C}\-chi{‘rt 2, Uespa»cL ﬂlm

’Rap_gol.
Llemsemmble dos wechenrs o doux W/)vxaukr &Y{‘appzlb, RZ

U,

LCS é'-e,m-(/vJT c(e_ 722 S'OV\JL CL_ {.0.. “Cor“w\{, -I:Lb=(u,z) ) Qvec L(,l)lkzﬂm-

O ve fdm]‘.‘l;{er los yofhiltr du P(p.v\, avec les veckeurs de R .
W' WY

Uy |- - - - + Uy |- - - - -

x

On derira ()au‘{,of.( (x,g) an Uew do (43) powr pau-Ler* ol vedeur
de (Sv«lpoyavd-c,s x,Y .

Mtenbion . Ne pas cona,ov\Jre, (=, y) avec (x y) (matwee do fuille 122)

Mikion do vedenrs do_ ®. u,_f—??!
Soient W VER 00 o %
Tfa—?/*--(“))-;-("\) = (U‘l"'vl) u_z
w, Vo W, +Vz
TR | - %)
Muthiplicchion, d'um vecteur par tm sealaire : ¥ S
Joit &.’e@z of AeR -Qh a: E
. N
7\u.=?\(‘“1)=(}‘“‘1> ! L E
W, )\L(z W, ?\uq
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De mamere %e’vufmta,,m ijr deginer R" avec n73, comme (tnpnble

des veckomrs cle, " {Lor\m

—_
W=

W
u, |, avec m\)lLZ,.--/u%CR

UA'\’
Munt des oPefmh'onS’

u v W+
— eddifion de vedeurs: (u,lz\)_l,(v; - | UtV ?ouu"-i-b'-*t ( )\ , z eﬂz
u.'h \;h. M,&-Vh, Wy, Vv\,
- MH,/)& cation Pr wm W, UL\
“f"b = ‘)o\u' '{'btkt E,R ek
sealasre : : ,
U, ‘41u U,
R&M&m'\&g\ .

OVLvo\.icLO,vd?i{_.'u- (.q, K—+Mpu(w1)u2)._~)%) aw vectene ’(IF

W,
Yz
lb“’

R exk um espace vedhorel :
L Commitebivite de lnddibion: T+V =V+w qour foud TV e R
2. kssocichivild de (addibm: @)+ = 0+ T80 pour bt © 7R R
3. Elomerd nemtre pour laddibion . le vectesr 8=(§) est fel e’
Ti0=w o Ot+tu-=-wu powr fouk weRY
4. Inverse - Lo veckeur — % =0T est el quL
WH)=T et (U +R=0
5. @)=+ pour toul” W76 R of cel
6. (c+rd)W=cq+dl pour boub el <f cdefR.
. c(dW)=(cd®W pour foud Relk" of cdelk,

8. 1w=W pmr%omi‘ weR"
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ibe/g[‘!'v\ll'\ﬁm,\_. Soterd, & ek v donx V€£7('€AM'S' JQ,RH' Lc nowmloe_ rezl,
- = —|—>
Wev= W V
est appdd preduit scaloire (cuclidion) de & 7,
On Lo wole aussi <w,vV>.

Wy - [V
St TI=("-) S Y =(: )1a_LorS‘ on o

: Vi

Wy,

V] n
3.7 ‘:‘_-Tz:rv-x: (u,‘ «ae u'v\:]( ,: ) - u\V-l“' u2VZ+ .- .+ M“VN=-ZQ&VJ-
Vi, =
'Remwa,

[l est yossille do o&j;{w:r d' ot reg produits scalodre sur R

Thesetma - Sotent TTW e RY, %R On o

LBV =TT (commddivie)

2. % (V) =TV + W (ichbufivde)
3. RV =7 (A7) =0 (@)
4WL 20 o bk TeR”
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- T
L0 WV =0 V= Uy, +lhoVy koo b WV,
- —T1T -
& VAU EV WT VU VWV W
W1 T— T —
)= 7

?ow- EVOIT Ll STWMmL lelL) l'l }ewﬂ‘ qtu. Jma‘ub Terme Foif nul:
(,(,§=O (220 foul ‘) A ufrement a(&'} u_J'=O pour '{'bu,{'() [ |

Dépintion . Seit L€ R Lo norme (enclidienne) ew longuenr
dw vecdemr L est & nombee

IZL-V2. 2| >0

Rmag'm ,Powr dos caleuls 'Hu/oh'CilALS, on utilise p&‘fﬁ‘f (o

pormule ([ == .

