
3.4. Dérivées partielles

Rappel. Soit f : D( f )→RR une fonction d’une variable et soit x0 ∈ D( f ) tel que f est définie

dans un voisinage de x0 .

On dit que f est dérivable en x0 si la limite lim
h→0

f (x0 +h)− f (x0)

h
existe et on note

f ′(x0)= lim
h→0

f (x0 +h)− f (x0)

h

la dérivée de f en x
0
.

Géométriquement, f ′(x0) est la pente de la droite tangente au graphe de la fonction f

au point
(

x0, f (x0)
)

:

x

y

f (x
0
)

x0

droite de pente f ′(x0)

Remarque. La dérivée f ′ peut aussi être notée
d f

dx
.



Définition. Soit f : D( f ) → RR une fonction de deux variables et soit (x0, y0) ∈ D( f ) ⊂ RR
2

tel que f est définie dans un voisinage de (x0, y0), par exemple B
(

(x0, y0), r
)

, avec r > 0.

• Si la fonction g(x) = f (x, y0) est dérivable en x0 on dit que la dérivée partielle de f par

rapport à x , notée
∂f

∂x
(x0, y0), existe et est égale à g ′(x0) :

∂f

∂x
(x0, y0)= lim

h→0

f (x0 +h, y0)− f (x0, y0)

h
.

• Si la fonction h(y) = f (x0, y) est dérivable en y0 on dit que la dérivée partielle de f par

rapport à y, notée
∂f

∂y
(x0, y0), existe et est égale à h′(y0) :

∂f

∂y
(x0, y0)= lim

h→0

f (x
0
, y

0
+h)− f (x

0
, y

0
)

h
.

Notations alternatives :

∂f

∂x
(x0, y0)= ∂x f (x0, y0)= f ′

x(x0, y0)= ∂1 f (x0, y0)= f ′
1(x0, y0)

∂f

∂y
(x0, y0)= ∂y f (x0, y0)= f ′

y(x0, y0)= ∂2 f (x0, y0)= f ′
2(x0, y0)



Interprétation géométrique des dérivées partielles

y
0

pente
∂f

∂x
(x

0
, y

0
)

x
0

pente
∂f

∂y
(x

0
, y

0
)

© Pearson

L’ensemble de tous les points de RR
3 tels

que y= y0 est un plan parallèle au plan 0xz

qui coupe le graphe de f le long de la

courbe C2 . La pente de la droite tangente

à la courbe C2 au point
(

x0, y0, f (x0, y0)
)

est la dérivée partielle
∂f

∂x
(x

0
, y

0
).

L’ensemble de tous les points de RR
3 tels

que x = x0 est un plan parallèle au plan 0yz

qui coupe le graphe de f le long de la

courbe C1 . La pente de la droite tangente

à la courbe C1 au point
(

x0, y0, f (x0, y0)
)

est la dérivée partielle
∂f

∂y
(x

0
, y

0
).



• Si les dérivées partielles de f par rapport à x et y existent, on dit que le gradient de f ,

noté
−→∇ f (x0, y0), existe et est donné par

−→∇ f (x0, y0)=











∂f

∂x
(x0, y0)

∂f

∂y
(x0, y0)











∈RR2

Parfois on écrira
−→∇ f (x0, y0)=

(

∂f

∂x
(x0, y0) ,

∂f

∂y
(x0, y0)

)

.

Le symbole ∇ est appelé « nabla » (il s’agit de la lettre greque Delta inversée).

Méthode pour calculer les dérivées partielles

• Pour calculer la dérivée partielle de f par rapport à x , on regarde y comme une constante

et on dérive la fonction f (x, y) par rapport à x en utilisant les règles de dérivation des

fonctions d’une variable.

• Pour calculer la dérivée partielle de f par rapport à y, on regarde x comme une constante

et on d’erive la fonction f (x, y) par rapport à y en utilisant les règles de dérivation des

fonctions d’une variable.



Exemples

Calculer les dérivées partielles des fonctions suivantes :

1. f (x, y) = 3x+ y2

Nous avons

∂f

∂x
(x, y) = ∂

∂x
(3x)+ ∂

∂x
(y2)= 3+0= 3

∂f

∂y
(x, y) = ∂

∂y
(3x)+ ∂

∂y
(y2)= 0+2y = 2y















=⇒ −→∇ f (x, y) =

(

3

2y

)

2. g(x, y)= x3 y4

Nous avons

∂g

∂x
(x, y) = y4 ∂

∂x
(x3)= 3x2 y4

∂g

∂y
(x, y) = x3 ∂

∂y
(y4)= 4x3 y3















=⇒ −→∇g(x, y)=

(

3x2 y4

4x3 y3

)



3. h(x, y) =
√

x2 + y2 (distance à l’origine)

Considérons tout d’abord la fonction d’une variable

f (u)=
√

u2 + c = (u2 + c)1/2 avec c ∈RR une constante.

