
3.9. Points d’extremum global (ou absolu)

Définition. Soit f : D( f ) →RR une fonction de deux variables.

• Un point (x0, y0) ∈ D( f ) est un point de maximum global de f si

f (x0, y0)> f (x, y) pour tout (x, y) ∈ D( f ).

On dit que f (x0, y0) est le maximum global de f .

• Un point (x0, y0) ∈ D( f ) est un point de maximum global strict de f si

f (x0, y0)> f (x, y) pour tout (x, y) ∈ D( f ).

On dit que f (x
0
, y

0
) est le maximum global strict de f .

• Un point (x0, y0) ∈ D( f ) est un point de minimum global de f si

f (x0, y0)6 f (x, y) pour tout (x, y) ∈ D( f ).

On dit que f (x0, y0) est le minimum global de f .

• Un point (x0, y0) ∈ D( f ) est un point de minimum global strict de f si

f (x0, y0)< f (x, y) pour tout (x, y) ∈ D( f ).

On dit que f (x0, y0) est le minimum global strict de f .

• Un point (x0, y0) ∈ D( f ) est un point d’extremum global de f s’il est un point de

minimum global ou un point de maximum global.



Exemples

1. Tout point (x, y) ∈RR2 est un point de maximum global et un point de minimum global de

la fonction constante f (x, y) = c .

z

x y

Graphe de f



2. La fonction h(x, y) =
1

√

x2 + y2
n’a pas de points d’extremum global.
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Existence de points d’extremum global

Rappel. Si f : [a, b]→RR est une fonction continue définie sur l’intervalle fermé [a, b], alors

la fonction f possède (au moins) un point de maximum global et (au moins) un point de

minimum global.

Dans ce cas, les points d’extremum global sont à chercher parmi :

• les points x
0
∈ ]a, b[ où f ′(x

0
)= 0,

• les points x0 ∈ ]a, b[ où f ′(x0) n’existe pas,

• les points du bord de l’intervalle, à savoir x = a et x = b .

Par exemple, la fonction f esquissée ci-dessous possède deux points stationnaires (x1 et x2 ).

– x2 est un point de minimum global de f

– b est un point de maximum global de f
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Question. Quel est l’analogue d’intervalle fermé [a, b] ⊂ RR lorsque nous considérons des

domaines de RR
n ?

Rappel.

• Un domaine D ⊂RR
n est fermé s’il contient son bord.

• Un domaine D ⊂RR
n est borné s’il peut être contenu dans une boule de rayon fini centrée

à l’origine.

• Un domaine D ⊂RR
n est compact s’il est fermé et borné.

Exemples

1. D1 =
{

(x, y) ∈RR2 : x2 + y2 < 1
}

est un domaine ouvert et borné.

2. D2 =
{

(x, y) ∈RR2 : x2 + y2 6 1
}

est un domaine fermé et borné.

3. D3 =
{

(x, y) ∈RR2 : y6 1
}

est un domaine fermé mais non borné.

4. D4 =
{

(x, y) ∈RR2 : −16 x6 1 , −16 y6 1
}

est un domaine fermé et borné.
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Théorème 3. Soit f : D →RR une fonction de deux variables avec D ⊂RR
2 fermé et borné.

Si f est continue, alors f possède (au moins) un point de maximum global et (au moins)

un point de minimum global.

Conséquence. En faisant appel aux théorèmes 1 et 3, nous pouvons montrer que toute

fonction différentiable de deux variables définie sur un domaine D fermé et borné atteint

nécessairement son maximum global et son minimum global en

• un point stationnaire,

• un point de ∂D , le bord du domaine D .



Méthode pour déterminer les points d’extremum global d’une fonction

différentiable de deux variables sur un domaine D fermé et borné

a) Dresser la liste des points stationnaires de f se trouvant dans D .

b) Déterminer les points sur le bord de D susceptibles de donner un extremum.

c) Evaluer la fonction f en chaque point trouvé dans a) – b)

• la plus grande valeur M est le maximum global de f sur D ,

• la plus petite valeur m est le minimum global de f sur D

et nous avons

m6 f (x, y)6 M pour tout (x, y) ∈ D .



