
3.6. La règle généralisée de dérivation d’une composition

Rappel. Si f : D( f ) →RR et g : D(g) →RR sont des fonctions dérivables d’une variable telles

que Im(g)⊂ D( f ), alors la fonction composée h = f ◦ g , définie par

h(x) = ( f ◦ g)(x)= f
(

g(x)
)

est dérivable et nous avons

h′(x)= ( f ◦ g)′(x)= f ′
(

g(x)
)

g ′(x)

But : Obtenir une formule analogue dans le cas des fonctions de plusieurs variables.



• Si g est une fonction de n variables, pour pouvoir faire la composition il faut que f soit

une fonction d’une variable et dans ce cas, h = f ◦ g est une fonction de n variables :

RR
n g
−→RR

f
−→RR

• Si f est une fonction de n variables, pour pouvoir faire la composition il faut que l’image

de g se trouve dans RR
n et dans ce cas, h = f ◦ g est une fonction d’une variable :

RR
g

−→RR
n f
−→RR

En particulier, si f est une fonction de deux variables, pour pouvoir faire la composition

il faut que l’image de g se trouve dans RR
2 et dans ce cas, h = f ◦ g est une fonction d’une

variable :

RR
g

−→RR
2 f
−→RR



Composition de fonctions

Soit I ⊂ RR un intervalle, soit ~g : I → RR
2 une courbe paramétrée et soit f : RR2 → RR une

fonction de deux variables.

La fonction h = f ◦~g : I →RR est une fonction d’une variable donnée par

h(t)= ( f ◦~g )(t)= f
(
~g (t)

)

Si ~g (t)=
(

x(t), y(t)
)

alors

h(t)= f
(

x(t), y(t)
)

, pour t ∈ I

Théorème. Si la courbe paramétrée ~g : I →RR
2 est dérivable et la fonction f : RR2 →RR est

diffférentiable, alors la fonction h : I →RR est dérivable et nous avons

h′(t)=
∂f

∂x

(

x(t), y(t)
)

x ′(t)+
∂f

∂y

(

x(t), y(t)
)

y′(t)

Notation abrégée :
h′

=
∂f

∂x
x ′
+

∂f

∂y
y′

Notation vectorielle : ( f ◦~g )′(t)=
−→
∇ f

(
~g (t)

)

︸ ︷︷ ︸

gradient de f

au point ~g (t)

· ~g
′
(t)

︸ ︷︷ ︸

vecteur tangent

au point ~g (t)

= ~g
′
(t) ·

−→
∇ f

(
~g (t)

)



Conséquence

Si x et y sont des fonctions différentiables de deux variables :

x : RR
2

−→RR

(u,v) 7−→ x(u,v)
et y : RR

2
−→RR

(u,v) 7−→ y(u,v)

alors la fonction de deux variables

h(u,v)= f
(

x(u,v), y(u,v)
)

a comme dérivées partielles

∂h

∂u
=

∂f

∂x

∂x

∂u
+
∂f

∂y

∂y

∂u

∂h

∂v
=

∂f

∂x

∂x

∂v
+
∂f

∂y

∂y

∂v

Notation matricielle :







∂h

∂u

∂h

∂v








︸ ︷︷ ︸

gradient de h

=








∂x

∂u

∂y

∂u

∂x

∂v

∂y

∂v















∂f

∂x

∂f

∂y








︸ ︷︷ ︸

gradient de f



Exemple important : coordonnées polaires
{

x = r cos(θ)

y = r sin(θ)
avec r > 0 et θ ∈RR

x

y

θ

r

Comme nous avons
∂x

∂r
= cos(θ) ,

∂x

∂θ
= −rsin(θ) ,

∂y

∂r
= sin(θ) ,

∂y

∂θ
= r cos(θ) ,

la fonction

h(r,θ)= f
(

x(r,θ), y(r,θ)
)

a comme dérivées partielles

∂h

∂r
=

∂f

∂x

∂x

∂r
+
∂f

∂y

∂y

∂r
= cos(θ)

∂f

∂x
+sin(θ)

∂f

∂y

∂h

∂θ
=

∂f

∂x

∂x

∂θ
+
∂f

∂y

∂y

∂θ
=−r sin(θ)

∂f

∂x
+r cos(θ)

∂f

∂y

⇐⇒








∂h

∂r

∂h

∂θ







=






cos(θ) sin(θ)

−r sin(θ) r cos(θ)













∂f

∂x

∂f

∂y










Application

Soit f : D( f ) →RR une fonction différentiable de deux variables.

Soit L(c) la courbe de niveau c de f :

L(c)=
{

(x, y) ∈ D( f ) : f (x, y) = c
}

.