1 = [l
Cous T’N‘HCMU.GPS: — =
) x o x
m=A. \‘_fl\=\/‘:1_c—'=|’)c\ (vahw»r &loSo(M.&) xr ”,;”
x

92¢ L./
et |2 =Vt a

; ~
x x,
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(Progﬁﬂé—/&
L Tositivits : | >0 powr touk %€ TR“'

>

>
De pws, 1ZN=0 = F=0

1o T =10015T powr {ouk ReR™ eb Nelk
3. IM%&U.Q/ l«'f'iamgmloyif‘e,;

e FI< PELHTT pour Louk e R™ (T)
T+y 6‘
<

Dépiwkion - Sotend X ,g’e/R". On dipint (o dishance enbre Z o3 par
Uz 7) =177l

Gen me}m'%u,m%‘}‘: . —g—z__'lg
U
/ x

(Proprie/%.

8 (Fosi{‘\‘v(b./: (z)—l;) 20 powr touk "JZ,EEIR“
e ps, JXFI=0 & L=y

2. 53%!-‘(’@43_ J('X.,la) cl(t—aa);) Po\“{pd— gﬁ'ﬂzh.

N
=)

3, Ihlﬁahg kna»\gulmre, ‘

dbe s
cl(’b_c),rj) 3 cl(f)?) ?) -I—c{(?)g’) pou.r{pul' i}ﬁ*}‘i’ﬁm?\, i,, )‘\j)
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1ne’3aﬁ»'{~c/s fm'porfavd‘es :
|, inggalite’ dr. Cauuchy~ Schwara :
|G SITNZL pour touk 75 R™ (cs)
[cor 2=l MG L eos]

2. fv\ﬂ,/e‘aﬁtb/ 'fn‘m‘gutwire, inverse :
“l’_J_(,’"""g:lll NS "'—f"%:" pw.r't,oul' i,gﬁﬂz}\' (TL)

Temargues.
(cS) =2 (1) En Q_H,d‘,

1X+G 1= (Z4g)e (THG) = 2 + 225+ 57
= 225 HIFIE< il € 2122 + 1T
() 0 A = IRTY
< IR x 21Ut llla I +l\l0 == (152 I+ l(% m
d'on llo‘zf+g‘ll$ I2C lh—ll‘%‘ll .
(M= (TI) : EV\ Q-H—Et,
- o 1) . - . _ .
|lx|l=l((x—ld)+lo I ;llx—v I+ }:) {“xll—ﬂwﬁﬂx—tﬂ
Iy =1 (ra’—z):rz Il < g5 L+l IR EA R \\:()*-sz\\
don NZUAIZ <1z
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2.2. Sous—emgombles de R

Dépinition . Soit el o 0. L'ensemble

B, ) = [XeRY: dig, )< J={xeRM - 2l o
est appeld boule owverle do contre @ ef @ifon, €.

Cas ParH cwleers :

n=L: Blo,r)={xeR: lx-aler] B
—J——
> 'BL&,P):]Q-P,OA-P[ (itervally ouvert ) v

n==2; %((a\,%),r)={(z_,t\:))eﬂiz'-\/(x‘°~nz+(3“O-z)z<r} J

o

(ch.ST/Q, euwr‘{' de. ntjow r e clre (o.‘;az)euzz) a% ?c,

= [Blla,e,),r) ={(x,t())eTR22 (x-aYrly-a,)% o

j)e/lj,_{V\LHOV\,-
Soit E e sous—engemble non vide oo R (va nte Ec TRW)

On dak que T el ast wn ?oivd' inkeMenc o £ sl axiste

. Tombre 6> () (olwl do'pomd. =) tl qu BEE, ) < E.

['onsemble E={1’6E il exjste §>0 tel que B(;} 5) e E}
(,Q, “'ouS Lu Poiv\h [ V\,{‘efw'e,uurs' e B esf" &Fpl(L/l‘l'n\LffdwF cl—e, E
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Remarque .

?q,r C,Ons'tru,c.tiov\, ) = CE .

Depinttion, .

Soit € wa sous-ougomble now vide de R™. On it que E est ouvert
si tous los elmunds do E sont dug pointy inferenrs & E.
E-
Autremant it E et swvert si pour foul XeE, i axisfe um
nombre §>0 Gui dipand, de Z) tel qu BIX,§) < L.
Convention .

L'ensenble vide ¢ est owerd.

Exeme(as.
|.E-= [Rntsf OuVQY‘(.—. En C]tfej\“ ) powr (‘ouJ,‘ € ”ih' MOUS &von §
BE, 1) c RY

Z-E‘;]O,{[C_R est ouvert . é) D'C 1

En QH,&) St 16]0}4[ 7&(07‘3 est fe| que
B(DC, )=]‘J(.— )’L‘\‘ [ c_]O,”;
3.Solent abelR tels que a<b. 1 3 {
& X b

E=Ta,blaR est ouverd.
En q_le') st xe]a,l)[, alors est tel que
Bloe, §) =~ et [c’_‘c\,,'oL
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4 E=lo, bl R est ouvert pour toul oelR,.
En el si ke alars x>0 i (=020 est il gua
Bloc,8) =)= x+ile £

S: A-&
} t
o~ L

5. E=]O,1] CR w'est Pas ouuve,r“k col leE‘_ wlest pas un Po'w{'
inkriene v Qv\'i[ wlexiste pas do nombre (>0 7Lc( quL
T-5 445 [ =B (1,8) cJo)

P\"b@}(‘,‘l‘y“DV\_ ) LQ, 'ooLL[L OLLVeY'Le/ (LL C.Q/Afl‘e T?:e R.Y\, (_’,‘I: mUoV\/ ('“>O'.
Bz A={ZeR™ 1% -z < v}
est um sous—ensewdle owvert de R™.