Exemples

Déterminer les points d’extremum global des fonctions suivantes :

1. f (x, y) = x2 − xy+ y2 − x− y restreinte au domaine

D =
{

(x, y) ∈RR2 : x> 0 , y> 0 , x+ y6 3
}

(domaine délimité par les droites x = 0, y= 0 et y= 3− x).

a) Points stationnaires :

Comme
∂f

∂x
(x, y) = 2x− y−1 et

∂f

∂y
(x, y) =−x+2y−1 sont

des fonctions continues, f est différentiable sur RR
2 .

D

x1 2 3

y

1

2

3

Les points stationnaires de f satisfont
{

2x− y−1 = 0 (1)

−x+2y−1 = 0 (2)
⇐⇒

{

3x−3 = 0 2(1)+ (2)

3y−3 = 0 (1)+2(2)

⇐⇒
{

x= 1

y= 1

Nous avons donc un seul point stationnaire :

(1,1) ∈ D .
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b) Points du bord : nous allons regarder les trois côtés du triangle séparément :

C1 : y= 0, 06 x6 3

Ici f (x,0)= x2 − x = g(x), avec x ∈ [0,3].

Comme g ′(x)= 2x−1 s’annule en x = 1
2

, il y a trois candidats

sur C1 :
(

1
2
,0

)

, (0,0) , (3,0)

C2 : x = 0, 06 y6 3

Ici f (0, y)= y2 − y= g(y), avec y ∈ [0,3].

Comme g ′(y)= 2y−1 s’annule en y= 1
2

, il y a trois candidats

sur C2 :
(

0, 1
2

)

, (0,0) , (0,3)

C3 : y=−x+3, 06 x6 3

Ici f (x,−x+3) = x2 − x(−x+3)+ (−x+3)2 − x− (−x+3)

= 3x2 −9x+6= h(x) avec x ∈ [0,3]

Comme h′(x) = 6x−9 s’annule en x = 3
2

et − 3
2
+3 = 3

2
, il y a

trois candidats sur C3 :
(

3
2
, 3

2

)

, (0,3) , (3,0)
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c) Evaluation :

f (1,1) = 1−1+1−1−1 =−1 (minimum global)

f (0,0) = 0−0+0−0−0 = 0

f
(

1
2
,0

)

= 1
4
−0+0− 1

2
−0=−1

4

f (3,0) = 9−0+0−3−0 = 6 (maximum global)

f
(

0, 1
2

)

= 0−0+ 1
4
−0− 1

2
=−1

4

f (0,3) = 0−0+9−0−3 = 6 (maximum global)

f
(

3
2
, 3

2

)

= 9
4
− 9

4
+ 9

4
− 3

2
− 3

2
=−3

4

Par conséquent,

• (1,1) est un point de minimum global de f

• (3,0) et (0,3) sont des points de maximum global de f

De plus,

−16 f (x, y)6 6 pour tout (x, y) ∈ D .
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2. h(x, y) =
√

x2 + y2 (distance à l’origine) restreinte au domaine

D =
{

(x, y) ∈RR2 : (x−2)2 + y2
6 1

}

.

Géométriquement nous nous attendons à trouver :

• point de minimum global de h : (1,0)

• point de maximum global de h : (3,0)

D

x

y

1 2 3

Remarque. Nous allons étudier la fonction différentiable f (x, y) = x2 + y2 car cela va

simplifier les calculs sans changer le résultat.

Comme
∂f

∂x
(x, y)= 2x et

∂f

∂y
(x, y)= 2y , le seul point stationnaire de f est (0,0) 6∈ D .

Par conséquent, les points d’extremum de f sur le domaine D sont à chercher sur le

bord de D , le cercle de rayon 1 et centre (2,0). Nous avons :

(x−2)2 + y2 = 1 ⇐⇒ x2 −4x+4+ y2 = 1 ⇐⇒ x2 + y2 = 4x−3

Ainsi, sur le cercle, la fonction à étudier est

g(x)= 4x−3 , avec x ∈ [1,3].

