Remarque sur les corrigés

Lire une solution, méme partielle, d’un exercice sans avoir vraiment
essayé de le résoudre (plusieurs heures, méme parfois plusieurs jours)
est presque totalement inutile. Faire un exercice en ayant la solution
sous les yeux est beaucoup plus facile, et ne prépare que trés mal a un
examen (qui se fait sans solutions).

Par conséquent, la lecture du présent corrigé est déconseillée, et se fait
a vos risques et périls.



Analyse 11 Corrigé 8
EPFL - Sections SIE/GC

Solution 1.
(a) Pour trouver la transformation G = H~': F — D, on utilise

x
= = (2 1 1
v=3tg e T=uy+) (1
qu’on met dans I’expression donnée pour u
Yy Yy
R YT Uy ) 2 uo(Zy+1)+2u=y
2
= w+2u=y(l—-2uw) = :M.
1 —2uv

En remplacant y dans ’équation de droite dans (1) par ce résultat, on trouve

~ 2uww(v +2) oo 2uv(v+2) +v—2uv?  (du+1)v

o 1—2w ! 1—2uv T 12w
si bien que
(du+1)v u(v+2) 1
G(u,v) = , - (4 1o, 2).
(v, v) (1—2uv 1 —2uv 1 —2uv (du+ 1o, u(v +2)

(b) La matrice jacobienne de H est

1
J (ZL’ ) . ale (33', y) ayHl (567 y) _ o ($f2)2 z+2
a Y= amHQ(xuy) ayH2<x7y) B ! 2z '

2y+1 (2y+1)2

En I'évaluant en (z,y) = G(u,v), on trouve

u(2uv—1) 1—2uv _u 1
Ju(G(u,v)) = 115512“} 21;(%1;2—1) = (1 —2uwv) ( (ST )

dutl dutl dutl  dutl

(c) La matrice jacobienne de G est

2u(v+2 u
alu, 0uGa(u,v) 0,Ga(u,v) 042 u(du+1)

(1—2uv)?  (1—2uv)?

1 20(v+2) 4du+1
(1 — 2uv)? ( v+2  u(du+ 1))
(2)

En I'évaluant en (u,v) = H(x,y), on trouve

2x(x+4-2)2 (z4+2)(2y+1)2
Ja(H(x,y)) = ( @i oyr1)  pyal)? )
r4+4y+2 r+4y+2

I < 2z(z + 2)? (x+2)(2y +1)? >
Crtdy+2\ (@ +2°Qu+1) g2y + 1)
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(d) On a

B 1 20(v+2) 4du+1
JG(UW)—m ( v 42 u(4u+1))

B 1 20 1\ (v+2 0
S (1-2w)2\1 w 0 4du+1)°

(Ja(u,0) " = (1 - 2uv)? (O ) )1_12W (_1“ _lzv)

et donc

4u+1

L u 1
=<1—2uv>( £ )
dutl  dutl

ce qui est bien la méme matrice qu’en (b).
(e) On a
2xy 1 T+ 4y + 2

det(Jur (@) = @+222y+1? (@+2)@+1)  (@+222y+1)7

et donc

(Ju(z.y) " =

(z +2)2(2y +1)? (—(zjfl)Q - )

44y + 2 271 ﬁ

B 1 2z(x + 2)* (z+2)(2y + 1)
oy 2 \(2 422029+ 1) y(2y +1)2

ce qui est bien la méme matrice qu’en (c).

Solution 2.
(a) La transformation est donnée par G(r,¢) = (rcos(¢),rsin(y)). La matrice

jacobienne est
_ (cos(p) —rsin(yp)
Jo(r,¢) = (sin(ap) rcos(yp)

et le jacobien est donc

det(Ja(r, ) = rcos(p)® + rsin(p)? = 1.

(b) La transformation est donnée par G(r,p,z) = (rcos(y),rsin(p), z). La ma-
trice jacobienne est

cos(p) —rsin(p) 0
JG(Ta 2 Z) = Sln(@) r COS(()O) 0
0 0 1
et le jacobien est donc

det(Jg(r, p, z)) = det(coord. polaires) - 1 = r.
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(c) La transformation est donnée par
G(r,0,¢) = (rsin(f) cos(y), rsin(f) sin(y), r cos()).

