
Remarque sur les corrigés

Lire une solution, même partielle, d’un exercice sans avoir vraiment
essayé de le résoudre (plusieurs heures, même parfois plusieurs jours)
est presque totalement inutile. Faire un exercice en ayant la solution
sous les yeux est beaucoup plus facile, et ne prépare que très mal à un
examen (qui se fait sans solutions).
Par conséquent, la lecture du présent corrigé est déconseillée, et se fait

à vos risques et périls.
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Analyse II Corrigé 8
EPFL – Sections SIE/GC

Solution 1.
(a) Pour trouver la transformation G ≡ H−1 : E → D, on utilise

v =
x

2y + 1
⇔ x = v(2y + 1) (1)

qu’on met dans l’expression donnée pour u

u =
y

x+ 2
⇒ u =

y

v(2y + 1) + 2
⇒ uv(2y + 1) + 2u = y

⇒ uv + 2u = y(1− 2uv) ⇒ y =
u(v + 2)

1− 2uv
.

En remplaçant y dans l’équation de droite dans (1) par ce résultat, on trouve

x =
2uv(v + 2)

1− 2uv
+ v =

2uv(v + 2) + v − 2uv2

1− 2uv
=

(4u+ 1)v

1− 2uv
,

si bien que

G(u, v) =

(
(4u+ 1)v

1− 2uv
,
u(v + 2)

1− 2uv

)
=

1

1− 2uv

(
(4u+ 1)v, u(v + 2)

)
.

(b) La matrice jacobienne de H est

JH(x, y) =

(
∂xH1(x, y) ∂yH1(x, y)
∂xH2(x, y) ∂yH2(x, y)

)
=

(
− y

(x+2)2
1

x+2

1
2y+1

− 2x
(2y+1)2

)
.

En l’évaluant en (x, y) = G(u, v), on trouve

JH(G(u, v)) =

(
u(2uv−1)

v+2
1−2uv
v+2

1−2uv
4u+1

2v(2uv−1)
4u+1

)
= (1− 2uv)

(
− u

v+2
1

v+2
1

4u+1
− 2v

4u+1

)

(c) La matrice jacobienne de G est

JG(u, v) =

(
∂uG1(u, v) ∂vG1(u, v)
∂uG2(u, v) ∂vG2(u, v)

)
=

(
2v(v+2)
(1−2uv)2

4u+1
(1−2uv)2

v+2
(1−2uv)2

u(4u+1)
(1−2uv)2

)

=
1

(1− 2uv)2

(
2v(v + 2) 4u+ 1
v + 2 u(4u+ 1)

)
(2)

En l’évaluant en (u, v) = H(x, y), on trouve

JG(H(x, y)) =

(
2x(x+2)2

x+4y+2
(x+2)(2y+1)2

x+4y+2
(x+2)2(2y+1)

x+4y+2
y(2y+1)2

x+4y+2

)

=
1

x+ 4y + 2

(
2x(x+ 2)2 (x+ 2)(2y + 1)2

(x+ 2)2(2y + 1) y(2y + 1)2

)
2



(d) On a

JG(u, v) =
1

(1− 2uv)2

(
2v(v + 2) 4u+ 1
v + 2 u(4u+ 1)

)
=

1

(1− 2uv)2

(
2v 1
1 u

)(
v + 2 0
0 4u+ 1

)
.

et donc

(JG(u, v))
−1 = (1− 2uv)2

(
1

v+2
0

0 1
4u+1

)
1

1− 2uv

(
−u 1
1 −2v

)
= (1− 2uv)

(
− u

v+2
1

v+2
1

4u+1
− 2v

4u+1

)
ce qui est bien la même matrice qu’en (b).

(e) On a

det
(
JH(x, y)

)
=

2xy

(x+ 2)2(2y + 1)2
− 1

(x+ 2)(2y + 1)
= − x+ 4y + 2

(x+ 2)2(2y + 1)2

et donc

(JH(x, y))
−1 =

(x+ 2)2(2y + 1)2

x+ 4y + 2

(
2x

(2y+1)2
1

x+2
1

2y+1
y

(x+2)2

)

=
1

x+ 4y + 2

(
2x(x+ 2)2 (x+ 2)(2y + 1)2

(x+ 2)2(2y + 1) y(2y + 1)2

)
ce qui est bien la même matrice qu’en (c).

