3. Fonctions réelles de plusieurs variables

3.1. Définitions et exemples

Rappel. Une fonction réelle d’une variable réelle est une application f d’un sous-ensemble

D(f)<R dans R : a chaque x € D(f) correspond de maniére unique son image f(x) € R.

On note f:D(f)—R
Illustration : f
/\
x R f(x) R

Le sous-ensemble D(f) c R est appelé domaine de définition de f. Sil’'on ne donne pas D(f)
explicitement, on considére alors le plus grand domaine de définition possible.
On appelle image de la fonction f, 'ensemble
Im(f) = {y eR: y=f(x) pour un certain x ED(f)} cR.
Le graphe de f est 'ensemble de tous les points (x,y) € R? tels que
xeD(f) et y=f(x).

Exemples
1. f(x)=2,avec D(f)=R.
Le graphe de f est la droite y =2 dans R?.
2. glx)=V1-x?, avec D(g)={xeR: x® <1}.
Si y =g(x), alors x2+y%2 =1 et y > 0. Le graphe de g est alors un demi-cercle de rayon 1
centré a 'origine.
3. h(x)= Va? = x|, avec D(h) =R.
Le graphe de A est la réunion de deux demi-droites.

x -1 1 x x

Graphesde [, get h
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Définition. Une fonction réelle de deux variables réelles est une application f d’un sous-
ensemble D(f) c R? dans R : & chaque point (x, y) € D(f) correspond de maniére unique son
image f(x,y) e R.
On note f:D(f)—R

(x,y)— f(x,)
y

) JR—
=4

INlustration :

\ @, x F,9) R

Le sous-ensemble D(f) c R? est appelé domaine de définition de f.Sil’on ne donne pas D(f)

explicitement, on considére alors le plus grand domaine de définition possible.

On appelle image de la fonction f, ’ensemble
Im(f)={z€R: z = f(x,y) pour un certain (x,y) € D(f)} cR.
Le graphe de f est 'ensemble de tous les points (x,y,z) € R? tels que
(x,y)eD(f) et z=f(x,y).

Remarque. On peut voir f(x,y) comme l'altitude au point de coordonnées (x,y) € D(f).

Exemples
1. flx,y)=xy
Nous avons D(f) =R? et Im(f) =R.
2. flx,y)=x2+y?
Nous avons D(f) = R? et Im(f) =[0,00][.

3. flx,y)= \/352+y2

Nous avons D(f) = R? et Im(f) =[0,00[. y
4. glx,y)=vx—y.
Nous avons Im(g) =[0,00[ et %
(x,y)eD(g) < x-y=0 D(g)

Par conséquent, D(g) = {(x,y) e R?: x > y}.

5. hx,y)=Va®—y2.
Nous avons Im(Ah) =[0,00[ et
(x,y)eED(h) < x*—y2>0 D(h)
— (x—yx+y)=0
Par conséquent, D(h) = {(x,y) cR?: —lx|<y< le}.
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Définition. Une fonction réelle de trois variables réelles est une application f d’un sous-
ensemble D(f) cR3 dans R : a chaque point (x,y,2) € D(f) correspond de maniére unique
son image f(x,y,z) € R.

On note f: D(f) —R
(x7y7z)"—)f(x>y72)

INlustration :

W y flx,y,2) R

Le sous-ensemble D(f) c R? est appelé domaine de définition de f.Sil’on ne donne pas D(f)
explicitement, on considére alors le plus grand domaine de définition possible.
On appelle image de la fonction f, ’ensemble
Im(f)={ueR: u = f(x,y,2) pour un certain (x,y,2z) € D(f)} cR.
Le graphe de f est 'ensemble de tous les points (x,y,z,u) € R* tels que
(x,y,2)eD(f) et u=f(x,y,2).

Remarque. On peut voir f(x,y,z) comme la densité au point de coordonnées (x,y,z)eD(f).

Exemples
1. f(x,y,2)=3x—-2y+5z-1
Nous avons D(f) =R? et Im(f) =R.
2. glx,y,2)=Vx+y—z
Nous avons D(g) = {(x,y,2) e R®: x+y >z} et Im(g)=[0,00[.
Le domaine de g est ensemble des points de R? situés au-dessous du plan z =x +y.
1
Nous avons D(h) =R3\ {(0,0,0)} et Im(%) =10,00[.
Le domaine de 4 est formé de tous les points de R? différents de l'origine.

3. h(x,y,2)=
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De maniére générale nous avons :

Définition. Une fonction réelle de n variables réelles est une application f d’un sous-
ensemble D(f) c R® dans R : a chaque point (x1,...,%,) € D(f) correspond de maniere

unique son image f(xy,...,x,) € R.

On note f: D) —R ou [:D(f)—R
(1,0, %) — f(xq,...,%,) x —f®

Le sous-ensemble D(f) c R" est appelé domaine de définition de f.Sil’on ne donne pas D(f)
explicitement, on considére alors le plus grand domaine de définition.
On appelle image de la fonction [, 'ensemble

Im(f)={x,,;€R: x,,; = f(xq,...,x,) pour un certain (x,,...,x,) € D(f)} cR.

Le graphe de f est 'ensemble de tous les points (x,...,%,,%,,1) € R™*1 tels que
1. (xq,...,x,) €D(f),

20 %, =g, 05x,).

Remarque. On peut aussi étudier des fonctions
. R™ — R™
(x1,...,%,) — (fl(xl,...,xn),...,fm(xl,...,xn))
mais cela revient a étudier m fonctions réelles de n variables réelles :

fi

: R” —R avec j=1,...,m.
(X1,...,%,) — fj(xl,...,xn)
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3.2. Le graphe d’une fonction de deux variables

Définition. Soit f: D(f) — R une fonction de deux variables.
Le graphe de la fonction [ est 'ensemble
{(x,9,2) eR3: (x,y) eD(f)cR? et z=f(x,y)}cR?

Exemples
1. f(x,y)=2, avec D(f) =R2.

Le graphe de f est le plan z =2 dans R3.
2. glx,y)=V 1—x2—y2, avec D(g) = {(x,y)E]Rz: x2+y2 < 1}.

Si z=g(x,y), alors x2+y2+22=1 et z > 0. Le graphe de g est alors une demi-sphere.
3. h(x,y)= \/m, avec D(h) =R?. Le graphe de & est un cone.

z

Graphesde f, g et h
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Quelques graphes de fonctions de deux variables

© Cengage
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Courbes de niveau

En général, il est difficile d’esquisser le graphe d’une fonction de deux variables. Pour nous

aider a le faire, nous allons considérer les courbes de niveau ou ensembles de niveau :

Définition. Soit f: D(f) — R une fonction de deux variables.
Si ¢ € Im(f), la courbe de niveau ¢ de f est le sous-ensemble
L(c) = {(x,y) e R?: f(x,y) = ¢} cRZ.
Si ¢ ¢ Im(f), on pose L(c)=@.
Géométriquement, la courbe de niveau c est la trace obtenue en coupant le graphe de f par

le plan horizontal z = ¢, dessinée sur le plan Oxy.

Pour construire le graphe a partir des courbes de niveau, il faut placer chaque courbe de

niveau ¢ ala hauteur z=c.

y
j z=c, flx,y)=cy
: B N ! ﬁ%
* f(x’y) =c; © Pearson
PR
z=fx,y)
AZ AY
400
200
0
> X
0

© Cengage
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Exemples
1. fl,y)=Vax?+y2.
Nous avons Im(f) =[0,00[. Comme
flx,y)=c — \/szyz=c = x?+y%=c?
la courbe de niveau ¢ >0 de la fonction f est le cercle de rayon ¢ centré a l'origine et la
courbe de niveau 0 est le point (0,0).

z
z
— L(@3) 3
— L2
1 x
1
\ x

— L©O

y

—

f(x,0)= Va2 = |x] Q i

Courbes de niveau, coupe verticale en y =0 et graphe de la fonction f
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2. glx,y)=x2+y2.
Nous avons Im(g) =[0,00[. Comme
glx,y)=c — Z+y?=c = 2 +y%=(/e)?
la courbe de niveau ¢ > 0 de la fonction g est le cercle de rayon /c centré a l'origine et

la courbe de niveau 0 est le point (0,0).

’ z

— L(9)
—_— L(4)

— L(0)

g(x,0)= x2 x y

Courbes de niveau, coupe verticale en y =0 et graphe de la fonction g

1

\/x2+y2'

Nous avons Im(2) =10,00[. Comme

3. hx,y)=

1 1
h(x,y):C — ——=¢C A ——tg x2+y2:_2

1/‘7‘:2_'_y2 C

. . 1 a1y e
la courbe de niveau ¢ >0 de la fonction A est le cercle de rayon B centré a l'origine.

Y Z

— L(3) 3

— L) e

o SS==—p

x y

—

h(e,0)= —— = 1

V2l

Courbes de niveau, coupe verticale en y =0 et graphe de la fonction A
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4. Déterminer les courbes de niveau de la fonction
2 .2
_x =)
f(xay) - x2+y2 .
Le domaine de la fonction f est D(f)=R2\{(0,0)}.

Les points de la courbe de niveau c¢ satisfont I’équation
fa,y=c <= P-y=c®+y?) =  (1A-c)a’=1+c)y?
Considérons quelques cas particuliers :
« Sic=1alors y¥2=0 et L(1) est la droite y =0.
e Si c=-1 alors x> =0 et L(-1) est la droite x = 0.

« Si ¢=0 alors y2 =x2 et L(0) est formée des deux droites y = +x.

Revenons au cas général :
a- c)x2 =1+ c)y2
Comme x2 >0 et y2>0,si 1+c et 1—c ont des signes différents, alors la seule solution
de I’équation (1-c)x? = (1+¢)y? est (x,y) = (0,0), ce qui n’est pas possible car (0,0) ¢ D(f).
Par conséquent dans ce cas, 'ensemble L(c) est vide.
Ainsi, pour avoir des solutions, il faut avoir
(1-0)1+c)20 < 1-¢*20 < 12c¢® < -1<c<1

Si—1<e<1,alorsona

et L(c) est formée de deux droites.

Ainsi par exemple, L(— %) est formée des deux droites y = +v/3x.
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L(-1)

Quelques courbes de niveau de f
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Quelques esquisses du graphe de f

Surfaces de niveau

Dans le cas général, on peut définir :

Définition. Soit f une fonction de n variables. Les surfaces de niveauw de f sont les sous-

ensembles de D(f) < R” pour lesquels f est constante.
Si ¢ € Im(f), la surface de niveau ¢ de f est le sous-ensemble

L(c) = {(xy,...,x,) ER™ : flxq,...,x,)=c} <R,

Si ¢ ¢ Im(f), on pose L(c)=@.

2 2

Soit f(x,y,2)=V1-x2—y2—22.
Ici Im(f) =[0,1], la surface de niveau 0 < ¢ < 1 étant la sphere de centre (0,0,0) et de

rayon vV1-—c? :

fx,y,2)=c < 1-22-y2-22=¢ < x2+y2+22=1-¢2
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3.3. Limite et continuité

Rappel.

Soit f: D(f) — R une fonction d’'une variable et soit x, € R.

On dit que la /limite de [ en x, existe et est égale a £, notée
lim f(x)=2¢

x—»xo
si f(x) est aussi proche de ¢ que I'on veut des que x est suffisamment proche de x.

Plus précisément, si pour tout £ >0 (aussi petit que voulu), il existe un 6 > 0 tel que
si. 0<|x—xyl<d alors |f(x)—€| <e

Rappel.
Soit f:D(f) — R une fonction d’une variable et soit Xy € D(f).
On dit que la fonction f est continue au point x si

th? fx)=f(xg).
0

On dit que la fonction f est continue si elle est continue en tout point de son domaine.

Nous aimerions étudier ces notions dans le cadre des fonctions de plusieurs variables :

Définition. Soit f:D(f) — R une fonction de n variables et soit X, € R".
On dit que la /limite de [ en i, existe et est égale a £, notée
lim f(xX)=7¢

x—>x0
si f(¥) est aussi proche de ¢ que I'on veut dés que X est suffisamment proche de %,,.

Plus précisément, si pour tout £ >0 (aussi petit que voulu), il existe un 6 > 0 tel que
si 0< ||5E—5c'0|| <6 alors |f(55)—€| <e¢

En particulier, dans le cadre des fonctions de deux variables :

Définition. Soit f :D(f) — R une fonction de deux variables et soit (x,,y,) € R2.
On dit que la limite de [ en (x,,y,) existe et est égale & ¢, notée

lim (x,y)=¢
(x,y)—>(x0,y0)f Y

si f(x,y) est aussi proche de ¢ que 'on veut des que (x,y) est suffisamment proche de (x,, y,).

Plus précisément, si pour tout € > 0 (aussi petit que voulu), il existe un 6 > 0 tel que

si 0<|(x,y)—(xg, 9| <0 alors |f(x,y)—¢|<e
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Rappel. Pour les fonctions d'une variable, il arrive quune limite n’existe pas, par

exemple si hm f(x) # hm f(x). En particulier, il n’y a que deux manieres d’approcher x :
1—’”&0

L]
%o
Dans le cas des fonctions de deux variables, nous pouvons approcher (x,,y,) de plusieurs

manieres :

(x(),y()

Ainsi, dans ce cas, pour que la limite existe, il faut trouver le méme nombre ¢ quelque soit
le parcours choisi!

Par conséquent, pour montrer qu’une limite n’existe pas, il suffit de trouver deux parcours
vers (xO, yO) qui donnent des résultats différents.

De manieére générale, I’étude des courbes de niveau d’une fonction peut étre utile pour
déterminer qu’une limite n’existe pas. En particulier, la limite n’existe pas en chaque point

ou il y aurait un croisement de deux courbes de niveau.

Exemple
X2 — 2 y
Soit f(x,y) = 5—=, avec D(f) =R>\{(0,0)}. L
x“+y
— L(})
Montrer que lim f(x,y) n’existe pas. — L(})
(x,5)—(0,0) L(})
Comme _ L(0)
2_ 2 2_ .2 1
x*-0 0% —y L(-1)
,00=————==1 et 0,y)=———==-1,
Fe0= 50 FOV=5a )
nous trouvons — L(-9)
— L(-1)

lim f(x,0) = 1 # ~1=lim f(0,).