Trewe . Sott £ e Bl ). Nows avows

1% -z ll<r <= D< r-1Z -2l
Ainsi, en posank § = r—IZ 2 150 wous frouvons >
B(X0) c'B(Z”,A
Br epeed, i 866& 5) | alors ﬂ;a——ilRS b
utuu@a& NIz -2 1<tz -2 |
glla“—ovll<r > .aeB(a ) o
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R‘b@siﬁ'nw Seit eV o 320, L'ensemble
E={ZeR™: 1% -2 Il >
est un sous—ensenble ouverl a&, ]2%

Prewve . Sott x € £ . Nous avoms

12 -2 ll>r < d<Iz-2ll-r
) )
Ains, en posans = 1% -2 |-+ >0 vows frouvons /
B(E,N<E

Bn egpeb, st GeBE D) alors [R-xl<i=1Z -2 l-r

\ N - . (0T .
den: (<X -2 ”—‘";3—3(." < | ﬂi—all“ll_i—fa’ll\ S llg-‘& I
> |l’g——0:|\>r = _l/;eE =
DQ/{JY\ILHOV\,.

Sott E tw sous- engomble de R, On dit qune E esf _Ferww-/ St

e sous —emsemble CDVM-PLL/MLV\,{“Q/(.I‘Q EC-R™\E est ouvert.

Exemples .

I E=T10,0]cR ot femv\z,/ cor £=J0,] est ouvert

2.E= {(x,t\:))eﬂlzt (x—aﬂz*r(v—aj' {‘Z} sz est {.uww/cw‘
Ec={(x,n3)eTRZ: (x-a Yo (y- a,Jt>fz} est ouver{.

y4

o}
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KM&M‘\AQ_S .

— U'ensemble vide E=cf> est ferws cor wous avons heonfre que
E=-R"\P=R" est owerl

— |'ensemble E=R™ est {;ex*ww/ CAT WUl AVome Fos’ﬁm(.z,/ e
|‘ensemble vide ES<RM\R =g est ouvert.

— Lensemble vide § b R sout (ot seuls sous—engenbles do R"
qus fond” & G- pois suverts o permds.

/7

ﬂ)eF;v\;h'ov\,.
Solr EcR™ uan sous—angemble now vide do R™
On dik que TR st wn poind protizre do € si powr touk
nombre hows avons
B, ) nE+¢ ( ©
& BIE)aE+¢

L’m&’m(& oQ, ‘l"DuS (u Poim{'s ,FMK‘(‘I'f\,PQ_ J-E,E est apfi(.L/
le Lord, (ow {,r-onﬁ'e\f\e,) ole. E, wote o
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fDe/ |: i nito w -
Soit E<R™ e sous—ensemble now vide do R

On duk que —’ieﬂlkm-d{' TS Yoini' aoﬂa/r'\ent' w E St powr {”Ouf

nombre v >0 wous avons

B, ) nE+4 e *

!.'{’MS%,LLL OQ, Hus LLY Poiml'x acuu./rewl‘r 22. E est QFN&/
ladhfence oo E | noke E .
Rr conttruchion. |C<E| & |0E<E |,

)

Exemples -

1St E=Jo1] R E
—]ﬁ—

0 1

* 04E est un point adherent a B car
J-re[nE=Jo v[+4 si 0<rgl
& J-rr[nE=E+b 5 v
Ainsi E=lojt)
AT b wn point adrdrent a E%=T—e2,03U0 T4 0l car
T-e teeln® =T tee L+ si 0¢rat
Vv s e L B =Tior,0]ult, i (46 6 v 54
Mnsi, E€=1-w,0)u[1, 0] e 2E={01}=23E"
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2. Seit B ) = [ eRYUIZ-ZUCr]  (boule owverte)
Nous avong -
B, ) = X R AZ-Z o0 Complinent)
B, ) = {ZeR I Tlar  Gsence)

BE o) = {XeRAZ-Z =) (bord)

n=2.
" "t It TBE,r)
@, @, o
x x ~— 2
fl)é[_'jv\ih'ovx,~

Soilt EcR™ i sous—engemble non vide do R™
On dik que T et est Vox‘vd' isol de € sl exithe um
nomlore, tel quL B(Z, ) nE={F]

Exomple.
Skt o
Seit E=Lo, 11012} _ el K

4 2

. (]
x=2 est TN fo?vd' fJOLQ, GLQ/E Lo em rrf,n.an..'l"
mows avons B@,7)=]2-%,2+44(=13%,2

d'sn Blz, L) nE =12}
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Conse'qmws deg 0(2/‘{.4‘0{‘/01\&.

