5. Soit D le disque de rayon R centré a l'origine.

Ecrire ff f(x,y)dxdy comme une intégrale itérée.
D
Nous avons deux possibilités :

o La variable x varie entre —R et R.
Pour chaque x € [-R,R] fixé, y varie entre

g =-VRZ-x2 et g,(x)=VR2-a2.

Ainsi,
R VR2—x2
= dyld 1
ffo(x,y)dxdy f—RU— — fx,y) y) x (1)

» La variable y varie entre —R et R.
Pour chaque x € [—FR,R] fixé, x varie entre

h{(x)=-VR?-y? et  ,(x0)=VR>—y7
Ainsi,

R ,/RQ_yQ
ffD F(x,y)dady = f R( f f(x,y)dx)dy @)

,/Rz_yz




6. Soit D le domaine de 'exemple 5 et f(x,y) = VR2—y2.
Calculer ff flx,y)dxdy
D

Comme f ne dépend pas de x, il convient d’intégrer d’abord par rapport a x :

f VRQ—yzdx:vR2—y2f 1dx=VR2-y2|x = 2R?-?)
-VR2-y? -VR2-y? -VR2-y?
D’ou

R 4 4 8

=_R3+_-R>=_R°.

3 |- 3 3 3

R y3
ff f(x,y)dxdy:f 2(R2—y2)dy:2[R2y——
D R

Remarque. Si la fonction a intégrer est quelconque, l'intégration sur le domaine D

de 'exemple 5 peut s’avérer compliquée, d’ou I'intérét a considérer une autre méthode.



4.4. Changement de variables dans les intégrales doubles

Rappel. Nous avons vu qu’il est parfois utile de changer de variable pour calculer une

intégrale. Pour ce faire, nous avons utilisé la formule de changement de variables

b g7 1(b)
f f(x)dx:f flew)g'(w)du.

g l(a)
ol g est une fonction bijective de classe C?.

Si g:[c,d] — [a,b] est une fonction monotone croissante (avec g’(u) > 0), nous avons

g_l(a) =c et g_l(b) =d et la formule ci-dessus devient

b d
ff(x)dx:f f(g(u))g'(u)du.

Si g :[c,d] — [a,b] est une fonction monotone décroissante (avec g'(u) < 0), nous avons

g Na)=d et g71(b) =c et la formule de changement de variables devient

b c d
f f(x)dx :fd f(g(u))g/(u)du = _f f(g(u))g'(u)du,



Nous pouvons résumer les deux formules précédentes sous la forme :

b d
[ r@ads=[" rlew)lg'eldu,

ou la valeur absolue tient compte du signe de I'intégrale de droite dans le cas décroissant.

Si nous notons I =[a,b] et I =[c,d] et nous posons

fw) = f(gw))

alors la formule précédente s’écrit :

fIf(x)dx:fff(uﬂg'(u)‘du, (%)

Question. Quel est 'analogue de la formule (%) dans le cas des intégrales doubles?



Dans le cas des fonctions de deux variables, un changement de variables est une fonction

bijective de classe C! :
G :D(G) — Im(G)
(u,v) — (x(u,v), y(u,v))

Nous lui associons la matrice

0 0
(—x(u,v) —x(u,v)\
J(w.v) = ou ov
—(,v) —(u,v)
| Ou ov )
appelée matrice jacobienne.
, : : . 0(x,y)
Le déterminant de cette matrice, noté :
o0(u,v)
(0x Ox )

0(x,y)
o0(u,v)

ou v _Ox 0y Oxdy
O_y O_y ~Oudv Ovou
| Ou  0v |

est appelé jacobien associé au changement de variables.

= det (J;(u,v)) = det




Nous pouvons a présent donner I’analogue de

flf(x)dx:j;f(uﬂg'(u)!du,

Théoreme. Soient f:D — R une fonction continue de deux variables,
G :D(G) — Im(G)
(u,v) — (x(u,v), y(u,v))

un changement de variables et D c R2 tel que G~1(D)=D. Soit f :D — R définie par
fu,v) = £ (x(u,), y(u,v)).

ffpf(x,y)dxdy=ffﬁ f(u,v)

est la valeur absolue du jacobien associé au changement de variables G.

Nous avons
0(x,y)

3.0) dudv.

ol ‘a(x,y)
o0(u,v)

(%)



Méthode de calcul

Soit D un domaine du plan et f : D — R? une fonction de deux variables.

Pour calculer l'intégrale double I = f f(x,y)dxdy
D

1.

Trouver des variables u et v pour lesquelles le domaine d’'intégration et/ou la fonction a
intégrer deviennent plus simples.

Calculer le jacobien associé au changement de variables G : (u,v) — (x,y).

Déterminer les bornes des variables u et v :
a<u<b et gi(w)<v<gyw) ou c<v<d et h{@v)<u<hy).

o
)

Déterminer f(u,v) = f(x(u,v), y(u,v)).

