
3.5. Fonctions différentiables (ou dérivables)

Rappel. Soit f : D( f )→RR une fonction d’une variable et soit x0 ∈ D( f ) tel que f est définie

dans un voisinage de x0 .

On dit que f est dérivable en x0 si la limite lim
x→x

0

f (x)− f (x
0
)

x− x
0

existe et on note

f ′(x0)= lim
x→x

0

f (x)− f (x0)

x− x
0

la dérivée de f en x0 .

But : Généraliser cette notion aux fonctions f :RRn →RR pour n> 2.



Remarque.

Nous avons montré que les dérivées partielles de la fonction

f (x, y) =







xy

x2
+ y2

si (x, y) 6= (0,0)

0 si (x, y) = (0,0)

existent pour tout (x, y) ∈RR2 et qu’en particulier elles existent en (0,0) :

∂f

∂x
(0,0)= 0 et

∂f

∂y
(0,0)= 0 .

D’autre part, comme

f (x, x) =
x2

x2
+ x2

=
x2

2x2
=

1

2
et lim

x→0
f (x, x) =

1

2
6= 0= f (0,0) .

la fonction f n’est pas continue en (0,0).

Par conséquent, l’existence des dérivées partielles d’une fonction de deux variables en un

point (x0, y0) ne suffit pas pour garantir la continuité de la fonction au point (x0, y0),

contrairement au cas des fonctions d’une variable où nous avons le résultat

« Si la dérivée de f existe en x0 ∈ D( f ), alors f est continue en x0 ».

La dérivabilité d’une fonction de plusieurs variables ne se résume donc pas à l’existence des

dérivées partielles de la fonction !



Rappel. Soit f : D( f )→RR une fonction d’une variable et soit x0 ∈ D( f ) tel que f est définie

dans un voisinage de x0 .

Si la fonction f est dérivable en x0 , alors le graphe de f possède une droite tangente au

point x = x0 de pente f ′(x0) et d’équation

y= f (x0)+ f ′(x0)(x− x0) .

De plus, si l’on définit la fonction

L(x)= f (x0)+ f ′(x0)(x− x0) ,

appelée l’approximation linéaire de la fonction f autour du point x= x0 , alors
{

L(x0) = f (x0)

L ′(x0) = f ′(x0)

et pour des valeurs de x proches de x0 nous avons f (x) ≈ L(x).

x

y

f (x
0
)

x0

graphe de L



Rappel. Si f : D( f ) →RR est une fonction d’une variable, alors nous avons

f est dérivable en x0 ⇐⇒ f ′(x0)= lim
x→x

0

f (x)− f (x0)

x− x
0

⇐⇒ lim
x→x

0

f (x)− f (x0)

x− x
0

− f ′(x0)= 0

⇐⇒ lim
x→x

0

(

f (x)− f (x0)

x− x
0

− f ′(x0)

)

= 0

⇐⇒ lim
x→x

0

(

f (x)− f (x
0
)− f ′(x

0
)(x− x

0
)

x− x
0

)

= 0

⇐⇒ lim
x→x

0

(

f (x)−
(

f (x0)+ f ′(x0)(x− x0)
)

x− x
0

)

= 0

⇐⇒ lim
x→x

0

f (x)−L(x)

x− x
0

= 0

⇐⇒ f est différentiable en x
0

Remarque. Pour avoir lim
x→x

0

f (x)−L(x)

x− x
0

= 0, il faut que lim
x→x

0

(

f (x)−L(x)
)

= 0. De plus, il

faut que l’écart f (x)−L(x) aille vers zéro plus vite que x−x0 , ce qui nous permet de dire que

« L(x) est une bonne approximation de f (x) pour des valeurs de x proches de x
0

».



Considérons maintenant une fonction f de deux variables et un point (x0, y0) ∈ D( f ).