Par conséquent, la limite N 1)111(10 0 f(x,y) n'existe pas.
’y -

Remarque. Nous avons vu que les courbes de niveau de f sont des droites qui passent par

Porigine. Comme
£ - X —mzac2 21-m?) 1-m
x,mx) = =
x2+m? x2 22(1+m?) 1+m?

2

pour chaque valeur fixée de m € R, nous obtenons
2

3 -

lim f(x,mx) =
x—0 1+m
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Question. Comment montrer qu'une limite existe ?
Probleme. Considérer tous les parcours possibles.

Réponse possible. Pour calculer des limites de la forme lim f(x,y)

- . . (x,¥)—(0,0)
nous pouvons utiliser les coordonnées polaires
x =rcos(d),
y =rsin(0).

Dans ce cas, pour tenir compte de toutes les approches possibles (x,y) — (0,0), nous pouvons

considérer la limite » — 0 pour 0 arbitraire mais pas fixé. Autrement dit, si nous arrivons a

trouver deux fonctions g et A telles que
g(r) < f(r cos(6),rsin(t9)) < h(r) pour tout 6 e R
qui satisfont
}grég(r) =(= PE% h(r)
alors le théoréme du sandwich (ou des deux gendarmes) nous donne

lim (x,y)=¢
(x,)—(0,0) f Y

Exemples
. x*y 2
1. Soit f(x,y) = —— 5, avec D(f)=R“\{(0,0)}.
+y
Calculer Lim f(x,y) (silalimite existe).
(x,5)—(0,0)
2.0 02y

x
Comme f(x,0) = =0et f(0,y)=
f x2+02 10,y 0%+ y

Nous avons

. 2 3. .2 .
f(rcos(@),rsin(@)) _ (r cos(92)) rsin(6) - r° cos (92)sm(9)
(7 cos(0))” + (r sin(6)) r
= rcos?(0)sin(0)
Comme
—-r< rcos2(0) sin(0) <r pour tout 6 € R
et

lim(-r)=0= lin(l)r ,

r—

nous trouvons donc

lim (x,y)=0
(x,y)—(0,0) fxy

5 =0,si la limite existe, elle vaut 0.
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2 .2

2. Soit f(x,y) = avec D(f) = R2\ {(0,0)}.

’
x2 +y2

Calculer Lim f(x,y) (sila limite existe).
(x,5)—(0,0)

Nous avons

N 2 2 .2 200\ i
f(rcos(H),rsin(H)) _ (r cos(0))* — (r sin(0)) T (cos?(0) —sin”“(0))

(r cos(9))? + (rsin(0))? 2

= cos?(0) — sin%(0) = cos(20)
Comme
—-1<cos(20)<1 pour tout 6 € R
nous trouvons une valeur différente pour chaque 6 € R et par conséquent, nous concluons

que la limite lim f(x,y) n’existe pas.
(x,)—(0,0)

2

3. Soit f(x,y) = ———, avec D(f) = RZ\{(0,0)}. Calculer lim f(x,y) (si la limite
X +y (xc,)—(0,0)
existe).
x2-0 02y

Comme f(x,0) = 5 =0et f(0,y)= T 5 =0,sl la limite existe, elle vaut 0.

x40 0" +y
Nous avons

(r cos(0))?r sin(0) rcos2(0) sin(0)

9 . 9 - =
f (7 cos(0),7sin(0)) (rcos(0)* + (rsin())®  72cos*(0) + sin?(0)

Vu que pour chaque 0 =0, fixé,
rcos?(0,)sin(0,)

im =
=0 r2cos(0,) +sin?(0,)

nous sommes tentés de conclure que la limite existe et vaut 0, mais un encadrement

pour O arbitraire mais pas fixé semble difficile a trouver.

Pour montrer que la limite n’existe pas, il suffit de trouver deux trajectoires vers (0,0)

qui donnent des valeurs differentes. Comme le calcul

2 2 4
x“ax ax a
flx,ax?) = = =
+@x®? A+a®)x* 1+d?
nous dit que 'arc de parabole y = ax? (avec x # 0) est la courbe de niveau 1fa2 de f,

pour chaque a # 0 fixé nous avons

a
5 70.

lim f(x, ax?) =
x—0 l1+a
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Définition. Soit f:D(f) — R une fonction de deux variables et soit (x,,y,) € D(f).

On dit que la fonction f est continue au point (x,,y,) si

lim  f(x,y) = f(xg,5).
(2,50 (x,5)

Plus précisément, si pour tout £ >0 (aussi petit que voulu), il existe un 6 > 0 tel que
si 0< |,y —(x5,59) <6 alors |f(x,y)—f(xy,5))| <&

On dit que la fonction f est continue si elle est continue en tout point de son domaine.

Remarques.

* Si f et g sont continues en (x,,y,), alors la somme f + g et le produit fg sont continues

en (xO, yo). Si de plus, g(xo, yo) #0, alors le quotient i est aussi continu en (xo, yO).
8

* Si f:D(f) — R est une fonction de deux variables continue en (x,,y,) et §: R — R est
une fonction d’'une variable continue en z, = f(x,,y,), alors la composition

gof:D(f) —R
(x,)— 2g(f(x,))
est continue en (x,,y,).

Exemple

Etudier la continuité de la fonction

2_ .2
f(x,y) x2+y 5150 70,0

V) =1 2 +y
0 si (x,y) =(0,0)

Comme les fonctions (x,y) — x et (x,y) — y sont continues sur R2, les fonctions
(x,y) — x2, (x,9)— y2, (x,y)— x% — y2, (x,y) — x% + 2
sont aussi continues sur R? et la fonction f est continue sur R%\ {(0,0)}.
D’autre part, nous avons vu que la limite lim f(x,y) n’existe pas et par conséquent la

(x,)—(0,0)
fonction f n’est pas continue en (0,0).
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Prolongement par continuité

Si la fonction f:D(f) — R est définie dans un voisinage de (x,,,) € R2 sauf en (%, ) et si

lim  f(x,y) = ¢ existe, alors il est possible de prolonger f par continuité :
(oe,3)—(xg,)

_ flx,y) silx,y)#(xg,5,)
Flx,y) = ,
4 si (x,y) = (x, )
Exemple
. 22y : 2
La fonction f(x,y) = ——— est continue sur D(f) =R*\ {(0,0)}.
x“+y

Comme lim f(x,y)=0 alors il est possible de prolonger f par continuité :

(2,)—(0,0)
2

X"y .
~ —_— , 0,0
f(x,y): x2+y2 si (x y)#( )

0 si (x,y)=(0,0)

3.4. Dérivées partielles

Rappel. Soit f : D(f) — R une fonction d'une variable et soit x, € D(f) tel que f est définie

dans un voisinage de x,, .

. . o1 e e [legHR)=fxg) L
On dit que f est dérivable en x, si la limite lim ot~ flx) existe et on note

h—0 h
flxg+h)—flx,)
h

/ — 1
f (xo) /zlin()
la dérivée de f en x,.
Géométriquement, f’ (x,) est la pente de la droite tangente au graphe de la fonction f

au point (x,, f(x,)) :
y

\ droite de pente f'(x,)

—_—]
flxg)

x, | ~z

P A . d
Remarque. La dérivée f’ peut aussi étre notée d_i
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Définition. Soit f : D(f) — R une fonction de deux variables et soit (x,y,) € D(f) < R?
tel que f est définie dans un voisinage de (x,,y,), par exemple B((xo, yo),r) ,avec r>0.

* Si la fonction g(x) = f(x,y,) est dérivable en x, on dit que la dérivée partielle de [ par
0, . . N
rapport a x, notée 6—f;(x0,y0), existe et est égale a g'(x) :

af T f(x0+h,y0)—f(x0,y0)
5 K0rY0) = i h '

¢ Si la fonction A(y) = f(x,,y) est dérivable en y, on dit que la dérivée partielle de f* par
0, . . N
rapport a y, notée é(xo, ¥o), existe et est égale a h'(y,,) :

of . g,y +h) =[xy, 50)
a(xo’yo):}ll_% 0°Yo - 0 Yo’

Notations alternatives :
0
T (00 70) = 0, g0 79) = FLlg,90) = 0, F (g, 9) = F{ (g )

)
é(xo,yo) = ayf(x()ay()) = fji(x(),y()) = 62f(x0>y0) = le(x()ayo)

Interprétation géométrique des dérivées partielles

0,
pente 6—Z(x0, Yo)

)
pente %(x0 »Yo)

>

© Pearson
Lensemble de tous les points de R3 tels Lensemble de tous les points de R3 tels
que y =y, est un plan paralléle au plan Oxz que x = x, est un plan parallele au plan 0yz

qui coupe le graphe de f le long de la qui coupe le graphe de f le long de la
courbe C,. La pente de la droite tangente courbe C;. La pente de la droite tangente
a la courbe C, au point (xo, Yo, Fxg, yo)) a la courbe C, au point (xo, Yoo (x5 yO))

. . 5/ L. . 0,
est la dérivée partielle a—i(xo, Vo) est la dérivée partielle %(xo, Yo)-
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» Si les dérivées partielles de f par rapport a x et y existent, on dit que le gradient de f,

noté Vf (x4, ), existe et est donné par

0,
a—i(xo,yo)

0
%(xo,yo)

Vi (xg,50) = e R?

. ., . = 5/ 0,
Parfois on écrira Vf(x,,y,) = (6—i(x0,y0), é(xo,yo)).

Le symbole V est appelé «nabla » (il s’agit de la lettre greque Delta inversée).

Méthode pour calculer les dérivées partielles

o Pour calculer la dérivée partielle de f par rapport a x, on regarde y comme une constante

et on dérive la fonction f(x,y) par rapport & x en utilisant les régles de dérivation des
fonctions d’une variable.

o Pour calculer la dérivée partielle de f par rapport a y, on regarde x comme une constante

et on d’erive la fonction f(x,y) par rapport & y en utilisant les régles de dérivation des
fonctions d’'une variable.

Exemples
Calculer les dérivées partielles des fonctions suivantes :
1. f(x,y)=3x+y>
Nous avons
A yy=2 92 =340=
a(x,y)—ax(3x)+ax(y )=3+0=3 _ 3
of F) ., 9 = V&= 2y
@(x,y) = 5(3%‘)4‘ a(y ) = 0+2y = 2y
2' g(x7y) = x3y4
Nous avons
o8 _ .40 .3 5.2 4
(%) = y" (%) = 3x%y

— 3x2y*
og 30 4 ss [ Velwy)= (4x3§3)
a(x,y)zx a(y )=4x°y
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3. hx,y)=V x+ y2 (distance a l'origine)
Considérons tout d’abord la fonction d’une variable
fw)=Vu2+c=w?+c)"? avec ¢ € R une constante.

Nous avons

f'w)= %(u2 +o) 2w+ o) = %(Lﬂ +o)y 2@u) = uw+e) 2= 2

vuZ+e

Par conséquent,

oh x x
—(x,y) = ——— S
ax Y Va2 + y2 N Va2 ¥ y2
o y = Vh(x,y) = y

N Ve

4. f(x,y)= ﬁ si (x,y) #(0,0)
’ 0 sinon

Si (x,y) #(0,0) nous avons :

of (x.7) 0 ( Xy ) y&® +y?) —xy(2x)  y(y* —x?)

—(x, = — = =

o Y T ox 2+yP @2+ y2)2 @2+ y2)2

) 2_ .2

—f(x, y) = % (par calcul direct ou par symétrie car ici f(a,b) = f(b,a))
0y (x” +y%)

Si (x,y) =(0,0) nous avons :
h-0

_ —— 0 _
U 0,0y = lim L1000 _ B2v 970 himo=o
Ox h—0 h h—0 h h—0 h h—0
0-h 0
F) 0,h) - £(0,0 FiE 0-0
U 0,00 = lim LOM SO0y o2en2 715070 imo=0
oy h—0 h h—0 h h—0 h h—0

. of . .
Accessoirement, pour calculer 5(0,0) nous pouvons aussi considérer la fonction d’'une
variable

x-0 )
gx)=f(x,0) = { 2102 O (x,0) #(0,0)

0 sinon
=0 pour tout x € R

Comme g'(x) =0 pour tout x € R, nous retrouvons %(0,0) =g'(0)=0.
En résumé,

x(xZ _y2)

2 .2
Y7 =) e @700

si (x,) #(0,0) of
a(x,y) =1{ (% +y2)? et a(x,y) =9 (®+y

0 sinon 0 sinon

Chapitre 3 - p20



Remarque. La notion de dérivée partielle se généralise naturellement aux fonctions de n

variables avec n > 3.

Par exemple, si  f(x,y,2) =x2yz +sin(yz) + 23 + 4In(xy®), alors nous avons
0, 0 0 [ .
%(x,y,Z) = —(&’yz) + o (sin(y2)) + —(z3)+ — (4In(xy™)
1 1
= yz—(x2)+0+0+4——(xy )= yz(2x)+4—5y
xy® Xy
4
=2xyz+ —
x
¥ ey zre Lty L (s 34 2 (aIn(ey?
5y & 2:2) = g (xy2) + 3 (sin(y2) + 5-(2") + 7= (41n(xy™)

9 0 0 1 6, 5
=x za(y)+cos(yz)£(yz)+0+4x—y5a(xy )

20xy*
xy°

2
= x2z+zcos(yz)+ :xzz+zcos(yz)+ —
y

of 0, 9 0 /(. 3
5, (,5,2) = —(x yz)+£(s1n(yz)) —(z )+ (41n(xy )

2,0 ]
=x yaz(z)+cos(yz) az(yz)+32 +0

=22y + ycos(yz) + 322

Dérivées partielles d’ordre deux
Soit £ :D(f) — R une fonction de deux variables.

