
4. Intégrales multiples

4.1. Intégrales doubles

Rappel. Nous avons vu que si f : [a, b]→RR est

une fonction bornée, l’intégrale de Riemann
∫b

a
f (x)dx

est la limite des sommes de Riemann

sn =

n∑

k=1

f (ξk)(xk − xk−1) ,

où {x0, x1, . . . , xn} est une partition arbitraire de

l’intervalle [a, b] avec

a = x0 < x1 < . . .< xn = b

et ξ
k
∈ [x

k−1
, x

k
] pour tout k = 1,2, . . . , n .
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Propriétés

1. Si f , g : [a, b]→RR sont deux fonctions intégrables sur [a, b], alors f + g est intégrable et
∫b

a

(

f (x)+ g(x)
)

dx =

∫b

a
f (x)dx +

∫b

a
g(x)dx .

2. Si f : [a, b]→RR est une fonction intégrable sur [a, b] et c ∈RR , alors c f est intégrable et
∫b

a
c f (x)dx = c

∫b

a
f (x)dx .

3. Soit f : [a, c]→RR une fonction intégrable sur [a, c] et soit b ∈ ]a, c[. Alors
∫c

a
f (x)dx =

∫b

a
f (x)dx+

∫c

b
f (x)dx .

Cas f (x)> 0 pour tout x ∈ [a, c] :

x
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Théorème de la moyenne

Théorème. Soit f : [a, b]→RR une fonction continue.

Alors il existe (au moins) un nombre c ∈ [a, b] tel que

f (c)=
1

b−a

∫b

a
f (x)dx ⇐⇒

∫b

a
f (x)dx = f (c)(b−a)

Interprétation géométrique

Si f (x) > 0 pour tout x ∈ [a, b], le théorème de la moyenne nous dit qu’il existe (au moins)

un nombre c ∈ [a, b] tel que le rectangle de base (b− a) et hauteur f (c) possède la même

aire que le domaine délimité par le graphe de la fonction continue f , l’axe 0x et les droites

verticales x = a et x = b .

y= f (x)
y= c
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But : Définir l’intégrale d’une fonction de deux variables sur un domaine D du plan RR
2 .

Nous allons procéder ici de manière analogue :

Soit f une fonction réelle de deux variables.

Soit D ⊂RR
2 un domaine borné contenu dans D( f ).

Lorsque la fonction f est continue et positive, nous pouvons

nous représenter l’intégrale de f sur le domaine D comme

le volume du corps délimité par le graphe de f , le plan 0xy

et les droites verticales passant par le bord de D .
y

z

x

D
(x,y)

f (x,y)

Partageons le domaine D arbitrairement en n morceaux

D1,D2, . . . ,Dn (par exemple des rectangles) d’aires A(D1),

A(D2), . . . ,A(Dn) et choisissons un point arbitraire (ξ
k
,η

k
)

dans chaque morceau D
k

.

Nous pouvons approximer le volume du corps délimité par

le graphe de f , le plan 0xy et les droites verticales passant

par le bord de D
k

par le volume du parallélépipède de base

D
k
⊂RR

2 et de hauteur f (ξ
k
,η

k
) :

f (ξk,ηk)A(Dk) .
D

k (ξ
k
,η

k
)

f (ξ
k
,η

k
)

y

z

x

D



Définition. La fonction de deux variables f est intégrable (au sens de Riemann) sur D

si pour toutes les partitions {D1, . . . ,Dn} du domaine D telles que max
(

A(D
k
)
)

−→ 0 et

n’importe quel choix (ξ
k
,η

k
) ∈ D

k
, la somme de Riemann

n∑

k=1

f (ξk,ηk)A(Dk)

tend vers une même limite. Cette limite est appelée intégrale de Riemann de f sur D

et notée
∫∫

D
f (x, y)dx dy .
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Théorème. (sans démonstration)

Si f est continue sur D alors f est intégrable sur D .



Propriétés

1. Si f , g : D →RR sont deux fonctions intégrables sur D , alors f + g est intégrable et
∫∫

D

(

f (x, y)+ g(x, y)
)

dxdy =

∫∫

D
f (x, y)dx dy +

∫∫

D
g(x, y)dx dy .

2. Si f : D →RR est une fonction intégrable sur D et c ∈RR , alors c f est intégrable et
∫∫

D
c f (x, y)dxdy = c

∫∫

D
f (x, y)dx dy .

3. Si f : D →RR est une fonction intégrable sur D = D1 ⊔ D2 (réunion disjointe), alors
∫∫

D
f (x, y)dxdy =

∫∫

D
1

f (x, y)dx dy +

∫∫

D
2

f (x, y)dx dy .

4. L’aire du domaine D peut être calculée à l’aide de l’intégrale de la fonction constante

f (x, y) = 1 pour tout (x, y) ∈ D :

A(D)=

∫∫

D
1dx dy .

5. S’il existe une constante M telle que
∣
∣ f (x, y)

∣
∣6 M pour tout (x, y) ∈ D alors

∣
∣
∣
∣

∫∫

D
f (x, y)dx dy

∣
∣
∣
∣ 6 MA(D) .



Théorème de la moyenne. (sans démonstration)

Soit D ⊂ RR
2 un domaine connexe. Soit f : D → RR une fonction continue. Alors il existe un

point (ξ,η) ∈ D tel que
∫∫

D
f (x, y)dxdy = f (ξ,η)A(D) .
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Calcul d’intégrales doubles

Nous avons défini l’intégrale double

∫∫

D
f (x, y)dx dy .

Question. Comment la calculer ?

