
3. Fonctions réelles de plusieurs variables

3.1. Définitions et exemples

Rappel. Une fonction réelle d’une variable réelle est une application f d’un sous-ensemble

D( f ) ⊂RR dans RR : à chaque x ∈ D( f ) correspond de manière unique son image f (x) ∈RR .

On note f : D( f ) −→RR
x %−→ f (x)

Illustration :

RRx

f

RRf (x)

Le sous-ensemble D( f ) ⊂RR est appelé domaine de définition de f . Si l’on ne donne pas D( f )

explicitement, on considère alors le plus grand domaine de définition possible.

On appelle image de la fonction f , l’ensemble

Im( f )=
{
y ∈RR : y= f (x) pour un certain x ∈ D( f )

}
⊂RR .

Le graphe de f est l’ensemble de tous les points (x, y) ∈RR2 tels que

x ∈ D( f ) et y= f (x) .

Exemples

1. f (x) = 2, avec D( f ) =RR .

Le graphe de f est la droite y= 2 dans RR2 .

2. g(x)=
√

1− x2 , avec D(g)=
{
x ∈RR : x2 ! 1

}
.

Si y= g(x), alors x2+ y2 = 1 et y" 0. Le graphe de g est alors un demi-cercle de rayon 1

centré à l’origine.

3. h(x) =
√

x2 = |x| , avec D(h) =RR .

Le graphe de h est la réunion de deux demi-droites.

x

y

1

x1−1

y

x

y

Graphes de f , g et h
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Définition. Une fonction réelle de deux variables réelles est une application f d’un sous-

ensemble D( f )⊂RR2 dans RR : à chaque point (x, y) ∈ D( f ) correspond de manière unique son

image f (x, y) ∈RR .

On note f : D( f ) −→RR
(x, y) %−→ f (x, y)

Illustration :

x

y

D( f )

(x,y)

f

RRf (x,y)

Le sous-ensemble D( f )⊂RR2 est appelé domaine de définition de f . Si l’on ne donne pas D( f )

explicitement, on considère alors le plus grand domaine de définition possible.

On appelle image de la fonction f , l’ensemble

Im( f )=
{
z∈RR : z = f (x, y) pour un certain (x, y) ∈ D( f )

}
⊂RR .

Le graphe de f est l’ensemble de tous les points (x, y, z) ∈RR3 tels que

(x, y) ∈ D( f ) et z = f (x, y) .

Remarque. On peut voir f (x, y) comme l’altitude au point de coordonnées (x, y) ∈ D( f ).

Exemples

1. f (x, y) = xy

Nous avons D( f )=RR2 et Im( f )=RR .

2. f (x, y) = x2 + y2

Nous avons D( f )=RR2 et Im( f )= [0,∞[ .

3. f (x, y) =
√

x2 + y2

Nous avons D( f )=RR2 et Im( f )= [0,∞[ .

4. g(x, y)=
'

x− y .

Nous avons Im(g)= [0,∞[ et

(x, y) ∈ D(g) ⇐⇒ x− y" 0

Par conséquent, D(g)=
{
(x, y) ∈RR2 : x" y

}
.

x

y

D(g)

5. h(x, y) =
√

x2 − y2 .

Nous avons Im(h)= [0,∞[ et

(x, y) ∈ D(h) ⇐⇒ x2 − y2 " 0

⇐⇒ (x− y)(x+ y) " 0

Par conséquent, D(h) =
{
(x, y) ∈RR2 : −|x|! y! |x|

}
.

x

y

D(h)
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Définition. Une fonction réelle de trois variables réelles est une application f d’un sous-

ensemble D( f ) ⊂RR3 dans RR : à chaque point (x, y, z) ∈ D( f ) correspond de manière unique

son image f (x, y, z) ∈RR .

On note f : D( f ) −→RR
(x, y, z) %−→ f (x, y, z)

Illustration :

y

z

x

D( f )

(x,y,z)

f

RRf (x,y,z)

Le sous-ensemble D( f )⊂RR3 est appelé domaine de définition de f . Si l’on ne donne pas D( f )

explicitement, on considère alors le plus grand domaine de définition possible.

On appelle image de la fonction f , l’ensemble

Im( f )=
{
u∈RR : u = f (x, y, z) pour un certain (x, y, z) ∈ D( f )

}
⊂RR .

Le graphe de f est l’ensemble de tous les points (x, y, z,u) ∈RR4 tels que

(x, y, z) ∈ D( f ) et u = f (x, y, z) .

Remarque. On peut voir f (x, y, z) comme la densité au point de coordonnées (x, y, z)∈D( f ).

Exemples

1. f (x, y, z) = 3x−2y+5z−1

Nous avons D( f )=RR3 et Im( f )=RR .

2. g(x, y, z) =
'

x+ y− z

Nous avons D(g)=
{
(x, y, z) ∈RR3 : x+ y" z

}
et Im(g)= [0,∞[ .

Le domaine de g est l’ensemble des points de RR3 situés au-dessous du plan z = x+ y.

3. h(x, y, z) =
1

x2 + y2 + z2

Nous avons D(h) =RR3 \
{
(0,0,0)

}
et Im(h)= ]0,∞[ .

Le domaine de h est formé de tous les points de RR3 différents de l’origine.
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De manière générale nous avons :

Définition. Une fonction réelle de n variables réelles est une application f d’un sous-

ensemble D( f ) ⊂ RRn dans RR : à chaque point (x1, . . . , xn) ∈ D( f ) correspond de manière

unique son image f (x1, . . . , xn) ∈RR .

On note f : D( f ) −→RR
(x1, . . . , xn) %−→ f (x1, . . . , xn)

ou f : D( f ) −→RR
!x %−→ f (!x)

Le sous-ensemble D( f ) ⊂RRn est appelé domaine de définition de f . Si l’on ne donne pas D( f )

explicitement, on considère alors le plus grand domaine de définition.

On appelle image de la fonction f , l’ensemble

Im( f )=
{
xn+1∈RR : xn+1 = f (x1, . . . , xn) pour un certain (x1, . . . , xn) ∈ D( f )

}
⊂RR .

Le graphe de f est l’ensemble de tous les points (x1, . . . , xn, xn+1) ∈RRn+1 tels que

1. (x1, . . . , xn) ∈ D( f ),

2. xn+1 = f (x1, . . . , xn).

Remarque. On peut aussi étudier des fonctions

f : RR
n −→RR

m

(x1, . . . , xn) %−→
(
f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)

)

mais cela revient à étudier m fonctions réelles de n variables réelles :

f j : RR
n −→RR

(x1, . . . , xn) %−→ f j(x1, . . . , xn)
avec j = 1, . . . , m.
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3.2. Le graphe d’une fonction de deux variables

Définition. Soit f : D( f ) →RR une fonction de deux variables.

Le graphe de la fonction f est l’ensemble
{
(x, y, z) ∈RR3 : (x, y) ∈ D( f )⊂RR

2 et z = f (x, y)
}
⊂RR

3

Exemples

1. f (x, y) = 2, avec D( f )=RR2 .

Le graphe de f est le plan z = 2 dans RR3 .

2. g(x, y)=
√

1− x2 − y2 , avec D(g)=
{
(x, y) ∈RR2 : x2 + y2 ! 1

}
.

Si z = g(x, y), alors x2 + y2 + z2 = 1 et z " 0. Le graphe de g est alors une demi-sphère.

3. h(x, y) =
√

x2 + y2 , avec D(h)=RR2 . Le graphe de h est un cône.

z

x y

z

x y

z

x y

Graphes de f , g et h

© Cengage

Quelques graphes de fonctions de deux variables
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Courbes de niveau

En général, il est difficile d’esquisser le graphe d’une fonction de deux variables. Pour nous

aider à le faire, nous allons considérer les courbes de niveau ou ensembles de niveau :

Définition. Soit f : D( f ) →RR une fonction de deux variables.

Si c ∈ Im( f ), la courbe de niveau c de f est le sous-ensemble

L(c)=
{
(x, y) ∈RR2 : f (x, y) = c

}
⊂RR

2 .

Si c *∈ Im( f ), on pose L(c)=+ .

Géométriquement, la courbe de niveau c est la trace obtenue en coupant le graphe de f par

le plan horizontal z = c , dessinée sur le plan 0xy.

Pour construire le graphe à partir des courbes de niveau, il faut placer chaque courbe de

niveau c à la hauteur z = c .

z = f (x, y)

f (x, y) = c1

f (x, y) = c2z = c2

z = c1

© Pearson

© Cengage
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Exemples

1. f (x, y) =
√

x2 + y2 .

Nous avons Im( f )= [0,∞[. Comme

f (x, y) = c ⇐⇒
√

x2 + y2 = c ⇐⇒ x2 + y2 = c2

la courbe de niveau c > 0 de la fonction f est le cercle de rayon c centré à l’origine et la

courbe de niveau 0 est le point (0,0).

x1 2 3

y

1

2

3

L(3)

L(2)

L(1)

L(0) x

z

f (x,0)=
'

x2 = |x|

z

3

2

1

x y

Courbes de niveau, coupe verticale en y= 0 et graphe de la fonction f
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2. g(x, y)= x2 + y2 .

Nous avons Im(g)= [0,∞[ . Comme

g(x, y)= c ⇐⇒ x2 + y2 = c ⇐⇒ x2 + y2 = (
'

c )2

la courbe de niveau c > 0 de la fonction g est le cercle de rayon
'

c centré à l’origine et

la courbe de niveau 0 est le point (0,0).

x1 2 3

y

1

2

3

L(9)

L(4)

L(1)

L(0)

x

z

g(x,0)= x2

z

9

4

1

x y

Courbes de niveau, coupe verticale en y= 0 et graphe de la fonction g

3. h(x, y) =
1

√
x2 + y2

.

Nous avons Im(h)= ]0,∞[. Comme

h(x, y) = c ⇐⇒
1

√
x2 + y2

= c ⇐⇒ x2 + y2 =
1

c2

la courbe de niveau c > 0 de la fonction h est le cercle de rayon
1

c
centré à l’origine.

x1 2 3

y

1

2

3

L( 1
3 )

L( 1
2 )

L(1)

L(2)

x

z

h(x,0)=
1

√
x2

=
1

|x|

z

3

2

1

x y

Courbes de niveau, coupe verticale en y= 0 et graphe de la fonction h
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4. Déterminer les courbes de niveau de la fonction

f (x, y) =
x2 − y2

x2 + y2
.

Le domaine de la fonction f est D( f )=RR2 \
{
(0,0)

}
.

Les points de la courbe de niveau c satisfont l’équation

f (x, y) = c ⇐⇒ x2 − y2 = c(x2 + y2) ⇐⇒ (1− c)x2 = (1+ c)y2

Considérons quelques cas particuliers :

• Si c = 1 alors y2 = 0 et L(1) est la droite y= 0.

• Si c =−1 alors x2 = 0 et L(−1) est la droite x = 0.

• Si c = 0 alors y2 = x2 et L(0) est formée des deux droites y=±x .

Revenons au cas général :

(1− c)x2 = (1+ c)y2

Comme x2 " 0 et y2 " 0, si 1+ c et 1− c ont des signes différents, alors la seule solution

de l’équation (1−c)x2 = (1+c)y2 est (x, y)= (0,0), ce qui n’est pas possible car (0,0) *∈ D( f ).

Par conséquent dans ce cas, l’ensemble L(c) est vide.

Ainsi, pour avoir des solutions, il faut avoir

(1− c)(1+ c) " 0 ⇐⇒ 1− c2 " 0 ⇐⇒ 1" c2 ⇐⇒ −1! c! 1

Si −1< c < 1, alors on a

y2 =
1− c

1+ c
x2 ⇐⇒ y=±

√
1− c

1+ c
x

et L(c) est formée de deux droites.

Ainsi par exemple, L(− 1
2) est formée des deux droites y=±

'
3 x .

Chapitre 3 - p10



x

y

L(1)

L( 3
4 )

L( 1
2 )

L( 1
4 )

L(0)

L(− 1
4 )

L(− 1
2 )

L(− 3
4 )

L(−1)

x
y

z

x

y

z

x

y

z

x

y

z

Quelques courbes de niveau de f

Quelques esquisses du graphe de f

Surfaces de niveau

Dans le cas général, on peut définir :

Définition. Soit f une fonction de n variables. Les surfaces de niveau de f sont les sous-

ensembles de D( f )⊂RRn pour lesquels f est constante.

Si c ∈ Im( f ), la surface de niveau c de f est le sous-ensemble

L(c)=
{
(x1, . . . , xn) ∈RRn : f (x1, . . . , xn)= c

}
⊂RR

n .

Si c *∈ Im( f ), on pose L(c)=+ .

Exemple

Soit f (x, y, z) =
√

1− x2 − y2 − z2 .