La matrice jacobienne est

0G4 0G4 0G4

W(ﬁ 97 @) o0 (Tv 07 ) %(7”7 97 90)

0G oG oG
JG<T797QD) - a_:(rve>¢) 8_02(7179780) 8_902(7“797()0)

9y, , 0 ,  9s

or (T>9790) W(Tﬁ,@) 890 (7"79790)

sin(f) cos(p) rcos(f)cos(p) —rsin(f)sin(p)
= | sin(f) sin(p) 7rcos(f)sin(p) 7sin(h) cos(p)
cos(0) —rsin(f) 0

et le jacobien det(Jg(r, 0, ¢)) est donc

r? (sin3 0 sin” p + cos® 0 sin A cos® ¢ + cos? O sin § sin? ¢ + sin® § cos? gp)
=7r?sinf.
Solution 3.

Notons H(z,y) = (r(z,y),v(z,y)). La formule pour la dérivée de la réciproque
donne

— el = (Gne o *”)_1

siny rcose
o cos ¢ sin @
~ \—ising Zcosy

ou (r,p) = (r(z,y), p(r,y)) = H(z,y). Ainsi, en notation courte, on a

or s ot or B _singp
ar ¥ op ro

Comme f(z,y) = fo H(z,y) = f(r,¢), on trouve alors:

or  Ordx  Jpdx Or 4 Oy POy



d’oll

o0 f af sin
3= o (o =) = ( ()

82f87“+ 0*f 04,0 +0f (cosgp)@gp
or2 0z | dpdr Oz BT By dp Oz

B < O f &_’_ 0% f &p) (sing&) of ( (*lnw)ar . 0(%) ()30>

ordp 0x ~ 0p? Ox r e or Ox dp Ox
92F 2
f 9 0°f sinpcosy  Ofsin®p
oz dpor r o ar r
B O’f sinpcosyp  O?fsin® ifsinnpcosgp n ifsincpcosc,o
OpOor r op? r? Op 72 dp r?
2 2 27 -
8fcos sO_i_(?fsm g0+8f81n o f _ﬁ 1 QSIHQOCOSQO'
or? or r op? 1?2 Opdr  dp r r
Un calcul analogue donne
oF _of . of s
oy Or i dp r
et
>f 2f +8_f(:032<p+82fcos2g0+ 0*f _ﬁ 1Y 2sinpcosyp
9z a2’ n or r 0p? 12 dpdr o T r '

En ajoutant les deux expressions, et en utilisant cos? 4+ sin? = 1 on trouve donc:

82 2
Aflo) = 5 4 (w) + 5L (w)
0*f 19f 19°f

= 5o+ = ,¢)+T—23¢2(7z¢)7
ou (r,¢) = (r(z,y), p(x,y)).

Solution 4.
(a) On considére la matrice M = (ur Ug ’uw) et on vérifie que le produit

10
MM =10 1 .
00

(b) On se rappelle du calcul de la jacobienne de 'exercice 2(c), et on remarque
que

_ o O

10 0
Ja(r,0,0) = (u, - uy rsin@-uw)M(() r 0 )
0 0

7 sin @
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Comme I'inverse d'un produit de matrice AB est (AB)™' = B~1A™!, et comme
M=t = M7, on trouve

1 0 0
JG(T>9790)_1 =10 % 0 MT‘
00 rsin g

(c) Soit f: R? — R de classe C2, et f = f o G. On cherche I'opérateur V tel que

V[f(r.0,0)=Vf(z,y,z2).
Notons
H(z,y,z) = (r(z,y,2),0(z,y,2), p(x,y,2))
le changement de coordonnées inverse, de sorte que f = f o H. Le gradient
n’étant rien d’autre que la transposée de la dérivée, il s’agit donc de calculer
la transposée de
F@,y,2) = (Fo HY (z,y,2) = [ (r(w,y,2),0(x,, 2), (2,9, 2)) - Ju(z,y, 2)

et d’exprimer cela en fonction de r, 0, . Par la formule pour la dérivée de la

réciproque, on trouve Jy(x,y,2) = Ja(r,0,0)1. Ainsi,

f’(x,y,z) = .]?,(T707§0) ’ JH<LL’,y,Z)