Nous avons

f ′(u)= 1

2
(u2 + c)−1/2(u2 + c)′ = 1

2
(u2 + c)−1/2(2u)= u(u2 + c)−1/2 =

u
p

u2 + c
Par conséquent,

∂h

∂x
(x, y) =

x
√

x2 + y2

∂h

∂y
(x, y) =

y
√

x2 + y2



















=⇒ −→∇h(x, y) =











x
√

x2 + y2

y
√

x2 + y2











4. f (x, y) =







xy

x2 + y2
si (x, y) 6= (0,0)

0 sinon

Si (x, y) 6= (0,0) nous avons :

∂f

∂x
(x, y) =

∂

∂x

(

xy

x2 + y2

)

=
y(x2 + y2)− xy(2x)

(x2 + y2)2
=

y(y2 − x2)

(x2 + y2)2

∂f

∂y
(x, y) =

x(x2 − y2)

(x2 + y2)2
(par calcul direct ou par symétrie car ici f (a, b)= f (b,a))



Si (x, y)= (0,0) nous avons :

∂f

∂x
(0,0) = lim

h→0

f (h,0)− f (0,0)

h
= lim

h→0

h·0
h2+02

−0

h
= lim

h→0

0−0

h
= lim

h→0
0= 0

∂f

∂y
(0,0) = lim

h→0

f (0, h)− f (0,0)

h
= lim

h→0

0·h
02 +h2

−0

h
= lim

h→0

0−0

h
= lim

h→0
0= 0

Accessoirement, pour calculer
∂f

∂x
(0,0) nous pouvons aussi considérer la fonction d’une

variable

g(x)= f (x,0) =







x·0
x2 +02

si (x,0) 6= (0,0)

0 sinon

= 0 pour tout x ∈RR

Comme g ′(x)= 0 pour tout x ∈RR , nous retrouvons
∂f

∂x
(0,0)= g ′(0)= 0.

En résumé,

∂f

∂x
(x, y)=











y(y2 − x2)

(x2 + y2)2
si (x, y) 6= (0,0)

0 sinon

et
∂f

∂y
(x, y) =











x(x2 − y2)

(x2 + y2)2
si (x, y) 6= (0,0)

0 sinon



Remarque. La notion de dérivée partielle se généralise naturellement aux fonctions de n

variables avec n> 3.

Par exemple, si f (x, y, z) = x2 yz+sin(yz)+ z3 +4ln(xy5) , alors nous avons

∂f

∂x
(x, y, z) = ∂

∂x
(x2 yz)+ ∂

∂x

(

sin(yz)
)

+ ∂

∂x
(z3)+ ∂

∂x

(

4ln(xy5)
)

= yz
∂

∂x
(x2)+0+0+4

1

xy5

∂

∂x
(xy5)= yz(2x)+4

1

xy5
y5

= 2xyz+
4

x
∂f

∂y
(x, y, z) = ∂

∂y
(x2 yz)+ ∂

∂y

(

sin(yz)
)

+ ∂

∂y
(z3)+ ∂

∂y

(

4ln(xy5)
)

= x2z
∂

∂y
(y)+cos(yz)

∂

∂y
(yz)+0+4

1

xy5

∂

∂y
(xy5)

= x2z+ zcos(yz)+
20xy4

xy5
= x2z+ zcos(yz)+

20

y
∂f

∂z
(x, y, z) = ∂

∂z
(x2 yz)+ ∂

∂z

(

sin(yz)
)

+ ∂

∂z
(z3)+ ∂

∂z

(

4ln(xy5)
)

= x2 y
∂

∂z
(z)+cos(yz)

∂

∂z
(yz)+3z2 +0

= x2 y+ ycos(yz)+3z2



Dérivées partielles d’ordre deux

Soit f : D( f ) →RR une fonction de deux variables.

