
5. Soit D le disque de rayon R centré à l’origine.

Ecrire

∫∫

D
f (x, y)dx dy comme une intégrale itérée.

Nous avons deux possibilités :

• La variable x varie entre −R et R .

Pour chaque x ∈ [−R,R] fixé, y varie entre

g1(x)=−
√

R2− x2 et g2(x)=
√

R2 − x2 .

Ainsi,
∫∫

D
f (x, y)dx dy =

∫R

−R

(∫p
R2−x2

−
p

R2−x2
f (x, y)dy

)
dx (1)

xR−R x

y

−
p

R2−x2

p
R2−x2

D

• La variable y varie entre −R et R .

Pour chaque x ∈ [−R,R] fixé, x varie entre

h1(x)=−
√

R2− y2 et h2(x)=
√

R2 − y2 .

Ainsi,
∫∫

D
f (x, y)dx dy =

∫R

−R

(∫p
R2−y2

−
p

R2−y2
f (x, y)dx

)
dy (2)

xR−R

y

y

−
p

R2−y2
p

R2−y2

D



6. Soit D le domaine de l’exemple 5 et f (x, y) =
√

R2 − y2 .

Calculer

∫∫

D
f (x, y)dx dy

Comme f ne dépend pas de x , il convient d’intégrer d’abord par rapport à x :
∫p

R2−y2

−
p

R2−y2

√
R2 − y2 dx =

√
R2 − y2

∫p
R2−y2

−
p

R2−y2
1 dx =

√
R2 − y2

[
x

]p
R2−y2

−
p

R2−y2
= 2(R2 − y2)

D’où ∫∫

D
f (x, y)dx dy =

∫R

−R
2(R2 − y2)dy= 2

[
R2 y−

y3

3

]
R

−R
=

4

3
R3+

4

3
R3 =

8

3
R3 .

Remarque. Si la fonction à intégrer est quelconque, l’intégration sur le domaine D

de l’exemple 5 peut s’avérer compliquée, d’où l’intérêt à considérer une autre méthode.



4.4. Changement de variables dans les intégrales doubles

Rappel. Nous avons vu qu’il est parfois utile de changer de variable pour calculer une

intégrale. Pour ce faire, nous avons utilisé la formule de changement de variables
∫b

a
f (x)dx =

∫g−1(b)

g−1(a)
f
(
g(u)

)
g ′(u)du .

où g est une fonction bijective de classe C1 .

Si g : [c, d] → [a, b] est une fonction monotone croissante (avec g ′(u) > 0), nous avons

g−1(a)= c et g−1(b)= d et la formule ci-dessus devient
∫b

a
f (x)dx =

∫d

c
f
(
g(u)

)
g ′(u)du .

Si g : [c, d] → [a, b] est une fonction monotone décroissante (avec g ′(u) 6 0), nous avons

g−1(a)= d et g−1(b)= c et la formule de changement de variables devient
∫b

a
f (x)dx =

∫c

d
f
(
g(u)

)
g ′(u)du =−

∫d

c
f
(
g(u)

)
g ′(u)du .



Nous pouvons résumer les deux formules précédentes sous la forme :
∫b

a
f (x)dx =

∫d

c
f
(
g(u)

)∣∣g ′(u)
∣∣du ,

où la valeur absolue tient compte du signe de l’intégrale de droite dans le cas décroissant.

Si nous notons I = [a, b] et Ĩ = [c, d] et nous posons

f̃ (u) = f
(
g(u)

)

alors la formule précédente s’écrit :∫

I
f (x)dx =

∫

Ĩ
f̃ (u)

∣∣g ′(u)
∣∣du , (⋆)

Question. Quel est l’analogue de la formule (⋆) dans le cas des intégrales doubles?



Dans le cas des fonctions de deux variables, un changement de variables est une fonction

bijective de classe C1 :

G : D(G) −→ Im(G)

(u,v) 7−→
(
x(u,v), y(u,v)

)

Nous lui associons la matrice

JG(u,v)=




∂x

∂u
(u,v)

∂x

∂v
(u,v)

∂y

∂u
(u,v)

∂y

∂v
(u,v)




appelée matrice jacobienne.

Le déterminant de cette matrice, noté
∂(x, y)

∂(u,v)
:

∂(x, y)

∂(u,v)
= det

(
JG(u,v)

)
= det




∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v


=

∂x

∂u

∂y

∂v
−
∂x

∂v

∂y

∂u

est appelé jacobien associé au changement de variables.



Nous pouvons à présent donner l’analogue de∫

I
f (x)dx =

∫

Ĩ
f̃ (u)

∣∣g ′(u)
∣∣du , (⋆)

Théorème. Soient f : D →RR une fonction continue de deux variables,

G : D(G) −→ Im(G)

(u,v) 7−→
(
x(u,v), y(u,v)

)

un changement de variables et D̃ ⊂RR
2 tel que G−1(D)= D̃ . Soit f̃ : D̃ →RR définie par

f̃ (u,v)= f
(
x(u,v), y(u,v)

)
.