Soi{.' EC_RK W gour—%SmL(ﬂ_ now—vide .

Nous avons :

. EcEcE

2. BE= EUdE  (réunion disjointe]

3. E=FE <> E est owvert

4, E=E ¢ E e fevmd

5, —é est (o placs 3mn0(, ouwvert contenw dans E
@ E ef b puss petit perme” qui contient E
¥ Q9E=EnE°

Definition.

Soit E un sous—ensemble won vide de R
o On dit que E est bornd il existe un nombre M30 tel que
10 s pour touk ZeE
Aibcement &t si B peud Shre contenun dans une boule e ragon fini,
* On dik que B est compact i E est fermd et boena -
[ Si EcR" est un ensemble bornd alors son adhdrence E et
um enSemble compach,

2. Tout ntervalle -(-erwxz/ [Q)b]C.IR, avec ash esf oonpac,f.
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2.3. Aukres vmormes (ef distences) Suc IR“.

De manigre 'f)e,/mj‘aL& unt worme sur R estume mpp(«'mﬁ‘ow
aw amoce a c]/\wa‘wz, it ZEPR™Y un nombre TR
felle que les trois Proprie’\Lc? suivamdes sont safis foites:
L Tositvils s W20 pour todk XeR™
be gus, WZI =0 & Z=0

2. HOW.O%QTY\L/WL/:

IO N=IA NN powr touk LeR™ eb 4.
3. INGGUE $ramgulaire

U+ U IR U+l por touk B 5e R™

Exemples impor tants

m v
o |22 uf— (in) z= 151l (/vwrvw. wd/loue,nm,)
12l - g kg = D |
o Plus ﬁefw/m,(uwemi(_ :
& P Ve
“_9_5 “? = (\,_ZM[IVL\ ) ) avec ’|>>1

o Il = uax %lxh\]

(voir séne )
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Kemarguos.
—5i n=1, alors X =(x) et
Il =Tocl = Il = Il = Il powr fouf p>1.
= Si n>, alors en glnlml wous navons plus (2galite’
for exemple, 51 m=2 et x=(-4> alors -
12l = V3 =0* =5
(20, =13+ (-4= 7
120 o= meon 13, 1-41) = 4
On remarque que

12l < 120, < I,

tDej,{ Nl'{ oW\,.

Deux movmes [l et 1] sont dquivalontes ¢l exirte des
constandes <,,c, Y0 Telles Gue
e, %0 ¢ 171, 2,1z, | pour ot TER™
Thiseemt. (sams démonchutren)
Tower les normer sur R sont cﬁw\/oiwv\:f&f.
Cas !powfﬁm(,{em (voir séne G-
wlIEL Iz IR = Izlg KL Wz,
IZl g1zl iz, = izl IE1 1z,
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De maniere c;)e/v\zf\ah , wnt distonce swr R estune mppllmﬁw,
quw. GTOUL c,L\w;-‘\AQ, couwple d'¢Umants :52,5’6/2%% nombre
dEg) felle que les trois proprietes suivamles sont safitfaites:
L sty s dEGI 20 paur bk 77 e R
pe pus, JEFI=0 & Z=7

2. Sywitaie . JEF)=dF,Z)  paur otk %GR
3. IndeUle tranqulaire :

d625) 5 4G 7) # 77 pour touk i’,\g‘,i’dR“

Exwp(g, v mpowr‘{‘wv\'k:
dighomce ewclidienne: Ol(f,g)"' )li—%"ll

_Exmlpu, M\aoo(o{‘fq'w, (doms R?) :

clr.S’(“ow\cz, SNCF - = /»5:
-5l si =0y X
&(ﬂ~a{ / 0 z
Shoe %’U) ll%lH—u?ll Sinon [
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24 Swites doms ﬂzn,
?QEES.QAVLOLKOSQ, I>
:D_ém, U swite dlellments de R ect vme &pf&'@a(\by\,

T ’Et—»u{%@: x,

N O("Q;HO’V\/ z ( x\Q‘) e (\VV (’J(.k) ©30 S (x'\&)
EX ewp les.

{ z
(k’f\)\tew) (k)kew / (‘T‘.)leem ’e’+c"

M Soct (X lpem une Swile A'ﬂz’mmﬁ de R of oclX.