Question. Est-ce que le graphe de la fonction f au point
(

x0, y0, f (x0, y0)
)

∈RR
3 admet un

plan tangent et si oui, quelle est son équation?

x0

x y

z

y0

f (x
0
,y

0
)

Rappel. L’équation du plan passant par le point
(

x0, y0, z0

)

normal au vecteur ~n =





a
b
c



 est







a

b

c






·







x− x0

y− y0

z− z
0






= 0 ⇐⇒ a(x− x0)+b(y− y0)+ c(z− z0)= 0 .



Coupe du graphe de f par le plan y= y0 : Coupe du graphe de f par le plan x = x0 :

z = f (x, y0)

xx0

z

f (x
0
,y

0
)

y

z

f (x
0
,y

0
)

y0

z = f (x0, y)

droite tangente de pente
∂f

∂x
(x

0
, y

0
)

et vecteur directeur ~d
1
=









1

0
∂f

∂x
(x

0
, y

0
)









droite tangente de pente
∂f

∂y
(x

0
, y

0
)

et vecteur directeur ~d
2
=











0

1
∂f

∂y
(x

0
, y

0
)













Comme nous cherchons un plan qui soit tangent au

graphe de f au point
(

x0, y0, f (x0, y0)
)

∈ RR
3 , le vecteur

~n =





a
b
c



 doit être orthogonal aux vecteurs ~d1 et ~d2 :

{

~n ·~d1 = 0

~n ·~d2 = 0
⇐⇒











a+ c
∂f

∂x
(x0, y0)= 0

b+ c
∂f

∂y
(x

0
, y

0
)= 0

En prenant c = 1 nous trouvons

~n =













−
∂f

∂x
(x0, y0)

−
∂f

∂y
(x0, y0)

1













−→
n

x
0

x y

z

y
0

f (x0,y0)

d’où

−
∂f

∂x
(x0, y0)(x− x0)−

∂f

∂y
(x0, y0)(y− y0)+1

(

z− f (x0, y0)
)

= 0

ou encore

z = f (x0, y0)+
∂f

∂x
(x0, y0)(x− x0)+

∂f

∂y
(x0, y0)(y− y0) .



Question. Est-ce que le plan d’équation

z = f (x0, y0)+
∂f

∂x
(x0, y0)(x− x0)+

∂f

∂y
(x0, y0)(y− y0) .

est forcément le plan tangent au graphe de la fonction f au point
(

x0, y0, f (x0, y0)
)

∈RR3 ?

Réponse. Non. Considérons par exemple la fonction

f (x, y) =
∣

∣|x|− |y|
∣

∣−|x|− |y| .

Le calcul des dérivées partielles au point (0,0) :

∂f

∂x
(0,0) = lim

h→0

f (h,0)− f (0,0)

h
= lim

h→0

0−0

h
= lim

h→0
0= 0

∂f

∂y
(0,0) = lim

h→0

f (0, h)− f (0,0)

h
= lim

h→0

0−0

h
= lim

h→0
0= 0

nous donne l’équation du plan

z = f (0,0)+
∂f

∂x
(0,0)(x−0)+

∂f

∂y
(0,0)(y−0) =⇒ z = 0 © Pearson

Ce plan n’est clairement pas tangent au graphe de f . En effet, si l’on coupe le graphe de f

par le plan vertical y= x nous obtenons la fonction d’une variable

g(x)= f (x, x) =
∣

∣|x|− |x|
∣

∣−|x|− |x| = −2|x|

qui n’est pas dérivable en x= 0 et de ce fait, n’a pas de droite tangente en x= 0.



Définition. Soit U ⊂RR
2 un sous-ensemble ouvert de RR

2 .

Soit f : U →RR une fonction de deux variables.