Solution 2.
(a) La transformation est donnée par G(r, φ) = (r cos(φ), r sin(φ)). La matrice

jacobienne est

JG(r, φ) =

(
cos(φ) −r sin(φ)
sin(φ) r cos(φ)

)
et le jacobien est donc

det(JG(r, φ)) = r cos(φ)2 + r sin(φ)2 = r.

(b) La transformation est donnée par G(r, φ, z) = (r cos(φ), r sin(φ), z). La ma-
trice jacobienne est

JG(r, φ, z) =

cos(φ) −r sin(φ) 0
sin(φ) r cos(φ) 0

0 0 1


et le jacobien est donc

det(JG(r, φ, z)) = det(coord. polaires) · 1 = r.
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(c) La transformation est donnée par

G(r, θ, φ) =
(
r sin(θ) cos(φ), r sin(θ) sin(φ), r cos(θ)

)
.

La matrice jacobienne est

JG(r, θ, φ) =



∂G1

∂r
(r, θ, φ)

∂G1

∂θ
(r, θ, φ)

∂G1

∂φ
(r, θ, φ)

∂G2

∂r
(r, θ, φ)

∂G2

∂θ
(r, θ, φ)

∂G2

∂φ
(r, θ, φ)

∂G3

∂r
(r, θ, φ)

∂G3

∂θ
(r, θ, φ)

∂G3

∂φ
(r, θ, φ)



=

sin(θ) cos(φ) r cos(θ) cos(φ) −r sin(θ) sin(φ)

sin(θ) sin(φ) r cos(θ) sin(φ) r sin(θ) cos(φ)

cos(θ) −r sin(θ) 0

 .

et le jacobien det(JG(r, θ, φ)) est donc

r2
(
sin3 θ sin2 φ+ cos2 θ sin θ cos2 φ+ cos2 θ sin θ sin2 φ+ sin3 θ cos2 φ

)
= r2 sin θ .

Solution 3.
Notons H(x, y) = (r(x, y), φ(x, y)). La formule pour la dérivée de la réciproque
donne

JH(x, y) =


∂r

∂x
(x, y)

∂r

∂y
(x, y)

∂φ

∂x
(x, y)

∂φ

∂y
(x, y)

 = (JG(r, φ))
−1 =

(
cosφ −r sinφ
sinφ r cosφ

)−1

=

(
cosφ sinφ

−1
r
sinφ 1

r
cosφ

)

où (r, φ) = (r(x, y), φ(x, y)) = H(x, y). Ainsi, en notation courte, on a

∂r

∂x
= cosφ et

∂r

∂φ
= −sinφ

r
.

Comme f(x, y) = f ◦H(x, y) = f(r, φ), on trouve alors:

∂f

∂x
=

∂f

∂r

∂r

∂x
+

∂f

∂φ

∂φ

∂x
=

∂f

∂r
cosφ+

∂f

∂φ
·
(
−1

r
sinφ

)
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d’où

∂2f

∂x2
=

∂

∂x

(
∂f

∂r
cosφ

)
− ∂

∂x

(
∂f

∂φ
·
(
sinφ

r

))
=

(
∂2f

∂r2
∂r

∂x
+

∂2f

∂φ∂r

∂φ

∂x

)
cosφ+

∂f

∂r

(
∂(cosφ)

∂φ

∂φ

∂x

)
−
(

∂2f

∂r∂φ

∂r

∂x
+

∂2f

∂φ2

∂φ

∂x

)
·
(
sinφ

r

)
− ∂f

∂φ

(
∂( sinφ

r
)

∂r

∂r

∂x
+

∂( sinφ
r
)

∂φ

∂φ

∂x

)

=
∂2f

∂r2
cos2 φ− ∂2f

∂φ∂r

sinφ cosφ

r
+

∂f

∂r

sin2 φ

r

− ∂2f

∂φ∂r

sinφ cosφ

r
+

∂2f

∂φ2

sin2 φ

r2
+

∂f

∂φ

sinφ cosφ

r2
+

∂f

∂φ

sinφ cosφ

r2

=
∂2f

∂r2
cos2 φ+

∂f

∂r

sin2 φ

r
+

∂2f

∂φ2

sin2 φ

r2
−
(

∂2f

∂φ∂r
− ∂f

∂φ
· 1
r

)
2 sinφ cosφ

r
.