On dit que o swite (¢ )pen converge. \ers a , wote

mwk = &
si pour bout €50, il existe wn nombre NeN Gui depend do ¢ )
tel G- logk—&\<€ Fow’couk k>N

hbremend dik, st x, est sugpisammeat proche de o ooy que k.
of as1e qramd & partic wn certoin k) Tous s xy
ce Frouwvent doms I'mteralle owvert Ja-t,arel
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Déiion. Une suile Geplpen delmentt de R est boraie s'
existe wn nombre >0 fel que | [ S ¢ pour tout keN.
hidremend dik | si tows los 2, Se touvent dams llitervalle
{_exwu./ (-c,c ).

Définition . Une suile ey )pen d'eliments de R est une
sude do C&MCJy St powr toul >0 ) il existe wn nombre NeN
GQui d.e,FM do ¢) tel qn |, - Y I<E pour touk j)le 2N

M Soit § [N"“N( )w app L catvow strctement c,meJam\(&
g1
Lo swite d'lWmends de R definee par N—R

ﬂl——»x

est vme sous—suite de (’xk\kelN _ +Hy)
Swites dowms ﬂzn.
:De/‘.v_{\«ﬂ-\'ov\ Ui swite dellwents do FZVL est une a,pf(im(‘lbv\/
N—R_ .
% lt‘__—}n{’z("w:: 'D(,'L=(9Ck}l ) Ik’z;"')xk’w)
lotabon: (), s &)L, = (X))
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J)_QE/ wikion . Soit ('-’_Zk,)lzew tne SWAlE (Jle/(zfmv\;l‘y de R“' .ef 6 RW_

On dit que o swite. 52, )pen converge. Vers Y- v

mi’k =&
SL powr tout >0, il exithe un wombre Ne N (z‘w de’pudf do ©)
el G |52, - < I<E pone touk kN

hbremend dik, si %, est sugpisammeat proche de @ ooy que k.
ast asyez qrand : 2 pactic Junm cerfoin b, fous s 2,
e Fouvendt dams (o Lowle ouwverly, B(Z ).

33_*3-[:/ ’MHO'/\_. UML swl:‘ve (V?k_)lzew J'ﬂémud? de Rn est borwie sl
existe wn nombre fel que 15, [ < pour toub eeN.
Aubre mand 0‘«'#, si Tow (u E’E_S't/ J"r‘owvcmf dams (o 'aow(e,

—_—

1te,rvv\fc, B(O,c).

Détitton . Une suile B )een d'eliments de R est ume

sude do Cw«o‘y St pour ouf £>0, | existe un nombre NeN
(Qui de};M do &) el G- 1, - z-“<8 powr touk jlezN
Définition . Soit §: IN—-*N m&ppheaﬁow strhclemont croiitante.

l——*_{(
Lo swite '@t do R” da]ww{'. par /N——>R
ﬂl——» :x,

est wne sous—siite de (%k\ksn\) _ 139)
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Propridkes des suites d'dlgmondr de R™
Troposition. . Soit (Fa) oy unt Suite deliments do R™ et soit e R

Sotemk (’x_u ken ) (xkz)lae/;\; ) - (’JC»_,n ven les w suites
Y\MMQ/Y\‘?\MS f»owuc.r avec (4 Com‘:o.\“ﬂwd‘cf de (ocb_ ),& Al
NOVLS Qvons :

Lin % =00 < Sl 2 =0 pour touk e, ]
Yemve .

=) Far hypothise | pour bout £-0 | il exitte un wombre NeN
Qi depord do ©) fel que 158, = I<E pour todk kzN
A voir: l:z:h,‘i —@jke ponr touk LN et 'je’z{,.-.)ﬂ
On o lx”wi — O“J'] \,Zn{&x,v\,l}xb" — 0\,6] =2, — o |
<2 - ke pounr touk kN
<) Par ijo’t‘k?m, pour boub £-0 | i exitte um nombre Nd-eN

(z‘w‘d_p_,rﬂ,m:é ({_Q_E) 'l.'ei. i'vdb I')C —*&- I<E Pou(‘{'owk l{?’\ld

el Je{{,.-.)w*. A voir: b Ih =0
Ono: 12 - <l - @ le,&
<nE PouJ‘ {‘ou}{ IQ>W\.&XN [ ]

§
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EXMEQ_ .

|

‘ .
Now /R.VDM vu ciu, (m) e e(’ (Q‘“)LLM S’on’!' 0(0.\[‘ ﬂM?LCJ‘
mwwn‘c\wi covxver‘“{md—cs vers O.

Par cg,v\sei‘ml‘) o swite (

Ay

Nl

ol pl-

k+] > (k-,—‘)z)leew

' |
Converge verf (0,0).

Froposition. - Selt (Fi) pp Ut Suste d'eleinendts de R™.

