A. Coordonnées sphériques (r, ¢, 0)

z =rcos(f)

x = rsin(?)cos(p),

{ y=rsin(?)sin(g), avecr >0, 0<p <2 et

La matrice jacobienne associée a ce changement de variables est

et le jacobien,
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Le théoréme nous donne alors
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ot f(r,p,0) = f(rsin(@)cos(¢p), rsin(@)sin(p),rcos(®)).
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B. Coordonnées cylindriques (p, ¢,z)
) z

x = pcos(p),
' y=psin(y), avec p >0, 0< @ <27 et
z =

La matrice jacobienne associée a ce changement de variables est
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et le jacobien, 0(x,y,2)
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Le théoréme nous donne alors

ou f(p,9,2) = f(pcos(p),psin(yp),z).



Exemples
1. Calculer le volume de la boule D de rayon R centré a I'origine :
D = {(x,y,z)€R3 L x% +y% + 22 <R2}.
a) En utilisant les coordonnées cartésiennes :

La variable x varie entre —R et R

Pour x € [-R,R] fixé, la variable y varie entre
g,(0)=-VR?-x* et g,(x)=VR?-x*

Pour (x,y) fixé, la variable z varie entre
hl(x,y) = —\/Rz _xz _yz et hz(x,y) — \/RZ _x2 _y2

Nous avons donc
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b) En utilisant les coordonnées sphériques :

Nous avons
D={(r,p,)eR*: 0<r<R,0<¢<2r,
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c) En utilisant les coordonnées cylindriques :

La variable ¢ varie entre 0 et 27
La variable p varie entre 0 et R

Pour p €[0,R] fixé, la variable z varie entre

g,(p)=—VR*—p* et g,(p)=VR*-p”
Nous avons donc
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