- - 10 0

:(3_f of 3_f) 0oL o |M"
ar 00 0p) \g o 1
rsin ¢

NOSUI
or T00 TS dp

Comme M = (ur Ug uw), on obtient en transposant:

of
r_
Vie.2) = Vi) =0 | 19
. Of
T s1n @ asp
_of 10f 1 of

or r o9 + rsind %uw.
Solution 5.
On a f(x,y) = f(u(a:, y),v(x,y)) = f(2x —y,z + 3y). En utilisant la formule pour
la dérivation de fonctions composées du cours et la régle de la dérivée d’un produit,
on a successivement

or Oudxr  Ov ox’
25 _(#Fow P ovyou of o
oxr2  \ou2 dr  Oudv Ox

0f _0f ou , 9 v

o " u 022
P ou 27 o0\ v of o
oudv Oxr  Ov? Oz

8x+%8a:2'



of  Of

Les dérivées analogues par rapport a y, c.-a-d. 90 et 202 sont obtenues en rempla-
Y Y
gant x par y ci-dessus. En substituant
0 0 o? o?
_u:27 _u:_L U,:07 u:O,
ox dy 0x? Oy?
0 0 o? 0?
_U:L _U:3’ U:O7 UZO,
ox dy 0x? oy?
0? 0?
dans les expressions pour —f et —f, on obtient
0x? 0y?
0? 0?
Af = —J; + —];
ox dy

T ((ouy?, (ouY’
ou? ox y
PF [ Oudv _Oudv\ O ([ov\® [Ov\’
" dude (2%%+2a—ya—y)+w<(%> ()
of (0*u  0%u of (0*v 0%
e B Rl [ S
ou \ 0z% 0y ov \0z?  0Oy?
o*f  _0*f 0*f

- 5% B 28u0v ov?

Solution 6.
Les fonctions I’ données sont des intégrales dépendant d’un paramétre de la forme

b(t)
F(t) :/(t) flz,t)de.

Si les fonctions f, a et b sont de classe C', la dérivée de F est (cf. cours)

d : : " of
%F(t) = f(b(t),t) - V' (t) — f(a(t),t) - d'(t) +/a(t) E(m,t) dx . (3)

(a) On a f(x,t) = It;:ls(i;l)(x) € C1(]2,3[x]1,00[), a(t) = 2 et b(t) = 3 avec

a,b € C'(R). Puisque les bornes sont constantes, le membre de droite de (3)
consiste uniquement de l'intégrale et on a

- [ 35 [ [ (]

g+l _ ot+1

o t4+1




(b) On a f(z,t) = In(z* 4+ %) € C*(]1,00[ x]1,00[), a(t) =t et b(t) = ¢* avec
a,b € CY(R). Les bornes dépendent de ¢. On a

P = M (2 4 2) - D e ) + / " (e + ) de

dt dt

£t
. 2 (42 o 2 _
=2tIn(* (* + 1)) ln(?t)+/t peanwLl

t2

t2
1 2t
Puisque 2t/ ——5 dx = | —arctan <E> = 2arctan(t) —
. x4t t t/],

|3

, on a

finalement

F'(t) =2tIn (*(t* 4+ 1)) — In (2¢*) + 2arctan(t) — g :

Solution 7.
Ces fonctions sont de nouveau de la forme (3).

(a) Iciona f(z,t) = M € C1(]0,00[x]0,00[), a(t) =t et b(t) =1 avec
a,b € C'(]0,1]). Ainsi

iy S(eos(t]) d (1) sin(eos(tvD)
O R 1O R el (10

t

., /;z/t % (sm@(;s(m))) "

Comme t = 1, I'intégrale vaut zéro (intégrale de 1 a 1). Ainsi

sin(cos sin(cos(1%/2
F'(1l)==— ( : (1) _ sin 5 (11 ) _ —gsin(cos(l)).
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(b) Pour f(z,t) = € C'(]0,00[x]0,00[), a(t) = 1 et b(t) = ¥Vt avec
a,b € C'(]1,00[), seulement la borne supérieure dépend de ¢ si bien que le
terme en f(a(t),t) n’apparait pas.

d /, g (et
)+ &<>d

A nouveau, comme t = 1, I'intégrale vaut zéro (intégrale de 1 & 1). Ainsi

T

=%/t

2

Fl1) =<

3

™

1
23 = —e.

1
3

~

t=1