On dit que f est différentiable en (x
0
, y

0
) ∈ U (ou dérivable en (x

0
, y

0
) ∈ U ) si les dérivées

partielles
∂f

∂x
(x0, y0) et

∂f

∂y
(x0, y0) existent et si la fonction L :RR2 →RR définie par

L(x, y)= f (x0, y0)+
∂f

∂x
(x0, y0)(x− x0)+

∂f

∂y
(x0, y0)(y− y0)

est une « bonne approximation de f (x, y) pour des valeurs de (x, y) proches de (x0, y0) »

dans le sens suivant :

lim
(x,y)→(x

0
,y

0
)

f (x, y)−L(x, y)
∥

∥(x, y)− (x0, y0)
∥

∥

= 0 .

Si la fonction f est différentiable en (x0, y0), alors le plan d’équation

z = f (x0, y0)+
∂f

∂x
(x0, y0)(x− x0)+

∂f

∂y
(x0, y0)(y− y0)

est le plan tangent au graphe de f au point
(

x0, y0, f (x0, y0)
)

∈RR3 et la fonction L est appelée

approximation linéaire de f autour du point (x0, y0).

On dit que f est différentiable si elle différentiable en tout point de son domaine.



Exemple

La fonction f (x, y) = 1− x2 −2y2 est telle que
∂f

∂x
(x, y)=−2x et

∂f

∂y
(x, y) =−4y.

Par conséquent, f (0,0)= 1,
∂f

∂x
(0,0)= 0,

∂f

∂y
(0,0)= 0 et L(x, y)= 1. Comme

f (x, y)−L(x, y)
∥

∥(x, y)− (0,0)
∥

∥

=
−x2 −2y2

√

x2
+ y2

et lim
(x,y)→(0,0)

f (x, y)−L(x, y)
∥

∥(x, y)− (0,0)
∥

∥

= 0 ,

nous pouvons conclure que f est différentiable en (0,0).

Remarque. Si f est différentiable en (x0, y0), alors la fonction

L(x, y)= f (x0, y0)+
∂f

∂x
(x0, y0)(x− x0)+

∂f

∂y
(x0, y0)(y− y0)

est telle que






















L(x0, y0) = f (x0, y0)

∂L

∂x
(x0, y0) =

∂f

∂x
(x0, y0)

∂L

∂y
(x0, y0) =

∂f

∂y
(x0, y0)

et pour des valeurs de (x, y) proches de (x0, y0) nous avons f (x, y) ≈ L(x, y).



Nous avons deux résultats très importants (donnés ici sans démonstration) :

Théorème 1. Soit U ⊂RR
2 un sous-ensemble ouvert de RR

2 .

Soit f : U →RR une fonction de deux variables.

Si les dérivées partielles
∂f

∂x
et

∂f

∂y
existent dans un voisinage de (x0, y0) ∈U et sont continues

en (x0, y0), alors f est différentiable en (x0, y0).

Autrement dit, si

lim
(x,y)→(x

0
,y

0
)

∂f

∂x
(x, y)=

∂f

∂x
(x0, y0) et lim

(x,y)→(x
0
,y

0
)

∂f

∂y
(x, y)=

∂f

∂y
(x0, y0)

alors

lim
(x,y)→(x

0
,y

0
)

f (x, y)−L(x, y)
∥

∥(x, y)− (x0, y0)
∥

∥

= 0 .

Théorème 2. Soit U ⊂RR
2 un sous-ensemble ouvert de RR

2 .

Soit f : U →RR une fonction de deux variables.

Si f est différentiable en (x0, y0) ∈U , alors f est continue en (x0, y0).

Conséquence :

Si les dérivées partielles
∂f

∂x
et

∂f

∂y
existent dans un voisinage de (x0, y0) ∈U et sont continues

en (x
0
, y

0
), alors f est continue en (x

0
, y

0
).



Remarque. Une formulation équivalente du théorème 2 est :

Si f n’est pas continue en (x0, y0), alors f n’est pas différentiable en (x0, y0).

Cette formulation est très utile pour déterminer si une fonction n’est pas différentiable en

un point.

