
Remarque sur les corrigés

Lire une solution, même partielle, d'un exercice sans avoir vraiment

essayé de le résoudre (plusieurs heures, même parfois plusieurs jours)
est presque totalement inutile. Faire un exercice en ayant la solution
sous les yeux est beaucoup plus facile, et ne prépare que très mal à un
examen (qui se fait sans solutions).

Par conséquent, la lecture du présent corrigé est déconseillée, et se fait
à vos risques et périls.
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Analyse II Corrigé 7
EPFL � Sections SIE/GC

Solution 1.

Soit f(x, y) = x3y + x2 + y2. L'équation du plan tangent à la surface z = f(x, y)
au point (x0, y0, z0) , où z0 = f(x0, y0) est (voir le cours)

z = f(x0, y0) +
∂f

∂x
(x0, y0)(x− x0) +

∂f

∂y
(x0, y0)(y − y0) .

Puisque
∂f

∂x
(x, y) = 3x2y + 2x et

∂f

∂y
(x, y) = x3 + 2y , l'équation s'écrit pour

(x0, y0) = (1, 1) :

z = 3 + 5(x− 1) + 3(y − 1) ⇔ 5x+ 3y − z = 5 .

Solution 2.

z = 2
π
y + 4

π
x+ 4

z = − 4
π
x+ 2

π
y

z = − 4
π

(
x− π

2

)
+ 2

π
(y − π)

z = 2
π
y − 4

π
x+ 4

L'équation du plan tangent au graphe de f au point p = (p1, p2) est

z = f(p) +
∂f

∂x
(p) · (x− p1) +

∂f

∂y
(p) · (y − p2) .

En l'occurrence on a

f
(π
2
, π

)
= 2 +

(
1− cos(π)

)
sin

(π
2

)2

= 4

et

∂f

∂x

(π
2
, π

)
=

[
− y

x2
+
(
1− cos(y)

)
· 2 sin(x) cos(x)

]
(x,y)=(π

2
,π)

= − 4

π
,

∂f

∂y

(π
2
, π

)
=

[
1

x
+ sin(y) sin(x)2

]
(x,y)=(π

2
,π)

=
2

π
.

Ainsi l'équation du plan tangent est

z = 4− 4

π

(
x− π

2

)
+

2

π
(y − π) = 4− 4

π
x+

2

π
y .

Solution 3.

Pour (a), on peut (comme vu au cours) prendre la fonction f : R2 → R dé�nie par

f(x, y) =

{
x2 sin(1/x) si (x, y) ∈ (R∗)× R
0 si (x, y) ∈ {0} × R.
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Pour (b), trois solutions sont proposées:

Solution 1: On prend une fonction non-di�érentiable en (0, 0), avec
∂f

∂x
(0, 0) = 0 et

∂f

∂y
(0, 0) = 0, par exemple celle vue en cours:

f(x, y) =


x2y

x2 + y2
si (x, y) ̸= (0, 0) ,

0 si (x, y) = (0, 0) .

On y ajoute la fonction C∞ donnée par x − y. La fonction f(x, y) + x − y admet
alors les dérivées partielles voulues (par linéarité de la dérivée) et n'est toujours pas
di�érentiable: si elle l'était, alors

(
f(x, y)+x− y

)
− (x− y) = f(x, y) le serait aussi,

car la somme de fonctions di�érentiables est di�érentiable.

Solution 2: Une possible fonction est :

f(x, y) =


x5 − y5

x4 + y4
si (x, y) ̸= (0, 0) ,

0 si (x, y) = (0, 0) ,

dont les dérivées partielles en (0, 0) sont :

∂f

∂x
(0, 0) = lim

x→0

f(x, 0)− f(0, 0)

x
= lim

x→0

x5

x4 − 0

x
= 1 ,

∂f

∂y
(0, 0) = lim

y→0

f(0, y)− f(0, 0)

y
= lim

y→0

−y5

y4
− 0

y
= −1 .

