4, Intégrales multiples

4.1. Intégrales doubles

Rappel. Nous avons vu que si [ :[a,b] — R est

une fonction bornée, I'intégrale de Riemann

b D]
f fx)dx f(&y)
a
est la limite des sommes de Riemann
n
Sn= ) FE )y —x,_y), Fl&s)
k=1

ou {xy,x;,...,x,} est une partition arbitraire de

I'intervalle [a,b] avec
a=xy<x;<...<x,=b

et ¢, €lx, ;,x,] pour tout k=1,2,...,n.



Propriétés

1. Si f,g:la,b] — R sont deux fonctions intégrables sur [a,b], alors f + g est intégrable et
b

b b
f(f(x)+g(x))dx:f f(x)dx+f gx)dx.

2. Si f:la,b] — R est une fonction intégrable sur [a,b] et c € R, alors c¢f est intégrable et

b b
f cf(x)dx = c[ f(x)dx.
3. Soit f :[a,c] — R une fonction intégrable sur [a,c] et soit b € ]a,c[. Alors
c b c
f f(x)dx :f f(x)dx+f f(x)dx.
a a b

Cas f(x) > 0 pour tout x € [a,c] :

y




Théoréeme de la moyenne

Théoreme. Soit f :[a,b] — R une fonction continue.

Alors il existe (au moins) un nombre c € [a, b] tel que

1 b b
f@)=r— f fr)dx < f f(x)dx = f(c)(b—a)

Interprétation géométrique

Si f(x) > 0 pour tout x € [a,b], le théoréme de la moyenne nous dit qu’il existe (au moins)
un nombre c € [a,b] tel que le rectangle de base (b —a) et hauteur f(c) possede la méme
aire que le domaine délimité par le graphe de la fonction continue f, I'axe Ox et les droites

verticales x=a et x=5b.
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But : Définir I'intégrale d’une fonction de deux variables sur un domaine D du plan RZ.

Nous allons procéder ici de maniére analogue :

Soit f une fonction réelle de deux variables.

Soit D c R? un domaine borné contenu dans D(f).
Lorsque la fonction f est continue et positive, nous pouvons
nous représenter 'intégrale de f sur le domaine D comme
le volume du corps délimité par le graphe de f, le plan Oxy

et les droites verticales passant par le bord de D.

Partageons le domaine D arbitrairement en n morceaux
D,,D,,...,D, (par exemple des rectangles) d’aires A(D,),
A(D,),..., AD,) et choisissons un point arbitraire (¢ po1p)
dans chaque morceau D, .

Nous pouvons approximer le volume du corps délimité par
le graphe de f, le plan Oxy et les droites verticales passant
par le bord de D, par le volume du parallélépipede de base
D, c R? et de hauteur 1(S,,m,) :

f(&,,n)AWD,).
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Définition. La fonction de deux variables f est intégrable (au sens de Riemann) sur D
si pour toutes les partitions {D,,...,D,} du domaine D telles que max(A(D,)) — 0 et

n’importe quel choix (¢,,n,) €D, , la somme de Riemann

> (&, AD,)
k=1

tend vers une méme limite. Cette limite est appelée initécgrale de Riemann de f sur D

et notée
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Théoreme. (sans démonstration)

Si f est continue sur D alors f est intégrable sur D.



Propriétés

1. Si f,g:D — R sont deux fonctions intégrables sur D, alors f + g est intégrable et

ffD(f(x,y)+g(x,y))dxdy:ffo(x,y)dxdy +fng(x,y)dxdy.

2. Si f:D — R est une fonction intégrable sur D et c € R, alors cf est intégrable et

ff cf(x,y)dxdy:cff flx,y)dxdy.
D D

3. Si f:D — R est une fonction intégrable sur D = D, U D, (réunion disjointe), alors

fff(x,y)dxdy:ff flx,y)dxdy +ff fx,y)dxdy.
D D1 D2

4. Laire du domaine D peut étre calculée a I'aide de l'intégrale de la fonction constante

f(x,y)=1 pour tout (x,y)eD :
A(D):ff 1dxdy.
D

5. S'il existe une constante M telle que |f(x,y)| <M pour tout (x,y) € D alors

ffD f(x,y)dxdy‘ <M AWD,).




Théoreme de la moyenne. (sans démonstration)

Soit D < R? un domaine connexe. Soit f : D — R une fonction continue. Alors il existe un

point (¢,n) € D tel que

ffD Flx,y)dxdy = FEmAD).
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Calcul d’intégrales doubles

Nous avons défini I'intégrale double ff f(x,y)dxdy.
D
Question. Comment la calculer?

b
Probleme. Contrairement au cas des intégrales définies du type f f(x)dx, ou le domaine
a

d’intégration est un intervalle fermé [a,b], le domaine D c R? peut étre tres général :

connexe (par arcs) connexe (par arcs)
convexe pas convexe

» Un domaine D c R? est connexe (par arcs) si pour tout couple de points p 1»Pg €D il existe
une courbe paramétrée @ :[0,1] — R? qui relie p , a p, contenue dans D. Autrement dit,
telle que ¢(0)=p,, ¢(1) = p, et ¢(¢t) € D pour tout ¢ €[0,1].