Un calcul analogue donne

∂f

∂y
=

∂f

∂r
sinφ+

∂f

∂φ
· cosφ

r

et

∂2f

∂x2
=

∂2f

∂r2
sin2 φ+

∂f

∂r

cos2 φ

r
+

∂2f

∂φ2

cos2 φ

r2
+

(
∂2f

∂φ∂r
− ∂f

∂φ
· 1
r

)
2 sinφ cosφ

r
.

En ajoutant les deux expressions, et en utilisant cos2+sin2 = 1 on trouve donc:

∆f(x, y) =
∂2f

∂x2
(x, y) +

∂2f

∂y2
(x, y)

=
∂2f

∂r2
(r, φ) +

1

r

∂f

∂r
(r, φ) +

1

r2
∂2f

∂φ2
(r, φ),

où (r, φ) = (r(x, y), φ(x, y)).

Solution 4.
(a) On considère la matrice M =

(
ur uθ uφ

)
et on vérifie que le produit

MTM =

1 0 0
0 1 0
0 0 1

 .

(b) On se rappelle du calcul de la jacobienne de l’exercice 2(c), et on remarque
que

JG(r, θ, φ) =
(
ur r · uθ r sinφ · uφ

)
= M

1 0 0
0 r 0
0 0 r sinφ

 .
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Comme l’inverse d’un produit de matrice AB est (AB)−1 = B−1A−1, et comme
M−1 = MT , on trouve

JG(r, θ, φ)
−1 =

1 0 0
0 1

r
0

0 0 1
r sinφ

MT .

(c) Soit f : R3 → R de classe C2, et f = f ◦G. On cherche l’opérateur ∇ tel que

∇f(r, θ, φ) = ∇f(x, y, z).

Notons
H(x, y, z) = (r(x, y, z), θ(x, y, z), φ(x, y, z))

le changement de coordonnées inverse, de sorte que f = f ◦ H. Le gradient
n’étant rien d’autre que la transposée de la dérivée, il s’agit donc de calculer
la transposée de

f ′(x, y, z) = (f ◦H)′(x, y, z) = f
′
(r(x, y, z), θ(x, y, z), φ(x, y, z)) · JH(x, y, z)

et d’exprimer cela en fonction de r, θ, φ. Par la formule pour la dérivée de la
réciproque, on trouve JH(x, y, z) = JG(r, θ, φ)

−1. Ainsi,

f ′(x, y, z) = f
′
(r, θ, φ) · JH(x, y, z)

=

(
∂f

∂r

∂f

∂θ

∂f

∂φ

)1 0 0
0 1

r
0

0 0 1
r sinφ

MT

=

(
∂f

∂r
1
r

∂f

∂θ
1

r sinφ

∂f

∂φ

)
MT .

Comme M =
(
ur uθ uφ

)
, on obtient en transposant:

∇f(x, y, z) = ∇f(r, θ, φ) = M


∂f

∂r
1
r

∂f

∂θ
1

r sinφ

∂f

∂φ


=

∂f

∂r
ur +

1

r

∂f

∂θ
uθ +

1

r sin θ

∂f

∂φ
uφ.

Solution 5.
On a f(x, y) = f

(
u(x, y), v(x, y)

)
= f(2x− y, x+ 3y). En utilisant la formule pour

la dérivation de fonctions composées du cours et la règle de la dérivée d’un produit,
on a successivement

∂f

∂x
=

∂f

∂u

∂u

∂x
+

∂f

∂v

∂v

∂x
,

∂2f

∂x2
=

(
∂2f

∂u2

∂u

∂x
+

∂2f

∂u∂v

∂v

∂x

)
∂u

∂x
+

∂f

∂u

∂2u

∂x2

+

(
∂2f

∂u∂v

∂u

∂x
+

∂2f

∂v2
∂v

∂x

)
∂v

∂x
+

∂f

∂v

∂2v

∂x2
.