Pour étudier la di�érentiabilité supposons que f soit di�érentiable en (0, 0). Par
dé�nition de la di�érentiabilité (voir cours), on a alors

f(x, y) = f(0 + x, 0 + y) = f(0, 0) +

(
∂f

∂x
(0, 0),

∂f

∂y
(0, 0)

)(
x
y

)
+ ε(x, y)

∥∥∥∥(xy
)∥∥∥∥

= f(0, 0) +
∂f

∂x
(0, 0) x+

∂f

∂y
(0, 0) y + ε(x, y)

√
x2 + y2

avec lim
(x,y)→(0,0)

ε(x, y) = 0. Puisque f(0, 0) = 0,
∂f

∂x
(0, 0) = 1 et

∂f

∂y
(0, 0) = −1 on a

que

ε(x, y) =
f(x, y)− x+ y√

x2 + y2
=

x4y − xy4

(x4 + y4)
√

x2 + y2
,

mais sur une suite de la forme (x, 2x) −−→
x→0
x>0

(0, 0) on a

lim
x→0
x>0

ε(x, 2x) = lim
x→0
x>0

−14x5

17
√
5x5

= − 14

17
√
5
̸= 0 ,

ce qui contredit l'hypothèse que f est di�érentiable en (0, 0) .
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Solution 3: O va construire la fonction f . Posons

f(x, y) = x− y +
√

x2 + y2ε(x, y)

avec ε(x, y) à déterminer et tel que ε(0, 0) = 0 (voir dé�nition de di�érentiable).
Ainsi on peut évaluer f en (0, 0) et on obtient f(0, 0) = 0. On veut que ∂f

∂x
(0, 0) = 1,

donc il faut que

1 = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

h+ |h|ε(h, 0)
h

= 1 + lim
h→0

sign(h)ε(h, 0),

qui est vrai si et seulement si lim
h→0

ε(h, 0) = 0. De manière similaire, on a que

∂f
∂y
(0, 0) = −1 si et seulement si lim

h→0
ε(0, h) = 0. Mais on veut que f ne soit pas

di�érentiable, donc il faut que lim
(x,y)→(0,0)

ε(x, y) n'existe pas. Prenons par exemple

ε(x, y) =

{
1 si (x, y) ̸= (0, 0) et y = x2,

0 sinon.

Avec ce choix de ε(x, y) on a que f satisfait les hypothèses de l'exercice car ε(0, 0) = 0
et lim

h→0
ε(h, 0) = lim

h→0
ε(0, h) = 0, ce qui implique ∂f

∂x
(0, 0) = 1 et ∂f

∂y
(0, 0) = −1. De

plus f n'est pas di�érentiable car

0 = lim
h→0

ε(h, 0) ̸= lim
h→0

ε(h, h2) = 1,

et donc lim
(x,y)→(0,0)

ε(x, y) n'existe pas.

Remarque: On voit que si ε(x, y) tend vers 0 selon la direction des axes x et y alors
les dérivées partielles de f en x et y existent. Mais ceci n'est pas su�sant pour que
f soit di�érentiable, pour ceci il faut que ε(xn, yn) converge vers 0 pour toutes les
suites (xn, yn) telles que (xn, yn) ̸= (0, 0) et lim

n→0
(xn, yn) = (0, 0).

Solution 4.

(a) Par dé�nition des ensembles Ck, il su�t de trouver une fonction g : R2 → R
qui est C0 mais pas C1, et on pourra alors construire un exemple f : R2 → R4

donné par
f(x, y) = (g(x, y), 0, 0, 0)

On considère g(x, y) = |x|. C'est une fonction continue: si (xk, yk) −→ (x0, y0),
alors |xk| −→ |x0| par continuité de la valeur absolue. Elle est donc de classe

C0. Par contre, la dérivée partielle
∂f

∂x
(0, 0) n'existe pas:

∂f

∂x
(0, 0) = lim

h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

|h|
h

et cette limite n'existe pas. Elle n'est donc pas de classe C1.
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(b) Il suit du cours que la fonction g : R2 → R dé�nie par

g(x, y) =

{
x2 sin( 1

x
) si x ̸= 0

0 si x = 0

est di�érentiable sur R2, mais pas de classe C1. Sa dérivée est

g′(x, y) =


(
2x sin( 1

x
)− cos( 1

x
) 0

)
si x ̸= 0(

0 0
)

si x = 0
.

On dé�nit comme au (a) la fonction f : R2 → R4 par

f(x, y) = (g(x, y), 0, 0, 0).

Cette fonction n'est pas de classe C1 sur tout R2 (sinon g serait de classe C1

aussi, par dé�nition de C1).