1 %(xo, yO) existe pour tout (xo, yO) € D(f), alors nous pouvons définir la fonction dérivée

partielle de f par rapport a x :

0,
_f D(f)—»]R
0x

(x’y) —_ a(xuy)

. 0 . . . .
Si é(xo, ¥,) existe pour tout (x,,y,) € D(f), alors nous pouvons définir la fonction dérivée

partielle de f par rapport a y :

)
o, D(f)—>R
Oy

(x,y) — @(x,y)
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Nous pouvons considérer les dérivées partielles de ces deux fonctions par rapport a x et y

qui seront notées comme suit :

afor) 21 LI
0x\0x) 0x2 ay\dx) 0yodx
9 (of\ _ O°f 9 (of\ _o°f
Gx(ay) 0x0y Gy(dy) ay?

Nous avons le schéma suivant :

/TN

of of
f ax \ K ay \
o*f 0°f 0°f o*f
0x2 0y0x 0x0y 0y2

Attention : Certains auteurs utilisent les notations

o) g2
0x0y  dy\ox dydx 0x\dy)

Exemples
Calculer les dérivées d’ordre deux des fonctions suivantes :
1. f(x,y)=x2y3
Comme %(x,y) = i(xz)y3 +x2 i(y3) =2xy +0=2xy>
O0x O0x O0x
nous avons

0% f _ 0 3y_ 0 3 0.3 63 . 0_0.3
—axz(x,y) = a(2xy )= E(Zx)y +2xa(y )=2y"+0=2y
o*f _ 0 3,_ 0 3 a3 2 2
—ayax(x,y) = 5(2“/ )—@(Zx)y +2x5(y )=0+2x(3y") = 6xy

, of _ 0,93, .20 3 o 209 o239
D’autre part, ay(x,y)—ay(x )y° +x ay(y )=0+x%(3y“) =3x“y

implique
o*f _ 022 _0 02 92 o920 9 . 9 o . 9
—axay(x,y)— £(3x y )—a(3x )y© +3x a(y )=6xy“+0=06xy

0% f _ 0 029 0 o o9 9 20 o 2 )
6—y2(x,y)— £(3x y )—£(3x )y“ +3x a(y )=0+3x"(2y) =6x"y
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2. g(x,y)=sin(xy)
Nous avons

g—i(x,y) = cos(xy) %(xy) = ycos(xy)

d’ou
2
Zx—g (x,y) = aax‘ (vcos(xy)) = %(y Jeos(xy)+y aax (cos(x)) =0+ y(=sinCxy) aax )

= —y2 sin(xy)

g
0yox

(x,y) = %(y cos(xy)) = %(y)cosuy) +y %(cos(xm) = cos(xy) + y(— sin(xy)) %(xy)

= cos(xy) —xysin(xy)

Comme g(a,b) = g(b,a), nous trouvons par symétrie,

P8 (1, ) = cos(xy) - xysin(xy)
ax0y x,y) = cos(xy) —xysin(xy
0’g 9.
W(x,y) = —x“sin(xy)
02 02
Les exemples suggerent ! (x,y) = f (x,y).
0y0x 0x0y

Question. Est-ce toujours le cas?

Réponse. En général, non (voir par exemple I'exercice 2 de la série 8).

Théoreme. Soit f :D(f) — R une fonction de deux variables et (xO, yO) e D(f).

Si I'on suppose que o o  Of et f existent et sont continues dans un voisinage
ox’ Ay’ 0xdy 0yox

de (x,,y,), alors
%f a%f

—ayax (xg,Y0) = —Gxdy (g, ¥0)-
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3.5. Fonctions différentiables (ou dérivables)

Rappel. Soit f: D(f) — R une fonction d’une variable et soit x, € D(f) tel que f est définie

dans un voisinage de x,.

@) —flxy) .
On dit que f est dérivable en x, si la limite lim % existe et on note
x—>x0 )
(%) = f(xg)
f’(xo) - lim g

x—x, xX—x
la dérivée de f en x,,.

But : Généraliser cette notion aux fonctions f :R"” — R pour n > 2.

Remarque.

Nous avons montré que les dérivées partielles de la fonction

2 sy #0,0)

f(x,y) =< x"+y
0 si (x,y) =(0,0)

existent pour tout (x,y) € R? et qu'en particulier elles existent en (0,0) :
0 0
—f(0,0) =0 et —f(0,0) =0.
0x oy
D’autre part, comme
2 2
x x 1
f(x,x): - = =
Z+x? 2% 2
la fonction f n’est pas continue en (0,0).

et lir%f(x,x)zé #0=£(0,0).

Par conséquent, I'existence des dérivées partielles d’'une fonction de deux variables en un
point (x,,y,) ne suffit pas pour garantir la continuité de la fonction au point (x,,y,),
contrairement au cas des fonctions d’'une variable ol1 nous avons le résultat

«Si la dérivée de f existe en x, € D(f), alors f est continue en x ».
La dérivabilité d’'une fonction de plusieurs variables ne se résume donc pas a 'existence des

dérivées partielles de la fonction !

Chapitre 3 - p24



Rappel. Soit f : D(f) — R une fonction d’une variable et soit x, € D(f) tel que f est définie
dans un voisinage de x,,.
Si la fonction f est dérivable en x,, alors le graphe de f possede une droite tangente au
point x = x, de pente f'(x,) et d’équation

y = Flog)+ () — x).
De plus, si 'on définit la fonction

L(x) = f(xg) + [ (xp)x — xp),
appelée Vapproximation linéaire de la fonction f autour du point x = x, alors
L(x,) = f(xq)

{ L'(xy) = f'(xy)

et pour des valeurs de x proches de x, nous avons f(x) =~ L(x).

y

\ graphe de L

—_—
f(xg)

x| \<

Rappel. Si f:D(f)— R est une fonction d’'une variable, alors nous avons

f est dérivable en x — f’(xo) = lim M
)
— im 7’?(96) ~ %) —flxy)=0
= XX
— lim r@- 1ty f'(xo)) =0
X=X X — xo
— lim f(x)_f(xo)_f’(xo)(x_xo)) =0
X=Xy X — xO
— lim f(x)—(f-(x0)+]c-/(x0)(x—x0))) ~0
X=X X=X,
— lim f@) - L) _ 0
=Xy XX
= f est différentiable en x
Remarque. Pour avoir lim w =0, il faut que lim (f(x)—L(x)) = 0. De plus, il
X=Xy —X X=2K,

faut que I'écart f(x)—L(x) aille vers zéro plus vite que x—x,,, ce qui nous permet de dire que

« L(x) est une bonne approximation de f(x) pour des valeurs de x proches de x, ».
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Considérons maintenant une fonction f de deux variables et un point (xO, yO) e D(f).

Question. Est-ce que le graphe de la fonction f au point (xO, Yo f (%, yo)) € R? admet un
plan tangent et si oui, quelle est son équation?

¥4

a
Rappel. Léquation du plan passant par le point (xo, yo,zo) normal au vecteur 77 = ( b ) est
Cc
a X=X
Y=Y |=0 — alx—x9)+b(y—yy)+c(z—23)=0.
c z—2z,

Coupe du graphe de f parle plan y =y, : Coupe du graphe de f par le plan x =« :

z

2= f(x,5,)

\

f(xoay()) f(x()ay()) T

: z=f (x(),y )
X x Yo l ¥
. of . of
droite tangente de pente a(xo, Yo) droite tangente de pente a(xo, Yo)
1 0
et vecteur directeur d; = 0 et vecteur directeur d, =
of
a(x()’yo) a(x()’yo)
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Comme nous cherchons un plan qui soit tangent au

graphe de f au point (xo, Yoo [ (xo,yo)) € R3, le vecteur

a - -
n= ( b ) doit étre orthogonal aux vecteurs d, et d, :
C

En prenant ¢ =1 nous trouvons

0
a+c é(xo,yo) =0
—

Sy S

Qb
Il

1=0
0

0,
9 b+c£(x0,y0)20

of
- a(xo’yo)
L of
n= - %(xo»yo)
1
d’ou
0 0
= T 3= 20) — 0,703 = 30) + 1{z = £, 39)) =0
ou encore

2 = Flgy 30+ 20, 90) = x) + 5G9y = )

Question. Est-ce que le plan d’équation
0, 0,
z=f(xy,¥0) + é(xo,yo)(x —xy)+ %(xo,yo)(y - ¥0)-

est forcément le plan tangent au graphe de la fonction f au point (xo, Yoo [ (%, yo)) eR3?

Réponse. Non. Considérons par exemple la fonction
£, ) = [lxl = lyl| = x| = 1yl

Le calcul des dérivées partielles au point (0,0) :

%(0,0) - lim w = lim ﬂ —1im0=0

0x h—0 h h—0 h h—0 y
%(0,0) = lim w = lim H —1im0=0

oy h—0 h h—0 h h—0

nous donne I’équation du plan

2=f(0,0)+%(0,0)(x—0)+%(0,0)(y—0) — 2=0

© Pearson

Ce plan n’est clairement pas tangent au graphe de f. En effet, si I'on coupe le graphe de f

par le plan vertical y = x nous obtenons la fonction d’'une variable
g(x) = f(x,x) = |lx| — ||| - |x| — |x| = —2lx]

qui n’est pas dérivable en x =0 et de ce fait, n’a pas de droite tangente en x =0.
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Définition. Soit U c R? un sous-ensemble ouvert de R2.
Soit f: U — R une fonction de deux variables.
On dit que f est différentiable en (x,,v,) € U (ou dérivable en (x,y,) € U) si les dérivées

. 0, 0, . . . .
partielles a—};(xo, Yo) et %(xo, Y,) existent et si la fonction L : R? — R définie par

0, 0,
L) = f (&g, 90) + -, Yo = %) + %(xo,yo)(y 5
est une «bonne approximation de f(x,y) pour des valeurs de (x,y) proches de (x,,y,)»

dans le sens suivant :
f(x,y)—L(x,y)
im =
)=o) [| G, 1) = (g, 30|

Si la fonction f est différentiable en (x,,y,), alors le plan d’équation
0 0
z=f(xg,¥9) + a—i(xo,yo)(x —xy)+ é(xo,yo)(y - ¥0)

est le plan tangent au graphe de f au point (xo, Yo [ (x5 yO)) € R3 et la fonction L est appelée

approximation linéaire de f autour du point (x,,y,).

On dit que f est différentiable si elle différentiable en tout point de son domaine.

Exemple

La fonction f(x,y)=1-x2—2y? est telle que %(x,y) =—-2x et %(x,y) =—4y.

Par conséquent, £(0,0)=1, %(0,0) =0, %(0,0) =0 et L(x,y)=1. Comme

foe,9)-Lix,y) _ -2 -2y° L F@y L)
[@n=©0.0]  VZis?  @re00 [-0,0)]
y

nous pouvons conclure que f est différentiable en (0,0).

et

b

Remarque. Si f est différentiable en (x,y,), alors la fonction
L, 3) = £, 30) + 5 (s ) = %) + 220, 30)( = 9o)
est telle que
L(xy,50) = f(xg,0)
%(xo,yo) = %(xo,yo)
%(xo,yo) = %(xo,yo)

et pour des valeurs de (x,y) proches de (x,,y,) nous avons f(x,y) =~ L(x,y).
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Nous avons deux résultats trés importants (donnés ici sans démonstration) :

Théoréme 1. Soit U < R? un sous-ensemble ouvert de R2.

Soit f: U — R une fonction de deux variables.
. e . 0, 0 . . . .
Si les dérivées partielles £ et % existent dans un voisinage de (x,,y,) € U et sont continues

en (x4,v,), alors f est différentiable en (x,y,).

Autrement dit, si

of of . of of
1m _(x9 ) = _(x ) ) et ]-lm _(xy ) = _(x ) )
(,3)—(xg,5) 0% Y= g F00 %0 () —(x,5,) O V= 5y 00
alors ‘ fl,y)-Lx,y)

(x,y)l—l}(gclo,yo) ”(x,y) —(x4,5) || -
Théoréme 2. Soit U c R? un sous-ensemble ouvert de R2.
Soit f: U — R une fonction de deux variables.
Si f est différentiable en (x,,y,) € U, alors f est continue en (x,y,).

Conséquence :

. L., . 0 0 . .. .
Si les dérivées partielles % et % existent dans un voisinage de (xO, yo) e U et sont continues

en (x,y,), alors f est continue en (x,y,).

Remarque. Une formulation équivalente du théoreme 2 est :
Si f n’est pas continue en (x,,,), alors f n’est pas différentiable en (x,y,).

Cette formulation est trés utile pour déterminer si une fonction n’est pas différentiable en

un point.

Exemple

Nous avons vu que la fonction

Y s,y #00,0)
f(x’y): x“+y
0 si (x,y) =(0,0)

n’est pas continue en (0,0), ce qui implique qu’elle n’'est pas différentiable en (0,0), méme si
of

e . 0, .
les dérivées partielles e et % existent sur R2.

Comme [ n’est pas différentiable en (0,0), le théoréme 1 nous permet de conclure que dans

f

L . ) ) ,
ce cas, les dérivées partielles % et 3 ne sont pas continues en (0,0).

Attention : Si f est continue en (x,,,), alors on ne peut rien conclure au sujet de la
différentiabilité de f en (xo, yO).
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Définition. Soit U c R? un sous-ensemble ouvert de R2.

Soit f: U — R une fonction de deux variables.

On dit que f est de classe C'(IV), noté f e CO(U), si f est continue sur U.

On dit que f est de classe CH(IV), noté f € CL(U), siles dérivées partielles % et % existent

et sont continues sur U.

Les théorémes 1 et 2 impliquent :

feckU) = f différentiable sur U = f continue sur U

Par contre, nous avons

feClU) = f différentiable sur U = f continue sur U

Définition. Soit U c R2 un sous-ensemble ouvert de R2.
Soit f: U — R une fonction de deux variables.

On dit que f est de classe C*(U), noté f € C2(U), si les quatre dérivées partielles d’ordre 2

2f  *f *f 02 . .
922’ 3ydx’ 9xdy et 32 existent et sont continues sur U .

Proposition. Soit U c R? un sous-ensemble ouvert de R2.

Soit f:U — R une fonction de deux variables.