Problème. Contrairement au cas des intégrales définies du type

∫b

a
f (x)dx , où le domaine

d’intégration est un intervalle fermé [a, b], le domaine D ⊂RR
2 peut être très général :

connexe (par arcs)

convexe

pas connexe (par arcs)

pas convexe

connexe (par arcs)

pas convexe

• Un domaine D ⊂RR
2 est connexe (par arcs) si pour tout couple de points ~p1,~p2 ∈ D il existe

une courbe paramétrée ~ϕ : [0,1]→RR
2 qui relie ~p1 à ~p2 contenue dans D . Autrement dit,

telle que ~ϕ(0)= ~p
1
, ~ϕ(1)= ~p

2
et ~ϕ(t) ∈ D pour tout t ∈ [0,1].

• Un domaine D ⊂ RR
2 est convexe si pour tout couple de points ~p1,~p2 ∈ D le segment qui

relie ~p1 à ~p2 est contenu dans D .



4.2. Intégrales doubles sur des domaines rectangulaires

Commençons par considérer le cas simple d’un rectangle fermé

D =

{

(x, y) ∈RR2 : a6 x6 b , c6 y6 d
}

= [a, b]× [c, d] .

xa b

y

c

d

D



Soit f : D →RR une fonction continue définie sur le rectangle D .

Soit y ∈ [c, d] fixé. La fonction x 7→ f (x, y) est continue par rapport à la variable x .

Elle est donc intégrable par rapport à x sur l’intervalle [a, b].

Soit g(y)=

∫b

a
f (x, y)dx (aire de la section d’ordonnée y)

Théorème. (sans démonstration)

La fonction y 7→ g(y)=

∫b

a
f (x, y)dx est continue par rapport à la variable y .

Conséquence. La fonction g est intégrable par rapport à y sur l’intervalle [c, d].

Autrement dit, l’intégrale itérée
∫d

c
g(y)dy=

∫d

c

(∫b

a
f (x, y)dx

)

dy

existe si f est continue sur D .



Soit maintenant x ∈ [a, b] fixé. La fonction y 7→ f (x, y) est continue par rapport à la

variable y. Elle est donc intégrable par rapport à y sur l’intervalle [c, d].

Soit h(x)=

∫d

c
f (x, y)dy (aire de la section d’abscisse x)

Théorème. (sans démonstration)

La fonction x 7→ h(x)=

∫d

c
f (x, y)dy est continue par rapport à la variable x .

Conséquence. La fonction h est intégrable par rapport à x sur l’intervalle [a, b].

Autrement dit, l’intégrale itérée
∫b

a
h(x)dx =

∫b

a

(∫d

c
f (x, y)dy

)

dx

existe si f est continue sur D .



Théorème de Fubini. (sans démonstration)

Si f est une fonction continue sur le rectangle D = [a, b]× [c, d], alors nous avons

∫∫

D
f (x, y)dx dy =

∫b

a

(∫d

c
f (x, y)dy

)

dx

=

∫d

c

(∫b

a
f (x, y)dx

)

dy .

Exemples

1. Calculer l’intégrale double
∫∫

D
(16− x2

−3y2)dx dy

où D est le rectangle

D =

{

(x, y) ∈RR2 : 06 x6 3 , 06 y6 1
}

= [0,3]× [0,1] .

x1 2 3

y

1

D



a) en intégrant d’abord par rapport à y et ensuite par rapport à x :
∫1

0
(16− x2

−3y2)dy =

[

(16− x2)y− y3

]
1

0
= (16− x2)1−1−0+0= 15− x2

d’où
∫∫

D
(16− x2

−3y2)dx dy =

∫3

0

(∫1

0
(16− x2

−3y2)dy

)

dx =

∫3

0
(15− x2)dx

=

[

15x−
x3

3

]
3

0
= 45−9−0+0 = 36

b) en intégrant d’abord par rapport à x et ensuite par rapport à y,
∫∫

D
(16− x2

−3y2)dx dy =

∫1

0

(∫3

0
(16− x2

−3y2)dx

)

dy

=

∫1

0

([

(16−3y2)x−
x3

3

]
x=3

x=0

)

dy

=

∫1

0

(

3(16−3y2)−9−0+0
)

dy =

∫1

0

(

39−9y2
)

dy

=

[

39y−3y3

]
1

0
= 39−3−0+0 = 36



2. Calculer l’intégrale double
∫∫

D
f (x, y)dx dy

où f (x, y) = x2 y3
−2 et D est le rectangle D = [0,3]× [0,2],

a) en intégrant d’abord par rapport à x et ensuite par rapport à y :
∫∫

D
f (x, y)dx dy =

∫2

0

(∫3

0
(x2 y3

−2)dx

)

dy =

∫2

0

([
1

3
x3 y3

−2x

]
x=3

x=0

)

dy

=

∫2

0
(9y3

−6)dy =

[
9

4
y4

−6y

]
2

0
= 36−12= 24 .

b) en intégrant d’abord par rapport à y et ensuite par rapport à x :
∫∫

D
f (x, y)dx dy =

∫3

0

(∫2

0
(x2 y3

−2)dy

)

dx =

∫3

0

([
1

4
x2 y4

−2y

]
y=2

y=0

)

dx

=

∫3

0
(4x2

−4)dx =

[
4

3
x3

−4x

]
3

0
= 36−12= 24 .



3. Calculer l’intégrale double
∫∫

D
xcos(xy)dx dy

où D est le rectangle D = [0,π]× [0,3]=
{

(x, y) ∈RR2 : 06 x6π , 06 y6 3
}

.

Nous avons
∫∫

D
xcos(xy)dx dy =

∫π

0

(∫3

0
xcos(xy)dy

)

dx =

∫π

0

([

sin(xy)

]
y=3

y=0

)

dx

=

∫π

0
sin(3x)dx =

[
−cos(3x)

3

]
π

0
=

1

3
−

−1

3
=

2

3
.




