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Theorene
St (XY ey et une swile Converponte 4 (Gmonds o R,
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Theorewme de Bolzomo - Weierstmgs .

St (55,) e wne suit bornde deliments oo R™
Aors il est possible ol extrmire une sous-swite wnverbamfe.
Roupel.

Sob E un sous-emsemble non vide de R

- E est un ensemble swverdt s pour bout X E , d axisle um
riombre Gui digond, de Z) tel qu B, {) L.
— E est um engemble {_e_rwx.c/ st ES=R™\E est ouvert.
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Suppotons par labsurde que g €, cest-a-dire Tk
Comme. par ‘\:)poﬂxksc b est ferma) | ensemble E° et owvert
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A voir: E est permd .
Spposons par laksurde e E ferms .
Par consdguant, £ =R"\E ouvert.
1l extle dowe Tt tel qur
B(2, )4 ET pour toud
hutrement dib, B(Z,0) 0 E+6 pour Toul
En particwlor, B(a, o) N E=f=75 ponr Fout ke N .
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Pour dotomie V'adhirence £ d un nsenble E (clest-a—dire (o
pluus peht permd qut CondTens E) , il Suat]ul’ ole. Y‘Ot./'U\A{_E'(\ 2 E
touws oy weR" qui Sont (imites do suctes convergentes
J'¢(mants do E

Exemple.
Soit E=Lo, 1.
Comme 'x,\;]:*\E,E pour Tout ke M) of ﬂ%xb\={

- =Y
nowf AVong E = [O,4j i