Ici Im( f ) = [0,1], la surface de niveau 0 ! c ! 1 étant la sphère de centre (0,0,0) et de

rayon
'

1− c2 :

f (x, y, z) = c ⇐⇒
√

1− x2 − y2− z2 = c ⇐⇒ x2 + y2 + z2 = 1− c2
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3.3. Limite et continuité

Rappel.

Soit f : D( f ) →RR une fonction d’une variable et soit x0 ∈RR .

On dit que la limite de f en x0 existe et est égale à ! , notée

lim
x→x0

f (x)= !

si f (x) est aussi proche de ! que l’on veut dès que x est suffisamment proche de x0 .

Plus précisément, si pour tout ε> 0 (aussi petit que voulu), il existe un δ> 0 tel que

si 0< |x− x0| < δ alors
∣∣ f (x)−!

∣∣< ε

Rappel.

Soit f : D( f ) →RR une fonction d’une variable et soit x0 ∈ D( f ).

On dit que la fonction f est continue au point x0 si

lim
x→x0

f (x)= f (x0) .

On dit que la fonction f est continue si elle est continue en tout point de son domaine.

Nous aimerions étudier ces notions dans le cadre des fonctions de plusieurs variables :

Définition. Soit f : D( f ) →RR une fonction de n variables et soit !x0 ∈RR
n .

On dit que la limite de f en !x0 existe et est égale à ! , notée

lim
!x→!x0

f (!x)= !

si f (!x) est aussi proche de ! que l’on veut dès que !x est suffisamment proche de !x0 .

Plus précisément, si pour tout ε> 0 (aussi petit que voulu), il existe un δ> 0 tel que

si 0<
∥∥!x−!x0

∥∥< δ alors
∣∣ f (!x)−!

∣∣< ε

En particulier, dans le cadre des fonctions de deux variables :

Définition. Soit f : D( f ) →RR une fonction de deux variables et soit (x0, y0) ∈RR2 .

On dit que la limite de f en (x0, y0) existe et est égale à ! , notée

lim
(x,y)→(x0,y0)

f (x, y) = !

si f (x, y) est aussi proche de ! que l’on veut dès que (x, y) est suffisamment proche de (x0, y0) .

Plus précisément, si pour tout ε> 0 (aussi petit que voulu), il existe un δ> 0 tel que

si 0<
∥∥(x, y)− (x0, y0)

∥∥< δ alors
∣∣ f (x, y)−!

∣∣< ε

Chapitre 3 - p12



Rappel. Pour les fonctions d’une variable, il arrive qu’une limite n’existe pas, par

exemple si lim
x→x−0

f (x) *= lim
x→x+0

f (x). En particulier, il n’y a que deux manières d’approcher x0 :

x0

Dans le cas des fonctions de deux variables, nous pouvons approcher (x0, y0) de plusieurs

manières :

(x0, y0)

Ainsi, dans ce cas, pour que la limite existe, il faut trouver le même nombre ! quelque soit

le parcours choisi !

Par conséquent, pour montrer qu’une limite n’existe pas, il suffit de trouver deux parcours

vers (x0, y0) qui donnent des résultats différents.

De manière générale, l’étude des courbes de niveau d’une fonction peut être utile pour

déterminer qu’une limite n’existe pas. En particulier, la limite n’existe pas en chaque point

où il y aurait un croisement de deux courbes de niveau.

Exemple

Soit f (x, y) =
x2 − y2

x2 + y2
, avec D( f )=RR2 \ {(0,0)}.

Montrer que lim
(x,y)→(0,0)

f (x, y) n’existe pas.

Comme

f (x,0)=
x2 −02

x2 +02
= 1 et f (0, y)=

02 − y2

02 + y2
=−1,

nous trouvons

lim
x→0

f (x,0)= 1 *=−1= lim
y→0

f (0, y) .

Par conséquent, la limite lim
(x,y)→(0,0)

f (x, y) n’existe pas.

x

y

L(1)

L( 3
4 )

L( 1
2 )

L( 1
4 )

L(0)

L(− 1
4 )

L(− 1
2 )

L(− 3
4 )

L(−1)

Remarque. Nous avons vu que les courbes de niveau de f sont des droites qui passent par

l’origine. Comme

f (x,mx) =
x2 −m2x2

x2 +m2x2
=

x2(1−m2)

x2(1+m2)
=

1−m2

1+m2
,

pour chaque valeur fixée de m ∈RR , nous obtenons

lim
x→0

f (x,mx) =
1−m2

1+m2
.
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Question. Comment montrer qu’une limite existe?

Problème. Considérer tous les parcours possibles.

Réponse possible. Pour calculer des limites de la forme lim
(x,y)→(0,0)

f (x, y)

nous pouvons utiliser les coordonnées polaires
{

x= r cos(θ) ,

y= rsin(θ) .
xx

y

y

θ

r

Dans ce cas, pour tenir compte de toutes les approches possibles (x, y)→ (0,0), nous pouvons

considérer la limite r → 0 pour θ arbitraire mais pas fixé. Autrement dit, si nous arrivons à

trouver deux fonctions g et h telles que

g(r)! f
(
r cos(θ) , r sin(θ)

)
! h(r) pour tout θ ∈RR

qui satisfont

lim
r→0

g(r)= != lim
r→0

h(r)

alors le théorème du sandwich (ou des deux gendarmes) nous donne

lim
(x,y)→(0,0)

f (x, y) = ! .

Exemples

1. Soit f (x, y) =
x2 y

x2 + y2
, avec D( f )=RR2 \ {(0,0)}.

Calculer lim
(x,y)→(0,0)

f (x, y) (si la limite existe).

Comme f (x,0) =
x2·0

x2 +02
= 0 et f (0, y) =

02 y

02 + y2
= 0, si la limite existe, elle vaut 0.

Nous avons

f
(
r cos(θ) , r sin(θ)

)
=

(r cos(θ))2r sin(θ)

(r cos(θ))2+ (r sin(θ))2
=

r3 cos2(θ)sin(θ)

r2

= r cos2(θ)sin(θ)

Comme

−r ! r cos2(θ)sin(θ)! r pour tout θ ∈RR

et

lim
r→0

(−r)= 0= lim
r→0

r ,

nous trouvons donc

lim
(x,y)→(0,0)

f (x, y) = 0.
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2. Soit f (x, y) =
x2 − y2

x2 + y2
, avec D( f )=RR2 \ {(0,0)}.

Calculer lim
(x,y)→(0,0)

f (x, y) (si la limite existe).

Nous avons

f
(
r cos(θ) , r sin(θ)

)
=

(r cos(θ))2 − (r sin(θ))2

(r cos(θ))2 + (r sin(θ))2
=

r2(cos2(θ)−sin2(θ))

r2

= cos2(θ)−sin2(θ)= cos(2θ)

Comme

−1! cos(2θ)! 1 pour tout θ ∈RR

nous trouvons une valeur différente pour chaque θ ∈RR et par conséquent, nous concluons

que la limite lim
(x,y)→(0,0)

f (x, y) n’existe pas.

3. Soit f (x, y) =
x2 y

x4 + y2
, avec D( f ) = RR2 \ {(0,0)}. Calculer lim

(x,y)→(0,0)
f (x, y) (si la limite

existe).

Comme f (x,0) =
x2·0

x4 +02
= 0 et f (0, y) =

02 y

04 + y2
= 0, si la limite existe, elle vaut 0.

Nous avons

f
(
r cos(θ) , r sin(θ)

)
=

(r cos(θ))2rsin(θ)

(r cos(θ))4 + (r sin(θ))2
=

r cos2(θ)sin(θ)

r2 cos4(θ)+sin2(θ)

Vu que pour chaque θ = θc fixé,

lim
r→0

r cos2(θc)sin(θc)

r2 cos4(θc)+sin2(θc)
= 0

nous sommes tentés de conclure que la limite existe et vaut 0, mais un encadrement

pour θ arbitraire mais pas fixé semble difficile à trouver.

Pour montrer que la limite n’existe pas, il suffit de trouver deux trajectoires vers (0,0)

qui donnent des valeurs differentes. Comme le calcul

f (x,ax2)=
x2ax2

x4 + (ax2)2
=

ax4

(1+a2)x4
=

a

1+a2

nous dit que l’arc de parabole y = ax2 (avec x *= 0) est la courbe de niveau
a

1+a2
de f ,

pour chaque a *= 0 fixé nous avons

lim
x→0

f (x,ax2)=
a

1+a2
*= 0.
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Définition. Soit f : D( f ) →RR une fonction de deux variables et soit (x0, y0) ∈ D( f ).

On dit que la fonction f est continue au point (x0, y0) si

lim
(x,y)→(x0,y0)

f (x, y) = f (x0, y0) .

Plus précisément, si pour tout ε> 0 (aussi petit que voulu), il existe un δ> 0 tel que

si 0<
∥∥(x, y)− (x0, y0)

∥∥< δ alors
∣∣ f (x, y)− f (x0, y0)

∣∣< ε

On dit que la fonction f est continue si elle est continue en tout point de son domaine.

Remarques.

• Si f et g sont continues en (x0, y0), alors la somme f + g et le produit f g sont continues

en (x0, y0). Si de plus, g(x0, y0) *= 0, alors le quotient
f

g
est aussi continu en (x0, y0).

• Si f : D( f ) → RR est une fonction de deux variables continue en (x0, y0) et g : RR→ RR est

une fonction d’une variable continue en z0 = f (x0, y0), alors la composition

g ◦ f : D( f ) −→RR
(x, y) %−→ g

(
f (x, y)

)

est continue en (x0, y0).

Exemple

Etudier la continuité de la fonction

f (x, y) =






x2 − y2

x2 + y2
si (x, y) *= (0,0)

0 si (x, y) = (0,0)

Comme les fonctions (x, y) %→ x et (x, y) %→ y sont continues sur RR2 , les fonctions

(x, y) %→ x2 , (x, y) %→ y2 , (x, y) %→ x2 − y2 , (x, y) %→ x2 + y2

sont aussi continues sur RR2 et la fonction f est continue sur RR2 \
{
(0,0)

}
.

D’autre part, nous avons vu que la limite lim
(x,y)→(0,0)

f (x, y) n’existe pas et par conséquent la

fonction f n’est pas continue en (0,0).
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Prolongement par continuité

Si la fonction f : D( f ) →RR est définie dans un voisinage de (x0, y0) ∈RR2 sauf en (x0, y0) et si

lim
(x,y)→(x0,y0)

f (x, y) = ! existe, alors il est possible de prolonger f par continuité :

f̃ (x, y) =

{
f (x, y) si (x, y) *= (x0, y0)

! si (x, y)= (x0, y0)

Exemple

La fonction f (x, y) =
x2 y

x2 + y2
est continue sur D( f ) =RR2 \

{
(0,0)

}
.

Comme lim
(x,y)→(0,0)

f (x, y) = 0 alors il est possible de prolonger f par continuité :

f̃ (x, y) =






x2 y

x2 + y2
si (x, y) *= (0,0)

0 si (x, y) = (0,0)

3.4. Dérivées partielles

Rappel. Soit f : D( f )→RR une fonction d’une variable et soit x0 ∈ D( f ) tel que f est définie

dans un voisinage de x0 .

On dit que f est dérivable en x0 si la limite lim
h→0

f (x0 +h)− f (x0)

h
existe et on note

f ′(x0)= lim
h→0

f (x0 +h)− f (x0)

h

la dérivée de f en x0 .

Géométriquement, f ′(x0) est la pente de la droite tangente au graphe de la fonction f

au point
(
x0, f (x0)

)
:

x

y

f (x0)

x0

droite de pente f ′(x0)

Remarque. La dérivée f ′ peut aussi être notée
d f

dx
.
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Définition. Soit f : D( f ) → RR une fonction de deux variables et soit (x0, y0) ∈ D( f ) ⊂ RR2

tel que f est définie dans un voisinage de (x0, y0), par exemple B
(
(x0, y0), r

)
, avec r > 0.

• Si la fonction g(x) = f (x, y0) est dérivable en x0 on dit que la dérivée partielle de f par

rapport à x , notée
∂f

∂x
(x0, y0), existe et est égale à g ′(x0) :

∂f

∂x
(x0, y0)= lim

h→0

f (x0 +h, y0)− f (x0, y0)

h
.

• Si la fonction h(y) = f (x0, y) est dérivable en y0 on dit que la dérivée partielle de f par

rapport à y, notée
∂f

∂y
(x0, y0), existe et est égale à h′(y0) :

∂f

∂y
(x0, y0)= lim

h→0

f (x0, y0 +h)− f (x0, y0)

h
.

Notations alternatives :

∂f

∂x
(x0, y0)= ∂x f (x0, y0)= f ′

x(x0, y0)= ∂1 f (x0, y0)= f ′
1(x0, y0)

∂f

∂y
(x0, y0)= ∂y f (x0, y0)= f ′

y(x0, y0)= ∂2 f (x0, y0)= f ′
2(x0, y0)

Interprétation géométrique des dérivées partielles

y0

pente
∂f

∂x
(x0, y0)

x0

pente
∂f

∂y
(x0, y0)

© Pearson

L’ensemble de tous les points de RR3 tels

que y= y0 est un plan parallèle au plan 0xz

qui coupe le graphe de f le long de la

courbe C2 . La pente de la droite tangente

à la courbe C2 au point
(
x0, y0, f (x0, y0)

)

est la dérivée partielle
∂f

∂x
(x0, y0).