Si f est une fonction de classe C2(U), alors f est une fonction de classe C1(U).

Preuve. Soit (x,,y,) €U. Si f est une fonction de classe C%(U), alors les dérivées partielles
?f o (af) ot f 0 (6f)

0:2  0x\dx dyox  ay\ox

existent dans un voisinage de (x,,y,) € U et sont continues en (x,y,). Les théorémes 1 et 2

impliquent que —f est continue en (x,,y,). D’autre part, les dérivées partielles

0x
T wla) ¢ TEewln)

ay2  ay
existent dans un voisinage de (x,,y,) € U et sont continues en (x,,y,). Les théorémes 1 et 2

. . 0 . N .
impliquent que % est continue en (x,,y,), d'ou le résultat. [ |
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Définition. Soit U < R2 un sous-ensemble ouvert de R2.
Soit f: U — R une fonction de deux variables.

On dit que f est de classe C3(I)), noté f € C3(U), si les huit dérivées partielles d’ordre 3
*f o*f 8 f  of f  8f  0f *f . :

9x3 7 3y0x2 " dx0ydx’ 3y%0x’ 3x2dy’ Dydxdy’ dxdy? et P existent et sont continues sur U.
On dit que f est de classe C*(U), noté f € CRU), si les 2% dérivées partielles d’ordre

existent et sont continues sur U.

On dit que f est de classe C(U), noté f € C°(U), si f est de classe C*(U) pour tout k.

Nous avons les implications suivantes :
feC®U) = - = [feC3U) = feC>(U) — feCYU)

Par contre, nous avons

fEC®U) <~ - <= feC¥U) < feCU) <~ feCYU)

Application : Calcul d’incertitude
Si nous mesurons des quantités x et y avec une certaine incertitude :
x=xy+Ax  (cest-a-dire x € [x, — Ax,x, + Ax])
y=yotAy (Cest-a-dire y € [y, — Ay,y, + Ay])
alors, en premiére approximation, nous pouvons remplacer la valeur de f(x,y) par
fxg,y0) £ASf,

ou l'erreur Af est donnée par

a of
AF = Lo, 00| A+ | L, 30| A

Exemple AAyIr —————— :— 1|' —:
L'aire d’un rectangle de c6tés x et y est donnée par f(x,y)=xy. ' : -:
Comme %(x, y)=y et %(x, y) =x, lerreur sur l'aire est donc @~ ||—o———__ L_ -
Af = Lygl A+ Ixgl Ay . ”" i |

Si les valeurs mesurées sont x =3+0.01 et y =4+0.02, nous : !
trouvons : :
Af=4-0.01+3-0.02=0.1 R e

et en premiére approximation l'aire est égale a 12+0.1.

Chapitre 3 - p31



Nous avons des définitions analogues dans le cas des fonctions de plus de deux variables :

Définition. Soit U c R? un sous-ensemble ouvert de R3.
Soit f:U — R une fonction de trois variables.
On dit que la fonction f est différentiable en (x,y,,2z,) € U (ou dérivable en (x,,y,,z,) € U)

. L e . 0, 0, 0, . . .
si les dérivées partielles é(xo, Yor20)s %(xo, Yor2) et é(xo, Yos2o) existent et si la fonction
L:R3 — R définie par

of of of
L(x,y,2) = f(xq,59,2¢) + a(xo,yoazo)(x —Xg) + @(xoyyoazo)(y —yo)+ E(xo,yo,zo)(z —2p).

est une «bonne approximation de f(x, y,z) pour des valeurs de (x,y,2) proches de (x,y,,2,)»

dans le sens suivant :
f(x7yaz)_L(x?y72)
im =0.
(X,y,Z)—’(xo,yo,Zo) ||(x, y, Z) - (xo,yoy ZO)”

Si f est différentiable en (x,y,), alors la fonction L est appelée approximation linéaire
de f autour du point (xy,y,,2,)-

On dit que f est différentiable si elle différentiable en tout point de son domaine.

Définition. Soit U c R” un sous-ensemble ouvert de R”.
Soit f: U — R une fonction de n variables.
On dit que f est différentiable en x, € U (ou dérivable en %, € U) si les dérivées partielles

of . of of . . . . PP
a(xo), @(xo), . E(xo) existent et si la fonction L :R® — R définie par
. - of - of
L() = @)+ (g, = )+ . (g, — g )
xq ’ 0x,, )

= fG)+ (Vo)) (£~ %)
est une «bonne approximation de f(X) pour des valeurs de X proches de %, » dans le sens

suivant :
I f(x)— L)
im —— =

=0.
=5 22|

Si f est différentiable en X, alors la fonction L est appelée approximation linéaire de [

autour du point %.

On dit que f est différentiable si elle différentiable en tout point de son domaine.
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3.6. La regle généralisée de dérivation d’'une composition

Rappel. Si f:D(f)—R et g:D(g) — R sont des fonctions dérivables d’'une variable telles

que Im(g) c D(f), alors la fonction composée h = f o g, définie par
h(x) =(f o g)(x) = f(g(x))

est dérivable et nous avons
h'(x)=(fog)(x)= f/(g(x))g'(x)

But : Obtenir une formule analogue dans le cas des fonctions de plusieurs variables.

* Si g est une fonction de n variables, pour pouvoir faire la composition il faut que f soit
une fonction d’une variable et dans ce cas, 2 = f og est une fonction de n variables :

R £ R-LR

* Si f est une fonction de n variables, pour pouvoir faire la composition il faut que I'image
de g se trouve dans R” et dans ce cas, A = f og est une fonction d’une variable :

g f
R—R"—R
En particulier, si f est une fonction de deux variables, pour pouvoir faire la composition

il faut que 'image de g se trouve dans R? et dans ce cas, & = f o g est une fonction d’'une

variable :

RER2LR
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Composition de fonctions

Soit I ¢ R un intervalle, soit g : I — R? une courbe paramétrée et soit f : R?> — R une
fonction de deux variables.
La fonction A =fog :I — R est une fonction d'une variable donnée par
h(t)=(f 0 8)1) = F(8(1))
Si g(#) = (x(2), y(2)) alors
h(t) = f(x(2),y()),  pour tel

Théoréme. Sila courbe paramétrée g : I — R? est dérivable et la fonction f:R? — R est

diffférentiable, alors la fonction A : I — R est dérivable et nous avons

ey — % ! % !
)= 7~ (x(2), y(0))x"(1) + p (x(2), v()) ¥ (@)
Notati brégée :
otation abrégée h’:%x%% ,
0x 0
Notation vectorielle : (fo8)W)= VF(EW)- ') = &' -VF(EWD)
—_———

gradient de f Vvecteur tangent
au point g(¢) au point g(¢)

Conséquence

Si x et v sont des fonctions différentiables de deux variables :
x: R® —R et : R —R
(u,v) — x(u,v) (u,v) — y(u,v)
alors la fonction de deux variables
h(u,v)= f(x(u,v), (u,v))

a comme dérivées partielles

oh _3f 3x o 3

Oou OxOu 0y ou

oh _of s of 0y

ov 0x Ov 0y 0v
Notation matricielle :

oh 0x O of
au | | aw au || o
oh | | ox o of
v aw v )\ oy
—— ——
gradient de A gradient de f
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Exemple important : coordonnées polaires

= 0
* = reos(0) avecr >0et0eR
= rsin(0)
Comme nous avons

O0x B ©) O0x B n(0)
3 = cos(0), 0 rsmiovy,
0 . 0
= sin(6), 20 - rcos(0),

la fonction
h(r,0) = f(x(r,0), v(r,0))

a comme dérivées partielles

oh  Of Ox 6f 0 of of oh . o
o oxar oy o oSO Fsin(O)FT — 0 o\ L
o oror 6 P cos( ) +s1n( ) o | cos(d)  sin(0) -
o 5f o Py o9 = —rsin(0) i +7rcos(0) @ % —rsin(0) rcos(0) %
00 9x 00 4y 00 Ox 9 90 5

Application
Soit f:D(f) — R une fonction différentiable de deux variables.

Soit L(c) la courbe de niveau ¢ de f :
L(c)={(x,») €D(f): f(x,y)=c}.
Soit (x,y,) € L(c).
Soit g :[a,b] — R? une paramétrisation de L(c) autour de (x0,,) telle que g(t,) = (x,,5,),
avec t( €la,bl.
Supposons que la courbe paramétrée g est de classe C! et réguliére en ty ( gf'(to) #0)
Par construction,
(fog)t)=c, pour tout ¢ € [a, b]
En dérivant on obtient
(fog)(t)=c'=0, pour tout ¢ € Ja, b[
d’ou
g'0)-VF(@m)=0

En prenant ¢ = t, on trouve

3'(ty)-Vf(xy,5,) =0

Chapitre 3 - p35



Autrement dit, si nous supposons que la courbe paramétrée g est réguliére en ¢, et que la
fonction f est différentiable en (x,y,), alors le vecteur tangent g '(to) ne s’annule pas et
le vecteur Vf (x4,,) existe et est orthogonal & la courbe de niveau de f qui passe par le

point (x,,¥,)-

D 5(b)

x(a)  x(t,) x(b)  «x

3.7. La dérivée directionnelle et le gradient
Soit U < R? un ensemble ouvert. Soit (xp,5) €U y
et soit ¢ = (e ,e,) € R? un vecteur unitaire (c’est-a- o
Yothegr———————————— Pl
dire, [é]| = \/e? +e2 =1). T
- |
Nous avons vu que la droite du plan qui passe par é 0 }
Yo+ —— — - — = — =

le point (x,,y,) ayant é comme vecteur directeur

peut étre paramétrée par

Pt)=(xy+tey,y,+tey), avec t € R.

Définition. Soit f:U — R une fonction de deux variables et soit

g =F(F®) =(foP)2).
Si g est dérivable en ¢ =0 alors on dit que f est dérivable au point (x,,y,) dans la direction
du vecteur é. Dans ce cas, la dérivée directionnelle de f au point (x,y,) dans la direction

du vecteur ¢, notée D, [ (x,v,) est donnée par

g(h)—g(0) — lim f(x() +he1,y0 +hez)_f(x()’y0)

NPT
Déf(x07y0) =g'(0)= }lll_I% lim -
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Remarques.
¢ Le point (x,+he,,y,+he,) se trouve a une distance 4 du point (x,y,).

e Si é=(cosO,sinf), nous parlons de dérivée de f dans la direction donnée par 'angle 0.
flxog+h,y0)=f(xy,50) Of

* Sié=(1,0) alors D,f(xy,5,) = }lliir(l) 3 = a(xo,yo).
(xq, 59 +h)—f(xy,59) 0

* Si é=(0,1) alors Déf(xo,yo):}llin(l)f 0% - 1 (xg, %0 za_f(xo,yo).
- y

¢ Le nombre D,f(x,,y,) = g'(0) est la pente de la droite tangente a la courbe obtenue en
intersectant le graphe de f au point (x,,y,) avec le plan vertical passant par (x,y,) qui
contient le vecteur é.

o Cette définition se généralise naturellement au cas de n variables.

« Si ¢ € R? est un vecteur non-nul quelconque tel que |Z]| # 1, alors la définition de
dérivée de [ au point (x,,y,) dans la direction du vecteur e varie selon les auteurs.

Nous allons donc restreindre la discussion au cas des vecteurs unitaires.

Exemple
Calculer la dérivée directionnelle de la fonction
flx,y)= 6> —b5xy+4x -3y
au point (0,0) dans la direction du vecteur é = (e, e,).
Par définition,
f(hey,hey,)—£(0,0)
h

_ tim 6h2e% - 5h2e1e2 +4he, —3he,

h—0 h
= ]11135(6he§ —Bhe ey +4e, —3ey)

D,f(0,0) = lim

Par conséquent,

D,f(0,0)=4e; —3e,.

Remarque.

La dérivée directionnelle de la fonction f(x,y) = 6x2—5xy +4x — 3y au point (0,0) est nulle

dans toutes les directions é = (e ,e,) telles que 4e; —3e, = 0. Autrement dit,

=<2
e=%{z%)-
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Question. Est-ce qu’il est possible de calculer la dérivée directionnelle de f autrement

qu’en calculant une limite ?
Réponse: Oui, sil'on suppose par exemple que f est différentiable en (x,y,).

En effet, comme ¢(¢) = (x, +te,,y,+te,) est une courbe paramétrée réguliére telle que le
vecteur tangent est ¢'(¢) = (eq,e;)=¢€,si la fonction f est différentiable en (xO, yO) alors la

composition g(¢) = f (¢ (t)) =(f o@)(¢) est une fonction dérivable en ¢ =0 et nous avons
g'(0)=(f o )'(0)=@'(0)-VF(F(0) =&-Vf(xg, ).
Nous avons donc le résultat suivant :

Théoreme. Soit U c R? un ensemble ouvert. Si f: U — R est une fonction différentiable
en (x,,y,) € U, alors la dérivée directionnelle de f au point (x,,y,) dans la direction du

vecteur é existe pour tout choix de é. De plus, dans ce cas nous avons
D;f(xy,y9)=¢€-Vf(xg,y9)-

Conséquence.

Si f est différentiable en (x,,y,) € U, alors le gradient de f au point (x,,y,) détermine
completement les dérivées directionnelles de f dans foutes les directions a 'aide de la
formule Déf(xo,yo) = é-Vf(xO,yO).

Exemple
Considérons a nouveau la fonction
f(x,y)= 6> —b5xy+4x—3y.
Comme f est une fonction de classe C®(R?) et donc différentiable, nous pouvons utiliser le
théoreme précédent pour calculer D, f(0,0).
Comme
VF(x,y)=(12x-5y+4, —5x—3),
nous avons Vf(0,0) =(4,-3), dou
D;£(0,0)=¢é-V£(0,0) = (e,e,)-(4,~3) = de; — 3e,

et nous retrouvons le résultat obtenu avant.
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Attention: Une fonction qui possede des dérivées directionnelles au point (x,,y,) dans

toutes les directions é, peut ne pas étre différentiable en (x,,y,).