Comme g ′(x)= 4 6= 0, les seuls candidats à point d’extremum de g sont les points du bord

de [1,3], à savoir x = 1 et x = 3. Les candidats pour f (et h) sont donc (1,0) et (3,0).

Comme h(1,0)= 1 et h(3,0)= 3, le point de minimum global de h est (1,0) et le point de

maximum global de h est (3,0), comme attendu. De plus,

16 h(x, y)6 3 , pour tout (x, y) ∈ D .



3.10. La méthode des multiplicateurs de Lagrange

Problème : Soit f : D( f )→RR une fonction de deux variables.

Nous voulons trouver les points d’extremum (x0, y0) ∈RR2 de f qui satisfont la contrainte

g(x0, y0)= 0 .

© Pearson

Autrement dit, trouver les points (x0, y0) sur la courbe de niveau 0 de la fonction g :

Lg(0)=
{

(x, y) ∈RR2 : g(x, y)= 0
}

tels que

f (x0, y0)> f (x, y) (ou f (x0, y0)6 f (x, y)) , pour tout (x, y) ∈ Lg(0).

Application : Déterminer les points d’extremum de f sur le bord d’un domaine D .



Question : Comment trouver les points d’extremum (x0, y0) ∈ RR
2 de f qui satisfont la

contrainte g(x0, y0)= 0 ?

Une première approche consiste à résoudre g(x, y)= 0 pour obtenir y en fonction de x :

y=G(x)

et chercher ensuite les points d’extremum de la fonction d’une variable

h(x) = f
(

x,G(x)
)

.

Alternativement, nous pouvons résoudre g(x, y)= 0 pour obtenir x en fonction de y :

x=G(y)

et chercher ensuite les points d’extremum de la fonction d’une variable

h(y) = f
(

G(y), y
)

.

Plus généralement, nous pouvons essayer de trouver une paramétrisation

~ϕ (t)=
(

x(t), y(t)
)

, avec t ∈ [a, b],

de la courbe Lg(0) et chercher ensuite les points d’extremum de la fonction

h(t)= f
(

~ϕ (t)
)

= ( f ◦ ~ϕ )(t)= f
(

x(t), y(t)
)

, avec t ∈ [a, b].

Malheureusement, dans beaucoup de situations ces approches ne sont pas possibles.



Rappel. Nous avons vu que lorsqu’une fonction g est différentiable en (x0, y0) ∈ D(g) et que

la courbe de niveau de g qui passe par (x0, y0) possède une paramétrisation ~ϕ : [a, b] →RR
2

autour de (x
0
, y

0
) telle que

~ϕ (t0)= (x0, y0) , avec t0 ∈ ]a, b[

est régulière en t0 , alors le vecteur tangent ~ϕ ′(t0) ne s’annule pas et le vecteur
−→∇g(x0, y0)

existe et est orthogonal à la courbe de niveau de g qui passe par le point (x0, y0) :

t

I

a t b

~ϕ

x

y

x(t
0
)

y(t
0
)

x(a)

y(a)

x(b)

y(b)

~ϕ (a)

~ϕ (b)

~ϕ
′ (t 0

)−→∇g(x
0
, y

0
)

~ϕ (t0)



Remarque. Une condition nécessaire pour que le point ~ϕ (t0) = (x0, y0), avec t0 ∈ ]a, b[

soit un point d’extremum de la fonction f sur la courbe Lg(0) est

( f ◦ ~ϕ )′(t0)= 0 .

Autrement dit

~ϕ ′(t0) ·−→∇ f (x0, y0)= 0 . (⋆)

Idée (Lagrange, 1788)

L’équation (⋆) nous dit que si (x0, y0) est un point d’extremum de f sur la courbe Lg(0)

alors les vecteurs
−→∇ f (x0, y0) et ~ϕ ′(t0) sont orthogonaux.