Sotenk ("x\a,l)he/)v) (xla,m) bem ) -~ , (Ocle.,n)laeﬁ\) ‘es w suites

*yume,/ Y\'a\w,( l',ovw/c: avec. (@
NO\A_S avons :

() o st ume

suike do Cmu-l\j

—

"

—

|

%, )

Com‘oo.wbl'd‘cf de th el -

(7%33 )lcem est une swite oo
CO\Mc_lv f,oum {‘Ouk Jeﬂ,...)w‘

Chapitre 2 - p22



Thoorema |
Si (’i’,,) ke est une Xufiﬂ Convergm\;l‘c J'ﬁ(mv&r de Rn,

alsre C’El:)benu est une suide Lornde, .

Premve .

Supposoms que (?k)hew Converge vers
Il exisle, dene NeN 1l que \I’SC.—;— u< | pour doud k=N,
L'iu’r\,(it: f“n'mj:u(aLre, L'M‘)UC‘U\L
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Theoeme de Bolzano - We ierstmgs |
Seit (5:&) ben) WML suite bocnde dlliments oo RP™

Aors il est possible o lextraire wna sous-swite c,onverbvfm\lﬁ,

Rowppel .
Sot E un sous—emsemble non vide de TRVL.

- E est un ensemble suverd s pour foul KeE, i axiste um
nowbre Gui dspend, de. Z) tel que B, ).

~ E et um ensemble tennd si E=R™\E est ouvert.

Nows ellond olonner maindendid wne caraclent atron d ensemble

permd a [lade des suites:

Thibrtme . Jorb E Un sous—enstmble non-vide de R™

”OuS ovons I%UA:VALMCQ:

) foule, swite, d%ldmants quus est Com/er?fm«{‘ﬁ
E est berme <=
Converge, vers un Smant

Yrewve .

=>) Supposons que Eed fermd.
Soif (ib_),aew une Swite comvergente vers el
Telle aue €, pour fout-bell) .

A voic - 2ekb.
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SULFPOJOV\,S par labsurole quL T4 B, et a-dire ae E-.
Comme. par “\’jP"mm E et fermd, 'ensemble E et ouvert:
Par cwx&fw) il editte tel que B(E, ) E™.
Comme X\, eE pour Lok kel on obtient -

{2 keN} A B(E, = '
en contradicton, avec e goik que

&Y
Al

(&’Q)EN COMVErge Vers Tt
TPar va\s‘e"m‘v) ek .

<) Supposons Mainkenomt (N touke suike cpvwerﬁfmi'e ()
avec € porr touk el Converse vert un eldment de E

A voir: E est permi .

Supposons par l2\surde que E forms .

Par mn&e?{wf ) E=R"\E ouverd,
1l exgle done Te £ tel que
B(Z, )4 ES pour toul
hubrement it B(T,0) 0 E#fb pour toul
En particnlior, B(@, )N E=,L.75 powr Fout ke A .
On et done choisit e B (@, 1) NE pour chagua lae .
Tar onstruchion, b swhe &), ., d'éddmente do €

comverfﬁf, vers _DT%E , contradi fon avec f'hjr)o"i\},u,_ [ |
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Conséauumce -

Tour dotomir Vladhirence £ dln emsnble E (est-z—dire (o
plus ekt permi” qui cowttend E), il suyit e rajoufer 2 €
tous (g TR ﬂw, sonf (Owtes do swies mnverﬁ\%iu
J'¢lmants do E .

Exemple.
Soit E=[o,1[.

Commae. TJC‘Q_=]§_\6E your'[-—om{f e ) £ Jona, ={

_ le—=0Q
nou{ @vony E = [O,4j X

2.4. Courbes paramétrées dans R2

Définition. Soit I <R un intervalle.
Soient x:I — R et y:I — R deux fonctions continues d’une variable réelle.
On définit 1a fonction
f ] — R?
t— (x(), ¥(1))
appelée courbe paramétrée.

On a le schéma suivant :

x(a)  x() x(b)  «x
L'image de ]F est appelée irace de la courbe paramétrée.

La variable ¢ est appelée parameéire.
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Remarques.

o La paramétrisation d’'une courbe paramétrée n’est pas unique.

e Si I =[a,b], alors le point ]F(a) est appelé le point de départ et le point f(b) est appelé le
point d’arrivée.

» Sil’'on prend I'intervalle I =[0,1], on parle plutét de chemin.

e On peut voir f () comme la position au temps ¢ du crayon servant a dessiner la courbe.

Exemples
1. £:[0,1] — R?
t —(2+1¢,1-3%)
Nous avons

(1) = 2+1 = 2 +1 1 avec t €[0,1]
(1) 1-3¢ 1 -3
Equation du segment de droite qui relie le point (2,1)
au point (3,-2)

2. De maniére générale,

f(t)z(x0+at, Yo +bt), avec 1 €[0,1]
est le segment qui relie les points (x,,y,) et (x,+a,y,+b).
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. )= (cos(t), sin(?)),
est le cercle de rayon 1 centré a 'origine
t=0:£(0)=(1,0)

T d VL4
-1 47[5) -0
t=n:f(m)=(~1,0)

