
Interprétation géométrique

Rappel : Nous avons ~u ·~v =‖~u‖‖~v‖cos(α), où α l’angle entre ~u et ~v .

Soit f une fonction différentiable en (x0, y0).

• Soit (x0, y0) tel que
−→
∇ f (x0, y0)= (0,0).

Dans ce cas nous avons :

Dê f (x0, y0)= ê ·
−→
∇ f (x0, y0) =⇒ Dê f (x0, y0)= 0 pour toute direction ê .



• Soit (x0, y0) tel que
−→
∇ f (x0, y0) 6= (0,0).

Dans ce cas nous avons :

Dê f (x0, y0)= ê ·
−→
∇ f (x0, y0) =⇒ Dê f (x0, y0)=

∥
∥−→∇ f (x0, y0)

∥
∥cos(α)

−→
∇ f (x

0
, y

0
)

ê
α

Comme −16 cos(α)6 1 alors

−
∥
∥−→∇ f (x0, y0)

∥
∥6Dê f (x0, y0)6

∥
∥−→∇ f (x0, y0)

∥
∥

◦ Si α= 0, alors D
ê
f (x0, y0)=

∥
∥−→∇ f (x0, y0)

∥
∥ est maximale.

◦ Si α=π , alors D
ê
f (x0, y0)=−

∥
∥−→∇ f (x0, y0)

∥
∥ est minimale.

◦ Si α=
π

2
, alors D

ê
f (x

0
, y

0
)= 0.

◦ Si 06α<
π

2
, alors D

ê
f (x

0
, y

0
)> 0 et la fonction est croissante dans la direction ê .

◦ Si
π

2
<α6π , alors D

ê
f (x0, y0)< 0 et la fonction est décroissante dans la direction ê .

Ainsi, la croissance de la fonction est maximale dans la direction du gradient et

minimale dans la direction opposée.



Exemples

1. f (x, y) =
√

x2 + y2

Le calcul nous donne

−→
∇ f (x, y) =

(

x
√

x2 + y2
,

y
√

x2 + y2

)

,

avec (x, y) 6= (0,0).

Ainsi, la croissance de f à partir de (x0, y0) 6= (0,0)

se fait dans la direction radiale.

De plus, comme
∥
∥−→∇ f (x, y)

∥
∥= 1 pour tout (x, y) 6= (0,0),

la croissance ne dépend pas de la position du

point.
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Courbes de niveau et gradients pour f



2. g(x, y)= x2 + y2

Le calcul nous donne
−→
∇g(x, y)= (2x,2y) pour tout (x, y) ∈RR2 .

Ainsi, la croissance de g à partir de (x0, y0) 6= (0,0)

se fait dans la direction radiale.

De plus, comme
∥
∥−→∇g(x, y)

∥
∥= 2

√

x2
+ y2

= 2
√

g(x, y) ,

cette croissance est proportionnelle à la distance

à l’origine.
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Courbes de niveau et gradients pour g



3. h(x, y) =
1

√

x2 + y2

Le calcul nous donne

−→
∇h(x, y) =

(

−
x

(x2 + y2)3/2
, −

y

(x2 + y2)3/2

)

,

avec (x, y) 6= (0,0).

Ainsi, la croissance de h à partir de (x0, y0) 6= (0,0)

se fait dans la direction de l’origine.

De plus, comme
∥
∥−→∇h(x, y)

∥
∥=

1

x2 + y2
=

(

h(x, y)
)
2 ,

cette croissance est inversément proportionnelle

à la distance à l’origine.
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3.8. Points d’extremum local (ou relatif)

Rappel : Points d’extremum local d’une fonction d’une variable

Soit f : D( f ) →RR une fonction d’une variable et soit x0 ∈ D( f ).

• On dit que x0 est un point de maximum local de f si

f (x0)> f (x) pour tout x dans un voisinage de x0 .

On dit que f (x0) est un maximum local de f .

• On dit que x0 est un point de minimum local de f si

f (x0)6 f (x) pour tout x dans un voisinage de x0 .

On dit que f (x
0
) est un minimum local de f .

• On dit que x0 est un point d’extremum local de f s’il est un point de minimum local ou un

point de maximum local.

• On dit que x0 est un point stationnaire de f si f ′(x0)= 0.



Théorème (Fermat). Soit f : D( f )→RR une fonction d’une variable et soit x0 ∈ D( f ).

Si x0 est un point d’extremum local de f tel que f ′(x0) existe, alors f ′(x0)= 0.

Conséquence : Si f : D( f ) → RR est une fonction dérivable, alors les points d’extremum

local de f sont donc à chercher parmi les points stationnaires de f .

Attention : Si f : D( f ) →RR est une fonction d’une variable dérivable en x0 ∈ D( f ), le fait

que f ′(x0)= 0 ne garantit pas que x0 soit un point d’extremum local de f .

Par exemple, la fonction f (x) = x3 est telle que f ′(0) = 0 mais dans ce cas, x0 n’est pas un

point d’extremum local de f , mais un point d’inflexion de f .

