
Vrai / Faux : Il existe une unique solution y : R → R de l'équation di�érentielle

y′(x) = 2
√

y(x)

qui véri�e la condition initiale y(0) = 0.

VRAI FAUX

Question 30 (5p) : Déterminer la solution maximale y(x) de l'équation di�éren-
tielle

y′(x) + y(x) = (y(x))2 , telle que y(0) =
1

2
.

Solution 30 :
Méthode 1 : Equation de Bernoulli.

On divise par y2 :
y′

y2
+

1

y
= 1. On pose z =

1

y
⇒ z′ = − y′

y2
, et l'équation devient

−z′ + z = 1 ⇔ z′ − z = −1.

C'est une équation linéaire d'ordre 1. L'équation homogène est z′−z = 0, qui a pour
solution générale Cex. Une solution particulière de l'équation originale est z ≡ 1.
On trouve donc comme solution générale

z = 1 + Cex ⇔ y =
1

1 + Cex
.

La condition initiale y(0) = 1
2
donne C = 1, donc la solution maximale est y(x) =

1

ex + 1
qui est dé�nie sur R.

Méthode 2 : Séparation des variables.
On a

dy

dx
+ y = y2 ⇔

∫
1

y(y − 1)
dy =

∫
dx = x+ C.

A l'aide de fractions simples, on trouve
1

y(y − 1)
=

1

y − 1
− 1

y
d'où

log |y − 1| − log |y| = log

∣∣∣∣y − 1

y

∣∣∣∣ = x+ C ⇔ y − 1

y
= Cex ⇔ y =

1

1− Cex

La condition initiale y(0) = 1
2
donne C = −1, donc la solution maximale est y(x) =

1

ex + 1
qui est dé�nie sur R.
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Question 31 (5p) : Soit D0 le secteur circulaire
grisé suivant (situé dans le plan yz) et D le solide
de révolution engendré par rotation de D0 autour de
l'axe z :
(a) Donner une paramétrisation de D en coordon-

nées sphériques.

(b) Donner une paramétrisation de D en coordon-
nées cylindriques.

(c) Calculer le volume de D. x

y

z

π
4

2

Solution 31 :

(a) D =
{
(x, y, z) = (r sin(θ) cos(φ), r sin(θ) sin(φ), r cos(θ)) |

r ∈ [0, 2], θ ∈
[π
4
,
π

2

]
, φ ∈ [0, 2π]

}
(b) On observe que D0 ⊆ plan yz est borné par les droites z = 0, z = y et

y2 + z2 = 4. Ainsi, z varie entre 0 et
√
2, et y entre z et

√
4− z2. En tournant

autour de z, y est remplacé par r. D'où

D =
{
(x, y, z) = (r cos(φ), r sin(φ), z) |

φ ∈ [0, 2π], z ∈
[
0,
√
2
]
, r ∈

[
z,
√
4− z2

]
,
}
.

(c) Méthode 1 : Avec la paramétrisation de (a). On a

Vol(D) =

∫
D

1 dxdydz =

∫ 2

0

dr

∫ π/2

π/4

dθ

∫ 2π

0

dφ
(
r2 sin(θ)

)
= 2π

∫ 2

0

r2 dr

∫ π/2

π/4

sin(θ) dθ = 2π
[r3
3

]2
0
·
[
− cos(θ)

]π/2
π/4

=
16π

3

√
2

2
=

8π
√
2

3
.

Méthode 2 : Avec la fomule du volume des solides de rotation vue en cours. Si
D0 est le domaine grisé (qu'on paramétrise en coordonnées polaires), on a

Vol(D) = 2π · Aire(D0) · (coord. y du centre de gravité) = 2π

∫
D0

y dydz

= 2π

∫ 2

0

dr

∫ π/4

0

dθ
(
r cos(θ) · r

)
= 2π

[r3
3

]2
0
·
[
sin(θ)

]π/4
0

=
16π

3

√
2

2
=

8π
√
2

3
.
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Question 32 (5p) : Soit f : R2 → R une fonction di�érentiable en (0, 0), telle que
f(0, 0) = 0. Montrer que pour tout α < 1

2
, on a

lim
(x,y)→(0,0)

f(x, y)

(x2 + y2)α
= 0.

Solution 32 : On distingue deux cas :

(a) Si α ≤ 0, on pose β = −α ≥ 0, et on a

lim
(x,y)→(0,0)

f(x, y)

(x2 + y2)α
= lim

(x,y)→(0,0)
(x2 + y2)β · lim

(x,y)→(0,0)
f(x, y) = 0 · f(0, 0) = 0

en utilisant la règle des produits de limites et la continuité de f .

(b) Si 0 < α < 1
2
, on pose ∇f(0, 0) = (a, b), et on a

f(x, y) = f(0, 0) + ⟨(a, b), (x, y)⟩+ ∥(x, y)∥ ε(x, y)
= ax+ by + (x2 + y2)1/2 ε(x, y)

avec lim
(x,y)→(0,0)

ε(x, y) = 0 (dé�nition de di�érentiabilité en (0, 0)). Il suit

lim
(x,y)→(0,0)

f(x, y)

(x2 + y2)α
= lim

(x,y)→(0,0)

ax+ by

(x2 + y2)α
+ lim

(x,y)→(0,0)
(x2 + y2)1/2−αε(x, y)

La deuxième limite vaut 0 · 0 = 0 car α < 1
2
⇒ 1

2
− α > 0.

Pour la première, on utilise les coordonnées polaires (x, y) = (r cos(φ), r sin(φ)).
On trouve∣∣∣∣ ax+ by

(x2 + y2)α

∣∣∣∣ = r |a cos(φ) + b sin(φ)|
r2α.

= r1−2α |a cos(φ) + b sin(φ)|

≤ (|a|+ |b|)r1−2α −→ 0

lorsque (x, y) → 0 ⇒ r → 0, car α < 1
2
⇒ 1− 2α > 0.
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