Nous avons ∫∫

D
f (x, y)dx dy =

∫∫

D̃
f̃ (u,v)

∣∣∣∣
∂(x, y)

∂(u,v)

∣∣∣∣du dv .

où

∣∣∣∣
∂(x, y)

∂(u,v)

∣∣∣∣ est la valeur absolue du jacobien associé au changement de variables G .



Méthode de calcul

Soit D un domaine du plan et f : D →RR
2 une fonction de deux variables.

Pour calculer l’intégrale double I =
∫∫

D
f (x, y)dx dy

1. Trouver des variables u et v pour lesquelles le domaine d’intégration et/ou la fonction à

intégrer deviennent plus simples.

2. Calculer le jacobien associé au changement de variables G : (u,v) 7→ (x, y).

3. Déterminer les bornes des variables u et v :

a6 u 6 b et g1(u)6 v6 g2(u) ou c6 v6 d et h1(v)6 u6 h2(v) .

4. Déterminer f̃ (u,v)= f
(
x(u,v), y(u,v)

)
.

5. Calculer

I =
∫∫

D̃
f̃ (u,v)

∣∣∣∣
∂(x, y)

∂(u,v)

∣∣∣∣du dv =
∫b

a

(∫g
2
(u)

g
1
(u)

f̃ (u,v)

∣∣∣∣
∂(x, y)

∂(u,v)

∣∣∣∣dv

)
du

ou

I =
∫∫

D̃
f̃ (u,v)

∣∣∣∣
∂(x, y)

∂(u,v)

∣∣∣∣du dv =
∫d

c

(∫h2(v)

h
1
(v)

f̃ (u,v)

∣∣∣∣
∂(x, y)

∂(u,v)

∣∣∣∣du

)
dv .



4.5. Coordonnées polaires (r ,ϕϕϕϕ )

{
x = r cos(ϕ) ,

y= r sin(ϕ) ,
avec r > 0 et 06ϕ6 2π (ou −π6ϕ6π).

x

y

ϕ

r
La matrice jacobienne associée à ce changement de variables est



∂x

∂r

∂x

∂ϕ

∂y

∂r

∂y

∂ϕ


=

(
cos(ϕ) −rsin(ϕ)

sin(ϕ) r cos(ϕ)

)

et le jacobien,
∂(x, y)

∂(r,ϕ)
= r cos2(ϕ)+ rsin2(ϕ) =⇒

∂(x, y)

∂(r,ϕ)
= r .

Le théorème nous donne alors∫∫

D
f (x, y)dx dy =

∫∫

D̃
f̃ (r,ϕ) r dr dϕ

où f̃ (r,ϕ)= f
(
r cos(ϕ), rsin(ϕ)

)
.



Quelques domaines en coordonnées polaires

1. Disque de rayon R centré à l’origine

D =
{
(x, y) ∈RR2 : x2 + y2

6 R2
}

Le domaine D exprimé en coordonnées polaires est donc un rectangle :

D̃ =
{
(r,ϕ) ∈RR2 : 06 r 6 R , 06ϕ6 2π

}

rR

ϕ

2π

D̃ xR−R

y

D



2. Secteur circulaire de rayon R

D =
{
(x, y) ∈RR2 : x2 + y2

6 R2, |y|6 x
}

Le domaine D exprimé en coordonnées polaires est donc un rectangle :

D̃ =
{
(r,ϕ) ∈RR2 : 06 r 6 R , −π

4
6ϕ6

π
4

}

rR

ϕ

π/4

−π/4

D̃
xR

y

D



3. Couronne centrée à l’origine

D =
{
(x, y) ∈RR2 : R2

1 6 x2 + y2
6 R2

2

}

Le domaine D exprimé en coordonnées polaires est donc un rectangle :

D̃ =
{
(r,ϕ) ∈RR2 : R1 6 r 6 R2 , 06ϕ6 2π

}

rR
2

R
1

ϕ

2π

D̃ xR
2

−R
2

−R
1

R
1

y

D



4. Demi-couronne centrée à l’origine

D =
{
(x, y) ∈RR2 : R2

1 6 x2 + y2
6 R2

2 , x6 0
}

Le domaine D exprimé en coordonnées polaires est donc un rectangle :

D̃ =
{
(r,ϕ) ∈RR2 : R1 6 r 6 R2 , π

2
6ϕ6

3π
2

}

rR
2

R
1

ϕ

2π

π
2

3π
2

D̃ x

R
2

−R
2

−R
1

R
1

y

D



5. Triangle D de sommets (0,0), (1,0) et (1,1)

Dans ce cas, l’angle ϕ varie entre 0 et π
4

.

