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qe)= %1& t O\J_\xdh\+ ot 0\2114' q,% +3,

ou, c\b,q”.__iq&eﬂz Sond & deferminar.



X X
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yot) = Ae*coslor) + B e sinllox)
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On remplace. dong I’eﬁ;mhb»\',

- . - -2
e 2% = m}‘ 67‘-)—4'3‘,(1)= dor (-l —daxe ™= loe

3 3 -2
:>"40\=3 = al—_-.—‘zt" =>) 3?(.1):"‘2}' -

Z‘)C(

Soludion %efM_/mbLQ, ‘3(,1) = C\ﬁzx‘*' C, - ) Qvec an-z_ep



3. 3“('30 — ‘l—U(jc_) =’L€ZL

formae imk&w\oalvxa,-. fox) = e
Lch (polt)mSw_ da. da,%re/i) et v=2
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4. \tj“(’x) — ‘l—lo()c) = 831/—}- 38'270 + re
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d. 1')“(7) 1_33(1) = 4 sin(3x) + 3 c0s(3x)
Equation. Undbire homogdnt agrociee y'+9y=0
Polipnime. comctenptique: B (A= X+ I =(A-31Ar34 )
vmcnts : N=31, J,=-30 (tde ls dewx do mulkplicite 1)
soludiony asseciées : y (o) =ees(5e) |y ()= sinl3ac)

Soiwt‘cow ]/wwvo%zﬁ'\t :
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On. dirive
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+ 2 a0 (31) +o sin(3x))
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Yp) = cos(52)
+ sin(Sx)
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