Comme par construction
−→∇g(x0, y0) est lui aussi orthogonal au vecteur tangent ~ϕ ′(t0)

(car Lg(0) est la courbe de niveau 0 de la fonction g ), les vecteurs
−→∇ f (x0, y0) et

−→∇g(x0, y0)

doivent être parallèles.

Supposons que
−→∇g(x0, y0) existe et soit non nul. Il existe alors un nombre réel λ tel que

−→∇ f (x0, y0)=λ
−→∇g(x0, y0) .

Le nombre λ est appelé multiplicateur de Lagrange.



La condition nécessaire pour que (x0, y0) soit un point d’extremum sur Lg(0) s’écrit






























∂f

∂x
(x

0
, y0) = λ

∂g

∂x
(x0, y0)

∂f

∂y
(x0, y0) = λ

∂g

∂y
(x0, y0)

g(x0, y0) = 0

(⋆⋆)

Nous avons donc à résoudre un système de trois équations à trois inconnues x0 , y0 et λ .

En introduisant la fonction de Lagrange L :

L(x, y,λ)= f (x, y)−λ g(x, y) ,

le système d’équations (⋆⋆) devient
−→∇L(x0, y0,λ)= (0,0,0) .

De ce fait, la recherche de candidats à point d’extremum sous contrainte d’une fonction

de deux variables se ramène tout simplement à la recherche de points stationnaires d’une

fonction de trois variables.



Remarques.

• Pour pouvoir utiliser la méthode des multiplicateurs de Lagrange, il faut commencer par

vérifier que
−→∇g(x0, y0) existe et est non nul pour tout (x0, y0) ∈ Lg(0).

• La méthode des multiplicateurs de Lagrange nous fournit des candidats. Elle ne nous dit

pas que si (⋆⋆) est satisfait alors (x
0
, y

0
) est forcément un point d’extremum de f sous la

contrainte g(x0, y0)= 0.

• La méthode des multiplicateurs de Lagrange se généralise à la recherche de points

d’extremum de fonctions de n > 2 variables sous k > 1 contraintes, où il faut résoudre

un système de n+k équations avec n+k inconnues.

Par exemple,

L(x, y, z,λ1,λ2)= f (x, y, z)−λ1 g1(x, y, z)−λ2 g2(x, y, z)

est la fonction de Lagrange associée à la fonction de trois variables f sous les contraintes

g1(x, y, z) = 0 et g2(x, y, z) = 0 .



Méthode des multiplicateurs de Lagrange

Pour trouver les points d’extremum de la fonction f sous la contrainte g(x, y)= 0 :

1. Construire une nouvelle fonction, la fonction de Lagrange :

L(x, y,λ)= f (x, y)−λ g(x, y) .

2. Calculer les dérivées partielles de L :

∂L

∂x
(x, y,λ) =

∂f

∂x
(x, y)−λ

∂g

∂x
(x, y) ,

∂L

∂y
(x, y,λ) =

∂f

∂y
(x, y)−λ

∂g

∂y
(x, y) ,

∂L

∂λ
(x, y,λ) = −g(x, y) .

3. Déterminer les points stationnaires de L :






























∂f

∂x
(x

0
, y0) = λ

∂g

∂x
(x0, y0)

∂f

∂y
(x0, y0) = λ

∂g

∂y
(x0, y0)

g(x0, y0) = 0

(⋆)



Exemples

1. Déterminer les points d’extremum de la fonction

f (x, y) = x+ y

sous la contrainte x2 + y2 = 2 (cercle de rayon
p

2 centré à l’origine).

Soit g(x, y)= x2 + y2 −2 la fonction contrainte.

Comme
−→∇g(x, y) = (2x,2y) s’annule en (x, y) = (0,0) et g(0,0) = −2 6= 0, nous pouvons

utiliser la méthode des multiplicateurs de Lagrange.

Considérons la fonction de Lagrange

L(x, y,λ)= x+ y−λ
(

x2 + y2 −2
)

.