L’ensemble de tous les points de RR3 tels

que x = x0 est un plan parallèle au plan 0yz

qui coupe le graphe de f le long de la

courbe C1 . La pente de la droite tangente

à la courbe C1 au point
(
x0, y0, f (x0, y0)

)

est la dérivée partielle
∂f

∂y
(x0, y0).
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• Si les dérivées partielles de f par rapport à x et y existent, on dit que le gradient de f ,

noté
−→∇ f (x0, y0), existe et est donné par

−→∇ f (x0, y0)=





∂f

∂x
(x0, y0)

∂f

∂y
(x0, y0)




∈RR2

Parfois on écrira
−→∇ f (x0, y0)=

(
∂f

∂x
(x0, y0) ,

∂f

∂y
(x0, y0)

)
.

Le symbole ∇ est appelé « nabla » (il s’agit de la lettre greque Delta inversée).

Méthode pour calculer les dérivées partielles

• Pour calculer la dérivée partielle de f par rapport à x , on regarde y comme une constante

et on dérive la fonction f (x, y) par rapport à x en utilisant les règles de dérivation des

fonctions d’une variable.

• Pour calculer la dérivée partielle de f par rapport à y, on regarde x comme une constante

et on d’erive la fonction f (x, y) par rapport à y en utilisant les règles de dérivation des

fonctions d’une variable.

Exemples

Calculer les dérivées partielles des fonctions suivantes :

1. f (x, y) = 3x+ y2

Nous avons

∂f

∂x
(x, y) =

∂

∂x
(3x)+

∂

∂x
(y2)= 3+0= 3

∂f

∂y
(x, y) =

∂

∂y
(3x)+

∂

∂y
(y2)= 0+2y = 2y





=⇒ −→∇ f (x, y) =

(
3

2y

)

2. g(x, y)= x3 y4

Nous avons

∂g

∂x
(x, y) = y4 ∂

∂x
(x3)= 3x2 y4

∂g

∂y
(x, y) = x3 ∂

∂y
(y4)= 4x3 y3





=⇒ −→∇g(x, y)=

(
3x2 y4

4x3 y3

)

Chapitre 3 - p19



3. h(x, y) =
√

x2 + y2 (distance à l’origine)

Considérons tout d’abord la fonction d’une variable

f (u)=
√

u2 + c = (u2 + c)1/2 avec c ∈RR une constante.

Nous avons

f ′(u)=
1

2
(u2 + c)−1/2(u2 + c)′ =

1

2
(u2 + c)−1/2(2u)= u(u2 + c)−1/2 =

u
'

u2 + c
Par conséquent,

∂h

∂x
(x, y) =

x
√

x2 + y2

∂h

∂y
(x, y) =

y
√

x2 + y2





=⇒ −→∇h(x, y) =





x
√

x2 + y2

y
√

x2 + y2





4. f (x, y) =






xy

x2 + y2
si (x, y) *= (0,0)

0 sinon

Si (x, y) *= (0,0) nous avons :

∂f

∂x
(x, y) =

∂

∂x

(
xy

x2 + y2

)
=

y(x2 + y2)− xy(2x)

(x2 + y2)2
=

y(y2 − x2)

(x2 + y2)2

∂f

∂y
(x, y) =

x(x2 − y2)

(x2 + y2)2
(par calcul direct ou par symétrie car ici f (a,b)= f (b,a))

Si (x, y)= (0,0) nous avons :

∂f

∂x
(0,0) = lim

h→0

f (h,0)− f (0,0)

h
= lim

h→0

h·0
h2+02

−0

h
= lim

h→0

0−0

h
= lim

h→0
0= 0

∂f

∂y
(0,0) = lim

h→0

f (0,h)− f (0,0)

h
= lim

h→0

0·h
02 +h2

−0

h
= lim

h→0

0−0

h
= lim

h→0
0= 0

Accessoirement, pour calculer
∂f

∂x
(0,0) nous pouvons aussi considérer la fonction d’une

variable

g(x)= f (x,0) =






x·0
x2 +02

si (x,0) *= (0,0)

0 sinon

= 0 pour tout x ∈RR

Comme g ′(x)= 0 pour tout x ∈RR , nous retrouvons
∂f

∂x
(0,0)= g ′(0)= 0.

En résumé,

∂f

∂x
(x, y)=






y(y2 − x2)

(x2 + y2)2
si (x, y) *= (0,0)

0 sinon

et
∂f

∂y
(x, y) =






x(x2 − y2)

(x2 + y2)2
si (x, y) *= (0,0)

0 sinon
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Remarque. La notion de dérivée partielle se généralise naturellement aux fonctions de n

variables avec n" 3.

Par exemple, si f (x, y, z) = x2 yz+sin(yz)+ z3 +4ln(xy5) , alors nous avons
∂f

∂x
(x, y, z) =

∂

∂x
(x2 yz)+

∂

∂x

(
sin(yz)

)
+

∂

∂x
(z3)+

∂

∂x

(
4ln(xy5)

)

= yz
∂

∂x
(x2)+0+0+4

1

xy5

∂

∂x
(xy5)= yz(2x)+4

1

xy5
y5

= 2xyz+
4

x
∂f

∂y
(x, y, z) =

∂

∂y
(x2 yz)+

∂

∂y

(
sin(yz)

)
+

∂

∂y
(z3)+

∂

∂y

(
4ln(xy5)

)

= x2z
∂

∂y
(y)+cos(yz)

∂

∂y
(yz)+0+4

1

xy5

∂

∂y
(xy5)

= x2z+ zcos(yz)+
20xy4

xy5
= x2z+ zcos(yz)+

20

y
∂f

∂z
(x, y, z) =

∂

∂z
(x2 yz)+

∂

∂z

(
sin(yz)

)
+

∂

∂z
(z3)+

∂

∂z

(
4ln(xy5)

)

= x2 y
∂

∂z
(z)+cos(yz)

∂

∂z
(yz)+3z2 +0

= x2 y+ ycos(yz)+3z2

Dérivées partielles d’ordre deux

Soit f : D( f ) →RR une fonction de deux variables.

Si
∂f

∂x
(x0, y0) existe pour tout (x0, y0) ∈ D( f ), alors nous pouvons définir la fonction dérivée

partielle de f par rapport à x :

∂f

∂x
: D( f ) −→RR

(x, y) %−→
∂f

∂x
(x, y)

Si
∂f

∂y
(x0, y0) existe pour tout (x0, y0) ∈ D( f ), alors nous pouvons définir la fonction dérivée

partielle de f par rapport à y :

∂f

∂y
: D( f ) −→RR

(x, y) %−→
∂f

∂y
(x, y)
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Nous pouvons considérer les dérivées partielles de ces deux fonctions par rapport à x et y

qui seront notées comme suit :

∂

∂x

(
∂f

∂x

)
=

∂2 f

∂x2

∂

∂y

(
∂f

∂x

)
=

∂2 f

∂y∂x

∂

∂x

(
∂f

∂y

)
=

∂2 f

∂x∂y

∂

∂y

(
∂f

∂y

)
=

∂2 f

∂y2

Nous avons le schéma suivant :

f

∂f

∂x

∂f

∂y

∂2 f

∂x2

∂2 f

∂y∂x

∂2 f

∂x∂y

∂2 f

∂y2

Attention : Certains auteurs utilisent les notations
∂2 f

∂x∂y
=

∂

∂y

(
∂f

∂x

)
et

∂2 f

∂y∂x
=

∂

∂x

(
∂f

∂y

)
.

Exemples

Calculer les dérivées d’ordre deux des fonctions suivantes :

1. f (x, y) = x2 y3

Comme
∂f

∂x
(x, y) =

∂

∂x
(x2)y3 + x2 ∂

∂x
(y3)= 2xy3 +0= 2xy3

nous avons
∂2 f

∂x2
(x, y) =

∂

∂x
(2xy3)=

∂

∂x
(2x)y3 +2x

∂

∂x
(y3)= 2y3 +0= 2y3

∂2 f

∂y∂x
(x, y) =

∂

∂y
(2xy3)=

∂

∂y
(2x)y3 +2x

∂

∂y
(y3)= 0+2x(3y2)= 6xy2

D’autre part,
∂f

∂y
(x, y)=

∂

∂y
(x2)y3 + x2 ∂

∂y
(y3)= 0+ x2(3y2)= 3x2 y2

implique

∂2 f

∂x∂y
(x, y) =

∂

∂x
(3x2 y2)=

∂

∂x
(3x2)y2 +3x2 ∂

∂x
(y2)= 6xy2 +0= 6xy2

∂2 f

∂y2
(x, y) =

∂

∂y
(3x2 y2)=

∂

∂y
(3x2)y2 +3x2 ∂

∂y
(y2)= 0+3x2(2y)= 6x2 y
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2. g(x, y)= sin(xy)

Nous avons
∂g

∂x
(x, y)= cos(xy)

∂

∂x
(xy) = ycos(xy)

d’où

∂2 g

∂x2
(x, y) =

∂

∂x

(
ycos(xy)

)
=

∂

∂x
(y)cos(xy)+ y

∂

∂x

(
cos(xy)

)
= 0+ y

(
−sin(xy)

) ∂

∂x
(xy)

= −y2 sin(xy)

∂2 g

∂y∂x
(x, y) =

∂

∂y

(
ycos(xy)

)
=

∂

∂y
(y)cos(xy)+ y

∂

∂y

(
cos(xy)

)
= cos(xy)+ y

(
−sin(xy)

) ∂

∂y
(xy)

= cos(xy)− xysin(xy)

Comme g(a,b)= g(b,a), nous trouvons par symétrie,

∂2 g

∂x∂y
(x, y) = cos(xy)− xysin(xy)

∂2 g

∂y2
(x, y) = −x2 sin(xy)

Les exemples suggèrent
∂2 f

∂y∂x
(x, y) =

∂2 f

∂x∂y
(x, y).

Question. Est-ce toujours le cas?

Réponse. En général, non (voir par exemple l’exercice 2 de la série 8).

Théorème. Soit f : D( f ) →RR une fonction de deux variables et (x0, y0) ∈ D( f ).

Si l’on suppose que
∂f

∂x
,

∂f

∂y
,

∂2 f

∂x∂y
et

∂2 f

∂y∂x
existent et sont continues dans un voisinage

de (x0, y0), alors

∂2 f

∂y∂x
(x0, y0)=

∂2 f

∂x∂y
(x0, y0) .
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3.5. Fonctions différentiables (ou dérivables)

Rappel. Soit f : D( f )→RR une fonction d’une variable et soit x0 ∈ D( f ) tel que f est définie

dans un voisinage de x0 .

On dit que f est dérivable en x0 si la limite lim
x→x0

f (x)− f (x0)

x− x0

existe et on note

f ′(x0)= lim
x→x0

f (x)− f (x0)

x− x0

la dérivée de f en x0 .

But : Généraliser cette notion aux fonctions f :RRn →RR pour n" 2.

Remarque.

Nous avons montré que les dérivées partielles de la fonction

f (x, y) =






xy

x2 + y2
si (x, y) *= (0,0)

0 si (x, y) = (0,0)

existent pour tout (x, y) ∈RR2 et qu’en particulier elles existent en (0,0) :

∂f

∂x
(0,0)= 0 et

∂f

∂y
(0,0)= 0.

D’autre part, comme

f (x, x) =
x2

x2 + x2
=

x2

2x2
=

1

2
et lim

x→0
f (x, x) =

1

2
*= 0= f (0,0) .

la fonction f n’est pas continue en (0,0).

Par conséquent, l’existence des dérivées partielles d’une fonction de deux variables en un

point (x0, y0) ne suffit pas pour garantir la continuité de la fonction au point (x0, y0),

contrairement au cas des fonctions d’une variable où nous avons le résultat

« Si la dérivée de f existe en x0 ∈ D( f ), alors f est continue en x0 ».

La dérivabilité d’une fonction de plusieurs variables ne se résume donc pas à l’existence des

dérivées partielles de la fonction !
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Rappel. Soit f : D( f )→RR une fonction d’une variable et soit x0 ∈ D( f ) tel que f est définie

dans un voisinage de x0 .

Si la fonction f est dérivable en x0 , alors le graphe de f possède une droite tangente au

point x = x0 de pente f ′(x0) et d’équation

y= f (x0)+ f ′(x0)(x− x0) .