_3n

2 ;f’(%”):(o,—n

avec t €[0,2n]

t

. f(©) = (Rcos(t), Rsin(1)),
est le cercle de rayon R centré a l'origine
t=0:f(0)=(R,0)

avec ¢ €[0,27]

/A >(TT
=5 7(5)=0m
t=mu:f(r)=(-R,0)

3

=2 :f(%”)z(O,—R)

. f(#) = (xy+Recos(t), y,+Rsin(?)),
est le cercle de rayon R centré en (x,y,)

avec t €[0,2n]

. Si g:la,b] — R est une fonction continue, alors
F=(t, ),

est une paramétrisation du graphe de g.

avec ¢ € [a,b]

. Cycloide (trajectoire de la valve d'une roue de vélo, Mersenne et Galilée, 1599)

y
N

£
£ 0

N

cos())] 1 x

...... £

Yy
/ ......

£(0)

o

g(b)

g(a)
g(t)

Rcos(t) |[R  «x

Paramétrisation :
- x(t) =R [t —sin(?)
f (@)= (x(2),y()) ou { ( ), avec € R
¥()=R(1-cos(t)),
y
BR{~ o—~s SR
Ve > pz ~
/ // \\ \\\ // N
! R / | | {
|
\ 1)1 ‘ / i /’ \
\ I ; | y \\
N ~_ /l b I P v ~ . s/
x(t) 7R 37”}3 2nR x
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8.

10.

11.

Astroide (Rgmer, 1674)

x23 4 423 = R23

Equation implicite :

‘ x \/3 \2 y /3 \2
autrement dit, ((I_B) ) +( (}_B) ) =1
S—— N——
= cos(t) = sin(¢)

Paramétrisation :
x(t) = R cos®(2),

{ y(t) = Rsin®(?),

Cardioide (Rgmer, 1674)

(% +y

avec teR

Equation implicite : 2)2

Paramétrisation :
{x(t) = acos(?)(1+cos(?)),

_ avec t € R
y(#) = asin(t)(1 +cos(?)),

Deuxiéme paramétrisation

2a(1-u?)
ww)=—"—gg ¢
(14‘;;‘ ) avec u =tan(§)
y(w) sk

Lemniscate de Bernoulli (Jakob Bernoulli, 1694)

Equation implicite :

(% +y?)? -2a2(x*>-y?)=0, aveca>0
Paramétrisation :
t
x(t) = —1aC?S(2() ) ’
+sin“ (¢
) a sin(t)cos(z) avec t€R
y e —
1+ sin®(¢)

Feuille (folium) de Descartes (1638)
Equation implicite :

x3+y3=3axy, aveca>0
Paramétrisation :
x(t) = 3at3 ,
13;:2 avec t e R\ {-1}
(=",
1+

—2ax(x? +y2) = azy2 ,

avec a >0

2a x
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Définition. Soit I <R un intervalle. Soit f : T — R? une courbe paramétrée

()= (x(t),y())  avectel.
On dit que la courbe paramétrée f est dérivable en t, € I si les fonctions x : I — R
et y:I — R sont dérivables en 7, € I. Dans ce cas, le vecteur (x’(to), y’(to)) est appelé

le vecteur tangent a la courbe paramétrée au point }? (t,), noté f ! (,). Nous avons :

- 17> N
Ft)=(x't), ¥'p) = lim - [f(to +h)—f(t0)]

x(a)  x(t,) ‘ x(b)  x
Le vecteur tangent ]? '(¢) indique la direction et le sens de parcours de la courbe au temps ¢.

Sa norme nous donne la vitesse de parcours.

On dit que la courbe paramétrée f est dérivable si elle est dérivable en tout ¢,€ 1.

Exemple
Considérons la paramétrisation
f()=(cos(t), sin(#)),  avec feR
Nous avons
f(t) = (~sin(?), cos(t))
Quelques cas particuliers :
t=0: f'(0)=(0,1)
=57 (5o
t=m: f'(mr)=(0,-1)
De plus, comme
17/ = Vsin? (1) + cos®(1) = 1,

la vitesse de parcours est constante.
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Définition. Soit I <R un intervalle. Soit }F : T — R? une courbe paramétrée

()= (x(t),y(t)) avectel.
Soit £ > 1 un entier. Si les dérivées x'™ et y™ existent et sont continues sur I pour
tout 1 < m < k&, alors on dit que la courbe paramétrée ]F est de classe C* .

Si f est de classe C* pour tout % > 1, alors on dit que f est de classe C*°,

Définition. Soit I =R un intervalle. Soit f : T — R? une courbe paramétrée de classe C!
f(0) = (x(),5())  avectel.

On dit que la courbe paramétrée f est singuliere en t €l si f”(to) =0. Le point f(to) est

appelé point singulier de [ .

On dit que la courbe paramétrée f est réguliereen ty €l si ;? '(to) #0.

On dit que la courbe paramétrée f est réguliere si f '(t)# 0 pour tout tel.

