matrice jacobienne associée a ce changement de variables est

Ox Ox Ox
or d¢ 00
sin(@)cos(¢) —rsin(f)sin(g) rcos(8)cos(p)
dy 0y Oy
or % 50 | =| sin@sin(p)  rsin(@)cos(yp) rcos()sin(yp)
0z 0z Oz cos(0) 0 —rsin(8)
or dp 00
et le jacobien, M = —r?sin(9).
o(r,,0)
Le théoréme nous donne alors
ff f(x,y,2)dxdydz :ff~f(r,cp,9)rzsin(9)drd(pd9
D D

ou f(r, @,0)= f(r sin(0)cos(¢p),rsin(f)sin(g),r cos(Q)) .

B. Coordonnées cylindriques (p, ¢,2)

x = pcos(yp),
y = psin(p), avec p >0, 0< @ <2 et
z=

La matrice jacobienne associée a ce changement de variables est

op 0¢ 0z .
dy 0y Oy C(,)S((p) “psinte) 9 ’
% % 5z |= sin(p) pcos(p) O
0z 0z Oz 0 0 1
0p O 0z
et le jacobien, 0(x,y,2)
op.p) "

Le théoréme nous donne alors
||| fwv2rdzaydz= ||| Fop.2r0dpdpdz

ot f(p,p,2) = f(pcos(g), psin(y),z).
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Exemples
1. Calculer le volume de la boule D de rayon R centré a l'origine :
D= {(x,y,z)€R3 : x2+y2+z2 <R2}.
a) En utilisant les coordonnées cartésiennes :

La variable x varie entre —R et R
Pour x € [-R,R] fixé, la variable y varie entre

g,0=-VR*-2* et g,(x)=VR?-x
Pour (x,y) fixé, la variable z varie entre

hi(x,y)=- Rz—xz—y2 et hQ(x,y):\/Rz—xz—y2

Nous avons donc
R VR2—x2 \/R2—x2—y2
V(D):W ldxdydz:f f f 1dz|dy|dx
D -R\J-VR2-x2 \J-VR2-x2-?2
R VR2-x2 \/RZ—xz—y2
:f f z dy|dx
-R\J-VR2=x2 —VR2=x2-y2

R VR2—x2
:f (f 2\/R2—x2—y2dy)dx:...

-R VR2-x2

b) En utilisant les coordonnées sphériques :
Nous avons
D={(r,p,)eR?: 0<r<R,0<¢p<2nm, 4

V(D)szf ldxdydz=fff~1-rzsin(8)drd(pd9
D D
R 2w b4
= f r2dr)(f 1dq))(f sin(H)d(p)
0 0 0
r3 R 271 7
= (15 Mlel, ([ o]
3 lo 0

0
3
= % —0)(2n—0)(1+ 1)

4 3
—37l'R

d’ou
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c) En utilisant les coordonnées cylindriques :

La variable ¢ varie entre 0 et 27
La variable p varie entre 0 et R
Pour p €[0,R] fixé, la variable z varie entre

g(p)=-VR*-p® et gy(p)=VR>-p”
Nous avons donc

V(D):[[[ 1dxdydz:ﬂf~1-pdpd(pdz
D D

R VR2-p2 21 R VR2-p2 2
= ldy|dz|d =f f [ ] dz|d
fO p(f—vR2—p2 ([) (,0) ) P 0 ,0( -VR2-p? ¢ 0 P

R ,/R2_p2 R ,/R2_p2
:an pf ldz dp:2nf olz dp

0 -VRZ-p? 0 -VR2-p?

R R
=2ﬂf 20VR2—p?dp=2n —g(R2—;02)3/2

0

4 3
—37IR

2. Considirer & domoint

D=1 (x,tj,a)eﬂ?}-. 961'\-[91 e & 21)7_7/0, 3)0)‘&20}
(haitizms do Lowle o(z,mamz adree [%m"al"vxlb) .
Col eudar 1-=//[b xy 2 doxdy d2 ¢
o.) Cﬁordm'r\o:d car{f@iem'\lf . % vane extre 0 < R

Pour 2celo, ) _S—\'XQ/) Y varie endre ey

g,x1=0 ¢k 32[x)=\/22—xz z
Powr x ,\j) +I%£/, z vae Q/v\:(:[\e,

h&ﬁ@ QﬁJle(x?:2)=\/T\(jl
=1 __;j: [ /OVK—x ( j R0y xv%d.'-z)d\;}] O(‘%:";%T:

0

Chapitre 4 - p36



b) CDD’Polonwz’.( Ya)hfb{qw&’ : Y A 7

v varie widre 0 o R “\ ‘L\
Y vorie endre 0 of T Q\%;u |
B vorie edre 0 ot T

= I="//[b ’LUZ a(‘)cdfjd,’-z

>

R\
RV

= [[L (e sinto) csce) e sin(@15iale) (e ol®)) drdedf
=< I dr)( [ ost@sinle) oUQ) ( [ 5010) coste) d@)

[, e [T

4
¢ 1l o R
=T 7% 2 =%
('.) c.ourdzmu,e.( c,b(,l',md,ﬁ'e\wg yg" Z A
(2N Ny
57 VA e Em'l?rc 0 et R Q\’“i: E
‘Q\I&ri&{w‘k‘f&@éﬁ%’ S

fowr ge[o,lﬂ {JD(Q/) 2 vane oire
3=0 o g, ()= B¢
_\’_(5’ ?z2) fc.os(‘e))(ffm(‘e) z2=9 “os(@)sin(P) 2

= l—’—‘//[hxvzdvcdﬂdz

ircarcin
U ([ ettt o df Jz )dp
6
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