Par contre elle est di�érentiable en tout (x0, y0) ∈ R2: En e�et, cela suit d'une
remarque du cours (disant que f = (f1, . . . , fm) est di�érentiable si et seule-
ment si toutes les fonctions composantes sont di�érentiables). Alternativement,
on peut le voir comme suit: Si x0 ̸= 0, cela suit du fait qu'elle est C1 sur R∗×R
(on calcule les dérivées partielles de toutes les fonctions composantes, et on
véri�e qu'elles sont continues). Et si x0 = 0, sa dérivée f ′(0, y0) est donnée
par:

f ′(0, y0) =


0 0
0 0
0 0
0 0


En e�et, on a f(0, y0) = (0, 0, 0, 0), et on véri�e (condition équivalente à la
di�érentiabilité) que:

lim
(x,y)→(0,y0)

f(x, y)− f(0, y0)− f ′(0, y0)(x, y − y0)

∥(x, y − y0)∥

=

(
lim

(x,y)→(0,y0)

g(x, y)

∥(x, y − y0)∥
, 0, 0, 0

)
= (0, 0, 0, 0)

puisque g(x, y) est di�érentiable en (0, y0).

(c) On procède comme au (a). La foncton h : R → R dé�nie par h(x) = |x|5 est C4

mais pas C5: En e�et, pour x > 0, on a h(x) = x5, et donc h(4)(x) = (5!)x =
120x, et si x < 0, on a h(x) = −x5, d'où h(4)(x) = −(5!)x = −120x. On trouve
alors h(4)(x) = 120|x| (cf Analyse 1), qui est une fonction continue, mais pas
dérivable. Cela montre que h est C4 mais pas C5.

On construit alors g : R2 → R dé�nie par g(x, y) = h(x), et on véri�e qu'elle est
toujours C4 mais pas C5 (la dérivée partielle en x est ce qu'on vient de calculer,
et celle en y est identiquement 0), puis �nalement, on construit f : R2 →
R4 dé�nie par f(x, y) = (g(x, y), 0, 0, 0), qui est donc C4 sans être C5 par
dé�nition.
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Solution 5.

On a, pour tous x,h ∈ Rn,

f(x+ h) = A(x+ h) = Ax+ Ah = f(x) + Ah.

Ainsi
f(x+ h) = f(x) + Ah+ ε(h)∥h∥

avec ε(h) = 0 −→ 0 lorsque h → 0. Par dé�nition, la fonction est donc di�érentiable
en tout x ∈ Rn, et la dérivée est f ′(x) = A.

Solution 6.

On a
∂f

∂u
(1, 0) =

2
∂g

∂x
(0, 1, 1) +

∂g

∂z
(0, 1, 1)

2
∂g

∂y
(1, 0, 1) +

∂g

∂z
(1, 0, 1)

2
∂g

∂y
(0, 1, 1) +

∂g

∂z
(0, 1, 1)

∂g

∂x
(0, 1, 1) + 2

∂g

∂y
(0, 1, 1)

La fonction f est dé�nie par

f(u, v) = g
(
ve−2u, u2e−v, u

)
.

Ainsi

∂f

∂u
(u, v) =

∂g

∂x

(
ve−2u, u2e−v, u

)
· ve−2u · (−2)

+
∂g

∂y

(
ve−2u, u2e−v, u

)
· 2ue−v

+
∂g

∂z

(
ve−2u, u2e−v, u

)
· 1

et comme
[
(ve−2u, u2e−v, u)

]
(u,v)=(1,0)

= (0, 1, 1), on a

∂f

∂u
(1, 0) =

∂g

∂x
(0, 1, 1) · 0 + ∂g

∂y
(0, 1, 1) · 2 + ∂g

∂z
(0, 1, 1) · 1

= 2
∂g

∂y
(0, 1, 1) +

∂g

∂z
(0, 1, 1) .

Solution 7.

On rappelle que la matrice jacobienne n'est rien d'autre que la dérivée totale u′(x, y).