Considérons par exemple la fonction

x2

y oo
fl,y) =3 x*1y2 si (x, ) #(0,0)

0 si (x,y) =(0,0)
Nous avons montré que la limite

lim x Xy
(x,y)—(0,0) x + y

n’existe pas. Par conséquent, la fonction f n’est pas continue en (0,0), ce qui implique que f

n’est pas différentiable en (0,0), méme si les dérivées partielles existent en (0,0) :

—f(00)_1 w —1im 220
h h—0h

%(OO)_I f(Oh) £(0,0) _ 9_0
h h—0h

Comme Vf(0,0) =(0,0), nous avons ici

é- Vf(0,0) =0, pour toute direction é = (eq,e,).

Par définition,

hey,h 0,0 2
Déf(O’O):;lli f(hey,hey)—f(0,0) — lim 1[ (hey)*(hey)

h h—0 h
h3(eq)?e, . (e))%e,

TR0 R (R2ey) 4 (eg)?)  h0 hE(e )t + (eg)?

Nous distinguons deux cas :

* Sie, =0, alors D;f(0,0) = 11m 2 7=
h*(ey)
. _ (e 1) €9 (81)292 _ (91)2
Sieg 70, alors e I ey e &F e

(he)* +(hey)?

§

Ceci montre que les dérivées directionnelles de f au point (0,0) existent dans toutes les

directions é. De plus,

D,f(0,0)#0, pour toute direction é=(e,,e,) avec e, #0 et e; #0.

Par conséquent,
D;£(0,0) #é-V£(0,0)

pour toute direction é = (e ,e,) avec e, #0 et e, #0.
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Interprétation géométrique

Rappel : Nous avons % -0 = ||z]|||7]| cos(a), ot a 'angle entre u et U.
Soit f une fonction différentiable en (x,y,).

« Soit (x,,,) tel que Vf(xy,,) = (0,0).

Dans ce cas nous avons :

D;f(xy,y,)=é- Vf (g, o) - D, f(xy,y0)=0 pour toute direction é.

« Soit (x,,,) tel que V(x,y,) # (0,0).
Dans Cce cas nous avons :
D;f(xg,30) =€V (xg,39) = Dyf (o, %0) = ||V g, )| cos(a)

Comme —1 < cos(a) <1 alors
—|VF g, y0)|| < D, f (g, 30) < [VF g 30)]|

o Si a=0, alors Déf(xo,yo) = ||Vf(x0,y0)|| est maximale.
o Si a=m,alors D,f(x,y,) = —||Vf(x0,y0)|| est minimale.
. b/
oSia= 3 alors D, f(x,,y,) = 0.
oSi0Lacx< z, alors D, f(x,,y,) >0 et la fonction est croissante dans la direction é.
o Si g <a<m,alors D;f(x,,y,) <0 et la fonction est décroissante dans la direction é.

Ainsi, la croissance de la fonction est maximale dans la direction du gradient et

minimale dans la direction opposée.

Chapitre 3 - p40



Exemples

1. flx,y)=Va+y?

Le calcul nous donne

Vf(x,y) = Y

Va2 1y Vad+y2) \ L(2)
(1/2)

avec (x,y) #(0,0).

Ainsi, la croissance de f a partir de (x,y,) # (0,0) \}\(

se fait dans la direction radiale.
De plus, comme
||Vf(x,y)|| =1  pour tout (x,y) #(0,0),
la croissance ne dépend pas de la position du

point. Courbes de niveau et gradients pour f

2. glx,y)= x2+ y2
Le calcul nous donne

Vg(x,y) =(2x,2y) pour tout (x,y) € R2. &/
Ainsi, la croissance de g a partir de (x,y,) # (0,0) — =Oh {
se fait dans la direction radiale. —— % .\/:I[\L ) pe

De plus, comme / / \

||Vg(x,y)|| = 2\/x2 + y2 = 2\/g(x,y),

cette croissance est proportionnelle a la distance

a lorigine.

Courbes de niveau et gradients pour g

Chapitre 3 - p41



1
Va?+y?

Le calcul nous donne

3. h(x,y)=

X Yy
(x2 +y2)3/2 ’ (x2 +y2)3/2 ’

avec (x,y) #(0,0).
Ainsi, la croissance de & a partir de (x,y,) # (0,0)

Vh(x,y) =

se fait dans la direction de l'origine.

De plus, comme
— 1
[Vh(x, y)|| = o (R(x, ),

cette croissance est inversément proportionnelle

Courbes de niveau et gradients pour A

a la distance a 'origine.

3.8. Points d’extremum local (ou relatif)

Rappel : Points d’extremum local d’une fonction d’une variable
Soit f: D(f) — R une fonction d’'une variable et soit x, € D(f).
* On dit que x,, est un point de maximum local de f si

fxy) = f(x) pour tout x dans un voisinage de x,,.

On dit que f(x,) est un maximum local de f.

* On dit que x,, est un point de minimum local de [ si
fxy) < f(x) pour tout x dans un voisinage de x,.

On dit que f(x,) est un minimum local de f.

* On dit que x, est un point dextremum local de f 8’il est un point de minimum local ou un
point de maximum local.

¢ On dit que x, est un point stationnaire de [ si f'(x))=0.
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Théoreme (Fermat). Soit f: D(f) — R une fonction d’une variable et soit x, € D(f).

Si x, est un point d’extremum local de f tel que f'(x,) existe, alors f'(x,)=0.

Conséquence: Si f:D(f) — R est une fonction dérivable, alors les points d’extremum

local de f sont donc a chercher parmi les points stationnaires de f .

Attention: Si f:D(f) — R est une fonction d'une variable dérivable en x, € D(f), le fait

que f'(x;) =0 ne garantit pas que x, soit un point d’extremum local de f.

Par exemple, la fonction f(x) = x® est telle que f'(0) = 0 mais dans ce cas, x, n’est pas un
point d’extremum local de f, mais un point d’inflexion de f .

Test de 1a dérivée seconde

Soit f: D(f) — R une fonction d’une variable et soit x, € D(f) tel que f ! (xy) = 0. Supposons

de plus que f est deux fois continiment dérivable sur un intervalle ouvert contenant x.

1. Si f'(x,) >0, alors x,, est un point de minimum local de £ Ll

2. Si f"(xy) <0, alors x, est un point de maximum local de /. 7?

Points d’extremum local d’une fonction de deux variables

Définition. Soit f: D(f) — R une fonction de deux variables.
* Un point (x,y,) € D(f) est un point de maximum local de [ si
f(xg,59) = fx,y) pour tout (x,y) dans un voisinage de (x,,).

On dit que f(x,,y,) est un maximum local de f.

e Un point (xo,yo) € D(f) est un point de maximum local strict de [ si
flxg,59) > f(x,y) pour tout (x,y) dans un voisinage de (x, ).
On dit que f(x,,y,) est un maximum local strict de f.
 Un point (x,y,) € D(f) est un point de minimum local de [ si
fxy,y9) < flx,5) pour tout (x,y) dans un voisinage de (x, ;).
On dit que f(x,,y,) est un minimum local de f.
* Un point (x,y,) € D(f) est un point de minimum local strict de [ si
fxy,y0) < f(x,y) pour tout (x,y) dans un voisinage de (x,,y,).

On dit que f(x,,y,) est un minimum local strict de f.

 Un point (x,,y,) € D(f) est un point dextremum local de [ §’il est un point de minimum
local ou un point de maximum local.
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Détermination des points d’extremum local

Définition. Soit f : D(f) — R une fonction de deux variables. On dit que (x;,y,) est un
point stationnaire de [ sila fonction f est différentiable en (x,,y,) € D(f) et si

Vf(xg,50) = (0,0).

Dans ce cas, le plan tangent au graphe de f au point (xo, Yo [ (x5 yo)) est horizontal :
z = f(x9,50)-

Théoreme 1. Soit f : D(f) — R une fonction de deux variables différentiable en (x,y,).
Si (x,,y,) est un point d’extremum local de f alors (x,,y,) est un point stationnaire de f.
Preuve. Supposons que (x,,y,) est un point d’extremum local de la fonction f. Comme par
hypothése f est différentiable en ce point, Vf(x,,y,) existe.
A voir : Vf(xo,yo) =(0,0).
Par hypothése, la fonction x — f(x,y,) possede un extremum local en x,,.
En utilisant le théoréme sur les points d’extremum des fonctions dune variable nous
trouvons %(xo, Yy)=0.
De la méme maniere, étant donné que y — f(x,,y) possede un extremum local en y, nous

0
trouvons é(xo, ¥y)=0. [ |

Conséquence : Si f est différentiable en (x,y,) et si (x,,y,) n'est pas un point stationnaire
de f, alors (x,,y,) n'est pas un point d’extremum local de f.

Par conséquent. si f est une fonction différentiable, alors les candidats & point d’extremum
local de la fonction f sont a chercher parmi les points stationnaires de f.

Remarque. Le théoréeme se généralise au cas des fonctions de n variables, avec n > 3.

Exemple
La fonction différentiable f(x,y) = x2 + y? est telle que
f(x,y) =% +y* > 0= £(0,0).
Par conséquent, f posséde un point de minimum local en (0,0).
Etant donné que le gradient Vf (x,y) = (2x,2y) est défini pour tout (x,y) € R? et s’annule

en (0,0), le point (0,0) est bel et bien un point stationnaire.

Attention: Le théoreme 1 ne dit pas que si (x,,y,) est un point stationnaire de f,

alors (x,,y,) est forcément un point d’extremum local de f.
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Considérons par exemple la fonction différentiable
flax,y)=x% -2, avec D(f) =R2.
Comme le gradient Vf (x,y) =(2x,—2y) est défini partout et
Vi, =0,0) <  (x,=(0,0),
le seul point stationnaire de f est (0,0). Nous pouvons montrer, a 'aide des courbes de
niveau de f, que le point (0,0) n’est pas un point d’extremum local de f. Nous avons
flx,y)=c — 2-y?=c¢

e Si ¢ =0, nous trouvons y = +x (ensemble de deux droites).
2,2

e Si ¢ #0, nous trouvons — — — =1 (hyperbole).
c ¢

— L(1)
— L(3)
— LO

]
/4 -
/

Quelques courbes de niveau de f(x,y) =x2—y

2

z z
f0,) =~y
1 y 1 x
f(x,0) = x2
Coupeen x=0 Coupeen y=0 Esquisse du graphe de f

Définition. Soit (x,,y,) € D(f) un point stationnaire de f.

On dit que (x,,y,) est un point selle de [ 'l est possible de trouver deux directions
é=(eq,e;) et é"=(e],e5)

telles que la fonction ¢ — f(x, +te,y,+ tey) admet un point de maximum local en ¢ =0

alors que la fonction ¢ — f(x, +te’,y, + tes) admet un point de minimum local en ¢ =0.
0 1°Yo 2

Exemple

Le point (0,0) est un point selle de f(x,y) = x% - y2.
En effet, il suffit de prendre é=(0,1) et é* =(1,0).
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Théoreme 2. Soit f : D(f) — R une fonction de deux variables et soit (xO, yO) un point
stationnaire de f. Supposons que les dérivées partielles de premier et deuxiéme ordre

existent et sont continues au voisinage de (x,,y,). Soit

%f %f %f 2
H(xg,¥0) = @(%,yo)a—yz("o’yo)—(w(xo’yo)) .

1) Si o%f o%f
) Si %(xo,y0)>0 et ﬁ(xo,y0)>0 ou 0—y2(x0,y0)>0 ,
alors le point (x,,y,) est un point de minimum local de f.
Si o*f o%f
2) Si H(xo,y0)>0 et @(xo,y0)<0 ou W(xo,y0)<0 ,
alors le point (x,,y,) est un point de maximum local f.
3) Si H(xy, 5, <0,
alors le point (x,,y,) est un point selle de f (et n'est pas un point d’extremum local).

Remarques.

* Si H(xy,y,) =0, le théoréme 2 ne nous permet pas de conclure et il faut étudier la fonction
au voisinage du point stationnaire (x,,y,).

» Le théoréme ne se généralise pas au cas des fonctions de n variables, avec n > 3.

Définition. On appelle H(x,y) le hessien de f. Cest le déterminant de la matrice

%f %f
62f 6210 ’

axay(x,y) W(x,y)

appelée matrice hessienne de f .

Méthode pour déterminer les points d’extremum local d’une fonction

différentiable de deux variables
a) Dresser la liste des points stationnaires de f

b) Appliquer le théoréme 2 pour déterminer la nature des points trouvés sous a).
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Exemples
Déterminer les points d’extremum local des fonctions suivantes :
1. f(x,y)=x3+y3—38x—12y+20, avec D(f) =R2.
Comme %(x, y) =3x2-3 et %(x, y) = 3y% — 12 sont des fonctions continues définies

sur R?, la fonction f est de classe C1(R?) et donc différentiable sur R?. Comme
3x2-3=0 x>-1=0 (x—Dx+1)=0 x=loux=-1
9 9 — —
3y*-12=0 y*—=4=0 -2 +2)=0
nous avons donc quatre points stationnaires :

(172)’ (17_2)’ (_1;2)) (_1,_2)

y=2ouy=-2

Etant donné que
g(x,y) = 6x, giy’;(x,y) =6y, %(x,y) =0 et H(x,y)=(6x)(6y)— 0> =36xy,

le théoréme 2 nous dit que : )

e (1,2) est un point de minimum local de f car H(1,2)=36-1-2>0 et %(1,2) =6-1>0

e (1,—-2) est un point selle de f car H(1,-2)=36-1-(-2)< 0

e (—1,2) est un point selle de f car H(-1,2)=36-(-1)-2<0

e (—1,—2) est un point de maximum local de f car H(-1,-2)=36(-1)(-2)>0

2
et 7L(-1,-2)=6(-1)<0
Ox

2. glx,y)=1+x%2+y%2—-2xy, avec D(g) =R2.
Comme g—i(x, y) =2x—2y et Z—i(x, y) = 2y — 2x sont des fonctions continues définies

sur R2, la fonction g est de classe C1(IR?) et donc différentiable sur R%Z. Comme
2x—2y =0
2y-2x =0

nous avons donc une infinité de points stationnaires :

— y=x (droite)

(x,x) avec x € R.