De plus, si l’on définit la fonction

L(x)= f (x0)+ f ′(x0)(x− x0) ,

appelée l’approximation linéaire de la fonction f autour du point x= x0 , alors
{

L(x0) = f (x0)

L ′(x0) = f ′(x0)

et pour des valeurs de x proches de x0 nous avons f (x) ≈ L(x).

x

y

f (x0)

x0

graphe de L

Rappel. Si f : D( f ) →RR est une fonction d’une variable, alors nous avons

f est dérivable en x0 ⇐⇒ f ′(x0)= lim
x→x0

f (x)− f (x0)

x− x0

⇐⇒ lim
x→x0

f (x)− f (x0)

x− x0

− f ′(x0)= 0

⇐⇒ lim
x→x0

(
f (x)− f (x0)

x− x0

− f ′(x0)

)
= 0

⇐⇒ lim
x→x0

(
f (x)− f (x0)− f ′(x0)(x− x0)

x− x0

)
= 0

⇐⇒ lim
x→x0

(
f (x)−

(
f (x0)+ f ′(x0)(x− x0)

)

x− x0

)

= 0

⇐⇒ lim
x→x0

f (x)−L(x)

x− x0

= 0

⇐⇒ f est différentiable en x0

Remarque. Pour avoir lim
x→x0

f (x)−L(x)

x− x0

= 0, il faut que lim
x→x0

(
f (x)−L(x)

)
= 0. De plus, il

faut que l’écart f (x)−L(x) aille vers zéro plus vite que x−x0 , ce qui nous permet de dire que

« L(x) est une bonne approximation de f (x) pour des valeurs de x proches de x0 ».
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Considérons maintenant une fonction f de deux variables et un point (x0, y0) ∈ D( f ).

Question. Est-ce que le graphe de la fonction f au point
(
x0, y0, f (x0, y0)

)
∈RR3 admet un

plan tangent et si oui, quelle est son équation?

x0

x y

z

y0

f (x0,y0)

Rappel. L’équation du plan passant par le point
(
x0, y0, z0

)
normal au vecteur !n =




a
b
c



 est




a

b

c



 ·




x− x0

y− y0

z− z0



= 0 ⇐⇒ a(x− x0)+b(y− y0)+ c(z− z0)= 0.

Coupe du graphe de f par le plan y= y0 : Coupe du graphe de f par le plan x = x0 :

z = f (x, y0)

xx0

z

f (x0,y0)

y

z

f (x0,y0)

y0

z = f (x0, y)

droite tangente de pente
∂f

∂x
(x0, y0)

et vecteur directeur !d1 =





1

0
∂f

∂x
(x0, y0)





droite tangente de pente
∂f

∂y
(x0, y0)

et vecteur directeur !d2 =





0

1
∂f

∂y
(x0, y0)




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Comme nous cherchons un plan qui soit tangent au

graphe de f au point
(
x0, y0, f (x0, y0)

)
∈ RR3 , le vecteur

!n =




a
b
c



 doit être orthogonal aux vecteurs !d1 et !d2 :

{
!n ·!d1 = 0

!n ·!d2 = 0
⇐⇒






a+ c
∂f

∂x
(x0, y0)= 0

b+ c
∂f

∂y
(x0, y0)= 0

En prenant c = 1 nous trouvons

!n =





−
∂f

∂x
(x0, y0)

−
∂f

∂y
(x0, y0)

1





−→
n

x0

x y

z

y0

f (x0,y0)

d’où

−
∂f

∂x
(x0, y0)(x− x0)−

∂f

∂y
(x0, y0)(y− y0)+1

(
z− f (x0, y0)

)
= 0

ou encore

z = f (x0, y0)+
∂f

∂x
(x0, y0)(x− x0)+

∂f

∂y
(x0, y0)(y− y0) .

Question. Est-ce que le plan d’équation

z = f (x0, y0)+
∂f

∂x
(x0, y0)(x− x0)+

∂f

∂y
(x0, y0)(y− y0) .

est forcément le plan tangent au graphe de la fonction f au point
(
x0, y0, f (x0, y0)

)
∈RR3 ?

Réponse. Non. Considérons par exemple la fonction

f (x, y) =
∣∣|x|− |y|

∣∣− |x|− |y| .

Le calcul des dérivées partielles au point (0,0) :

∂f

∂x
(0,0) = lim

h→0

f (h,0)− f (0,0)

h
= lim

h→0

0−0

h
= lim

h→0
0= 0

∂f

∂y
(0,0) = lim

h→0

f (0,h)− f (0,0)

h
= lim

h→0

0−0

h
= lim

h→0
0= 0

nous donne l’équation du plan

z = f (0,0)+
∂f

∂x
(0,0)(x−0)+

∂f

∂y
(0,0)(y−0) =⇒ z = 0 © Pearson

Ce plan n’est clairement pas tangent au graphe de f . En effet, si l’on coupe le graphe de f

par le plan vertical y= x nous obtenons la fonction d’une variable

g(x)= f (x, x) =
∣∣|x|− |x|

∣∣− |x|− |x| =−2|x|

qui n’est pas dérivable en x= 0 et de ce fait, n’a pas de droite tangente en x= 0.
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Définition. Soit U ⊂RR2 un sous-ensemble ouvert de RR2 .

Soit f : U →RR une fonction de deux variables.

On dit que f est différentiable en (x0, y0) ∈ U (ou dérivable en (x0, y0) ∈ U ) si les dérivées

partielles
∂f

∂x
(x0, y0) et

∂f

∂y
(x0, y0) existent et si la fonction L :RR2 →RR définie par

L(x, y)= f (x0, y0)+
∂f

∂x
(x0, y0)(x− x0)+

∂f

∂y
(x0, y0)(y− y0)

est une « bonne approximation de f (x, y) pour des valeurs de (x, y) proches de (x0, y0) »

dans le sens suivant :

lim
(x,y)→(x0,y0)

f (x, y)−L(x, y)
∥∥(x, y)− (x0, y0)

∥∥ = 0.

Si la fonction f est différentiable en (x0, y0), alors le plan d’équation

z = f (x0, y0)+
∂f

∂x
(x0, y0)(x− x0)+

∂f

∂y
(x0, y0)(y− y0)

est le plan tangent au graphe de f au point
(
x0, y0, f (x0, y0)

)
∈RR3 et la fonction L est appelée

approximation linéaire de f autour du point (x0, y0).

On dit que f est différentiable si elle différentiable en tout point de son domaine.

Exemple

La fonction f (x, y) = 1− x2 −2y2 est telle que
∂f

∂x
(x, y)=−2x et

∂f

∂y
(x, y) =−4y.

Par conséquent, f (0,0)= 1,
∂f

∂x
(0,0)= 0,

∂f

∂y
(0,0)= 0 et L(x, y)= 1. Comme

f (x, y)−L(x, y)
∥∥(x, y)− (0,0)

∥∥ =
−x2 −2y2

√
x2 + y2

et lim
(x,y)→(0,0)

f (x, y)−L(x, y)
∥∥(x, y)− (0,0)

∥∥ = 0,

nous pouvons conclure que f est différentiable en (0,0).

Remarque. Si f est différentiable en (x0, y0), alors la fonction

L(x, y)= f (x0, y0)+
∂f

∂x
(x0, y0)(x− x0)+

∂f

∂y
(x0, y0)(y− y0)

est telle que





L(x0, y0) = f (x0, y0)

∂L

∂x
(x0, y0) =

∂f

∂x
(x0, y0)

∂L

∂y
(x0, y0) =

∂f

∂y
(x0, y0)

et pour des valeurs de (x, y) proches de (x0, y0) nous avons f (x, y) ≈ L(x, y).
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Nous avons deux résultats très importants (donnés ici sans démonstration) :

Théorème 1. Soit U ⊂RR2 un sous-ensemble ouvert de RR2 .

Soit f : U →RR une fonction de deux variables.

Si les dérivées partielles
∂f

∂x
et

∂f

∂y
existent dans un voisinage de (x0, y0) ∈U et sont continues

en (x0, y0), alors f est différentiable en (x0, y0).

Autrement dit, si

lim
(x,y)→(x0,y0)

∂f

∂x
(x, y)=

∂f

∂x
(x0, y0) et lim

(x,y)→(x0,y0)

∂f

∂y
(x, y)=

∂f

∂y
(x0, y0)

alors
lim

(x,y)→(x0,y0)

f (x, y)−L(x, y)
∥∥(x, y)− (x0, y0)

∥∥ = 0.

Théorème 2. Soit U ⊂RR2 un sous-ensemble ouvert de RR2 .

Soit f : U →RR une fonction de deux variables.

Si f est différentiable en (x0, y0) ∈U , alors f est continue en (x0, y0).

Conséquence :

Si les dérivées partielles
∂f

∂x
et

∂f

∂y
existent dans un voisinage de (x0, y0) ∈U et sont continues

en (x0, y0), alors f est continue en (x0, y0).

Remarque. Une formulation équivalente du théorème 2 est :

Si f n’est pas continue en (x0, y0), alors f n’est pas différentiable en (x0, y0).

Cette formulation est très utile pour déterminer si une fonction n’est pas différentiable en

un point.

Exemple

Nous avons vu que la fonction

f (x, y) =






xy

x2 + y2
si (x, y) *= (0,0)

0 si (x, y) = (0,0)

n’est pas continue en (0,0), ce qui implique qu’elle n’est pas différentiable en (0,0), même si

les dérivées partielles
∂f

∂x
et

∂f

∂y
existent sur RR2 .

Comme f n’est pas différentiable en (0,0), le théorème 1 nous permet de conclure que dans

ce cas, les dérivées partielles
∂f

∂x
et

∂f

∂y
ne sont pas continues en (0,0).

Attention : Si f est continue en (x0, y0), alors on ne peut rien conclure au sujet de la

différentiabilité de f en (x0, y0).
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Définition. Soit U ⊂RR2 un sous-ensemble ouvert de RR2 .

Soit f : U →RR une fonction de deux variables.

On dit que f est de classe C0(U), noté f ∈C0(U), si f est continue sur U .

On dit que f est de classe C1(U), noté f ∈C1(U), si les dérivées partielles
∂f

∂x
et

∂f

∂y
existent

et sont continues sur U .

Les théorèmes 1 et 2 impliquent :

f ∈C1(U) =⇒ f différentiable sur U =⇒ f continue sur U

Par contre, nous avons

f ∈C1(U) *⇐= f différentiable sur U *⇐= f continue sur U

Définition. Soit U ⊂RR2 un sous-ensemble ouvert de RR2 .

Soit f : U →RR une fonction de deux variables.

On dit que f est de classe C2(U), noté f ∈ C2(U), si les quatre dérivées partielles d’ordre 2
∂2 f

∂x2
,

∂2 f

∂y∂x
,

∂2 f

∂x∂y
et

∂2 f

∂y2
existent et sont continues sur U .

Proposition. Soit U ⊂RR2 un sous-ensemble ouvert de RR2 .

Soit f : U →RR une fonction de deux variables.

Si f est une fonction de classe C2(U), alors f est une fonction de classe C1(U).

Preuve. Soit (x0, y0) ∈U . Si f est une fonction de classe C2(U), alors les dérivées partielles

∂2 f

∂x2
=

∂

∂x

(
∂f

∂x

)
et

∂2 f

∂y∂x
=

∂

∂y

(
∂f

∂x

)

existent dans un voisinage de (x0, y0) ∈U et sont continues en (x0, y0). Les théorèmes 1 et 2

impliquent que
∂f

∂x
est continue en (x0, y0). D’autre part, les dérivées partielles

∂2 f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
et

∂2 f

∂y2
=

∂

∂y

(
∂f

∂y

)

existent dans un voisinage de (x0, y0) ∈U et sont continues en (x0, y0). Les théorèmes 1 et 2

impliquent que
∂f

∂y
est continue en (x0, y0), d’où le résultat.
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Définition. Soit U ⊂RR2 un sous-ensemble ouvert de RR2 .

Soit f : U →RR une fonction de deux variables.

On dit que f est de classe C3(U), noté f ∈ C3(U), si les huit dérivées partielles d’ordre 3
∂3 f

∂x3
,

∂3 f

∂y∂x2
,

∂3 f

∂x∂y∂x
,

∂3 f

∂y2∂x
,

∂3 f

∂x2∂y
,

∂3 f

∂y∂x∂y
,

∂3 f

∂x∂y2
et

∂3 f

∂y3
existent et sont continues sur U .

On dit que f est de classe Ck(U), noté f ∈ Ck(U), si les 2k dérivées partielles d’ordre k

existent et sont continues sur U .

On dit que f est de classe C∞(U), noté f ∈C∞(U), si f est de classe Ck(U) pour tout k .

