
Remarque sur les corrigés

Lire une solution, même partielle, d’un exercice sans avoir vraiment
essayé de le résoudre (plusieurs heures, même parfois plusieurs jours)
est presque totalement inutile. Faire un exercice en ayant la solution
sous les yeux est beaucoup plus facile, et ne prépare que très mal à un
examen (qui se fait sans solutions).
Par conséquent, la lecture du présent corrigé est déconseillée, et se fait

à vos risques et périls.
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Analyse II Corrigé 9
EPFL – Sections SIE/GC

Solution 1.
(a) On pose F (x, y) = 2x3−x2y4+2y3+3x−2, qui est de classe C1. On a x0 = 0,

et on trouve y0 grâce à l’équation:

F (0, y0) = 0 ⇔ y0 = 1.

On calcule alors

∂F

∂y
(x, y) = −4x2y3 + 6y2 ⇒ ∂F

∂y
(0, 1) = 6 ̸= 0.

Par le théorème des fonctions implicites, l’équation F (x, y) = 0 définit une
fonction implicite y = f(x) dans un voisinage de 0 telle que F (x, f(x)) = 0
et f(0) = 1. Pour trouver f ′(0), on dérive l’équation:

(F (x, f(x)))′ = 0 ⇔ 6x2 − 2xf(x)4 + 3 + f ′(x)(−4x2f(x)3 + 6f(x)2) = 0.

En remplaçant x par 0 et f(0) par 1, on trouve

3 + 6f ′(0) = 0 ⇔ f ′(0) = −1

2
.

Ainsi f(x) = 1− 1
2
x+xε(x). Le graphe de la fonction f et de son développement

limité se trouve ci-dessous.

(b) On pose F (x, y) = xey + yex + 2, qui est de classe C1, de sorte que l’équation
soit F (x, y) = 0. On a x0 = 1, et on trouve y0 grâce à l’équation:

F (0, y0) = 0 ⇔ y0 = −2.

On calcule

∂F

∂y
(x, y) = ex + x ey ⇒ ∂F

∂y
(0,−2) = 1 ̸= 0.

Par le théorème des fonctions implicites, il existe une fonction y = f(x)
définie implicitement par l’équation F (x, y) = 0 dans un voisinage de 0 telle
que F (x, f(x)) = 0 et f(0) = −2. Pour trouver f ′(0), on dérive l’équation:

(F (x, f(x)))′ = 0 ⇔ ef(x) + f(x)ex + f ′(x)(ex + xef(x)) = 0.

En remplaçant x par 0 et f(0) par −2, on trouve

e−2 − 2 + f ′(0) · 1 = 0 ⇔ f ′(0) = 2− 1

e2
≈ 1.865.
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Ainsi f(x) = −2 + (2 − 1
e2
)x + xε(x). Le graphe de la fonction f et de son

développement limité se trouve ci-dessous.
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Solution 2.
∂g

∂x
(1, 3) = 11

∂g

∂x
(1, 3) =

12

5

∂g

∂x
(1, 3) =

9

2

∂g

∂x
(1, 3) = 0

En dérivant l’équation f
(
x, y, g(x, y)

)
= 11 par rapport à x on trouve

∂f

∂x

(
x, y, g(x, y)

)
+

∂f

∂z

(
x, y, g(x, y)

)
· ∂g
∂x

(x, y) = 0

et donc, puisque g(1, 3) = −2,

∂f

∂x
(1, 3,−2) +

∂f

∂z
(1, 3,−2) · ∂g

∂x
(1, 3) = 0 ,

d’où

∂g

∂x
(1, 3) = −

∂f

∂x
(1, 3,−2)

∂f

∂z
(1, 3,−2)

=

[
− −9yx2

6z2 − 6y

]
(x,y,z)=(1,3,−2)

= − −27

24− 18
=

9

2
.