Soit (x0, y0) ∈ L(c).

Soit ~g : [a, b] →RR
2 une paramétrisation de L(c) autour de (x

0
, y

0
) telle que ~g (t

0
) = (x

0
, y

0
),

avec t0 ∈ ]a, b[.

Supposons que la courbe paramétrée ~g est de classe C1 et régulière en t0 (~g
′
(t0) 6=~0)

Par construction,

( f ◦~g )(t)= c , pour tout t ∈ [a, b]

En dérivant on obtient

( f ◦~g )′(t)= c ′ = 0 , pour tout t ∈ ]a, b[

d’où

~g
′
(t) ·

−→
∇ f

(
~g (t)

)

= 0

En prenant t = t0 on trouve

~g
′
(t0) ·

−→
∇ f (x0, y0)= 0



Autrement dit, si nous supposons que la courbe paramétrée ~g est régulière en t0 et que la

fonction f est différentiable en (x
0
, y

0
), alors le vecteur tangent ~g

′
(t

0
) ne s’annule pas et

le vecteur
−→
∇ f (x

0
, y

0
) existe et est orthogonal à la courbe de niveau de f qui passe par le

point (x0, y0).

t

I

a t b

~g

x

y

x(t
0
)

y(t
0
)

x(a)

y(a)

x(b)

y(b)

~g (a)

~g (b)

~g
′ (t 0

)−→
∇ f (x0, y0)

~g (t0)



3.7. La dérivée directionnelle et le gradient

Soit U ⊂ RR
2 un ensemble ouvert. Soit (x0, y0) ∈ U

et soit ê = (e1, e2) ∈RR
2 un vecteur unitaire (c’est-à-

dire, ‖ê‖ =
√

e2
1 + e2

2 = 1).

Nous avons vu que la droite du plan qui passe par

le point (x0, y0) ayant ê comme vecteur directeur

peut être paramétrée par

~ϕ (t)= (x0 + t e1, y0+ t e2) , avec t ∈RR .

x

y

x
0

x
0
+h e

1

y
0

y
0
+h e

2

θ
ê

Définition. Soit f : U →RR une fonction de deux variables et soit

g(t)= f
(

~ϕ (t)
)

= ( f ◦ ~ϕ )(t) .

Si g est dérivable en t = 0 alors on dit que f est dérivable au point (x
0
, y

0
) dans la direction

du vecteur ê . Dans ce cas, la dérivée directionnelle de f au point (x0, y0) dans la direction

du vecteur ê , notée D
ê
f (x0, y0) est donnée par

Dê f (x0, y0)= g ′(0)= lim
h→0

g(h)− g(0)

h
= lim

h→0

f (x0 +h e1, y0 +h e2)− f (x0, y0)

h
.



Remarques.

• Le point (x0 +h e1, y0 +h e2) se trouve à une distance h du point (x0, y0).

• Si ê = (cosθ,sinθ), nous parlons de dérivée de f dans la direction donnée par l’angle θ .

• Si ê = (1,0) alors Dê f (x0, y0)= lim
h→0

f (x0 +h, y0)− f (x0, y0)

h
=

∂f

∂x
(x0, y0) .

• Si ê = (0,1) alors Dê f (x0, y0)= lim
h→0

f (x0, y0 +h)− f (x0, y0)

h
=

∂f

∂y
(x0, y0) .

• Le nombre D
ê
f (x0, y0) = g ′(0) est la pente de la droite tangente à la courbe obtenue en

intersectant le graphe de f au point (x0, y0) avec le plan vertical passant par (x0, y0) qui

contient le vecteur ê .

• Cette définition se généralise naturellement au cas de n variables.

• Si ~e ∈ RR
2 est un vecteur non-nul quelconque tel que ‖~e‖ 6= 1, alors la définition de

dérivée de f au point (x0, y0) dans la direction du vecteur ~e varie selon les auteurs.

Nous allons donc restreindre la discussion au cas des vecteurs unitaires.



Exemple

Calculer la dérivée directionnelle de la fonction

f (x, y) = 6x2
−5xy+4x−3y

au point (0,0) dans la direction du vecteur ê = (e1, e2).

Par définition,

D
ê
f (0,0) = lim

h→0

f (h e1, h e2)− f (0,0)

h

= lim
h→0

6h2e2
1 −5h2e1e2 +4he1 −3he2

h

= lim
h→0

(6he2
1 −5he1e2 +4e1 −3e2)

Par conséquent,

Dê f (0,0)= 4e1 −3e2 .

Remarque.