Pour chaque, ϕ ∈
[
0, π

4

]
fixé, r varie entre

r = 0 et r = rϕ

où rϕ est tel que

cos(ϕ)=
1

rϕ

Par conséquent, le domaine D exprimé en coordonnées

polaires s’écrit

D̃ =
{

(r,ϕ) ∈RR2 : 06ϕ6
π

4
, 06 r 6

1

cos(ϕ)

}
x1

y

1

ϕ

D

rϕ

︷
︸︸

︷



Exemples

1. Calculer l’aire du disque D de rayon R centré à l’origine.

Nous avons

D =
{
(x, y) ∈RR2 : x2 + y2

6 R2
}

et D̃ =
{
(r,ϕ) ∈RR2 : 06 r 6 R , 06ϕ6 2π

}

d’où

A(D) =
∫∫

D
1dx dy =

∫∫

D̃
1 · r dr dϕ=

(∫R

0
r dr

)(∫2π

0
1dϕ

)

=
([

r2

2

]
R

0

)([
ϕ

]
2π

0

)
=

(
R2

2
−0

)
(2π−0)=πR2

2. Calculer I =
∫∫

D
e3(x2+y2) dx dy où D est le disque de rayon R centré à l’origine.

Comme x2 + y2 = r2 nous avons

I =
∫∫

D
e3(x2+y2) dx dy =

∫∫

D̃
e3r2

r dr dϕ=
(∫R

0
e3r2

r dr

)(∫2π

0
1dϕ

)

=
([

1

6
e3r2

]
R

0

)([
ϕ

]
2π

0

)
=

1

6

(
e3R2

− e0
)
(2π−0)=

π

3

(
e3R2

−1
)



3. Calculer l’intégrale double

I =
∫1

−1

(∫p
1−x2

0
(x2 + y2)3/2dy

)
dx

à l’aide des coordonnées polaires.

La variable x varie entre −1 et 1.

Pour x ∈ [−1,1] fixé, y varie entre

g1(x)= 0 et g2(x)=
√

1− x2

Le domaine d’intégration est donc le demi-disque

D =
{
(x, y) ∈RR2 : x2 + y2

6 1 , y> 0
} x1−1

y

D

Le domaine D exprimé en coordonnées polaires est le rectangle :

D̃ =
{
(r,ϕ) ∈RR2 : 06 r 6 1 , 06ϕ6π

}

d’où

I =
∫∫

D
(x2 + y2)3/2 dx dy =

∫∫

D̃
r3 · r dr dϕ=

(∫1

0
r4dr

)(∫π

0
1dϕ

)

=
([

r5

5

]
1

0

)([
ϕ

]
π

0

)
=

(
1

5
−0

)
(π−0)=

π

5



4. Calculer le volume de la région limitée par le cylindre de rayon 1 et d’axe 0z , le plan 0xy

et le plan d’équation z = x+ y+2.

Le volume cherché est V =
∫∫

D
(x+ y+2)dx dy , où D =

{
(x, y) ∈RR2 : x2 + y2 6 1

}
.

Le calcul nous donne

V =
∫∫

D
x dx dy+

∫∫

D
ydx dy+

∫∫

D
2dx dy

=
∫1

−1

(∫p
1−y2

−
p

1−y2
x dx

)
dy+

∫1

−1

(∫p
1−x2

−
p

1−x2
ydy

)
dx+2A(D) = 0+0+2π·12 = 2π ,

où nous avons utilisé le fait que l’intégrale d’une fonction impaire sur un domaine

symétrique est nulle. Le calcul peut aussi être fait à l’aide des coordonnées polaires :

D̃ =
{
(r,ϕ) ∈RR2 : 06 r 6 1 , 06ϕ6 2π

}

d’où

V =
∫∫

D
(x+ y+2)dx dy =

∫∫

D̃

(
r cos(ϕ)+ rsin(ϕ)+2

)
r dr dϕ

=
(∫1

0
r2dr

)(∫2π

0
cos(ϕ)dϕ

)
+

(∫1

0
r2dr

)(∫2π

0
sin(ϕ)dϕ

)
+

(∫1

0
2r dr

)(∫2π

0
dϕ

)

=
([

r3

3

]
1

0

)([
sin(ϕ)

]
2π

0

)
+

([
r3

3

]
1

0

)([
−cos(ϕ)

]
2π

0

)
+

([
r2

]
1

0

)([
ϕ

]
2π

0

)
=

1

3
·0+

1

3
·0+1·2π

= 2π



5. Soit D le triangle de sommets (0,0), (1,0) et (1,1).

Calculer I =
∫∫

D

1
√

x2 + y2
dx dy.

Nous avons

I =
∫∫

D

1
√

x2 + y2
dx dy =

∫∫

D̃

1

r
· r dr dϕ=

∫∫

D̃
1dr dϕ

où

D̃ =
{

(r,ϕ) ∈RR2 : 06ϕ6
π

4
, 06 r 6

1

cos(ϕ)

}

Par conséquent,

I =
∫π/4

0

(∫1/cos(ϕ)

0
1dr

)
dϕ=

∫π/4

0

1

cos(ϕ)
dϕ=

[
ln

∣∣∣∣
1+sin(ϕ)

cos(ϕ)

∣∣∣∣
]
π/4

0

= ln

∣∣∣∣∣∣∣

1+ 1
p

2

1
p

2

∣∣∣∣∣∣∣
− ln

∣∣∣∣
1+0

1

∣∣∣∣= ln
(
1+

p
2

)