Nous avons les implications suivantes :

f ∈C∞(U) =⇒ · · · =⇒ f ∈C3(U) =⇒ f ∈C2(U) =⇒ f ∈ C1(U)

Par contre, nous avons

f ∈C∞(U) *⇐= ·· · *⇐= f ∈C3(U) *⇐= f ∈C2(U) *⇐= f ∈C1(U)

Application : Calcul d’incertitude

Si nous mesurons des quantités x et y avec une certaine incertitude :

x = x0 ±∆x (c’est-à-dire x ∈ [x0 −∆x, x0 +∆x])

y = y0 ±∆y (c’est-à-dire y ∈ [y0 −∆y, y0 +∆y])

alors, en première approximation, nous pouvons remplacer la valeur de f (x, y) par

f (x0, y0)±∆ f ,

où l’erreur ∆ f est donnée par

∆ f =
∣∣∣
∂f

∂x
(x0, y0)

∣∣∣∆x+
∣∣∣
∂f

∂y
(x0, y0)

∣∣∣∆y .

Exemple

L’aire d’un rectangle de côtés x et y est donnée par f (x, y) = xy.

Comme
∂f

∂x
(x, y) = y et

∂f

∂y
(x, y) = x , l’erreur sur l’aire est donc

∆ f = |y0|∆x+|x0|∆y .

Si les valeurs mesurées sont x= 3±0.01 et y= 4±0.02, nous

trouvons

∆ f = 4 ·0.01+3 ·0.02 = 0.1

et en première approximation l’aire est égale à 12±0.1.

x0 ∆x

y0

∆y
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Nous avons des définitions analogues dans le cas des fonctions de plus de deux variables :

Définition. Soit U ⊂RR3 un sous-ensemble ouvert de RR3 .

Soit f : U →RR une fonction de trois variables.

On dit que la fonction f est différentiable en (x0, y0, z0) ∈U (ou dérivable en (x0, y0, z0) ∈U )

si les dérivées partielles
∂f

∂x
(x0, y0, z0),

∂f

∂y
(x0, y0, z0) et

∂f

∂z
(x0, y0, z0) existent et si la fonction

L :RR3 →RR définie par

L(x, y, z)= f (x0, y0, z0)+
∂f

∂x
(x0, y0, z0)(x− x0)+

∂f

∂y
(x0, y0, z0)(y− y0)+

∂f

∂z
(x0, y0, z0)(z− z0) .

est une « bonne approximation de f (x, y, z) pour des valeurs de (x, y, z) proches de (x0, y0, z0)»

dans le sens suivant :

lim
(x,y,z)→(x0,y0,z0)

f (x, y, z)−L(x, y, z)
∥∥(x, y, z)− (x0, y0, z0)

∥∥ = 0.

Si f est différentiable en (x0, y0), alors la fonction L est appelée approximation linéaire

de f autour du point (x0, y0, z0).

On dit que f est différentiable si elle différentiable en tout point de son domaine.

Définition. Soit U ⊂RRn un sous-ensemble ouvert de RRn .

Soit f : U →RR une fonction de n variables.

On dit que f est différentiable en !x0 ∈U (ou dérivable en !x0 ∈U ) si les dérivées partielles
∂f

∂x1

(!x0) ,
∂f

∂x2

(!x0) , . . . ,
∂f

∂xn
(!x0) existent et si la fonction L :RRn →RR définie par

L(!x) = f (!x0)+
∂f

∂x1

(!x0)(x1 − x0,1)+ . . .+
∂f

∂xn
(!x0)(xn − x0,n)

= f (!x0)+
(−→∇ f (!x0)

)
·
(
!x−!x0

)
.

est une « bonne approximation de f (!x) pour des valeurs de !x proches de !x0 » dans le sens

suivant :

lim
!x→!x0

f (!x)−L(!x)
∥∥!x−!x0

∥∥ = 0.

Si f est différentiable en !x , alors la fonction L est appelée approximation linéaire de f

autour du point !x0 .

On dit que f est différentiable si elle différentiable en tout point de son domaine.
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3.6. La règle généralisée de dérivation d’une composition

Rappel. Si f : D( f ) →RR et g : D(g) →RR sont des fonctions dérivables d’une variable telles

que Im(g)⊂ D( f ), alors la fonction composée h = f ◦ g , définie par

h(x) = ( f ◦ g)(x)= f
(
g(x)

)

est dérivable et nous avons

h′(x)= ( f ◦ g)′(x)= f ′(g(x)
)
g ′(x)

But : Obtenir une formule analogue dans le cas des fonctions de plusieurs variables.

• Si g est une fonction de n variables, pour pouvoir faire la composition il faut que f soit

une fonction d’une variable et dans ce cas, h = f ◦ g est une fonction de n variables :

RR
n g
−→RR

f
−→RR

• Si f est une fonction de n variables, pour pouvoir faire la composition il faut que l’image

de g se trouve dans RRn et dans ce cas, h = f ◦ g est une fonction d’une variable :

RR
g

−→RR
n f
−→RR

En particulier, si f est une fonction de deux variables, pour pouvoir faire la composition

il faut que l’image de g se trouve dans RR2 et dans ce cas, h = f ◦ g est une fonction d’une

variable :

RR
g

−→RR
2 f
−→RR
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Composition de fonctions

Soit I ⊂ RR un intervalle, soit !g : I → RR2 une courbe paramétrée et soit f : RR2 → RR une

fonction de deux variables.

La fonction h = f ◦!g : I →RR est une fonction d’une variable donnée par

h(t)= ( f ◦!g )(t)= f
(
!g (t)

)

Si !g (t)=
(
x(t), y(t)

)
alors

h(t)= f
(
x(t), y(t)

)
, pour t ∈ I

Théorème. Si la courbe paramétrée !g : I →RR2 est dérivable et la fonction f : RR2 →RR est

diffférentiable, alors la fonction h : I →RR est dérivable et nous avons

h′(t)=
∂f

∂x

(
x(t), y(t)

)
x ′(t)+

∂f

∂y

(
x(t), y(t)

)
y′(t)

Notation abrégée :
h′ =

∂f

∂x
x ′+

∂f

∂y
y′

Notation vectorielle : ( f ◦!g )′(t)= −→∇ f
(
!g (t)

)
︸ ︷︷ ︸

gradient de f

au point !g (t)

· !g ′(t)︸ ︷︷ ︸
vecteur tangent

au point !g (t)

= !g ′(t) · −→∇ f
(
!g (t)

)

Conséquence

Si x et y sont des fonctions différentiables de deux variables :

x : RR
2 −→RR

(u,v) %−→ x(u,v)
et y : RR

2 −→RR
(u,v) %−→ y(u,v)

alors la fonction de deux variables

h(u,v)= f
(
x(u,v), y(u,v)

)

a comme dérivées partielles

∂h

∂u
=

∂f

∂x

∂x

∂u
+
∂f

∂y

∂y

∂u

∂h

∂v
=

∂f

∂x

∂x

∂v
+
∂f

∂y

∂y

∂v

Notation matricielle : 



∂h

∂u

∂h

∂v





︸ ︷︷ ︸
gradient de h

=





∂x

∂u

∂y

∂u

∂x

∂v

∂y

∂v









∂f

∂x

∂f

∂y





︸ ︷︷ ︸
gradient de f

Chapitre 3 - p34



Exemple important : coordonnées polaires
{

x = r cos(θ)

y = r sin(θ)
avec r " 0 et θ ∈RR

x

y

θ

r

Comme nous avons
∂x

∂r
= cos(θ) ,

∂x

∂θ
= −rsin(θ) ,

∂y

∂r
= sin(θ) ,

∂y

∂θ
= r cos(θ) ,

la fonction

h(r,θ)= f
(
x(r,θ), y(r,θ)

)

a comme dérivées partielles

∂h

∂r
=

∂f

∂x

∂x

∂r
+
∂f

∂y

∂y

∂r
= cos(θ)

∂f

∂x
+sin(θ)

∂f

∂y

∂h

∂θ
=

∂f

∂x

∂x

∂θ
+
∂f

∂y

∂y

∂θ
=−r sin(θ)

∂f

∂x
+r cos(θ)

∂f

∂y

⇐⇒





∂h

∂r

∂h

∂θ




=




cos(θ) sin(θ)

−r sin(θ) r cos(θ)









∂f

∂x

∂f

∂y





Application

Soit f : D( f ) →RR une fonction différentiable de deux variables.

Soit L(c) la courbe de niveau c de f :

L(c)=
{
(x, y) ∈ D( f ) : f (x, y) = c

}
.

Soit (x0, y0) ∈ L(c).

Soit !g : [a,b] →RR2 une paramétrisation de L(c) autour de (x0, y0) telle que !g (t0) = (x0, y0),

avec t0 ∈ ]a,b[ .

Supposons que la courbe paramétrée !g est de classe C1 et régulière en t0 (!g ′(t0) *=!0)

Par construction,

( f ◦!g )(t)= c , pour tout t ∈ [a,b]

En dérivant on obtient

( f ◦!g )′(t)= c ′ = 0, pour tout t ∈ ]a,b[

d’où
!g ′(t) ·−→∇ f

(
!g (t)

)
= 0

En prenant t = t0 on trouve

!g ′(t0) ·−→∇ f (x0, y0)= 0
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Autrement dit, si nous supposons que la courbe paramétrée !g est régulière en t0 et que la

fonction f est différentiable en (x0, y0), alors le vecteur tangent !g ′(t0) ne s’annule pas et

le vecteur
−→∇ f (x0, y0) existe et est orthogonal à la courbe de niveau de f qui passe par le

point (x0, y0).

t

I

a t b

!g

x

y

x(t0)

y(t0)

x(a)

y(a)

x(b)

y(b)

!g (a)

!g (b)

!g
′ (t 0

)−→∇ f (x0, y0)

!g (t0)

3.7. La dérivée directionnelle et le gradient

Soit U ⊂ RR2 un ensemble ouvert. Soit (x0, y0) ∈ U

et soit ê = (e1, e2) ∈RR2 un vecteur unitaire (c’est-à-

dire, ‖ê‖=
√

e2
1 + e2

2 = 1).

Nous avons vu que la droite du plan qui passe par

le point (x0, y0) ayant ê comme vecteur directeur

peut être paramétrée par

!ϕ (t)= (x0 + t e1, y0+ t e2) , avec t ∈RR .

x

y

x0 x0+h e1

y0

y0+h e2

θ
ê

Définition. Soit f : U →RR une fonction de deux variables et soit

g(t)= f
(
!ϕ (t)

)
= ( f ◦ !ϕ )(t) .

Si g est dérivable en t = 0 alors on dit que f est dérivable au point (x0, y0) dans la direction

du vecteur ê . Dans ce cas, la dérivée directionnelle de f au point (x0, y0) dans la direction

du vecteur ê , notée Dê f (x0, y0) est donnée par

Dê f (x0, y0)= g ′(0)= lim
h→0

g(h)− g(0)

h
= lim

h→0

f (x0 +h e1, y0 +h e2)− f (x0, y0)

h
.
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Remarques.

• Le point (x0 +h e1, y0 +h e2) se trouve à une distance h du point (x0, y0).

• Si ê = (cosθ,sinθ), nous parlons de dérivée de f dans la direction donnée par l’angle θ .

• Si ê = (1,0) alors Dê f (x0, y0)= lim
h→0

f (x0 +h, y0)− f (x0, y0)

h
=

∂f

∂x
(x0, y0) .

• Si ê = (0,1) alors Dê f (x0, y0)= lim
h→0

f (x0, y0 +h)− f (x0, y0)

h
=

∂f

∂y
(x0, y0) .

• Le nombre Dê f (x0, y0) = g ′(0) est la pente de la droite tangente à la courbe obtenue en

intersectant le graphe de f au point (x0, y0) avec le plan vertical passant par (x0, y0) qui

contient le vecteur ê .

• Cette définition se généralise naturellement au cas de n variables.

• Si !e ∈ RR2 est un vecteur non-nul quelconque tel que ‖!e‖ *= 1, alors la définition de

dérivée de f au point (x0, y0) dans la direction du vecteur !e varie selon les auteurs.

Nous allons donc restreindre la discussion au cas des vecteurs unitaires.

Exemple

Calculer la dérivée directionnelle de la fonction

f (x, y) = 6x2 −5xy+4x−3y

au point (0,0) dans la direction du vecteur ê = (e1, e2).

Par définition,

Dê f (0,0) = lim
h→0

f (h e1,h e2)− f (0,0)

h

= lim
h→0

6h2e2
1 −5h2e1e2 +4he1 −3he2

h

= lim
h→0

(6he2
1 −5he1e2 +4e1 −3e2)

Par conséquent,

Dê f (0,0)= 4e1 −3e2 .

Remarque.

La dérivée directionnelle de la fonction f (x, y) = 6x2 −5xy+4x−3y au point (0,0) est nulle

dans toutes les directions ê = (e1, e2) telles que 4e1 −3e2 = 0. Autrement dit,

ê =±
(

3

5
,

4

5

)
.
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Question. Est-ce qu’il est possible de calculer la dérivée directionnelle de f autrement

qu’en calculant une limite?

Réponse : Oui, si l’on suppose par exemple que f est différentiable en (x0, y0).