6



Les dérivées analogues par rapport à y, c.-à-d.
∂f

∂y
et

∂2f

∂y2
, sont obtenues en rempla-

çant x par y ci-dessus. En substituant

∂u

∂x
= 2,

∂u

∂y
= −1,

∂2u

∂x2
= 0,

∂2u

∂y2
= 0,

∂v

∂x
= 1,

∂v

∂y
= 3,

∂2v

∂x2
= 0,

∂2v

∂y2
= 0,

dans les expressions pour
∂2f

∂x2
et

∂2f

∂y2
, on obtient

∆f =
∂2f

∂x2
+

∂2f

∂y2

=
∂2f

∂u2

((
∂u

∂x

)2

+

(
∂u

∂y

)2
)

+
∂2f

∂u∂v

(
2
∂u

∂x

∂v

∂x
+ 2

∂u

∂y

∂v

∂y

)
+

∂2f

∂v2

((
∂v

∂x

)2

+

(
∂v

∂y

)2
)

+
∂f

∂u

(
∂2u

∂x2
+

∂2u

∂y2

)
+

∂f

∂v

(
∂2v

∂x2
+

∂2v

∂y2

)

= 5
∂2f

∂u2
− 2

∂2f

∂u∂v
+ 10

∂2f

∂v2

Solution 6.
Les fonctions F données sont des intégrales dépendant d’un paramètre de la forme

F (t) =

∫ b(t)

a(t)

f(x, t) dx .

Si les fonctions f , a et b sont de classe C1, la dérivée de F est (cf. cours)

d

dt
F (t) = f

(
b(t), t

)
· b′(t)− f

(
a(t), t

)
· a′(t) +

∫ b(t)

a(t)

∂f

∂t
(x, t) dx . (3)

(a) On a f(x, t) = xt+sin(x)
ln(x)

∈ C1
(
]2, 3[× ]1,∞[

)
, a(t) = 2 et b(t) = 3 avec

a, b ∈ C1(R). Puisque les bornes sont constantes, le membre de droite de (3)
consiste uniquement de l’intégrale et on a

F ′(t) =

∫ 3

2

∂

∂t

(
xt + sin(x)

ln(x)

)
dx =

∫ 3

2

xt ln(x)

ln(x)
dx =

∫ 3

2

xt dx =

[
xt+1

t+ 1

]3
2

=
3t+1 − 2t+1

t+ 1
.
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(b) On a f(x, t) = ln(x2 + t2) ∈ C1
(
]1,∞[× ]1,∞[

)
, a(t) = t et b(t) = t2 avec

a, b ∈ C1(R). Les bornes dépendent de t. On a

F ′(t) =
d (t2)

dt
· ln
((

t2
)2

+ t2
)
− d(t)

dt
· ln
(
t2 + t2

)
+

∫ t2

t

∂

∂t

(
ln(x2 + t2)

)
dx

= 2t ln
(
t2
(
t2 + 1

))
− ln

(
2t2
)
+

∫ t2

t

2t

x2 + t2
dx .

Puisque 2t

∫ t2

t

1

x2 + t2
dx =

[
2t

t
arctan

(x
t

)]t2
t

= 2arctan(t) − π

2
, on a

finalement

F ′(t) = 2t ln
(
t2(t2 + 1)

)
− ln

(
2t2
)
+ 2arctan(t)− π

2
.

Solution 7.
Ces fonctions sont de nouveau de la forme (3).

(a) Ici on a f(x, t) = sin(cos(tx))
x

∈ C1
(
]0,∞[× ]0,∞[

)
, a(t) =

√
t et b(t) = 1

t
avec

a, b ∈ C1( ]0, 1[). Ainsi

F ′(t) =
sin
(
cos
(
t1
t

))
1
t

· d

dt

(
1

t

)
− sin(cos(t

√
t))√

t
· d

dt

(√
t
)

+

∫ 1/t

√
t

∂

∂t

(
sin(cos(tx))

x

)
dx

Comme t = 1, l’intégrale vaut zéro (intégrale de 1 à 1). Ainsi

F ′(1) = = −sin(cos(1))

1
− sin(cos(13/2))

2 · 1
= −3

2
sin(cos(1)).

(b) Pour f(x, t) = etx
3

x
∈ C1( ]0,∞[× ]0,∞[ ), a(t) = 1 et b(t) = 3

√
t avec

a, b ∈ C1( ]1,∞[ ), seulement la borne supérieure dépend de t si bien que le
terme en f(a(t), t) n’apparaît pas.

F ′(t) =
etx

3

x

∣∣∣∣∣
x= 3√t

· d

dt

(
3
√
t
)
+

∫ 3√t

1

∂

∂t

(
etx

3

x

)
dx.

A nouveau, comme t = 1, l’intégrale vaut zéro (intégrale de 1 à 1). Ainsi

F ′(1) =
et

2

3
√
t
· 1
3
t−2/3

∣∣∣∣∣
t=1

=
1

3
e.
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