N b gou) _
I:ff~ fu,v) dudv:f (f f(u,v)
D a g,(w)
d(x, y) fh 2(0) ’O(x , )
I= —
[, Faw |32 (hl() )| 3

Calculer

0(x,y)
o(u,v)

d(x, y)
o(u,v)

ou




4.5. Coordonnées polaires (r, @)

x =rcos(p), Y
: avecr >0 et (ou ).
y =rsin(p),
La matrice jacobienne associée a ce changement de variables est .
(0x Ox)
or 0¢ cos() —rsin(yp)
5_3’ O_y - sin(p)  rcos(p)
\ Or  0¢
et le jacobien, e S
xay 2 . 9 x’y
=rcos“(¢) + rsin“(yp) = =r
or, ¢) 7 ’ o(r, )

Le théoréme nous donne alors

|[ reidzdy= || For.ordrd
ott £(r,p) = f(rcos(p),rsin(p)).



Quelques domaines en coordonnées polaires

1. Disque de rayon R centré a l'origine
D ={(x,y)eR?: x* + y* <R?}
Le domaine D exprimé en coordonnées polaires est donc un rectangle :

ﬁ:{(r,¢)€R2:O<r<R, 0< @< 2n}

Y

21




2. Secteur circulaire de rayon R
D ={(x,y) eR*: x* +y” <R?, |yl <«x}

Le domaine D exprimé en coordonnées polaires est donc un rectangle :

D={0r,»)eR?*: 0<r<R, }
Yy
@
/4 —
D D
R r R «x
—n/4




. Couronne centrée a I'origine
D = {(x,y)EIR2 : R% <x?+ 92 <R%}
Le domaine D exprimé en coordonnées polaires est donc un rectangle :
D={0r,peR?*: R, <r<R,, 0<q¢<2n}

27-[ ........




4. Demi-couronne centrée a 'origine
D:{(x,y)ERZ: R% <x2+y2<R2, xéO}
Le domaine D exprimé en coordonnées polaires est donc un rectangle :
D={0r,peR*: R, <r<R,, !




5. Triangle D de sommets (0,0), (1,0) et (1,1)
Dans ce cas, I'angle ¢ varie entre 0 et 7.
Pour chaque, ¢ € [0,%] fixé, r varie entre

r=0 et r=r,

ou r, est tel que

1
cos() = —
Te
Par conséquent, le domaine D exprimé en coordonnées

polaires s’écrit

- 1
D:{(r, )E]RZ: , 0<r< }
cos(y)




Exemples

1. Calculer l'aire du disque D de rayon R centré a 'origine.

Nous avons

D={xyeR?: x*+y*<R? et D={(r,)eR*: 0<r <R,

A(D)=ffl)1dxdy:ffﬁl-rdrdcp: fOerr)(fOznmp)
-0t

0
. Calculer I = ff 3 ) dy d y ou D est le disque de rayon R centré a l'origine.
D

Comme x2 + y? = r?

d’ou

7'2

2

nous avons

_ 3(x2+y2) _ 3r2 _ R 3r2 2m
I = e dxdy= || e” rdrde= e’ rdr 1dg
D D 0 0

(3 P05

1 e3r2
6




3. Calculer l'intégrale double

1 1-x2
I:f (f (x2+y2)3/2dy) dx
-1\Jo

a I’'aide des coordonnées polaires.

La variable x varie entre —1 et 1.

Pour x €[-1,1] fixé, y varie entre
gx)=0 et gylx)=V1-x? D

Le domaine d’intégration est donc le demi-disque

D={(x,y) eR*: 2’ +y* <1, y > 0} -
Le domaine D exprimé en coordonnées polaires est le rectangle :
ﬁ:{(r, )eR2: 0<r<1, }

1:ffD(x%yZ)?’/dedy:ffﬁ;ﬁ-rdrd(p:(folr‘*dr) (j;ﬂld(p)
()02

d’ou

/5
5




4. Calculer le volume de la région limitée par le cylindre de rayon 1 et d’axe 0z, le plan Oxy

et le plan d’équation z=x+ y + 2.

Le volume cherché est V' = ff (x+y+2)dxdy, ou D ={(x,y) € R?: x2 +y? < 1}.
D

Le calcul nous donne

V=ffxdxdy+ff ydxdy+ff 2dxdy
D D D
x2

J.

Visy?
(\/; 1-y2

1
xdx) dy+f
-1

Vi-a2
(f ydy)dx+2.A(D):O+O+2n-12:Zn,
~V1-22

ou nous avons utilisé le fait que l'intégrale d’'une fonction impaire sur un domaine

symétrique est nulle. Le calcul peut aussi étre fait a ’'aide des coordonnées polaires :

1
f r2dr
\Jo )

73

D= {(r,

21
(f cos(cp)dcp) +
0

r

\| 3

=27

J

(5

sin(¢) 3

)eR?: 0<r<1,

ff (x+y+2)dxdy = ff~ (rcos((p)+rsin((p)+2)rdrd(p
D D

1 21
f r2dr) (f sin(cp)d(p) +
\Jo 0

7’2

LI

il [

§

2o ([
o)

1 1
=—-0+--0+127
3 3



5. Soit D le triangle de sommets (0,0), (1,0) et (1,1).

1
Calculer I:ff ———dxdy.
D /x2+y2
Nous avons
1 1
I:ff—dxd :ff—-rdrd :ff 1drd
D \/x2+y2 Y Dr v D 4
ou
15:{(7", )e R?: , 0<r< }
cos(¢)
Par conséquent,
1/cos(p) 1 1 . /4
I- (f ldr) - - [m‘Lﬂ(‘p)
0 cos(p) cos(¢) |]o
1+ !
NG 1+0
=1n V2 —In|—— :ln(1+\/§)

1
V2