Etant donné que

le théoréme 2 ne nous permet pas de conclure.
Comme
glx,y)= 1+xz+y2 —2xy = 1+ 2 —2xy+y2 = 1+(x—y)2 >1=g(,x),

les points stationnaires de g sont des points de minimum local de g.
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3.9. Points d’extremum global (ou absolu)

Définition. Soit f: D(f) — R une fonction de deux variables.
* Un point (x,y,) € D(f) est un point de maximum global de [ si
fxg,y0) = fx,5) pour tout (x,y) € D(f).
On dit que f(x,,y,) est le maximum global de f.
¢ Un point (x,y,) € D(f) est un point de maximum global strict de [ si
f(xg,y0) > f(x,y) pour tout (x,y) € D(f).
On dit que f(x,,y,) est le maximum global strict de f .
* Un point (x,y,) € D(f) est un point de minimum global de [ si
fxg,y0) < flx,5) pour tout (x,y) € D(f).
On dit que f(x,,y,) est le minimum global de f.
* Un point (x,y,) € D(f) est un point de minimum global strict de [ si
fxy,y0) < f(x,5) pour tout (x,y) € D(f).
On dit que f(x,,y,) est le minimum global strict de f .

¢ Un point (x,y,) € D(f) est un point d’extremum global de [ 8l est un point de
minimum global ou un point de maximum global.

Exemples

1. Tout point (x,y) € R? est un point de maximum global et un point de minimum global de
la fonction constante f(x,y)=c.

Graphe de f
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2. La fonction A(x,y) = n’a pas de points d’extremum global.

1
Va?+y?

Coupe du graphe de h en y=0 Esquisse du graphe de &

Existence de points d’extremum global

Rappel. Si f:[a,b] — R est une fonction continue définie sur U'intervalle fermé [a,b], alors

la fonction f posséde (au moins) un point de maximum global et (au moins) un point de
minimum global.

Dans ce cas, les points d’extremum global sont a chercher parmi :

* les points x € Ja,b[ our f'(x,)) =0,

* les points x € ]Ja,b[ ou f'(x,) n’existe pas,

¢ les points du bord de I'intervalle, a savoir x =a et x =5.

Par exemple, la fonction f esquissée ci-dessous possede deux points stationnaires (x; et x,).
— x, est un point de minimum global de f

— b est un point de maximum global de f

y
f)

flxy) y=fx)
f(a) /\ Xy

fapl e x NS b
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Question. Quel est 'analogue d’intervalle fermé [a,b] < R lorsque nous considérons des

domaines de R” ?
Rappel.
e Un domaine D cR” est fermé ¢’il contient son bord.

e Un domaine D c R" est borné §’il peut étre contenu dans une boule de rayon fini centrée
a lorigine.

e Un domaine D cR” est compact 8’1l est fermé et borné.

Exemples

1. D, ={(x,y)eR?: x* + y? <1} est un domaine ouvert et borné.

2 D2 ={(x,y) € R2: x2+42 < 1} est un domaine fermé et borné.
3. ={(x,y) € R?: y <1} est un domaine fermé mais non borné.
4 ={(x,y) € R2: -1<x<1, - < 1} est un domaine fermé et borné.

sOomEE

Théoreme 3. Soit £ :D — R une fonction de deux variables avec D c R? fermé et borné.
Si f est continue, alors f posséde (au moins) un point de maximum global et (au moins)
un point de minimum global.

Conséquence. En faisant appel aux théoremes 1 et 3, nous pouvons montrer que toute
fonction différentiable de deux variables définie sur un domaine D fermé et borné atteint
nécessairement son maximum global et son minimum global en

e un point stationnaire,

» un point de 4D, le bord du domaine D.
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Méthode pour déterminer les points d’extremum global d’'une fonction

différentiable de deux variables sur un domaine D fermé et borné
a) Dresser la liste des points stationnaires de f se trouvant dans D.
b) Déterminer les points sur le bord de D susceptibles de donner un extremum.
c) Evaluer la fonction f en chaque point trouvé dans a) —b)
¢ la plus grande valeur M est le maximum global de f sur D,

¢ la plus petite valeur m est le minimum global de f sur D
et nous avons

m< flx,y) <M pour tout (x,y)eD.

Exemples

Déterminer les points d’extremum global des fonctions suivantes :

1. f(x,y)=x%—xy+y?—x—y restreinte au domaine y
D:{(x,y)E]Rz:x>0,y}O,x+y<3} 3
(domaine délimité par les droites x =0, y=0 et y =3 —x). 9
a) Points stationnaires :
of of 1
Comme a(x,y) =2x—y-1let @(x,y) =—x+2y—1 sont
des fonctions continues, f est différentiable sur R2. o2 3«
Les points stationnaires de f satisfont
2x—y—-1=0 (1) 3x-3=0 2(1)+(2)
{—x+2y—1:0 (2 { 3y—-3=0 (1)+2(2)
x=1 Y
{ y=1 3
Nous avons donc un seul point stationnaire : 9
(1,1)eD.
Ir--¢
|
T3 3§ =
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b) Points du bord : nous allons regarder les trois cotés du triangle séparément :

‘Cl:y:0,0<x<3‘ Y
Ici f(x,0) = x% —x = g(x), avec x €[0,3]. °
Comme g'(x) =2x—1 s’annule en x = %, il y a trois candidats 2
sur C, : 1
(£,0), (0,0, (3,0) LU
51 2 3 «x
‘CZ:x:0,0<y<3‘ y
Ici £(0,y) =y%2—y=g(y), avec y € [0,3]. 3¢
Comme g'(y)=2y—1 s'annule en y = %, il y a trois candidats 9
sur C,, : ) Gy
(01%) ’ (090)’ (0’3) %0
‘CS:y:—x+3,0<x<3‘ L2 3 «
y
Tei flx,—x+3) =22 —x(—x+3)+(—x+3)2 —x —(—x +3)
= 3x2—9x+6 = h(x) avec x € [0, 3]
Comme h'(x) = 6x—9 s’annule en ng et —%+3= %, ilya
trois candidats sur C, :
(3,3),(0,3), (3,0

¢) Evaluation :

f,D)=1-1+1-1-1=-1 (minimum global) y
f(0,0)=0—0+0—0—0=0 max

(30 = 1-0+0-3-0=-1

f3,00=9-0+0-3-0=6 (maximum global)

7(0.4)=0-0+3-0-}=-1

f0,3)=0-0+9-0-3=6 (maximum global)

33Y_9 9,9 3 3_ _3

fleg)=3-4+1-5-2="1% ’

Par conséquent,

e (1,1) est un point de minimum global de f

* (3,0) et (0,3) sont des points de maximum global de f
De plus,

-1<f(x,y) <6 pour tout (x,y)€D.
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2. h(x,y)=V x2+ y2 (distance a l'origine) restreinte au domaine y
D={xyeR?: (x-2%+y*<1}. m
Géométriquement nous nous attendons a trouver :

1 2
e point de minimum global de A : (1,0) U x

e point de maximum global de A : (3,0)

Remarque. Nous allons étudier la fonction différentiable f(x,y) = x% + y2 car cela va
simplifier les calculs sans changer le résultat.
Comme %(x,y) =2x et %(x,y) =2y, le seul point stationnaire de f est (0,0)¢D.
Par conséquent, les points d’extremum de f sur le domaine D sont a chercher sur le
bord de D, le cercle de rayon 1 et centre (2,0). Nous avons :
(95—2)2+y2 =1 <= x2—4x+4+y2 =1 = x2+y2 =4x—-3

Ainsi, sur le cercle, la fonction a étudier est

g(x)=4x-3, avec x €[1,3].
Comme g'(x) =4 # 0, les seuls candidats & point d’extremum de g sont les points du bord
de [1,3], a savoir x =1 et x = 3. Les candidats pour f (et &) sont donc (1,0) et (3,0).
Comme A(1,0)=1 et ~(3,0) =3, le point de minimum global de A est (1,0) et le point de
maximum global de A est (3,0), comme attendu. De plus,

1< h(x,y) <3, pour tout (x,y)eD.

3.10. La méthode des multiplicateurs de Lagrange

Probleme : Soit f: D(f) — R une fonction de deux variables.

Nous voulons trouver les points d’extremum (x,y,) € R? de f qui satisfont la contrainte

g(xo,yo) = 0.

© Pearson
Autrement dit, trouver les points (x,,y,) sur la courbe de niveau 0 de la fonction g :
L,(0)={(x,y) e R?: g(x,y) =0}
tels que
f(xy,59) = f(x,y) (ou f(xo,yo) < flx,y), pour tout (x,y) € Lg(O).

Application : Déterminer les points d’extremum de f sur le bord d'un domaine D.
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Question : Comment trouver les points d’extremum (x,,y,) € R? de f qui satisfont la

contrainte g(x,,y,) =07

Une premieére approche consiste a résoudre g(x,y) =0 pour obtenir y en fonction de x :
y=G(x)
et chercher ensuite les points d’extremum de la fonction d’'une variable
h(x) = f(x,G(x)) .
Alternativement, nous pouvons résoudre g(x,y) =0 pour obtenir x en fonction de y :
x=G(y)
et chercher ensuite les points d’extremum de la fonction d’'une variable
h(y) =F(G(y),y).
Plus généralement, nous pouvons essayer de trouver une paramétrisation
@) = (x(8),y(8)),  avec tela,bl,
de la courbe L4(0) et chercher ensuite les points d’extremum de la fonction
r@) = (@) =(fo@)t)=f(x@),y®)),  avectela,bl.

Malheureusement, dans beaucoup de situations ces approches ne sont pas possibles.

Rappel. Nous avons vu que lorsqu’une fonction g est différentiable en (x,,y,) € D(g) et que
la courbe de niveau de g qui passe par (x,,y,) posséde une paramétrisation ¢ :[a,b] — R?
autour de (x,,y,) telle que

Pty =(xg,5y),  avec ty€la,b[
est réguliére en ¢, alors le vecteur tangent ¢'(¢,) ne s’annule pas et le vecteur Vg(xo, Yo)

existe et est orthogonal a la courbe de niveau de g qui passe par le point (x,y,) :

Vg(xy,5,)

Y4

a t b t
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Remarque. Une condition nécessaire pour que le point (,Z)'(to) = (xO, yO), avec t, € la,b[
soit un point d’extremum de la fonction f sur la courbe L,(0) est
(f o (ﬁ),(to) =0.

Autrement dit

@' (ty)- Vf(xy,5,) = 0. (%)

Idée (Lagrange, 1788)
Liéquation (%) nous dit que si (x(,y,) est un point d’extremum de f sur la courbe L,(0)
alors les vecteurs Vf (x4,5,) et @'(t,) sont orthogonaux.
Comme par construction Vg(xo, ¥o) est lui aussi orthogonal au vecteur tangent ¢'(¢)
(car L4(0) est la courbe de niveau 0 de la fonction g), les vecteurs Vf (x4, et Vg(xo, Yo)
doivent étre paralleéles.
Supposons que Vg(xo, ¥,) existe et soit non nul. Il existe alors un nombre réel 1 tel que

Vi (xg,50) = AVE(xg,5)-

Le nombre A est appelé multiplicateur de Lagrange.

La condition nécessaire pour que (xO, yo) soit un point d’extremum sur Lg(O) s’écrit

of g
a(xO’yO) = Aa(xoayo)

$ of

og (% %)
i - 12
3y (29, Y0) 3y (%9, 0)

8(x,59) =0
Nous avons donc a résoudre un systéme de trois équations a trois inconnues x,, y, et 1.
En introduisant la fonction de Lagrange L :

Lx,y, 1) = f(x,y)—Lg(x,y),
le systéeme d’équations (xx) devient

VL (%, 99, 1) = (0,0,0).

De ce fait, la recherche de candidats a point d’extremum sous contrainte d'une fonction
de deux variables se rameéne tout simplement a la recherche de points stationnaires d’'une

fonction de trois variables.
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Remarques.

o Pour pouvoir utiliser la méthode des multiplicateurs de Lagrange, il faut commencer par
vérifier que Vg(xo, ¥o) existe et est non nul pour tout (x,y,) € L,(0).

o La méthode des multiplicateurs de Lagrange nous fournit des candidats. Elle ne nous dit

pas que si (k%) est satisfait alors (xO, yo) est forcément un point d’extremum de f sous la

contrainte g(x,,y,) =0.

o La méthode des multiplicateurs de Lagrange se généralise a la recherche de points
d’extremum de fonctions de n > 2 variables sous k£ > 1 contraintes, ou il faut résoudre

un systeme de n + % équations avec n + £ inconnues.
Par exemple,
L(x,y,2,11,19) = f(x,y,2) =1, 81(x,5,2) — 1y 8o(x,¥,2)
est la fonction de Lagrange associée a la fonction de trois variables f sous les contraintes

g1(x,y,2)=0 et g9(x,y,2)=0.

Méthode des multiplicateurs de Lagrange

Pour trouver les points d’extremum de la fonction f sous la contrainte g(x,y)=0 :

1. Construire une nouvelle fonction, la fonction de Lagrange :
L(x,yrﬂf) = f(xay)_ Ag(x’y)

2. Calculer les dérivées partielles de L :

oL of og
i 1) = L~ N =
E» (2, 7, 1) ax(x,y) E» (x, ),
oL of og
i 1) = — 1=
3y (2, 7, 1) ay(x,y) 3y (x, ),
oL
a(x’y’ﬂ) = _g(x7y)'
3. Déterminer les points stationnaires de £ :
of

og

of 0g

(%)

g(xo,yo) =0
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Exemples
1. Déterminer les points d’extremum de la fonction
fl,y)=x+y
sous la contrainte x? + y2 = 2 (cercle de rayon v'2 centré a l'origine).
Soit g(x,y) = 2% + y? — 2 la fonction contrainte.
Comme Vg(x,y) = (2x,2y) s’annule en (x,y) = (0,0) et g(0,0) = —2 # 0, nous pouvons
utiliser la méthode des multiplicateurs de Lagrange.