Exemple

Nous avons vu que la fonction

f (x, y) =







xy

x2
+ y2

si (x, y) 6= (0,0)

0 si (x, y) = (0,0)

n’est pas continue en (0,0), ce qui implique qu’elle n’est pas différentiable en (0,0), même si

les dérivées partielles
∂f

∂x
et

∂f

∂y
existent sur RR

2 .

Comme f n’est pas différentiable en (0,0), le théorème 1 nous permet de conclure que dans

ce cas, les dérivées partielles
∂f

∂x
et

∂f

∂y
ne sont pas continues en (0,0).

Attention : Si f est continue en (x0, y0), alors on ne peut rien conclure au sujet de la

différentiabilité de f en (x0, y0).



Définition. Soit U ⊂RR
2 un sous-ensemble ouvert de RR

2 .

Soit f : U →RR une fonction de deux variables.

On dit que f est de classe C0(U), noté f ∈C0(U), si f est continue sur U .

On dit que f est de classe C1(U), noté f ∈C1(U), si les dérivées partielles
∂f

∂x
et

∂f

∂y
existent

et sont continues sur U .

Les théorèmes 1 et 2 impliquent :

f ∈C1(U) =⇒ f différentiable sur U =⇒ f continue sur U

Par contre, nous avons

f ∈C1(U) 6⇐= f différentiable sur U 6⇐= f continue sur U



Définition. Soit U ⊂RR
2 un sous-ensemble ouvert de RR

2 .

Soit f : U →RR une fonction de deux variables.

On dit que f est de classe C2(U), noté f ∈ C2(U), si les quatre dérivées partielles d’ordre 2

∂
2 f

∂x2
,

∂
2 f

∂y∂x
,

∂
2 f

∂x∂y
et

∂
2 f

∂y2
existent et sont continues sur U .

Proposition. Soit U ⊂RR
2 un sous-ensemble ouvert de RR

2 .

Soit f : U →RR une fonction de deux variables.

Si f est une fonction de classe C2(U), alors f est une fonction de classe C1(U).

Preuve. Soit (x0, y0) ∈U . Si f est une fonction de classe C2(U), alors les dérivées partielles

∂
2 f

∂x2
=

∂

∂x

(

∂f

∂x

)

et
∂

2 f

∂y∂x
=

∂

∂y

(

∂f

∂x

)

existent dans un voisinage de (x0, y0) ∈U et sont continues en (x0, y0). Les théorèmes 1 et 2

impliquent que
∂f

∂x
est continue en (x0, y0). D’autre part, les dérivées partielles

∂
2 f

∂x∂y
=

∂

∂x

(

∂f

∂y

)

et
∂

2 f

∂y2
=

∂

∂y

(

∂f

∂y

)

existent dans un voisinage de (x
0
, y

0
) ∈U et sont continues en (x

0
, y

0
). Les théorèmes 1 et 2

impliquent que
∂f

∂y
est continue en (x

0
, y

0
), d’où le résultat.



Définition. Soit U ⊂RR
2 un sous-ensemble ouvert de RR

2 .

Soit f : U →RR une fonction de deux variables.

On dit que f est de classe C3(U), noté f ∈ C3(U), si les huit dérivées partielles d’ordre 3

∂
3 f

∂x3
,

∂
3 f

∂y∂x2
,

∂
3 f

∂x∂y∂x
,

∂
3 f

∂y2∂x
,

∂
3 f

∂x2∂y
,

∂
3 f

∂y∂x∂y
,

∂
3 f

∂x∂y2
et

∂
3 f

∂y3
existent et sont continues sur U .

On dit que f est de classe Ck(U), noté f ∈ Ck(U), si les 2k dérivées partielles d’ordre k

existent et sont continues sur U .

On dit que f est de classe C∞(U), noté f ∈C∞(U), si f est de classe Ck(U) pour tout k .