Test de la dérivée seconde

Soit f : D( f ) →RR une fonction d’une variable et soit x0 ∈ D( f ) tel que f ′(x0)= 0. Supposons

de plus que f est deux fois continûment dérivable sur un intervalle ouvert contenant x
0
.

1. Si f ′′(x0)> 0, alors x0 est un point de minimum local de f .

2. Si f ′′(x0)< 0, alors x0 est un point de maximum local de f .



Points d’extremum local d’une fonction de deux variables

Définition. Soit f : D( f ) →RR une fonction de deux variables.

• Un point (x0, y0) ∈ D( f ) est un point de maximum local de f si

f (x0, y0)> f (x, y) pour tout (x, y) dans un voisinage de (x0, y0).

On dit que f (x0, y0) est un maximum local de f .

• Un point (x0, y0) ∈ D( f ) est un point de maximum local strict de f si

f (x0, y0)> f (x, y) pour tout (x, y) dans un voisinage de (x0, y0).

On dit que f (x
0
, y

0
) est un maximum local strict de f .

• Un point (x0, y0) ∈ D( f ) est un point de minimum local de f si

f (x0, y0)6 f (x, y) pour tout (x, y) dans un voisinage de (x0, y0).

On dit que f (x0, y0) est un minimum local de f .

• Un point (x0, y0) ∈ D( f ) est un point de minimum local strict de f si

f (x0, y0)< f (x, y) pour tout (x, y) dans un voisinage de (x0, y0).

On dit que f (x0, y0) est un minimum local strict de f .

• Un point (x0, y0) ∈ D( f ) est un point d’extremum local de f s’il est un point de minimum

local ou un point de maximum local.



Détermination des points d’extremum local

Définition. Soit f : D( f ) → RR une fonction de deux variables. On dit que (x0, y0) est un

point stationnaire de f si la fonction f est différentiable en (x
0
, y

0
) ∈ D( f ) et si

−→
∇ f (x0, y0)= (0,0) .

Dans ce cas, le plan tangent au graphe de f au point
(

x0, y0, f (x0, y0)
)

est horizontal :

z = f (x0, y0) .

Théorème 1. Soit f : D( f ) → RR une fonction de deux variables différentiable en (x0, y0).

Si (x0, y0) est un point d’extremum local de f alors (x0, y0) est un point stationnaire de f .

Preuve. Supposons que (x0, y0) est un point d’extremum local de la fonction f . Comme par

hypothèse f est différentiable en ce point,
−→
∇ f (x0, y0) existe.

A voir :
−→
∇ f (x0, y0)= (0,0).

Par hypothèse, la fonction x 7−→ f (x, y0) possède un extremum local en x0 .

En utilisant le théorème sur les points d’extremum des fonctions d’une variable nous

trouvons
∂f

∂x
(x0, y0)= 0.

De la même manière, étant donné que y 7−→ f (x0, y) possède un extremum local en y0 nous

trouvons
∂f

∂y
(x0, y0)= 0.



Conséquence : Si f est différentiable en (x0, y0) et si (x0, y0) n’est pas un point stationnaire

de f , alors (x0, y0) n’est pas un point d’extremum local de f .

Par conséquent. si f est une fonction différentiable, alors les candidats à point d’extremum

local de la fonction f sont à chercher parmi les points stationnaires de f .

Remarque. Le théorème se généralise au cas des fonctions de n variables, avec n> 3.

Exemple

La fonction différentiable f (x, y) = x2 + y2 est telle que

f (x, y) = x2
+ y2

> 0= f (0,0) .

Par conséquent, f possède un point de minimum local en (0,0).

Etant donné que le gradient
−→
∇ f (x, y) = (2x,2y) est défini pour tout (x, y) ∈ RR

2 et s’annule

en (0,0), le point (0,0) est bel et bien un point stationnaire.

Attention : Le théorème 1 ne dit pas que si (x0, y0) est un point stationnaire de f ,

alors (x0, y0) est forcément un point d’extremum local de f .



Considérons par exemple la fonction différentiable

f (x, y) = x2
− y2 , avec D( f )=RR

2 .

Comme le gradient
−→
∇ f (x, y) = (2x,−2y) est défini partout et

−→
∇ f (x, y) = (0,0) ⇐⇒ (x, y)= (0,0) ,

le seul point stationnaire de f est (0,0). Nous pouvons montrer, à l’aide des courbes de

niveau de f , que le point (0,0) n’est pas un point d’extremum local de f . Nous avons

f (x, y) = c ⇐⇒ x2
− y2

= c

• Si c = 0, nous trouvons y=±x (ensemble de deux droites).

• Si c 6= 0, nous trouvons
x2

c
−

y2

c
= 1 (hyperbole).
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Quelques courbes de niveau de f (x, y) = x2 − y2



y

z

1

f (0, y) =−y2

x

z

1
f (x,0) = x2

x

y

z

Coupe en x = 0 Coupe en y= 0 Esquisse du graphe de f

Définition. Soit (x0, y0) ∈ D( f ) un point stationnaire de f .