Considérons la fonction de Lagrange
C(x,y,/l):x+y—ﬂt(x2 +y2—2).

Comme :
oL oL oL 9 9
— N=1-21 — A)=1-21 — M) =—(x"+y“ -2
o &) x, 5y B P ¥, 5 By ) =~ +y7-2),
les points stationnaires de £ satisfont :
1-21x=0 (@)
1-21y=0 (2
x2+y% =2 3)

La soustraction de la premiére équation par la deuxiéme nous donne
2x+2ly=0 <= 2My-x)=0
et cette équation est satisfaite si y =x ousi 1=0.
e Si y=x, la troisiéme équation devient 2x% =2, d’ott x = -1 ou x = 1.
e Si A =0, la premiére équation devient 1 =0, ce qui est impossible.
Nous avons donc deux candidats :
(-1,-1) et (1,1)
Comme
f(-1,-1)=-1-1=-2
fL,L)=1+1=2
la fonction f est maximale en (1,1) et minimale en (—1,—1). De plus,

—2<flx,y) <2 pour tout (x,y) sur le cercle xZ+ y2 =2.

Remarque 1. La courbe de niveau ¢ de la fonction f est la droite d’équation y = —-x+c.

Comme le gradient de f

Vf(x,y) =(1,1) pour tout (x,y) € R?
est parallelle a Vg(x, y) = (2x,2y) lorsque y = x, nous retrouvons donc les points (1,1)
et (-1,-1).
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-------- courbes de niveau de f

_— contrainte g(x,y)=0

o point de minimum de f

(e] point de maximum de f

Remarque 2. Dans ce cas, il est aussi possible d’utiliser une paramétrisation du cercle
d’équation x2 + y2 = 2. Par exemple,
@)= (\/Ecos(t), \/§sin(t)) , avec t €[0,2r].
Ainsi, la fonction d’une variable a étudier est
h(t) = f(F(®) = V2cos(t) + V2sin(t),  avec t€[0,27].
Comme A'(t) = —v/2sin(¢) + V2cos(¢) s'annule lorsque ¢ = % out= %”, nous retrouvons
les points (1,1) et (-1,-1).

. Déterminer les points d’extremum de la fonction

fla,y)=x%+y2
sous la contrainte (x —2)% +y% =1.
Soit g(x,y) = (x— 2)% + y2 —1 la fonction contrainte.
Comme Vg(x,y) = (2(x - 2),2y) s'annule en (x,y) = (2,0) et g(2,0) = —1 #0, nous pouvons
utiliser la méthode des multiplicateurs de Lagrange. Soit

Ly, M) =x2+y2 = A((x—2)%+y*-1).

Comme :

oL oL oL
— (6,5, 1) =26 —2Ux—-2), —(x,y,)=2y-21y, —(@x,y,)=—(x-22%+y*-1),
0x oy o

les points stationnaires de £ satisfont :

x—AMx—-2)=0 1)
y(1-1)=0 (2)
(x—22+y%=1 3)

La deuxiéme équation est satisfaite si y=0ousi 1=1.
« Si y =0, la troisieme équation devient (x—2)* =1, dot x =1 et x = 3.
e Si A =1, la premiére équation devient x —(x —2) =0, d’ou 2 =0, ce qui est impossible.

Nous retrouvons donc les deux candidats trouvés précédemment, a savoir (1,0) et (3,0).
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3. Polmdrmas du Taglor
Mzwn ’
St L e gonction, d'wne varsble de claste ) avec ke N
Snif €D . Le pognome do Tz:vy(,or* do doyre b de p
askour dL Ao o8t donnd  par:
P, = }m) +ra) (- ) + Jf L)
o+ J!()f_%“’) (o)
Cas iworﬁmi‘s
k=1 : P00 = M) +;;('x~)(x—')c°) (appnmmdm lineaire)
=2 : P be) = {_Cxo )+ {,‘C'L. (%) + qt‘(_—t&) (x"')cg)
= p(x)+ ‘U&) (s )” (apfmxw.ﬂow quadrelrye ]

Bld‘ Bénd mlhs{r c,eﬁ{, n,o‘l‘l'ov\. A\X lfOT\C,h'O‘lm( O(L n vari aJoLU .

Coit $: iD(QQ )—R. une foncffm\ de donx th%luLc{ JLCL&(F& Ch'
(a\ve_c, lL)Z) & sotk (’Zo,\jo)éb(ﬁ)

Soit (e) €D o poind 6 (procke de ()

" () (e )= (o) )G ()
Bn houl avonS ')oJe/ Jj"
g

Yo |-
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Lo segmerd reliand (o, yo) & Guyy) pek-Bire, paramehice par
)= (% + th, 4o +ths) | avec teloA)
Soit o) = ()N =) (v by, go +the) (ponction, oftone Varrdly
far construdton - g(0)= M. )
9tt)=k(x,y)
les (vo((jl\ﬁmu d&.@(nr ole. OQ,%re\/r 1et72 DQ.; adour oo =0 ok s
p6)=go) +y'lo) §
() = 3(0) ¥ %ctﬂt * M o
On peud whilizer (1) =glo) + ‘(o) o fz(M=3(o)+3‘(o)4l23\‘(o)
ot e g000= gy |

On doit dowe calader %‘CO\ ok %‘CD)
Comme. gl = (§-0)() = (% +t Lk, , yo ¥ th,)

o a - . s .
3‘(Jc)=¢’(t)- VE®) =T%) VHEE)

VC V(W)
h 55 (e, e HEh ) *—L\Z;;‘"—Cx&fkl,nﬂo%k )
R ge=h, s“zuﬂo w1, By,
Ainsi, T &)—-3(,0\ -\—o‘)(O)
ok
= J((o(,,)\gg\—\- CATN (x-%) 3‘5‘(14,,(00)((3-100)
et o Ni“/‘owvé’, o ?ov-rwg.(;c_ ‘)-owr la—PPTOX”\Aa-‘WOIA, Gwitre .
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boudre part;
et = (b, 35 (bl g, 1) SN RN ))
e T Gt bW %a—i(m’ck\,ugo’rfl«i?kz
+ zﬁ%gﬁxo%kl,lﬂoﬂ‘k h *L\I"{ZC%J*HW%J“MZ)L“Z

' <

'3m oy 3A Gyl +k\z—,ig~xcx,,\30m
P 3530 G o) o, + g S g,

L T

9 ?

ja;f‘bc‘.,\gﬂ a’gf:(vcw%) \/\\
= W) | S
3’7(,83 (x*)‘jo ’_%_ bc“)l{l

— f
wmot~ee WeSfienne

—

St llew wste H{f(“‘*"d‘\ b natrce Wogrionnl | wous avons done :
%“(o\ =TT Hy b6 9.) T
= Tt) H} (og)‘j_) [N
A'W\S{,
FLU\) yCe) 4—5(03 Y= z <5 '(0)
o)+ T lg), BT+ BT By D)

0P ProXimL ,S‘_C'x,,cd).
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]}ﬁ},)m hoY\ .

Soilt £:D()—=R ume {,ov\o(—fow diplrenhiable sur D(F)-
Soit Zy=(0a,y,) €D ) - Lo polynspt o Taylor docdre 1 de ¢
ondonr ol o, est Afhw paC

Py ) {_(oco)+< VIR, - >, pour toud Fe°
Si l'ow suppore Qua pect di clasre C* w olefewt (o folyndine.
de quj(zc" d'ordre 2, de 3 awbouwr ole 2, par:

=)@ TIE), - > + g <, b)) () 2,
pour Youl zeR5

B o p ) =p, )+ S<x, HE) (5-52) >,

Remernvec.
Ces o([f}{wih‘omr se S,c;/m/ru(-ismf refucellemant aux f«wo{‘loM
de w vabriebles g-bLﬂ—a’R avec b(f:)c_ﬂl%:
(x 11(9@)4—( VqlC_' Y%
= VLI VIGR), -0 > 4 Z<sz~’>z:) H,62) (x—2)>
=GO+ LR, ) eE) >
pour foul zel”
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Exemplo .
Soit %C%’j) =Sin (Oc-\fj)'\—oogbc—g\tj), rahol‘\mv o cia.s{ﬁ C°°(7127')

Colewdar les pb‘gmgms de ma(or dordre 1 eb 2 do {L ambonr
cﬁb £{0r-tlal,'NL .

N a {:Lo o) =s5in(0)+css(0)= 1

9%

4 O )‘-’ (')c ) l C?c—3)

3__ DY’ cesegln e J }z)_v.{*(o,o)=(ﬂ
(uc,L)) c::s(x+197+3 sinlx- 33

%%L%/ﬁ)’“sm("*j) cos (- 33

—1
&{% ()c,v) = —Sw\hc-\—\j) 3@5(3( 313)

ot < Fpo,0), () 7= (1), (5) > =y
& 3) ool = 3.3 32 ) ey
= --x,z'\'?)%v +—3%:9—937'=—3c, ~33 &-prj

NO\U {‘f‘buvons~
V‘“"‘J) {‘.(o o) + VYE(O 0), (43) = 9 (%)t,))-_|+_)u_lj
'FZ("v‘j)—?lcxllj) - (Q\\;),H,r(o,o)(o\;)
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'Rﬁ,wwr'elb\fl__'
Do mamde. omalspue amx ponctong d v varekle il est qussi

pussible ditiliser des diveloppomuns LiniheT (an sacdont les
fermes relovants ) pour calenle Au ol nomes e Taylor
Rappd.: sinft)= t—t +"‘ ..
o= 1= £ 1B
d'on stnlxry) = (ac+j) ——‘S—I.(x»ﬂj\ﬂ
cos(x-3y)=1— X (7c—3t\/))z+...= | - Jz(vf—éwvﬁ{) +

Gen)= 1+
— {P\ C)V) L—]-U‘) z . (WN Q.VQJ)
YZC')(,kj)= 1-1—7(_-1—3 — Jz-jc_ —Zzy t Sx:j

M(Atﬁzam lindire )

— Wng makner A deteille nxn est qjyv\ﬁ‘m'alu si Al=A

— SU A et wn maknen ijy\r\ﬁ‘m'a[uﬂ_ do_teille. ., alsry
ello est oco'agenqﬁsalo(.t o»»Hx.o3omLo,W\,\Jc . A=PDP" o
D - (m‘ '*~r>\m) est vt matree diagowale donk las
c,o%c,de»i‘&‘ dicgonomy sonb (25 velowrs propres do A
(par porediment diggeTentes) o P = (TC, o) est o
meatnce OY‘H\z’;o'y\,a(L Telle que A’C-a—— 9\{&6 vy ”IJ‘ =1
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- S €<, & (a base CRmoniqht LR et B=iT,.. w0k
wnt bese orflonormie de R format de veckeuwrs propres 06_ A.
L matnee P= (T . ;i) et o mebnee da rasiage o B vert €
of P =P ot b mebnee db fasiage do € vers B
Soit zeRY. B peud derire .

= ‘ME—T*‘ A e ok L= L:)lTI; + _+3Nal

o [Zlew(3) R ¢ @2 - PRl T

= S0 A et wal mabnen ﬁjyv\ﬁ‘r\o'qw_ do_tsille. nxm. | alare

l ponction Q:R* =R, diinie par QR =AY

avee el est eppelie (o porme ngolmh'o\w/ associee .

Ou dit que Q et difinie positve si QE) >0 pons boud 40

O it que Q est o@fx'v\&e nigattve si QE=E)<O Powr bl 40

O it que Q est nom difinie 5i Q) prerd & e pois deg

voluwrs pasitiver oF negatyver.

Si A=PDPT, alors on paud Corite:

QR)= <€ AX>=XAX = "TPJW”
=(PTRITD(PTY) = \"J + '\ZL{)_L Ny \_d%+ +'X€Q~

2o >0
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- Soit A wnl makner i:c)yv\ﬁ‘r\éalu de_teille nxn .
Soiead N, -, les valowrs fropm_:oQ A.
Soit QE)=XTAL oo porme gw.olm-ﬁqw associee.
O d raavitrer
@ est difinic positive <= 20 pour fout j=1_n
Q et dofinie nigetve <= A <O pour fout j=4_n
Q est non dofinie <= A possida des valowrs propres

Posﬂw\,es ot r\zﬂsa{ﬁ‘ves.
Fin di “roppel”

App(iwh'ok e (o re_c,LU‘cLL O(Q/ p«e{w{'f O{IQ,X'{T&VV\,IAM
Sol'(- {-: b(f—)-"’m o qu\c,l-;b'w dt. n \/a,‘f"l‘a.lbL.QS' iﬂ, Q(A,SIt C,z.

Dams ce eas, Hy E,) est ume matmee sgmﬁn‘elma_-
Si %, ef um point stabiownoire de t, alons VG )=0
eb e polypdns de Taylor d'ondre Z andour de 2o devient
RO = JE + L%, WA %) >
= L&)+ -‘z&%(f—i)
ol (Q;ext“ loe porme (ilkﬁo(m'{'ﬂ:,% associde 3 H%) (Qz. watAce
hassiene. do | elaluce o Ty ).
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On d{sh‘vxgw. frois cag:

1) ST existe um nembre $50 erﬂ\u pone toub B, HNIEN
oo Q(C-25)> 0, aocs 2y et wns poir de i
Weal do ¢

) Sl existe wm newbre 330 ere\\u, pour tout xeBEC, J)NE
o a (Qf(f—‘Z) 0) alors Ty et wa potvd de ymoocimm
el de £

3) S pour tout §>0, (55 —22) prend des valewrs positives
et n(gatives sur BEZ,H)NIBY alore Zy vlest PR tann
Poiyd‘ dletremom Locall dic L.

7~

TN -

Soit £ D) =R une gonchion o w varmables & clogre C.

Soit Zoed) wn (oiv\f statonnaire de g (c-&—o(- _ﬁ}(ﬁ)cﬁi).
Ssient A% -, M @8 valewry pogpres d. ty (%) .