Comme :

∂L

∂x
(x, y,λ)= 1−2λx ,

∂L

∂y
(x, y,λ)= 1−2λy ,

∂L

∂λ
(x, y,λ)=−

(

x2 + y2 −2
)

,

les points stationnaires de L satisfont :










1−2λx = 0 (1)

1−2λy = 0 (2)

x2 + y2 = 2 (3)



La soustraction de la première équation par la deuxième nous donne

−2λx+2λy= 0 ⇐⇒ 2λ(y− x) = 0

et cette équation est satisfaite si y= x ou si λ= 0.

• Si y= x , la troisième équation devient 2x2 = 2, d’où x=−1 ou x = 1.

• Si λ= 0, la première équation devient 1= 0, ce qui est impossible.

Nous avons donc deux candidats :

(−1,−1) et (1,1)

Comme

f (−1,−1) = −1−1=−2

f (1,1) = 1+1= 2

la fonction f est maximale en (1,1) et minimale en (−1,−1). De plus,

−26 f (x, y)6 2 pour tout (x, y) sur le cercle x2 + y2 = 2.

Remarque 1. La courbe de niveau c de la fonction f est la droite d’équation y=−x+ c .

Comme le gradient de f
−→∇ f (x, y) = (1,1) pour tout (x, y) ∈RR2

est parallèlle à
−→∇g(x, y) = (2x,2y) lorsque y = x , nous retrouvons donc les points (1,1)

et (−1,−1).



−→∇ g(
1,

1)

−→∇ f (
1,

1)

−→∇ g(
−1,

1)
−→∇ f (

−1,
1)

−→∇ g(
−1,

−1)

−→∇ f (
−1,

−1)

−→∇ g(
x 0

,y 0
)

−→∇ f (
x 0

,y 0
)

1−1

1

−1

x

y

courbes de niveau de f

contrainte g(x, y)= 0

point de minimum de f

point de maximum de f

Remarque 2. Dans ce cas, il est aussi possible d’utiliser une paramétrisation du cercle

d’équation x2 + y2 = 2. Par exemple,

~ϕ (t)=
(p

2cos(t) ,
p

2sin(t)
)

, avec t ∈ [0,2π].

Ainsi, la fonction d’une variable à étudier est

h(t)= f
(

~ϕ (t)
)

=
p

2cos(t)+
p

2sin(t) , avec t ∈ [0,2π].

Comme h′(t) = −
p

2sin(t)+
p

2cos(t) s’annule lorsque t = π

4
ou t = 5π

4
, nous retrouvons

les points (1,1) et (−1,−1).



2. Déterminer les points d’extremum de la fonction

f (x, y) = x2 + y2

sous la contrainte (x−2)2 + y2 = 1.

Soit g(x, y)= (x−2)2 + y2 −1 la fonction contrainte.

Comme
−→∇g(x, y)=

(

2(x−2),2y
)

s’annule en (x, y) = (2,0) et g(2,0)=−1 6= 0, nous pouvons

utiliser la méthode des multiplicateurs de Lagrange. Soit

L(x, y,λ)= x2 + y2 −λ
(

(x−2)2 + y2 −1
)

.

Comme :

∂L

∂x
(x, y,λ)= 2x−2λ(x−2) ,

∂L

∂y
(x, y,λ)= 2y−2λy ,

∂L

∂λ
(x, y,λ)=−

(

(x−2)2 + y2 −1
)

,

les points stationnaires de L satisfont :










x−λ(x−2) = 0 (1)

y(1−λ) = 0 (2)

(x−2)2 + y2 = 1 (3)

La deuxième équation est satisfaite si y= 0 ou si λ= 1.

• Si y= 0, la troisième équation devient (x−2)2 = 1, d’où x= 1 et x= 3.

• Si λ= 1, la première équation devient x− (x−2)= 0, d’où 2= 0, ce qui est impossible.

Nous retrouvons donc les deux candidats trouvés précédemment, à savoir (1,0) et (3,0).