» Un domaine D c R? est convexe si pour tout couple de points p 1»Py €D le segment qui
relie p; a p, est contenu dans D.



4.2. Intégrales doubles sur des domaines rectangulaires

Commencons par considérer le cas simple d'un rectangle fermé

D={xveR?: a<x<b, c<y<d}=la,blxlc,dl.

Y




Soit f : D — R une fonction continue définie sur le rectangle D.

Soit y € [c,d] fixé. La fonction x — f(x,y) est continue par rapport a la variable x.

Elle est donc intégrable par rapport a x sur l'intervalle [a,b].

b
Soit g(y) = f f(x,v)dx (aire de la section d’ordonnée v)
a

Théoreme. (sans démonstration)

b
La fonction v — g(y) = f f(x,v)dx est continue par rapport a la variable y.
a

Conséquence. La fonction g est intégrable par rapport a y sur lintervalle [c,d].

Autrement dit, 'intégrale itérée

d d b
f g(y)dy = f ( f f(x,y)dx) dy

existe si f est continue sur D.



Soit maintenant x € [a,b] fixé. La fonction y — f(x,y) est continue par rapport a la

variable y. Elle est donc intégrable par rapport a y sur l'intervalle [c,d].

d
Soit A(x) = f f(x,y)dy (aire de la section d’abscisse x)

Théoreme. (sans démonstration)

d
La fonction x — h(x) = f f(x,y)dy est continue par rapport a la variable x.
C

Conséquence. La fonction h est intégrable par rapport a x sur l'intervalle [a,b].

Autrement dit, I'intégrale itérée

b b d
fh(x)dxzf (f f(x,y)dy)dx

existe si f est continue sur D.



Théoreme de Fubini. (sans démonstration)

Si f est une fonction continue sur le rectangle D =[a,b] x [c,d], alors nous avons

ffo(x,y)dxdy = fab \fcdf(x,y)dy)dx
d b
_ f Ja f(x,y)dx) dy.
Exemples
1. Calculer I'intégrale double y
ff (16 —x% —3y*)dxdy
ou D estle rectangle !
D:{(x,y)€R2:0<x<3,O<y<1}2[0,3]><[0,1]. D
1 2




a) en intégrant d’abord par rapport a y et ensuite par rapport a x :

1

1
f(16—x2—3y2)dy: (16—x2)y—y3] =(16-x%)1-1-0+0=15-x2
0 0

3 1 3
ﬂ(lG—x2—3y2)dxdy:f (f (16—x2—3y2)dy)dx:f (15— x2)dx
D 0 0 0

313

15x— | =45-9-0+0=236
3 o

d’ou

b) en intégrant d’abord par rapport a x et ensuite par rapport a y,

1/ r3
ff (16 —x% —3y*)dxdy :f (f (16—x2—8y2)dx)dy
D 0 0

1 x3 x=3
=f ([(16—3y2)x—— )dy
0 3
1

1
= | (316-3y)-9-0+0)dy = | (39-9,%)dy
0 0

x=0

1
= [39y—3y3] =39-3-0+0=36
0



2. Calculer I'intégrale double

fD flx,y)dxdy
ou f(x,y)=x2y3 -2 et D est le rectangle D =[0,3]x[0,2],

a) en intégrant d’abord par rapport a x et ensuite par rapport a y :

2 3 x=3
fff(x,y)dxdy:f (f (x2y3—2)dx)dy:f ( 138 _ax )dy
D 0 0 0 x=0
2 9 2
:f (9 -6)dy = [Zy4—6y =36-12=24.
0 0
b) en intégrant d’abord par rapport a y et ensuite par rapport a x :
3 2 1 y=2
f f(x,y)dxdyzf U (x2y3—2)dy)dx:[( 2yt =2y )dx
D o \Jo 0 y=0
3 4 3
:f(4x2—4)dx: ~x%—4x| =36-12=24.
0 3" 0




3. Calculer l'intégrale double

ff xcos(xy)dxdy
D
ou D est le rectangle D =[0,7] x[0,3] = {(x,y)E]R2 0, 0<y< 3}.

Nous avons

T 3 /4 y=3
ff xcos(xy)dxdy :f (f xcos(xy)dy)dx:[ ( sin(xy) )dx
D 0 \Jo 0 y=0
T —cos(3x) " 1 -1 2
—fosm(3x)dx— TO_S 3 -3