-S; 6\57 0 powr Fouk 'rk,.__,n,)a(ow Z et um point do mindmmn

local dao L.
- St ,}\b 0 powr tould 'rl,..-,-r\,)aiors* Z. est um qzof/\i' do maximum,

loeal do .
~ Sl ye dos valowrs propres PoJi‘I‘l’VQJ eb mfgo’i‘)’va alery Z,
est um point selle de p.
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Cas n=2-
Sit A=(%5) une matnee sy frgung.
le polynome caracte miigue de A est:
po (N) = dek(A-N1)

= 4ot (* )

= (e-N)W-N) =L

= 2%~ (a+d)\ +(ad-1?)

= N = Te(A) & +debk(A)

-
)= (A= %) (A=2%) = K= N3N F A

hinsi , s valewrs propres do A Saﬁsdﬁwf
A = det(A) = ad —ls°
{'Xl+’)gz=’|?(A)=o~+oL
On dishinsue g cas suivomts :
WA >0 = WAYS 0 o TrA)=ard >0
= WE(AYS0 o a>0 o 450
,<0 <= W) S0 o TelA)=ard <
= W(AYS0 o a<l o d< 0
A >05%, <= W(A)< D
N0 s N0 <=9 W (A)=0

oA
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ConS{/qum co_.

Tour caractérser (o nature das points stationnaires de ponctions
de doux variables, i west pas veeessaire oo determiner los valons
propres de Helzo,yo). En epret, lo signe du hessien

M%,%) =def( H}(oco,?a))
e signa dune des dirivees ra.r(‘feucj dordre 2

SM,HM' send .

Exerple.
Considdrons o -f—nnc.'(7b1w 5=R3—'ﬂ1 do clogre C° difiwie par
Pax,y,2) ='xz+(oz+%z % ijz
s) Véﬁ{.fer Que (0,0,0) of (-1,4,1) sont dlec Pm‘VL'(T slactonnaster oQ]c
b) délerrmingr b natpre do ces Poivcl‘&( Pofvd‘ de. miniman, loeal
‘)oiv\i‘ do_ mmximum, LQCaL,poi'\f welle ).
a) M a %(x,lﬂ,%)=2?c,+2u3}
% Cx,tg,%)‘:Z\.j-x 7x%
%)%_ (x,y,2)=2E + 27

=>§’J,Lo 0,9)=(0, 0,0) o V{(‘H L) =(-2+2,2-2,2-2)=(0,0,0)
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b\ Dc’nvees ]mr{‘ UJ’ Aof‘O‘l‘C Q

(91—
T la9,2)=2 %‘;x(%) 22 5k Gy2)- 2

i ?
; P a,,2) - 2, 9-;}3—

J
79’%%,-(7(_) 9;%)'1 2}

Ce,p,2)=2c

2 Az
= H_F(I,yj)%):'-(ZZ- 2 ZA}L)
23 e 2

o (%,y,2.)=(0,0,0) : 72 00
st 7 H*Co,o,o\‘—‘(o 2 o)
O 0 2
Vc\,(w:rs Pro?res : ')\\T-I)\-,_"—"O\-g =2->O
=) (0,0,0) est \yoiwt do M A, [/ac,a.,(, 0(4, {'—

.(xo) ,%u):(‘l)4;4)‘ 2, 2 %
> H*H'{'“—Qgi 2 -2 |=A
-2 2
Valwrs()rofkt&
- 2 4 4»’>~ 2 0
bt (A-AD)=dek| 2 24 -2 4- ’>\ 2-% 4N
2 -2 2\ -2 4
~c4+cz
G ~Gc,
4 2 0 A -
- (o - ‘Ll+’)\>=;(4—'”<ilk(_’>\z, ng:)
+ 0 -2 4-x .C.
L~ '
-2-A O \_
a2 0, ) - NE-
L =L,

velours yro = ,>\\_‘Z\'>O
o A }:’ (1, 1) ettt poin relle ol .

-2,< 0
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3.12. Théoreme des {LOkc{‘{UV\S me(Ac,LJres.

Dans cectaines situations, lorsgu'on o uns equation de & forme
?Cx,lg)-ﬂo

on aameraib powvelr exprimer Y e {fohc.{'im de . autour dlum
Vo'w\i: (xo,\do)eﬂf' tel e Ttoyo) =0. Aubrement dib | on aimercif
trouver um iwervally, T=T%-€, %o+, avee €50, ot ow yeut
definic Wiz l%omcl‘im«, June variable q: 1—~R telle o

90) = 4o d F(x,am):O pour lout xel.
Question . Quelles onf les conditions gque ('on doil® imposer T

Your que cela. 50if Pom"o(.e?

EX%EQ.
Considerons (o ,P-O‘lf\.c_'&o'b\, -F('X-,:j)'—‘ ')Cz‘l'l;-l

On oo 'F(x;\j)=0 &) 'x,z+37"—4

(cercle de rayon, | contreen (0,0))
S Gaurg.) € fel que Flatapya)=0- On distingut trois cas.
= Sl w70, alery << ) ek E——-wxxy»(lxo—ll,loa,+1|)>0

On hoisit %C')c)=m avch(3)=]X°—f,Xo+€[
- S \O°<O,alnrr <<} eb &-—-wm(lxo—ll,l'xo+1|)>0

On dwisit %cxw-—\/l—ix"\ avch(7)=]7co—€,xo+€[
= S0970, or ne peud pas dépimir iy =9Ge) autows de (£1,0).
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T"\Q:OFEN\L( das }md’l’om :’wp(»’c/\"er). ( cag vv-—Z)
SO“T UcﬂZL umn %S‘QM[\L)LL Ouvﬁ\’_t .
Soit Fill—R. vme {:ouc{“{.ou\, de clesse C'.

Soit (’Io;vo)e(k fel aue:

- F(L,n o)_ O

- w C'I.o)\-ju :1: O

alors i existe €50 eb une {,ouc{‘fo'\'v 3:]%—6,%+€[—>Q
do. Jagre C! telle quL

— f\ao‘=?w&) eb
- 'F(x,c;cw))——-O pour Touk we)r,-€,a+el .

) )
e plg, %'cx) _ gEx'(:r,oo\cx))

(%)
Qﬁ (x, 3(1))

En farﬁwln.c 7our X=Ao m\a,

hinsi, wows powvons calenler o dinvee de § n Lo SN

QuolC Ut Rxpre ok, expuqlre pour 3

Trewve do 0F):

O o Flx,300)=0 = g’fg(x,ﬁcz))-‘/ﬁ “’%Cx,ﬁcx))j‘(k]‘—‘o
=1

IF
= 55(113(-11)) 3‘(36) = g’%(’&,gm)) = (),
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Extugple -
Conrfd':l\ohs 3\, hoUVve o -‘F(Y)Lj)a ‘xzhol (‘}0’\5(%«» oL cQﬂe Cl)
o o gibc,tj) Ixr o a (')()LJ =2

o g =2y
CO’MML, aty ('X.,lj) =0 <) %—O nows Pou.vom‘ app&qwzr [ﬁ ﬁworemz,
o tout point ('xo,xao) aves y, oF0. Dans ce cas, | existe donc £50
(& Ww‘ilxo“[ "’Q:‘l‘”)) €t% ]’)Ca g, ocﬁfl[—»ﬂl telle que 3(’)5,,) =40 et

(.‘Zozlﬂ ) 2~

I "ot _ e o Gliy)-—%e

%F (%, 9 ) 2o t
De plus, l’(qu.ei‘i,ow de o dvroile {‘Mxoxj‘c/ a (o courbe /‘.)=?CO(,)
Al ro‘m’( (7(«;\99) est -
Lo = cb(xo) '\'f))(‘io)(‘)(.—x») = U:Lgﬁ—'%‘:(‘x,—?&,)

Remarmn .

O o we cESultal analogut 5t ('xo,v.)elk eyt el N

— Flwy,)=0

- %f(,‘%;tgb) 0

alors il existe €50 ef uma {,oud*.‘m«, h:1] Y=, ‘3°+€[—>R
do cdesre C! felle quL

- 6= hiy,)

= Flhly,y) =0 pour b %G]Wg)wg[

E
De plus L\IC?)“ o, Wy )| LVC? - Gv; 5 (7o)
92 thty)y ) 9 (e )
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-

ZONTS

Cons i drons quv)fxz 4—xv 4—6—44 , fonchion oL clagre c'
(o o G luy)=3ctry U 35 Goy=xr3y’

Comme FQ A= +241—11=0 o %Fv-(z,a).—_z+3=5 0,
il existe €50 e 3:]2—3)2)@ [— R ’;q,E_(Q, ol %(U=4

ok F(x,z(a{,))‘;O. De plug, %)Q7=’Zi_;:-‘“%

hinst , 'Gnation. de b droite fampente 3 g an poink (2,1)
o point (2,1] ent y=1- S(x-2) y= ~ S+
Comume. gj‘EL(Z,«)rllJf 1=13+ 0, noug avon{ anffi e f-OhOth\/

T3 AL R elle que W) =2, Fliyly)<0 o W' (1) ==

Thiprme ( des donchiong l'wp(/a'lﬂ). (cas n=3)
Soit [lc[Rs wn ensemble ouved .
Soit F:ll—1R, ume {zoucﬁ’ov\, de clesse C'

Soit (fxo,vo)zo)e W el Gre

— 'F(m,,ﬂwzq): 0

- % 2] 0

alors i existe €50 e une {,oud*.‘w, 5:’5 ((L/%)’g] —TR
do dagie C' telle quL

— 7 =q(x%,y)

— ?(17?,%5%%))—:0 powr -[TOUA- (’,L,La,) e’B((xo/‘jo);é]
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De plug, gi(x,gF— %%,(1,9,3&,«3))
* 3ﬁ Y, 5@1‘(]))
25 (xy, 9y

‘0 9E oY) 90x,y))
En artienlier,  pour ()= (L,\go) LN

(,‘)L,ﬂ) =

Q 9c.° )_____B'ac(x" 1Yo ) %o )
b E (70,9.,2)

’)c,, )_____avy('x"% ‘750)
QY) Y E g 2)

Ai“’f, howd  pouvond CACM-(ET les dymvees Varﬁc[(@ de Vg sand
QVOLr Ui Q,xppeSS(Ob\, eprloi{f, n?zouw‘ 3,

Revdbott ancloywa powr %iéxo,ujg,%o) 0 ouw %;_Cxo;tg.,,%o) 0

3.3.D€Mvee dune (degrale dipondent dlm prrawmtre .
Ragpel: Thaordme pomdamental di calend tndeGral
Si 36(:0(717\), alocs
f{)g(x)dfx_ =G(L)-6() o G estume Vh'w"/ﬂ/e OQB.
En pmrﬁwher nous avcms VW Gue
H(t) = f g (2] dx
est Lo priwwtive JLQ_% qui vat O e tea
H' ()= t}(Jc)
H(a) *_/ 3()&)43(. 0
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Céndmlisation :
AZ‘f’gcx)dx =G(LkW)=G (W) on G et wme pn-,w'meo(e %
Si Iew Tuppere que o2 b ogont des f,om,{-rom de classe C])
elors la dirivebion par mpport & T voms downe
[/} g0dz) = (65616 .t)
= %(umbm— 3(aln) ) o)

= JU'\WQ
= o(m\/ee !

?Y‘o'posih'w\w
Soient {_EC‘(HZZ) ot o,be C(R). Soit
Fle)= [ pla,b) dx

alt)
alors

| blt)
Fle) = 1(b), EIB O~ (att), £) ') + ] %(x,t) d| ()

Cas pacticwlier:
Soient {.E.C‘([RZ) <£ %)QOQTR.SOH-
Ft) = /bb]t(x,t) de

alors

Flt) = Lb %(x,t) d (3
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Tdee do premve do () :
Seit F(6)= [ 3a,) d

. Bl RR) - F (1)
lm n

N L{l:’:v; L[/ED‘F('L)JG*"L) de "'/BO,F('L,JG) ci’L]

5, ('x, t*'«.) ('x, JG)
= L £ ) 1E )
k—>o / W d

_ (o, t4l) — ﬁf'x.,t)> - 5.7
(Jl'ku dx / —a—é{('x,,t)cbo

e TR
2

CoTamiL 5% est contiwnt ) pour houd £ pixd ef pour touk €50
L oexaste §50 tel que si Thl<d (indiposdant de xele,b,))
Ou(o’(‘S \ g{- (’)L) ‘t) —_ ¥(%)t+,"\:3’_ $('X.)t) , <€ -

OV\, Q. :F—](ﬁ) =

teuve ds Ck) -
Soit glleb,t) = ', ) e =~f "4, ) e
%ono(’l’m&o_ f;—ou: Wu"la,lv(u OV\ o

ek, t) = =40,0) | Habreme pondmmental
& ()b, t =;ce,t> Ly enleul ichdgrol
_3_‘3_( =_/ 6?_{(%){:) dx (’l)a.r (%:E))

Comme F(t) = %( (€),606), £ 1=(g-F)r) o €lI=(alt) bl), ).
nous ayons F (£)= v«b(fe(tﬂ T(5) avee @(+)=(d¢),00¢) ).
Aufrement ot

Flo) = —1lat), ) 0+ 3 (b, 106 + [ 20,1 o m
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Exemples .
LSoit Fe) = [ 5899 g glefur FE)

Sm(‘c')c,)

Wci"\om {-C')c,)t)’ est i {_,o'l\C.{TO"\, o(L c,fmc

C'(R?) Helle que {,(0 L=t
F(t) /O (sw\(’coc,)dx / cos(taq.occ[x
sw\(tx)} =T _ sin(Tt)

—f os(t) dx —{ X = —

x=0

don F'(5)=2sinlT) = 2,

£ .
2. Soil maibenant FL) =) EE9 g gl FUS).

O o .
) sin (t.£9) 2y sinlt ) ] £ 2 (sinlt0)
Flt) = —=— ) R
(o) == tt
sin(tax
= —Zé-sin(tg) - -L sinlf®)  H[T L__t
ya

—E'SM(‘E )~ —" S’m(‘(‘.i) 4 SM(F) — _{_Lgfn(tz)
= 3 si(t?) - _s”,\({-’l)

Jox F($)=Gsmmly) -4 sin(%)
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