Si
∂f

∂x
(x

0
, y

0
) existe pour tout (x

0
, y

0
) ∈ D( f ), alors nous pouvons définir la fonction dérivée

partielle de f par rapport à x :

∂f

∂x
: D( f ) −→RR

(x, y) 7−→ ∂f

∂x
(x, y)

Si
∂f

∂y
(x0, y0) existe pour tout (x0, y0) ∈ D( f ), alors nous pouvons définir la fonction dérivée

partielle de f par rapport à y :

∂f

∂y
: D( f ) −→RR

(x, y) 7−→ ∂f

∂y
(x, y)



Nous pouvons considérer les dérivées partielles de ces deux fonctions par rapport à x et y

qui seront notées comme suit :

∂

∂x

(

∂f

∂x

)

=
∂

2 f

∂x2

∂

∂y

(

∂f

∂x

)

=
∂

2 f

∂y∂x

∂

∂x

(

∂f

∂y

)

=
∂

2 f

∂x∂y

∂

∂y

(

∂f

∂y

)

=
∂

2 f

∂y2

Nous avons le schéma suivant :

f

∂f

∂x

∂f

∂y

∂
2 f

∂x2

∂
2 f

∂y∂x

∂
2 f

∂x∂y

∂
2 f

∂y2

Attention : Certains auteurs utilisent les notations
∂

2 f

∂x∂y
=

∂

∂y

(

∂f

∂x

)

et
∂

2 f

∂y∂x
=

∂

∂x

(

∂f

∂y

)

.



Exemples

Calculer les dérivées d’ordre deux des fonctions suivantes :

1. f (x, y) = x2 y3

Comme
∂f

∂x
(x, y) = ∂

∂x
(x2)y3 + x2 ∂

∂x
(y3)= 2xy3 +0= 2xy3

nous avons
∂

2 f

∂x2
(x, y) = ∂

∂x
(2xy3)= ∂

∂x
(2x)y3 +2x

∂

∂x
(y3)= 2y3 +0= 2y3

∂
2 f

∂y∂x
(x, y) = ∂

∂y
(2xy3)= ∂

∂y
(2x)y3 +2x

∂

∂y
(y3)= 0+2x(3y2)= 6xy2

D’autre part,
∂f

∂y
(x, y)= ∂

∂y
(x2)y3 + x2 ∂

∂y
(y3)= 0+ x2(3y2)= 3x2 y2

implique

∂
2 f

∂x∂y
(x, y) = ∂

∂x
(3x2 y2)= ∂

∂x
(3x2)y2 +3x2 ∂

∂x
(y2)= 6xy2 +0= 6xy2

∂
2 f

∂y2
(x, y) = ∂

∂y
(3x2 y2)= ∂

∂y
(3x2)y2 +3x2 ∂

∂y
(y2)= 0+3x2(2y)= 6x2 y



2. g(x, y)= sin(xy)

Nous avons
∂g

∂x
(x, y)= cos(xy)

∂

∂x
(xy) = ycos(xy)

d’où

∂
2 g

∂x2
(x, y) = ∂

∂x

(

ycos(xy)
)

= ∂

∂x
(y)cos(xy)+ y

∂

∂x

(

cos(xy)
)

= 0+ y
(

−sin(xy)
) ∂

∂x
(xy)

= −y2 sin(xy)

∂
2 g

∂y∂x
(x, y) = ∂

∂y

(

ycos(xy)
)

= ∂

∂y
(y)cos(xy)+ y

∂

∂y

(

cos(xy)
)

= cos(xy)+ y
(

−sin(xy)
) ∂

∂y
(xy)

= cos(xy)− xysin(xy)

Comme g(a, b)= g(b,a), nous trouvons par symétrie,

∂
2 g

∂x∂y
(x, y) = cos(xy)− xysin(xy)

∂
2 g

∂y2
(x, y) = −x2 sin(xy)



Les exemples suggèrent
∂

2 f

∂y∂x
(x, y) =

∂
2 f

∂x∂y
(x, y).

Question. Est-ce toujours le cas?

Réponse. En général, non (voir par exemple l’exercice 2 de la série 8).

Théorème. Soit f : D( f ) →RR une fonction de deux variables et (x0, y0) ∈ D( f ).

Si l’on suppose que
∂f

∂x
,

∂f

∂y
,

∂
2 f

∂x∂y
et

∂
2 f

∂y∂x
existent et sont continues dans un voisinage

de (x0, y0), alors

∂
2 f

∂y∂x
(x0, y0)=

∂
2 f

∂x∂y
(x0, y0) .