La dérivée directionnelle de la fonction f (x, y) = 6x2 −5xy+4x−3y au point (0,0) est nulle

dans toutes les directions ê = (e
1
, e

2
) telles que 4e

1
−3e

2
= 0. Autrement dit,

ê =±

(
3

5
,

4

5

)

.



Question. Est-ce qu’il est possible de calculer la dérivée directionnelle de f autrement

qu’en calculant une limite?

Réponse : Oui, si l’on suppose par exemple que f est différentiable en (x0, y0).

En effet, comme ~ϕ (t) = (x0 + t e1, y0 + t e2) est une courbe paramétrée régulière telle que le

vecteur tangent est ~ϕ ′(t) = (e1, e2) = ê , si la fonction f est différentiable en (x0, y0) alors la

composition g(t)= f
(

~ϕ (t)
)

= ( f ◦ ~ϕ )(t) est une fonction dérivable en t = 0 et nous avons

g ′(0)= ( f ◦ ~ϕ )′(0)= ~ϕ ′(0) ·
−→
∇ f

(

~ϕ (0)
)

= ê ·
−→
∇ f (x0, y0) .

Nous avons donc le résultat suivant :

Théorème. Soit U ⊂RR
2 un ensemble ouvert. Si f : U →RR est une fonction différentiable

en (x0, y0) ∈ U , alors la dérivée directionnelle de f au point (x0, y0) dans la direction du

vecteur ê existe pour tout choix de ê . De plus, dans ce cas nous avons

Dê f (x0, y0)= ê ·
−→
∇ f (x0, y0) .

Conséquence.

Si f est différentiable en (x0, y0) ∈ U , alors le gradient de f au point (x0, y0) détermine

complètement les dérivées directionnelles de f dans toutes les directions à l’aide de la

formule D
ê
f (x0, y0)= ê ·

−→
∇ f (x0, y0).



Exemple

Considérons à nouveau la fonction

f (x, y) = 6x2
−5xy+4x−3y .

Comme f est une fonction de classe C∞(RR2) et donc différentiable, nous pouvons utiliser le

théorème précédent pour calculer D
ê
f (0,0).

Comme
−→
∇ f (x, y) = (12x−5y+4 , −5x−3) ,

nous avons
−→
∇ f (0,0)= (4,−3), d’où

Dê f (0,0)= ê ·
−→
∇ f (0,0)= (e1, e2) · (4,−3)= 4e1 −3e2

et nous retrouvons le résultat obtenu avant.



Attention : Une fonction qui possède des dérivées directionnelles au point (x0, y0) dans

toutes les directions ê , peut ne pas être différentiable en (x0, y0).

Considérons par exemple la fonction

f (x, y) =







x2 y

x4
+ y2

si (x, y) 6= (0,0)

0 si (x, y) = (0,0)

Nous avons montré que la limite

lim
(x,y)→(0,0)

x2 y

x4
+ y2

n’existe pas. Par conséquent, la fonction f n’est pas continue en (0,0), ce qui implique que f

n’est pas différentiable en (0,0), même si les dérivées partielles existent en (0,0) :

∂f

∂x
(0,0)= lim

h→0

f (h,0)− f (0,0)

h
= lim

h→0

0

h
= 0

∂f

∂y
(0,0)= lim

h→0

f (0, h)− f (0,0)

h
= lim

h→0

0

h
= 0

Comme
−→
∇ f (0,0)= (0,0), nous avons ici

ê ·
−→
∇ f (0,0)= 0 , pour toute direction ê = (e1, e2).



Par définition,

D
ê
f (0,0) = lim

h→0

f (he1, he2)− f (0,0)

h
= lim

h→0

1

h

[

(he1)2(he2)

(he1)4
+ (he2)2

−0

]

= lim
h→0

h3(e1)2e2

h3
(

h2(e1)4
+ (e2)2

) = lim
h→0

(e1)2e2

h2(e1)4
+ (e2)2

Nous distinguons deux cas :

• Si e2 = 0, alors D
ê
f (0,0) = lim

h→0

0

h2(e1)4
= 0

• Si e2 6= 0, alors D
ê
f (0,0) = lim

h→0

(e1)2e2

h2(e1)4
+ (e2)2

=
(e1)2e2

(e
2
)2

=
(e1)2

e2

Ceci montre que les dérivées directionnelles de f au point (0,0) existent dans toutes les

directions ê . De plus,

Dê f (0,0) 6= 0 , pour toute direction ê = (e1, e2) avec e2 6= 0 et e1 6= 0.

Par conséquent,

Dê f (0,0) 6= ê ·
−→
∇ f (0,0)

pour toute direction ê = (e1, e2) avec e2 6= 0 et e1 6= 0.