Solution 3.
On pose F (x, y) = xy, de sorte que

∂F

∂x
(0, 0) =

[
y
]
(x,y)=(0,0)

= 0 et
∂F

∂y
(0, 0) =[

x
]
(x,y)=(0,0)

= 0. On remarque donc que le théorème des fonctions implicites ne
s’applique donc pas: ni en y ni en x. Cependant, ça n’est pas suffisant pour montrer
qu’il n’y a pas de fonctions implicites: il se pourrait qu’il en existe même si le
théorème ne marche pas.
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Pour montrer l’exercice, il suffit de voir que xy = 0 ⇔ x = 0 ou y = 0 ; il y a donc
"plusieurs y" associés à x = 0 et "plusieurs x" associés à y = 0 ; ça ne peut donc
être le graphe d’une fonction (ni en x ni en y).
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Une version formelle est la suivante: supposons que xy = 0 est le graphe d’une
fonction y = f(x) dans un voisinage de (0, 0). Cela veut dire qu’il y a une boule
B = B((0, 0), r) de rayon r telle que pour tous (x, y) ∈ B on a y = f(x) ⇔ xy = 0.
Ainsi, les points (x1, y1) = (0, r

2
) et (x2, y2) = (0,− r

2
) sont dans B, et on a x1y1 =

0 ⇔ f(x1) = y1 ⇒ f(0) = r
2
> 0 et x2y2 = 0 ⇔ f(x2) = y2 ⇒ f(0) = − r

2
< 0 ce qui

est absurde. Un argument similaire marche pour les fonctions x = f(y).

On généralise cela facilement à la fonction F (x1, . . . , xn) = x1 · · ·xn de classe C1 qui
n’est pas le graphe d’une fonction au voisinage de 0.

Solution 4.
Rappel: Pour un vecteur unitaire e, la dérivée directionnelle d’une fonction f de

classe C1 au point p0 suivant un vecteur e est donnée par
∂f

∂e
(p0) = ∇f(p0) · e .

(a) Observons qu’on a

f(x, y) = f1(x, y) f2(x, y), avec f1(x, y) = (x−2y)2 et f2(x, y) = ln(1+x2+y2) .

Ainsi on peut utiliser la règle de dérivée du produit (Série 6, ex 5b) pour calculer
∇f(p0). En effet, on a

f1(p0) = 1 , ∇f1(x, y) = 2(x− 2y)
(
1,−2

)
⇒ ∇f1(p0) =

(
− 2, 4

)
,

f2(p0) = ln(3) , ∇f2(x, y) =
1

1 + x2 + y2
(
2x, 2y

)
⇒ ∇f2(p0) =

(
2
3
, 2
3

)
,

et donc (noter que e = v
∥v∥ = 1√

5

(
1, 2

)
)

∂f

∂e
(p0) =

[
f2(p0)∇f1(p0) + f1(p0)∇f2(p0)

]
· e

=

[
ln(3)

(
− 2, 4

)
+

(
2

3
,
2

3

)]
· 1√

5

(
1, 2

)
=

2(3 ln(3) + 1)√
5

.
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(b) Pour la fonction g on peut utiliser la règle de dérivée du quotient (Série 6, ex 5c)
puisqu’on a

g(x, y) =
g1(x, y)

g2(x, y)
, avec g1(x, y) = e2x(y+1) et g2(x, y) = 3 + x2y4 .

On calcule alors

g1(p0) = e4 , ∇g1(x, y) = e2x(y+1)
(
2y + 2, 2x

)
⇒ ∇g1(p0) = e4

(
4, 2

)
,

g2(p0) = 4 , ∇g2(x, y) =
(
2xy4, 4x2y3

)
⇒ ∇g2(p0) = (2, 4) ,

pour obtenir finalement

∂g

∂e
(p0) =

[
1

g2(p0)
· ∇g1(p0)−

g1(p0)

g2(p0)2
· ∇g2(p0)

]
· e

=

[
e4

4

(
4, 2

)
− e4

16

(
2, 4

)]
· 1√

5

(
1, 2

)
=

11e4

8
√
5
.

Solution 5.
On commence par étudier la continuité de f en (0, 0). Comme on a

lim
t→0

f(t2, t) = lim
t→0

t4

t4 + t4
= lim

t→0

1

2
=

1

2
̸= 0 = f(0, 0) ,

f n’est pas continue en (0, 0). Ainsi f n’est pas différentiable en ce point et on doit
appliquer la définition pour calculer la dérivée directionnelle. Soit e = (u, v) un
vecteur unitaire. Alors on a

∂f

∂e
(0, 0) = lim

t→0

f(0 + tu, 0 + tv)− f(0, 0)

t
= lim

t→0

tut2v2

t2u2+t4v4
− 0

t

= lim
t→0

uv2

u2 + t2v4
=

{
v2

u
, u ̸= 0

0 , u = 0

L’existence des dérivées directionnelles en un point dans toutes les directions n’est
donc pas suffisante pour qu’une fonction soit continue et à fortiori différentiable en
ce point !