Nous avons les implications suivantes :

f ∈C∞(U) =⇒ ·· · =⇒ f ∈C3(U) =⇒ f ∈C2(U) =⇒ f ∈ C1(U)

Par contre, nous avons

f ∈C∞(U) 6⇐= ·· · 6⇐= f ∈C3(U) 6⇐= f ∈C2(U) 6⇐= f ∈C1(U)



Application : Calcul d’incertitude

Si nous mesurons des quantités x et y avec une certaine incertitude :

x = x0 ±∆x (c’est-à-dire x ∈ [x0 −∆x, x0 +∆x])

y = y0 ±∆y (c’est-à-dire y ∈ [y
0
−∆y, y

0
+∆y])

alors, en première approximation, nous pouvons remplacer la valeur de f (x, y) par

f (x0, y0)±∆ f ,

où l’erreur ∆ f est donnée par

∆ f =

∣

∣

∣

∂f

∂x
(x0, y0)

∣

∣

∣∆x+
∣

∣

∣

∂f

∂y
(x0, y0)

∣

∣

∣∆y .

Exemple

L’aire d’un rectangle de côtés x et y est donnée par f (x, y) = xy.

Comme
∂f

∂x
(x, y) = y et

∂f

∂y
(x, y) = x , l’erreur sur l’aire est donc

∆ f = |y0|∆x+|x0|∆y .

Si les valeurs mesurées sont x= 3±0.01 et y= 4±0.02, nous

trouvons

∆ f = 4 ·0.01+3 ·0.02 = 0.1

et en première approximation l’aire est égale à 12±0.1.

x
0 ∆x

y
0

∆y



Nous avons des définitions analogues dans le cas des fonctions de plus de deux variables :

Définition. Soit U ⊂RR
3 un sous-ensemble ouvert de RR

3 .

Soit f : U →RR une fonction de trois variables.

On dit que la fonction f est différentiable en (x0, y0, z0) ∈U (ou dérivable en (x0, y0, z0) ∈U )

si les dérivées partielles
∂f

∂x
(x0, y0, z0),

∂f

∂y
(x0, y0, z0) et

∂f

∂z
(x0, y0, z0) existent et si la fonction

L :RR3 →RR définie par

L(x, y, z)= f (x0, y0, z0)+
∂f

∂x
(x0, y0, z0)(x− x0)+

∂f

∂y
(x0, y0, z0)(y− y0)+

∂f

∂z
(x0, y0, z0)(z− z0) .

est une « bonne approximation de f (x, y, z) pour des valeurs de (x, y, z) proches de (x0, y0, z0)»

dans le sens suivant :

lim
(x,y,z)→(x

0
,y

0
,z

0
)

f (x, y, z)−L(x, y, z)
∥

∥(x, y, z)− (x0, y0, z0)
∥

∥

= 0 .

Si f est différentiable en (x0, y0), alors la fonction L est appelée approximation linéaire

de f autour du point (x0, y0, z0).

On dit que f est différentiable si elle différentiable en tout point de son domaine.



Définition. Soit U ⊂RR
n un sous-ensemble ouvert de RR

n .

Soit f : U →RR une fonction de n variables.

On dit que f est différentiable en ~x
0
∈U (ou dérivable en ~x

0
∈U ) si les dérivées partielles

∂f

∂x
1

(~x0) ,
∂f

∂x
2

(~x0) , . . . ,
∂f

∂xn
(~x0) existent et si la fonction L :RRn →RR définie par

L(~x) = f (~x0)+
∂f

∂x
1

(~x0)(x1 − x0,1)+ . . .+
∂f

∂xn

(~x0)(xn − x0,n)

= f (~x0)+
(

−→
∇ f (~x0)

)

·
(

~x−~x0

)

.

est une « bonne approximation de f (~x) pour des valeurs de ~x proches de ~x0 » dans le sens

suivant :

lim
~x→~x

0

f (~x)−L(~x)
∥

∥~x−~x0

∥

∥

= 0 .

Si f est différentiable en ~x , alors la fonction L est appelée approximation linéaire de f

autour du point ~x
0
.

On dit que f est différentiable si elle différentiable en tout point de son domaine.