Exemples
1. Le cercle paramétré par
f(#) = (x, +Rcos(t), y,+Rsin(t)),  avec teR,
est tel que f'(t) = (~Rsin(¢), R cos(?)).
Par conséquent, il s’agit d'une courbe réguliére.
2. Le graphe de la fonction g :[a,b] — R paramétré par
fw=(t, g@), avectela,bl,
est tel que f'(¢) = (1,g'(2)) #(0,0).
Par conséquent, il s’agit d’'une courbe réguliére si g’ est une fonction continue.
3. La cycloide paramétrée par
f(®) = (R(t-sint), R(1-cost)), avecteR,
est telle que £'(£) = (R(1-cost), Rsint).
Par conséquent, la cycloide n’est pas une courbe réguliére car les points
f(2nk)=(2nkR,0), avec keZ,

sont des points singuliers de f .
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2.5. Longueur d’une courbe

Définition. Soit ]? :[a,b] — R? une courbe paramétrée de classe C! :
f@® = (x(®),5@), avec t € [a,b].

Nous appelons longueur de la courbe f le nombre

b —_
L= [ IFwlar,

o | = \/(x’(t))2 +(y' )2,

Exemples
1. Longueur d’'un segment de droite y
Nous savons par la géométrie que la longueur du segment qui Yo

relie les points (x,,y,) et (x,+a,y,+b) est égale a
L=Va?+b2.

Nous pouvons retrouver le méme résultat a I'aide de la formule

b e
L= ["1F @l ar. yoth

£

En effet, soit

f(t):(x0+at, Yo +bt), avec t €[0,1]
la paramétrisation du segment qui relie les points (x,y,) et (x,+a,y,+b). Comme le
vecteur tangent est le vecteur constant ]F '(t) =(a,d), 1a longueur du segment est

1 1
52[ ||f'(t)||dt=f VaZ+b2dt=Va2+b2|t| =VaZ+b2.
0 0

1
t
0
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2. Longueur d’un arc de cercle

Nous savons par la géométrie que la longueur d’un arc de
cercle de rayon R et angle 0 est égale a
L=R0.

Nous pouvons retrouver le méme résultat a 'aide de la

formule
b -
c:f 17 de.

En effet, soit
f(#) = (xy+Rcos(t), y,+Rsin(t)), avectela,a

y fla+6)
:\9\. f@
Yot .ﬁ(l B
- ;
+0],

la paramétrisation d’un arc de cercle de rayon R. Comme f'(¢) = (-Rsin(t), R cos(t)) et

||IF’(t)H = \/(—R sin(t))2 +(R cos(t))2 =R,

la longueur de I’arc de cercle est :

a+ a+6 a+0
£=f ||f'(t)||dt:f RdtzRH =R0.

a

Si 6 = 271 nous retrouvons L = 2rp (périmetre du cercle)

. Longueur du graphe d’une fonction y
Nous avons vu que si g :[a,b] — R est une fonction continue, £(®)
alors

f@=(t,gt), avectela,bl
est une paramétrisation du graphe de g.

Comme le vecteur tangent est f'(t) = (1, g'(t)), nous avons

|7 @) =1+ (g'w)”.

g(t)

gt -

Ainsi, si g’ est une fonction continue, la longueur cherchée

b
E:f V1+(g')%de.

est

Chapitre 2 - p33



2.6. Courbes paramétrées dans R”

La notion de courbe paramétrée se généralise naturellement lorsqu’on passe de R? a R” :

Définition. Soit I <R un intervalle fermé. Soient x; : I — R,..., x, : I — R n fonctions

continues d’une variable. On définit la fonction

f:I—»R”

t— (21(2),...,x,(1))

appelée courbe paramétreée.

Limage de f est appelée irace de la courbe paramétrée.

La variable ¢ est appelée parameire.

On dit que la courbe paramétrée f est derivableen t el sixg: I —R,..., x,: I — R sont

dérivables en ¢, € I. Dans ce cas, le vecteur (x1(¢,),...,x,(t,)) est appelé le vecteur tangent

a la courbe paramétrée au point f (t,), noté f ! (,). Nous avons :

P B -
Fl(tg) = lim = [Feg +m=F(ty)].

Si la courbe paramétrée f est de classe C1, la longueur de la courbe f est le nombre

b -
L= [ IFw)ar.

Exemple

Hélice circulaire dans l'espace

Paramétrisation :

£() = (x(0), y(1), 2(0))

x(t) = cos(t),

y(t) = sin(?),
h

2(t)=—t
21

avec t e R.

Comme nous avons
i (s i
F'(®)=~sin(), cos(), -] #(0,0,0),
I’hélice est une courbe réguliére.
y
Plan Oxy :
{ x(t) = cos(t) f
y(t) = sin(?) \

/<t

Axe z :

h
Z(t)— ﬂt

— —
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