Solution 6.
(a) Pour une fonction f de classe C1, la dérivée directionnelle

∂f

∂e
(p0) au point p0

suivant le vecteur (unitaire) e est donnée par

∂f

∂e
(p0) = ∇f(p0) · e .

La fonction f donnée est bien C1. Puisque

∇f(x, y, z) = (yz, xz, xy) et ∇f(1,−1, 2) = (−2, 2,−1) ,

on obtient
∂f

∂e
(1,−1, 2) = (−2, 2,−1) · 1

3
(2,−1, 2) = −8

3
.
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(b) La pente de f en p0 dans le sens du vecteur unitaire u est donnée par la dérivée
directionnelle suivant ce vecteur unitaire (voir cours), c’est-à-dire par

∂f

∂u
(p0) = ∇f(p0) · u = (−2, 2,−1) ·

(
sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)

)
= 2 sin(θ)

(
sin(φ)− cos(φ)

)
− cos(θ) =: g(θ, φ) ,

où g : [0, π]× [0, 2π[⊂ R2 → R.
(c) On sait du cours qu’en un point où f est différentiable, la pente de la tan-

gente au graphe est maximale (minimale) dans le sens du gradient (opposée au
gradient) et qu’elle est égale à (l’opposée de) la norme du gradient. Au point
p0 = (1,−1, 2), la pente maximale (minimale) vaut donc

∥∇f(1,−1, 2)∥ = 3
(
− ∥∇f(1,−1, 2)∥ = −3

)
.

Les directions correspondantes sont ± ∇f(1,−1,2)
∥∇f(1,−1,2)∥ = ±1

3
(−2, 2,−1) . Pour trou-

ver les angles (θ, φ) donnant lieu à ces directions, on doit résoudresin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)

 =

∓2
3

±2
3

∓1
3

 ,

c’est-à-dire

θ = arccos
(
∓1

3

)
⇒ sin(θ) =

√
1−

(
∓1

3

)2
=

2
√
2

3
⇒

{
cos(φ) = ∓ 1√

2

sin(φ) = ± 1√
2

⇒ φ =


3π
4

7π
4

⇒

 argmax g(θ, φ) =
(
arccos

(
−1

3

)
, 3π

4

)
argmin g(θ, φ) =

(
arccos

(
1
3

)
, 7π

4

)
La pente de f en p0 est donc maximale pour les valeurs d’angles (θ, φ) =(
arccos

(
−1

3

)
, 3π

4

)
et minimale pour (θ, φ) =

(
arccos

(
1
3

)
, 7π

4

)
.

Solution 7.
Pour la première limite, la fonction vaut 0 si x = 0 et 1

2
si x = y (cf chapitre 4 du

cours) donc la limite n’existe pas.

Pour la deuxième, on remarque qu’en coordonnées sphériques

(x, y, z) = (r sin θ cosφ, r sin θ sinφ, r cos θ),

la fonction f(x, y, z) = xyz
x2+y2+z2

vérifie

|f(x, y, z)| =
∣∣∣∣ xyz

x2 + y2 + z2

∣∣∣∣ = r3
∣∣sin2 θ sinφ cosφ cos θ

∣∣
r2

≤ r.

On peut donc conclure en utilisant un argument similaire à celui des coordonnées
polaires en deux dimensions: comme r est la distance entre (x, y, z) et (0, 0, 0), on a
r → 0 lorsque (x, y, z) → (0, 0, 0) ; de plus, comme on a "enlevé les θ, φ" avant de
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prendre la limite, le passage d’une limite à 3 variables vers une limite à une variable
est justifié, et on trouve que la limite vaut 0.

Une version formelle (qui n’utilise que les suites) est: Soit ((xk, yk, zk))k ⊆ R3 une
suite qui converge vers (0, 0, 0). On écrit la suite en coordonnées sphériques:

(xk, yk, zk) = (rk sin θk cosφk, rk sin θk sinφk, rk cos θk).

Comme rk → 0 on trouve alors

|f(xk, yk, zk)| = rk
∣∣sin2 θk sinφk cosφk cos θk

∣∣ ≤ rk −→ 0.