En effet, comme !ϕ (t) = (x0 + t e1, y0 + t e2) est une courbe paramétrée régulière telle que le

vecteur tangent est !ϕ ′(t) = (e1, e2) = ê , si la fonction f est différentiable en (x0, y0) alors la

composition g(t)= f
(
!ϕ (t)

)
= ( f ◦ !ϕ )(t) est une fonction dérivable en t = 0 et nous avons

g ′(0)= ( f ◦ !ϕ )′(0)= !ϕ ′(0) ·−→∇ f
(
!ϕ (0)

)
= ê ·−→∇ f (x0, y0) .

Nous avons donc le résultat suivant :

Théorème. Soit U ⊂RR2 un ensemble ouvert. Si f : U →RR est une fonction différentiable

en (x0, y0) ∈ U , alors la dérivée directionnelle de f au point (x0, y0) dans la direction du

vecteur ê existe pour tout choix de ê . De plus, dans ce cas nous avons

Dê f (x0, y0)= ê ·−→∇ f (x0, y0) .

Conséquence.

Si f est différentiable en (x0, y0) ∈ U , alors le gradient de f au point (x0, y0) détermine

complètement les dérivées directionnelles de f dans toutes les directions à l’aide de la

formule Dê f (x0, y0)= ê ·−→∇ f (x0, y0).

Exemple

Considérons à nouveau la fonction

f (x, y) = 6x2 −5xy+4x−3y .

Comme f est une fonction de classe C∞(RR2) et donc différentiable, nous pouvons utiliser le

théorème précédent pour calculer Dê f (0,0).

Comme
−→∇ f (x, y) = (12x−5y+4, −5x−3),

nous avons
−→∇ f (0,0)= (4,−3), d’où

Dê f (0,0)= ê ·−→∇ f (0,0)= (e1, e2) · (4,−3)= 4e1 −3e2

et nous retrouvons le résultat obtenu avant.
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Attention : Une fonction qui possède des dérivées directionnelles au point (x0, y0) dans

toutes les directions ê , peut ne pas être différentiable en (x0, y0).

Considérons par exemple la fonction

f (x, y) =






x2 y

x4 + y2
si (x, y) *= (0,0)

0 si (x, y) = (0,0)

Nous avons montré que la limite

lim
(x,y)→(0,0)

x2 y

x4 + y2

n’existe pas. Par conséquent, la fonction f n’est pas continue en (0,0), ce qui implique que f

n’est pas différentiable en (0,0), même si les dérivées partielles existent en (0,0) :

∂f

∂x
(0,0)= lim

h→0

f (h,0)− f (0,0)

h
= lim

h→0

0

h
= 0

∂f

∂y
(0,0)= lim

h→0

f (0,h)− f (0,0)

h
= lim

h→0

0

h
= 0

Comme
−→∇ f (0,0)= (0,0), nous avons ici

ê ·−→∇ f (0,0)= 0, pour toute direction ê = (e1, e2).

Par définition,

Dê f (0,0) = lim
h→0

f (he1,he2)− f (0,0)

h
= lim

h→0

1

h

[
(he1)2(he2)

(he1)4 + (he2)2
−0

]

= lim
h→0

h3(e1)2e2

h3
(
h2(e1)4 + (e2)2

) = lim
h→0

(e1)2e2

h2(e1)4 + (e2)2

Nous distinguons deux cas :

• Si e2 = 0, alors Dê f (0,0) = lim
h→0

0

h2(e1)4
= 0

• Si e2 *= 0, alors Dê f (0,0) = lim
h→0

(e1)2e2

h2(e1)4 + (e2)2
=

(e1)2e2

(e2)2
=

(e1)2

e2

Ceci montre que les dérivées directionnelles de f au point (0,0) existent dans toutes les

directions ê . De plus,

Dê f (0,0) *= 0, pour toute direction ê = (e1, e2) avec e2 *= 0 et e1 *= 0.

Par conséquent,

Dê f (0,0) *= ê ·−→∇ f (0,0)

pour toute direction ê = (e1, e2) avec e2 *= 0 et e1 *= 0.
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Interprétation géométrique

Rappel : Nous avons !u ·!v = ‖!u‖‖!v‖cos(α), où α l’angle entre !u et !v .

Soit f une fonction différentiable en (x0, y0).

• Soit (x0, y0) tel que
−→∇ f (x0, y0)= (0,0).

Dans ce cas nous avons :

Dê f (x0, y0)= ê ·−→∇ f (x0, y0) =⇒ Dê f (x0, y0)= 0 pour toute direction ê .

• Soit (x0, y0) tel que
−→∇ f (x0, y0) *= (0,0).

Dans ce cas nous avons :

Dê f (x0, y0)= ê ·−→∇ f (x0, y0) =⇒ Dê f (x0, y0)=
∥∥−→∇ f (x0, y0)

∥∥cos(α)

−→∇ f (x0, y0)

ê
α

Comme −1! cos(α)! 1 alors

−
∥∥−→∇ f (x0, y0)

∥∥!Dê f (x0, y0)!
∥∥−→∇ f (x0, y0)

∥∥

◦ Si α= 0, alors Dê f (x0, y0)=
∥∥−→∇ f (x0, y0)

∥∥ est maximale.

◦ Si α=π , alors Dê f (x0, y0)=−
∥∥−→∇ f (x0, y0)

∥∥ est minimale.

◦ Si α=
π

2
, alors Dê f (x0, y0)= 0.

◦ Si 0!α<
π

2
, alors Dê f (x0, y0)> 0 et la fonction est croissante dans la direction ê .

◦ Si
π

2
<α!π , alors Dê f (x0, y0)< 0 et la fonction est décroissante dans la direction ê .

Ainsi, la croissance de la fonction est maximale dans la direction du gradient et

minimale dans la direction opposée.
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Exemples

1. f (x, y) =
√

x2 + y2

Le calcul nous donne

−→∇ f (x, y) =

(
x

√
x2 + y2

,
y

√
x2 + y2

)

,

avec (x, y) *= (0,0).

Ainsi, la croissance de f à partir de (x0, y0) *= (0,0)

se fait dans la direction radiale.

De plus, comme
∥∥−→∇ f (x, y)

∥∥= 1 pour tout (x, y) *= (0,0),

la croissance ne dépend pas de la position du

point.

L(1/2)

L(1) L(2)

L(0) x

y

1 2

Courbes de niveau et gradients pour f

2. g(x, y)= x2 + y2

Le calcul nous donne
−→∇g(x, y)= (2x,2y) pour tout (x, y) ∈RR2 .

Ainsi, la croissance de g à partir de (x0, y0) *= (0,0)

se fait dans la direction radiale.

De plus, comme
∥∥−→∇g(x, y)

∥∥= 2
√

x2 + y2 = 2
√

g(x, y) ,

cette croissance est proportionnelle à la distance

à l’origine.

L(1/4)
L(1)

L(0) x

y

1 2

Courbes de niveau et gradients pour g

Chapitre 3 - p41



3. h(x, y) =
1

√
x2 + y2

Le calcul nous donne

−→∇h(x, y) =
(
−

x

(x2 + y2)3/2
, −

y

(x2 + y2)3/2

)
,

avec (x, y) *= (0,0).

Ainsi, la croissance de h à partir de (x0, y0) *= (0,0)

se fait dans la direction de l’origine.

De plus, comme
∥∥−→∇h(x, y)

∥∥=
1

x2 + y2
=

(
h(x, y)

)
2 ,

cette croissance est inversément proportionnelle

à la distance à l’origine.

L(1)

L(1/2)

L(2/3)

x

y

1 2

Courbes de niveau et gradients pour h

3.8. Points d’extremum local (ou relatif)

Rappel : Points d’extremum local d’une fonction d’une variable

Soit f : D( f ) →RR une fonction d’une variable et soit x0 ∈ D( f ).

• On dit que x0 est un point de maximum local de f si

f (x0)" f (x) pour tout x dans un voisinage de x0 .

On dit que f (x0) est un maximum local de f .

• On dit que x0 est un point de minimum local de f si

f (x0)! f (x) pour tout x dans un voisinage de x0 .

On dit que f (x0) est un minimum local de f .

• On dit que x0 est un point d’extremum local de f s’il est un point de minimum local ou un

point de maximum local.

• On dit que x0 est un point stationnaire de f si f ′(x0)= 0.

Chapitre 3 - p42



Théorème (Fermat). Soit f : D( f )→RR une fonction d’une variable et soit x0 ∈ D( f ).

Si x0 est un point d’extremum local de f tel que f ′(x0) existe, alors f ′(x0)= 0.

Conséquence : Si f : D( f ) → RR est une fonction dérivable, alors les points d’extremum

local de f sont donc à chercher parmi les points stationnaires de f .

Attention : Si f : D( f ) →RR est une fonction d’une variable dérivable en x0 ∈ D( f ), le fait

que f ′(x0)= 0 ne garantit pas que x0 soit un point d’extremum local de f .

Par exemple, la fonction f (x) = x3 est telle que f ′(0) = 0 mais dans ce cas, x0 n’est pas un

point d’extremum local de f , mais un point d’inflexion de f .

Test de la dérivée seconde

Soit f : D( f ) →RR une fonction d’une variable et soit x0 ∈ D( f ) tel que f ′(x0)= 0. Supposons

de plus que f est deux fois continûment dérivable sur un intervalle ouvert contenant x0 .

1. Si f ′′(x0)> 0, alors x0 est un point de minimum local de f .

2. Si f ′′(x0)< 0, alors x0 est un point de maximum local de f .

Points d’extremum local d’une fonction de deux variables

Définition. Soit f : D( f ) →RR une fonction de deux variables.

• Un point (x0, y0) ∈ D( f ) est un point de maximum local de f si

f (x0, y0)" f (x, y) pour tout (x, y) dans un voisinage de (x0, y0).

On dit que f (x0, y0) est un maximum local de f .

• Un point (x0, y0) ∈ D( f ) est un point de maximum local strict de f si

f (x0, y0)> f (x, y) pour tout (x, y) dans un voisinage de (x0, y0).

On dit que f (x0, y0) est un maximum local strict de f .

• Un point (x0, y0) ∈ D( f ) est un point de minimum local de f si

f (x0, y0)! f (x, y) pour tout (x, y) dans un voisinage de (x0, y0).

On dit que f (x0, y0) est un minimum local de f .

• Un point (x0, y0) ∈ D( f ) est un point de minimum local strict de f si

f (x0, y0)< f (x, y) pour tout (x, y) dans un voisinage de (x0, y0).

On dit que f (x0, y0) est un minimum local strict de f .

• Un point (x0, y0) ∈ D( f ) est un point d’extremum local de f s’il est un point de minimum

local ou un point de maximum local.
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Détermination des points d’extremum local

Définition. Soit f : D( f ) → RR une fonction de deux variables. On dit que (x0, y0) est un

point stationnaire de f si la fonction f est différentiable en (x0, y0) ∈ D( f ) et si
−→∇ f (x0, y0)= (0,0) .

Dans ce cas, le plan tangent au graphe de f au point
(
x0, y0, f (x0, y0)

)
est horizontal :

z = f (x0, y0) .

Théorème 1. Soit f : D( f ) → RR une fonction de deux variables différentiable en (x0, y0).

Si (x0, y0) est un point d’extremum local de f alors (x0, y0) est un point stationnaire de f .

Preuve. Supposons que (x0, y0) est un point d’extremum local de la fonction f . Comme par

hypothèse f est différentiable en ce point,
−→∇ f (x0, y0) existe.

A voir :
−→∇ f (x0, y0)= (0,0).

Par hypothèse, la fonction x %−→ f (x, y0) possède un extremum local en x0 .

En utilisant le théorème sur les points d’extremum des fonctions d’une variable nous

trouvons
∂f

∂x
(x0, y0)= 0.

De la même manière, étant donné que y %−→ f (x0, y) possède un extremum local en y0 nous

trouvons
∂f

∂y
(x0, y0)= 0.

Conséquence : Si f est différentiable en (x0, y0) et si (x0, y0) n’est pas un point stationnaire

de f , alors (x0, y0) n’est pas un point d’extremum local de f .

Par conséquent. si f est une fonction différentiable, alors les candidats à point d’extremum

local de la fonction f sont à chercher parmi les points stationnaires de f .

Remarque. Le théorème se généralise au cas des fonctions de n variables, avec n" 3.

Exemple

La fonction différentiable f (x, y) = x2 + y2 est telle que

f (x, y) = x2 + y2 " 0= f (0,0) .

Par conséquent, f possède un point de minimum local en (0,0).

Etant donné que le gradient
−→∇ f (x, y) = (2x,2y) est défini pour tout (x, y) ∈ RR2 et s’annule

en (0,0), le point (0,0) est bel et bien un point stationnaire.

Attention : Le théorème 1 ne dit pas que si (x0, y0) est un point stationnaire de f ,

alors (x0, y0) est forcément un point d’extremum local de f .
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Considérons par exemple la fonction différentiable

f (x, y) = x2 − y2 , avec D( f )=RR2 .