On dit que (x0, y0) est un point selle de f s’il est possible de trouver deux directions

ê = (e1, e2) et ê∗ = (e∗1, e∗2)

telles que la fonction t 7−→ f (x0 + te1, y0 + te2) admet un point de maximum local en t = 0

alors que la fonction t 7−→ f (x0 + te∗1, y0 + te∗2) admet un point de minimum local en t = 0.

Exemple

Le point (0,0) est un point selle de f (x, y) = x2 − y2 .

En effet, il suffit de prendre ê = (0,1) et ê∗ = (1,0).



Théorème 2. Soit f : D( f ) → RR une fonction de deux variables et soit (x0, y0) un point

stationnaire de f . Supposons que les dérivées partielles de premier et deuxième ordre

existent et sont continues au voisinage de (x0, y0). Soit

H(x0, y0)=
∂2f

∂x2
(x0, y0)

∂2f

∂y2
(x0, y0)−

(
∂2f

∂x∂y
(x0, y0)

)
2

.

1) Si H(x0, y0)> 0 et
∂2f

∂x2
(x0, y0)> 0

(

ou
∂2f

∂y2
(x0, y0)> 0

)

,

alors le point (x0, y0) est un point de minimum local de f .

2) Si H(x0, y0)> 0 et
∂2f

∂x2
(x0, y0)< 0

(

ou
∂2 f

∂y2
(x0, y0)< 0

)

,

alors le point (x0, y0) est un point de maximum local f .

3) Si H(x0, y0)< 0 ,

alors le point (x0, y0) est un point selle de f (et n’est pas un point d’extremum local).

Remarques.

• Si H(x0, y0)= 0, le théorème 2 ne nous permet pas de conclure et il faut étudier la fonction

au voisinage du point stationnaire (x0, y0).

• Le théorème ne se généralise pas au cas des fonctions de n variables, avec n> 3.



Définition. On appelle H(x, y) le hessien de f . C’est le déterminant de la matrice







∂2f

∂x2
(x, y)

∂2f

∂y∂x
(x, y)

∂2f

∂x∂y
(x, y)

∂2 f

∂y2
(x, y)








,

appelée matrice hessienne de f .

Méthode pour déterminer les points d’extremum local d’une fonction

différentiable de deux variables

a) Dresser la liste des points stationnaires de f

b) Appliquer le théorème 2 pour déterminer la nature des points trouvés sous a).



Exemples

Déterminer les points d’extremum local des fonctions suivantes :

1. f (x, y) = x3 + y3 −3x−12y+20, avec D( f )=RR
2 .

Comme
∂f

∂x
(x, y) = 3x2 − 3 et

∂f

∂y
(x, y) = 3y2 − 12 sont des fonctions continues définies

sur RR
2 , la fonction f est de classe C1(RR2) et donc différentiable sur RR

2 . Comme
{

3x2 −3 = 0

3y2 −12 = 0
⇐⇒

{

x2 −1 = 0

y2 −4 = 0
⇐⇒

{

(x−1)(x+1) = 0

(y−2)(y+2) = 0
⇐⇒

{

x= 1 ou x=−1

y= 2 ou y=−2

nous avons donc quatre points stationnaires :

(1,2) , (1,−2) , (−1,2) , (−1,−2) .

Etant donné que

∂2f

∂x2
(x, y)= 6x ,

∂2f

∂y2
(x, y)= 6y ,

∂2f

∂x∂y
(x, y)= 0 et H(x, y) = (6x)(6y)−02

= 36xy ,

le théorème 2 nous dit que :

• (1,2) est un point de minimum local de f car H(1,2)= 36·1·2> 0 et
∂2f

∂x2
(1,2)= 6·1> 0

• (1,−2) est un point selle de f car H(1,−2)= 36·1·(−2)< 0

• (−1,2) est un point selle de f car H(−1,2)= 36·(−1)·2< 0

• (−1,−2) est un point de maximum local de f car H(−1,−2)= 36(−1)(−2) > 0

et
∂2f

∂x2
(−1,−2)= 6(−1)< 0



2. g(x, y)= 1+ x2 + y2 −2xy, avec D(g)=RR
2 .

Comme
∂g

∂x
(x, y) = 2x − 2y et

∂g

∂y
(x, y) = 2y − 2x sont des fonctions continues définies

sur RR
2 , la fonction g est de classe C1(RR2) et donc différentiable sur RR

2 . Comme
{

2x−2y = 0

2y−2x = 0
⇐⇒ y= x (droite)

nous avons donc une infinité de points stationnaires :

(x, x) avec x ∈RR .

Etant donné que

∂2g

∂x2
(x, y)= 2 ,

∂2g

∂y2
(x, y) = 2 ,

∂2g

∂x∂y
(x, y)=−2 et H(x, y) = 2·2− (−2)2

= 0 ,

le théorème 2 ne nous permet pas de conclure.

Comme

g(x, y)= 1+ x2
+ y2

−2xy = 1+ x2
−2xy+ y2

= 1+ (x− y)2
> 1= g(x, x) ,

les points stationnaires de g sont des points de minimum local de g .