Ainsi lim
k→∞

f(xk, yk, zk) = 0 et la limite vaut donc 0.

Pour la troisième limite, on raisonne directement avec les suites: Soit ((xk, yk, zk, tk))k
une suite de R4 qui converge vers (0, 0, 0, 0). Si l’une des composantes vaut 0, la
fonction f(x, y, z, t) = xyzt

x2+y2+z2+t2
vaut directement 0. Et si xk, yk, zk, tk sont tous

̸= 0, on a

f(xk, yk, zk, tk) =
xkykzktk

x2
k + y2k + z2k + t2k

≤ xkykzk
x2
k + y2k + z2k︸ ︷︷ ︸

→0

·tk −→ 0

par le calcul de la limite précédente. Ainsi la limite de f(x, y, z, t) vaut 0.

Solution 8.
Comme v et w sont linéairement indépendants, il existe une matrice inversible A
telle que

A

(
1
0

)
= v et A

(
0
1

)
= w.

(Il suffit de prendre la matrice de changement de base). On pose H(x, y) = A

(
x
y

)
et on considère la fonction g = f ◦H, i.e. g : R2 → R est donnée par la formule

g(x, y) = f(H(x, y)) = f

(
A

(
x
y

))
.

On calcule

∂g

∂x
(x, y) = lim

h→0

g(x+ h, y)− g(x, y)

h
= lim

h→0

f

(
A

[(
x
y

)
+ h

(
1
0

)])
− f

(
A

(
x
y

))
h

= lim
h→0

f

(
A

(
x
y

)
+ hv

)
− f

(
A

(
x
y

))
h

=
∂f

∂v

(
A

(
x
y

))
=

∂f

∂v
(H(x, y)) .

Ainsi
∂g

∂x
=

∂f

∂v
◦H. On montre de manière analogue que

∂g

∂y
=

∂f

∂w
◦H. Entant que

composées de fonctions continues, les fonctions
∂g

∂x
et

∂g

∂y
sont continues sur R2, et

g est donc de classe C1 sur R2.
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Comme f = g ◦ H−1, c’est une composée de fonctions C1 (la fonction linéaire

H−1(x, y) = A−1

(
x
y

)
est même C∞), et on conclut que f est de classe C1 sur R2.

Solution 9.
(a) Faux. Voir exercice 5.

(b) Faux. On peut par exemple considérer la fonction

f(x, y) =

{
0 si x = 0 ou y = 0

1 sinon.

Les dérivées partielles en x et y existent et valent 0. Mais le long de toute autre
direction v, la fonction f n’est pas continue en 0, et la dérivée directionnelle
n’existe pas. (Formellement, la fonction g(t) = f(tv) n’est pas continue en 0,

et donc g′(t) =
∂f

∂v
n’existe pas).

(c) Vrai. Si
∂f

∂x
et

∂f

∂y
sont continues en (0, 0) (il est donc sous-entendu qu’elles

existent dans un voisinage de (0, 0)) alors f est de classe C1 par un théorème

du cours. Ainsi
∂f

∂v
(x, y) = ⟨∇f(x, y),v⟩ qui est une fonction continue de (x, y)

car elle ne fait intervenir que des sommes et produits.

(d) Faux. Il suffit de prendre une fonction g : R → R continue mais qui n’admet
pas de dérivée à gauche ou à droite en 0, par exemple

g(x) =

{
x sin( 1

x
) si x ̸= 0

0 si x = 0

On vérifie que

lim
h→0+

g(0 + h)− g(0)

h
= lim

h→0+
sin( 1

h
) n’existe pas.

On considère alors la fonction f : R2 → R donnée donnée en coordonnées
polaires par

f(r, φ) = g(r), c’est à dire f(x, y) = g(
√

x2 + y2).

On vérifie, en passant en coordonnées polaires que

lim
(x,y)→(0,0)

f(x, y) = lim
r→0+

g(r) = 0 = f(0, 0),

et f est donc continue en (0, 0). En revanche, pour tout v ̸= 0, disons de
longueur ρ, on a

∂f

∂v+
(0, 0) = lim

h→0+

f(0 + hv)− f(0)

h
= lim

h→0+

g(hρ)

h
= lim

h→0+
sin

( 1

hρ

)
qui n’existe pas.
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