Comme le gradient
−→∇ f (x, y) = (2x,−2y) est défini partout et

−→∇ f (x, y) = (0,0) ⇐⇒ (x, y)= (0,0) ,

le seul point stationnaire de f est (0,0). Nous pouvons montrer, à l’aide des courbes de

niveau de f , que le point (0,0) n’est pas un point d’extremum local de f . Nous avons

f (x, y) = c ⇐⇒ x2 − y2 = c

• Si c = 0, nous trouvons y=±x (ensemble de deux droites).

• Si c *= 0, nous trouvons
x2

c
−

y2

c
= 1 (hyperbole).

L(1)

L
(

1
2

)

L(0)

L
(
− 1

2

)

L(−1)

x

y

1

1

Quelques courbes de niveau de f (x, y) = x2 − y2

y

z

1

f (0, y) =−y2

x

z

1
f (x,0) = x2

x

y

z

Coupe en x = 0 Coupe en y= 0 Esquisse du graphe de f

Définition. Soit (x0, y0) ∈ D( f ) un point stationnaire de f .

On dit que (x0, y0) est un point selle de f s’il est possible de trouver deux directions

ê = (e1, e2) et ê∗ = (e∗1, e∗2)

telles que la fonction t %−→ f (x0 + te1, y0 + te2) admet un point de maximum local en t = 0

alors que la fonction t %−→ f (x0 + te∗1, y0 + te∗2) admet un point de minimum local en t = 0.

Exemple

Le point (0,0) est un point selle de f (x, y) = x2 − y2 .

En effet, il suffit de prendre ê = (0,1) et ê∗ = (1,0).
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Théorème 2. Soit f : D( f ) → RR une fonction de deux variables et soit (x0, y0) un point

stationnaire de f . Supposons que les dérivées partielles de premier et deuxième ordre

existent et sont continues au voisinage de (x0, y0). Soit

H(x0, y0)=
∂2f

∂x2
(x0, y0)

∂2f

∂y2
(x0, y0)−

(
∂2f

∂x∂y
(x0, y0)

)
2

.

1) Si H(x0, y0)> 0 et
∂2f

∂x2
(x0, y0)> 0

(
ou

∂2f

∂y2
(x0, y0)> 0

)
,

alors le point (x0, y0) est un point de minimum local de f .

2) Si H(x0, y0)> 0 et
∂2f

∂x2
(x0, y0)< 0

(
ou

∂2 f

∂y2
(x0, y0)< 0

)
,

alors le point (x0, y0) est un point de maximum local f .

3) Si H(x0, y0)< 0,

alors le point (x0, y0) est un point selle de f (et n’est pas un point d’extremum local).

Remarques.

• Si H(x0, y0)= 0, le théorème 2 ne nous permet pas de conclure et il faut étudier la fonction

au voisinage du point stationnaire (x0, y0).

• Le théorème ne se généralise pas au cas des fonctions de n variables, avec n" 3.

Définition. On appelle H(x, y) le hessien de f . C’est le déterminant de la matrice




∂2f

∂x2
(x, y)

∂2f

∂y∂x
(x, y)

∂2f

∂x∂y
(x, y)

∂2 f

∂y2
(x, y)




,

appelée matrice hessienne de f .

Méthode pour déterminer les points d’extremum local d’une fonction

différentiable de deux variables

a) Dresser la liste des points stationnaires de f

b) Appliquer le théorème 2 pour déterminer la nature des points trouvés sous a).
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Exemples

Déterminer les points d’extremum local des fonctions suivantes :

1. f (x, y) = x3 + y3 −3x−12y+20, avec D( f )=RR2 .

Comme
∂f

∂x
(x, y) = 3x2 − 3 et

∂f

∂y
(x, y) = 3y2 − 12 sont des fonctions continues définies

sur RR2 , la fonction f est de classe C1(RR2) et donc différentiable sur RR2 . Comme{
3x2 −3 = 0

3y2 −12 = 0
⇐⇒

{
x2 −1 = 0

y2 −4 = 0
⇐⇒

{
(x−1)(x+1) = 0

(y−2)(y+2) = 0
⇐⇒

{
x= 1 ou x=−1

y= 2 ou y=−2

nous avons donc quatre points stationnaires :

(1,2) , (1,−2), (−1,2) , (−1,−2).

Etant donné que

∂2f

∂x2
(x, y)= 6x ,

∂2f

∂y2
(x, y)= 6y ,

∂2f

∂x∂y
(x, y)= 0 et H(x, y) = (6x)(6y)−02 = 36xy ,

le théorème 2 nous dit que :

• (1,2) est un point de minimum local de f car H(1,2)= 36·1·2> 0 et
∂2f

∂x2
(1,2)= 6·1> 0

• (1,−2) est un point selle de f car H(1,−2)= 36·1·(−2)< 0

• (−1,2) est un point selle de f car H(−1,2)= 36·(−1)·2< 0

• (−1,−2) est un point de maximum local de f car H(−1,−2)= 36(−1)(−2) > 0

et
∂2f

∂x2
(−1,−2)= 6(−1)< 0

2. g(x, y)= 1+ x2 + y2 −2xy, avec D(g)=RR2 .

Comme
∂g

∂x
(x, y) = 2x − 2y et

∂g

∂y
(x, y) = 2y − 2x sont des fonctions continues définies

sur RR2 , la fonction g est de classe C1(RR2) et donc différentiable sur RR2 . Comme{
2x−2y = 0

2y−2x = 0
⇐⇒ y= x (droite)

nous avons donc une infinité de points stationnaires :

(x, x) avec x ∈RR .

Etant donné que

∂2g

∂x2
(x, y)= 2,

∂2g

∂y2
(x, y) = 2,

∂2g

∂x∂y
(x, y)=−2 et H(x, y) = 2·2− (−2)2 = 0,

le théorème 2 ne nous permet pas de conclure.

Comme

g(x, y)= 1+ x2 + y2 −2xy = 1+ x2 −2xy+ y2 = 1+ (x− y)2 " 1= g(x, x) ,

les points stationnaires de g sont des points de minimum local de g .
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3.9. Points d’extremum global (ou absolu)

Définition. Soit f : D( f ) →RR une fonction de deux variables.

• Un point (x0, y0) ∈ D( f ) est un point de maximum global de f si

f (x0, y0)" f (x, y) pour tout (x, y) ∈ D( f ).

On dit que f (x0, y0) est le maximum global de f .

• Un point (x0, y0) ∈ D( f ) est un point de maximum global strict de f si

f (x0, y0)> f (x, y) pour tout (x, y) ∈ D( f ).

On dit que f (x0, y0) est le maximum global strict de f .

• Un point (x0, y0) ∈ D( f ) est un point de minimum global de f si

f (x0, y0)! f (x, y) pour tout (x, y) ∈ D( f ).

On dit que f (x0, y0) est le minimum global de f .

• Un point (x0, y0) ∈ D( f ) est un point de minimum global strict de f si

f (x0, y0)< f (x, y) pour tout (x, y) ∈ D( f ).

On dit que f (x0, y0) est le minimum global strict de f .

• Un point (x0, y0) ∈ D( f ) est un point d’extremum global de f s’il est un point de

minimum global ou un point de maximum global.

Exemples

1. Tout point (x, y) ∈RR2 est un point de maximum global et un point de minimum global de

la fonction constante f (x, y) = c .

z

x y

Graphe de f
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2. La fonction h(x, y) =
1

√
x2 + y2

n’a pas de points d’extremum global.

x1 2 3 4 5 6

z

1

h(x,0) =
1

|x|

z

x y

Coupe du graphe de h en y= 0 Esquisse du graphe de h

Existence de points d’extremum global

Rappel. Si f : [a,b]→RR est une fonction continue définie sur l’intervalle fermé [a,b], alors

la fonction f possède (au moins) un point de maximum global et (au moins) un point de

minimum global.

Dans ce cas, les points d’extremum global sont à chercher parmi :

• les points x0 ∈ ]a,b[ où f ′(x0)= 0,

• les points x0 ∈ ]a,b[ où f ′(x0) n’existe pas,

• les points du bord de l’intervalle, à savoir x = a et x = b .

Par exemple, la fonction f esquissée ci-dessous possède deux points stationnaires (x1 et x2 ).

– x2 est un point de minimum global de f

– b est un point de maximum global de f

x

y

f (b)

b

f (a)

a

f (x1)

x1f (x2)

x2

y = f (x)
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Question. Quel est l’analogue d’intervalle fermé [a,b] ⊂ RR lorsque nous considérons des

domaines de RRn ?

Rappel.

• Un domaine D ⊂RRn est fermé s’il contient son bord.

• Un domaine D ⊂RRn est borné s’il peut être contenu dans une boule de rayon fini centrée

à l’origine.

• Un domaine D ⊂RRn est compact s’il est fermé et borné.

Exemples

1. D1 =
{
(x, y) ∈RR2 : x2 + y2 < 1

}
est un domaine ouvert et borné.

2. D2 =
{
(x, y) ∈RR2 : x2 + y2 ! 1

}
est un domaine fermé et borné.

3. D3 =
{
(x, y) ∈RR2 : y! 1

}
est un domaine fermé mais non borné.

4. D4 =
{
(x, y) ∈RR2 : −1! x! 1, −1! y! 1

}
est un domaine fermé et borné.

1 x

y

D1
1 x

y

D2
1 x

y

D3
1x

y

D4

Théorème 3. Soit f : D →RR une fonction de deux variables avec D ⊂RR2 fermé et borné.

Si f est continue, alors f possède (au moins) un point de maximum global et (au moins)

un point de minimum global.

Conséquence. En faisant appel aux théorèmes 1 et 3, nous pouvons montrer que toute

fonction différentiable de deux variables définie sur un domaine D fermé et borné atteint

nécessairement son maximum global et son minimum global en

• un point stationnaire,

• un point de ∂D , le bord du domaine D .
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Méthode pour déterminer les points d’extremum global d’une fonction

différentiable de deux variables sur un domaine D fermé et borné

a) Dresser la liste des points stationnaires de f se trouvant dans D .

b) Déterminer les points sur le bord de D susceptibles de donner un extremum.

c) Evaluer la fonction f en chaque point trouvé dans a) – b)

• la plus grande valeur M est le maximum global de f sur D ,

• la plus petite valeur m est le minimum global de f sur D

et nous avons

m! f (x, y)! M pour tout (x, y) ∈ D .

Exemples

Déterminer les points d’extremum global des fonctions suivantes :

1. f (x, y) = x2 − xy+ y2 − x− y restreinte au domaine

D =
{
(x, y) ∈RR2 : x" 0, y" 0, x+ y! 3

}

(domaine délimité par les droites x = 0, y= 0 et y= 3− x).

a) Points stationnaires :

Comme
∂f

∂x
(x, y) = 2x− y−1 et

∂f

∂y
(x, y) =−x+2y−1 sont

des fonctions continues, f est différentiable sur RR2 .

D

x1 2 3

y

1

2

3

Les points stationnaires de f satisfont
{

2x− y−1 = 0 (1)

−x+2y−1 = 0 (2)
⇐⇒

{
3x−3 = 0 2(1)+ (2)

3y−3 = 0 (1)+2(2)

⇐⇒

{
x= 1

y= 1

Nous avons donc un seul point stationnaire :

(1,1) ∈ D .

x1 2 3

y

1

2

3
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b) Points du bord : nous allons regarder les trois côtés du triangle séparément :

C1 : y= 0, 0! x! 3

Ici f (x,0)= x2 − x = g(x), avec x ∈ [0,3].

Comme g ′(x)= 2x−1 s’annule en x = 1
2 , il y a trois candidats

sur C1 : (
1
2 ,0

)
, (0,0) , (3,0)

C2 : x = 0, 0! y! 3

Ici f (0, y)= y2 − y= g(y), avec y ∈ [0,3].

Comme g ′(y)= 2y−1 s’annule en y= 1
2 , il y a trois candidats

sur C2 : (
0, 1

2

)
, (0,0) , (0,3)

C3 : y=−x+3, 0! x! 3

Ici f (x,−x+3) = x2 − x(−x+3)+ (−x+3)2 − x− (−x+3)

= 3x2 −9x+6= h(x) avec x ∈ [0,3]

Comme h′(x) = 6x−9 s’annule en x = 3
2 et − 3

2 +3 = 3
2 , il y a

trois candidats sur C3 :
(

3
2 , 3

2

)
, (0,3) , (3,0)

x1 2 31
2

y

1

2

3

C1

x1 2 3

y

1

2

3

1
2

C2

x1 2 33
2

y

1

2

3

3
2

C3

c) Evaluation :

f (1,1) = 1−1+1−1−1 =−1 (minimum global)

f (0,0) = 0−0+0−0−0 = 0

f
(

1
2 ,0

)
= 1

4 −0+0− 1
2 −0=−1

4

f (3,0) = 9−0+0−3−0 = 6 (maximum global)

f
(
0, 1

2

)
= 0−0+ 1

4 −0− 1
2 =−1

4

f (0,3) = 0−0+9−0−3 = 6 (maximum global)

f
(

3
2 , 3

2

)
= 9

4 −
9
4 +

9
4 −

3
2 −

3
2 =−3

4

Par conséquent,

• (1,1) est un point de minimum global de f

• (3,0) et (0,3) sont des points de maximum global de f

De plus,

−1! f (x, y)! 6 pour tout (x, y) ∈ D .

x1 2 3

y

1

2

3

min

max

max
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2. h(x, y) =
√

x2 + y2 (distance à l’origine) restreinte au domaine

D =
{
(x, y) ∈RR2 : (x−2)2 + y2 ! 1

}
.

Géométriquement nous nous attendons à trouver :

• point de minimum global de h : (1,0)

• point de maximum global de h : (3,0)

D

x

y

1 2 3

Remarque. Nous allons étudier la fonction différentiable f (x, y) = x2 + y2 car cela va

simplifier les calculs sans changer le résultat.

Comme
∂f

∂x
(x, y)= 2x et

∂f

∂y
(x, y)= 2y , le seul point stationnaire de f est (0,0) *∈ D .

Par conséquent, les points d’extremum de f sur le domaine D sont à chercher sur le

bord de D , le cercle de rayon 1 et centre (2,0). Nous avons :

(x−2)2 + y2 = 1 ⇐⇒ x2 −4x+4+ y2 = 1 ⇐⇒ x2 + y2 = 4x−3

Ainsi, sur le cercle, la fonction à étudier est

g(x)= 4x−3, avec x ∈ [1,3].

Comme g ′(x)= 4 *= 0, les seuls candidats à point d’extremum de g sont les points du bord

de [1,3], à savoir x = 1 et x = 3. Les candidats pour f (et h) sont donc (1,0) et (3,0).

Comme h(1,0)= 1 et h(3,0)= 3, le point de minimum global de h est (1,0) et le point de

maximum global de h est (3,0), comme attendu. De plus,

1! h(x, y)! 3, pour tout (x, y) ∈ D .

3.10. La méthode des multiplicateurs de Lagrange

Problème : Soit f : D( f )→RR une fonction de deux variables.

Nous voulons trouver les points d’extremum (x0, y0) ∈RR2 de f qui satisfont la contrainte

g(x0, y0)= 0.

© Pearson

Autrement dit, trouver les points (x0, y0) sur la courbe de niveau 0 de la fonction g :

Lg(0)=
{
(x, y) ∈RR2 : g(x, y)= 0

}

tels que

f (x0, y0)" f (x, y) (ou f (x0, y0)! f (x, y)) , pour tout (x, y) ∈ Lg(0).

Application : Déterminer les points d’extremum de f sur le bord d’un domaine D .
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Question : Comment trouver les points d’extremum (x0, y0) ∈ RR2 de f qui satisfont la

contrainte g(x0, y0)= 0 ?

Une première approche consiste à résoudre g(x, y)= 0 pour obtenir y en fonction de x :

y=G(x)

et chercher ensuite les points d’extremum de la fonction d’une variable

h(x) = f
(
x,G(x)

)
.

Alternativement, nous pouvons résoudre g(x, y)= 0 pour obtenir x en fonction de y :

x=G(y)

et chercher ensuite les points d’extremum de la fonction d’une variable

h(y) = f
(
G(y), y

)
.

Plus généralement, nous pouvons essayer de trouver une paramétrisation

!ϕ (t)=
(
x(t), y(t)

)
, avec t ∈ [a,b],

de la courbe Lg(0) et chercher ensuite les points d’extremum de la fonction

h(t)= f
(
!ϕ (t)

)
= ( f ◦ !ϕ )(t)= f

(
x(t), y(t)

)
, avec t ∈ [a,b].

Malheureusement, dans beaucoup de situations ces approches ne sont pas possibles.

Rappel. Nous avons vu que lorsqu’une fonction g est différentiable en (x0, y0) ∈ D(g) et que

la courbe de niveau de g qui passe par (x0, y0) possède une paramétrisation !ϕ : [a,b] →RR2

autour de (x0, y0) telle que

!ϕ (t0)= (x0, y0) , avec t0 ∈ ]a,b[

est régulière en t0 , alors le vecteur tangent !ϕ ′(t0) ne s’annule pas et le vecteur
−→∇g(x0, y0)

existe et est orthogonal à la courbe de niveau de g qui passe par le point (x0, y0) :

t

I

a t b

!ϕ

x

y

x(t0)

y(t0)

x(a)

y(a)

x(b)

y(b)

!ϕ (a)

!ϕ (b)

!ϕ
′ (t 0

)−→∇g(x0, y0)

!ϕ (t0)
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Remarque. Une condition nécessaire pour que le point !ϕ (t0) = (x0, y0), avec t0 ∈ ]a,b[

soit un point d’extremum de la fonction f sur la courbe Lg(0) est

( f ◦ !ϕ )′(t0)= 0.

Autrement dit

!ϕ ′(t0) ·−→∇ f (x0, y0)= 0. (#)

Idée (Lagrange, 1788)

L’équation (#) nous dit que si (x0, y0) est un point d’extremum de f sur la courbe Lg(0)

alors les vecteurs
−→∇ f (x0, y0) et !ϕ ′(t0) sont orthogonaux.

Comme par construction
−→∇g(x0, y0) est lui aussi orthogonal au vecteur tangent !ϕ ′(t0)

(car Lg(0) est la courbe de niveau 0 de la fonction g ), les vecteurs
−→∇ f (x0, y0) et

−→∇g(x0, y0)

doivent être parallèles.

Supposons que
−→∇g(x0, y0) existe et soit non nul. Il existe alors un nombre réel λ tel que

−→∇ f (x0, y0)=λ
−→∇g(x0, y0) .

Le nombre λ est appelé multiplicateur de Lagrange.

La condition nécessaire pour que (x0, y0) soit un point d’extremum sur Lg(0) s’écrit





∂f

∂x
(x0, y0) = λ

∂g

∂x
(x0, y0)

∂f

∂y
(x0, y0) = λ

∂g

∂y
(x0, y0)

g(x0, y0) = 0

(##)

Nous avons donc à résoudre un système de trois équations à trois inconnues x0 , y0 et λ .

En introduisant la fonction de Lagrange L :

L(x, y,λ)= f (x, y)−λ g(x, y) ,

le système d’équations (##) devient
−→∇L(x0, y0,λ)= (0,0,0) .

De ce fait, la recherche de candidats à point d’extremum sous contrainte d’une fonction

de deux variables se ramène tout simplement à la recherche de points stationnaires d’une

fonction de trois variables.
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Remarques.

• Pour pouvoir utiliser la méthode des multiplicateurs de Lagrange, il faut commencer par

vérifier que
−→∇g(x0, y0) existe et est non nul pour tout (x0, y0) ∈ Lg(0).

• La méthode des multiplicateurs de Lagrange nous fournit des candidats. Elle ne nous dit

pas que si (##) est satisfait alors (x0, y0) est forcément un point d’extremum de f sous la

contrainte g(x0, y0)= 0.

• La méthode des multiplicateurs de Lagrange se généralise à la recherche de points

d’extremum de fonctions de n " 2 variables sous k " 1 contraintes, où il faut résoudre

un système de n+k équations avec n+k inconnues.

Par exemple,

L(x, y, z,λ1,λ2)= f (x, y, z)−λ1 g1(x, y, z)−λ2 g2(x, y, z)

est la fonction de Lagrange associée à la fonction de trois variables f sous les contraintes

g1(x, y, z) = 0 et g2(x, y, z) = 0.

Méthode des multiplicateurs de Lagrange

Pour trouver les points d’extremum de la fonction f sous la contrainte g(x, y)= 0 :

1. Construire une nouvelle fonction, la fonction de Lagrange :

L(x, y,λ)= f (x, y)−λ g(x, y) .

2. Calculer les dérivées partielles de L :

∂L

∂x
(x, y,λ) =

∂f

∂x
(x, y)−λ

∂g

∂x
(x, y) ,

∂L

∂y
(x, y,λ) =

∂f

∂y
(x, y)−λ

∂g

∂y
(x, y) ,

∂L

∂λ
(x, y,λ) = −g(x, y) .

3. Déterminer les points stationnaires de L :





∂f

∂x
(x0, y0) = λ

∂g

∂x
(x0, y0)

∂f

∂y
(x0, y0) = λ

∂g

∂y
(x0, y0)

g(x0, y0) = 0

(#)
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Exemples

1. Déterminer les points d’extremum de la fonction

f (x, y) = x+ y

sous la contrainte x2 + y2 = 2 (cercle de rayon
'

2 centré à l’origine).

Soit g(x, y)= x2 + y2 −2 la fonction contrainte.

Comme
−→∇g(x, y) = (2x,2y) s’annule en (x, y) = (0,0) et g(0,0) = −2 *= 0, nous pouvons

utiliser la méthode des multiplicateurs de Lagrange.

Considérons la fonction de Lagrange

L(x, y,λ)= x+ y−λ
(
x2 + y2 −2

)
.

Comme :

∂L

∂x
(x, y,λ)= 1−2λx ,

∂L

∂y
(x, y,λ)= 1−2λy ,

∂L

∂λ
(x, y,λ)=−

(
x2 + y2 −2

)
,

les points stationnaires de L satisfont :




1−2λx = 0 (1)

1−2λy = 0 (2)

x2 + y2 = 2 (3)

La soustraction de la première équation par la deuxième nous donne

−2λx+2λy= 0 ⇐⇒ 2λ(y− x) = 0

et cette équation est satisfaite si y= x ou si λ= 0.

• Si y= x , la troisième équation devient 2x2 = 2, d’où x=−1 ou x = 1.

• Si λ= 0, la première équation devient 1= 0, ce qui est impossible.

Nous avons donc deux candidats :

(−1,−1) et (1,1)

Comme

f (−1,−1) = −1−1=−2

f (1,1) = 1+1= 2

la fonction f est maximale en (1,1) et minimale en (−1,−1). De plus,

−2! f (x, y)! 2 pour tout (x, y) sur le cercle x2 + y2 = 2.

Remarque 1. La courbe de niveau c de la fonction f est la droite d’équation y=−x+ c .

Comme le gradient de f
−→∇ f (x, y) = (1,1) pour tout (x, y) ∈RR2

est parallèlle à
−→∇g(x, y) = (2x,2y) lorsque y = x , nous retrouvons donc les points (1,1)

et (−1,−1).
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−→∇ g(
1,

1)

−→∇ f (
1,

1)

−→∇ g(
−1,

1)
−→∇ f (

−1,
1)

−→∇ g(
−1,

−1)

−→∇ f (
−1,

−1)

−→∇ g(
x 0

,y 0
)

−→∇ f (
x 0

,y 0
)

1−1

1

−1

x

y

courbes de niveau de f

contrainte g(x, y)= 0

point de minimum de f

point de maximum de f

Remarque 2. Dans ce cas, il est aussi possible d’utiliser une paramétrisation du cercle

d’équation x2 + y2 = 2. Par exemple,

!ϕ (t)=
('

2cos(t) ,
'

2sin(t)
)

, avec t ∈ [0,2π].

Ainsi, la fonction d’une variable à étudier est

h(t)= f
(
!ϕ (t)

)
=
'

2cos(t)+
'

2sin(t) , avec t ∈ [0,2π].

Comme h′(t) = −
'

2sin(t)+
'

2cos(t) s’annule lorsque t =
π

4
ou t =

5π

4
, nous retrouvons

les points (1,1) et (−1,−1).

2. Déterminer les points d’extremum de la fonction

f (x, y) = x2 + y2

sous la contrainte (x−2)2 + y2 = 1.

Soit g(x, y)= (x−2)2 + y2 −1 la fonction contrainte.

Comme
−→∇g(x, y)=

(
2(x−2),2y

)
s’annule en (x, y) = (2,0) et g(2,0)=−1 *= 0, nous pouvons

utiliser la méthode des multiplicateurs de Lagrange. Soit

L(x, y,λ)= x2 + y2 −λ
(
(x−2)2 + y2 −1

)
.

Comme :

∂L

∂x
(x, y,λ)= 2x−2λ(x−2),

∂L

∂y
(x, y,λ)= 2y−2λy ,

∂L

∂λ
(x, y,λ)=−

(
(x−2)2 + y2 −1

)
,

les points stationnaires de L satisfont :




x−λ(x−2) = 0 (1)

y(1−λ) = 0 (2)

(x−2)2 + y2 = 1 (3)

La deuxième équation est satisfaite si y= 0 ou si λ= 1.

• Si y= 0, la troisième équation devient (x−2)2 = 1, d’où x= 1 et x= 3.

• Si λ= 1, la première équation devient x− (x−2)= 0, d’où 2= 0, ce qui est impossible.

Nous retrouvons donc les deux candidats trouvés précédemment, à savoir (1,0) et (3,0).
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