(a) Soit u : R2 → R3 avec u(x, y) = (u1(x, y), u2(x, y), u3(x, y)) = (−y, x, x + y).
Sa matrice jacobienne est

Ju(x, y) =


∂u1

∂x
(x, y)

∂u1

∂y
(x, y)

∂u2

∂x
(x, y)

∂u2

∂y
(x, y)

∂u3

∂x
(x, y)

∂u3

∂y
(x, y)

 =

0 −1
1 0
1 1


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(b) On calcule d'abord les matrices jacobiennes de chaque application:

Jv(x, y) =


∂v1
∂x

(x, y)
∂v1
∂y

(x, y)

∂v2
∂x

(x, y)
∂v2
∂y

(x, y)

∂v3
∂x

(x, y)
∂v3
∂y

(x, y)

 =

0 −1
1 0
y x


et

Jw(x, y, z) =


∂w1

∂x
(x, y, z)

∂w1

∂y
(x, y, z)

∂w1

∂z
(x, y, z)

∂w2

∂x
(x, y, z)

∂w2

∂y
(x, y, z)

∂w2

∂z
(x, y, z)

 =

(
2x 2y −2
2x 2y 2

)

Donc

Jw◦v(x, y) =

(
2v1(x, y) 2v2(x, y) −2
2v1(x, y) 2v2(x, y) 2

)
·

0 −1
1 0
y x


=

(
−2y 2x −2
−2y 2x 2

)
·

0 −1
1 0
y x


=

(
2x− 2y 2y − 2x
2x+ 2y 2x+ 2y

)
En calculant w ◦ v on véri�e aisément ce résultat. En e�et,

(w ◦ v)(x, y) =
(
x2 + y2 − 2xy
x2 + y2 + 2xy

)
et la matrice jacobienne de cette application est bien celle trouvée par multi-
plication matricielle ci-dessus.

(c) On calcule et on trouve:

Jv(x, y, z) =

(
0 ey+2z 2ey+2z

2x z y

)
et

Jw(x, y) =

(
− sinx 0

0 cos y

)
Donc

Jw◦v(x, y, z) =

(
− sin v1(x, y) 0

0 cos v2(x, y)

)
·
(

0 ey+2z 2ey+2z

2x z y

)
=

(
− sin(ey+2z) 0

0 cos(x2 + yz)

)
·
(

0 ey+2z 2ey+2z

2x z y

)
=

(
0 −ey+2z sin(ey+2z) −2ey+2z sin(ey+2z)

2x cos(x2 + yz) z cos(x2 + yz) y cos(x2 + yz)

)
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D'autre part, en calculant w ◦ v on véri�e ce résultat:

(w ◦ v)(x, y) =
(
cos(v1(x, y, z))
sin(v2(x, y, z))

)
=

(
cos(ey+2z)

sin(x2 + yz)

)
.

Solution 8.

(a) Pour véri�er que v(R2) ⊆ S2 il su�t de calculer ||v(x, y)||2 et de véri�er que
le résultat est égal à 1. Il s'agit d'un simple calcul. Pour la matrice jacobienne
de v on trouve

Jv(x, y) =


∂v1
∂x

(x, y)
∂v1
∂y

(x, y)

∂v2
∂x

(x, y)
∂v2
∂y

(x, y)

∂v3
∂x

(x, y)
∂v3
∂y

(x, y)


=

1

(1 + x2 + y2)2

2(1− x2 + y2) −4xy
−4xy 2(1 + x2 − y2)
−4x −4y


(b) La matrice jacobienne de w est donnée par

Jw(x, y, z) =


∂w1

∂x
(x, y, z)

∂w1

∂y
(x, y, z)

∂w1

∂z
(x, y, z)

∂w2

∂x
(x, y, z)

∂w2

∂y
(x, y, z)

∂w2

∂z
(x, y, z)


=

1

(1 + z)2

(
1 + z 0 −x
0 1 + z −y

)
(c) On calcule et on trouve

w(v(x, y)) = w(
2x

1 + x2 + y2
,

2y

1 + x2 + y2
,
1− x2 − y2

1 + x2 + y2
)

=
1

1 + 1−x2−y2

1+x2+y2

· 1

1 + x2 + y2
(2x, 2y) = (x, y)

Par la règle de composition on trouve

Jw◦v(x, y) =
1

(1 + v3(x, y))2

(
1 + v3(x, y) 0 −v1(x, y)

0 1 + v3(x, y) −v2(x, y)

)

· 1

(1 + x2 + y2)2

2(1− x2 + y2) −4xy
−4xy 2(1 + x2 − y2)
−4x −4y


=

(
1 0
0 1

)
D'autre part, puisque w ◦ v est l'identité, sa matrice jacobienne est la matrice
identité.
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(d) En �xant une source lumineuse sur le point (0, 0,−1) de la sphère, l'image
w(x, y, z) d'un point (x, y, z) sur la sphère est l'"ombre" du point sur le plan.
En d'autres termes, (w(x, y, z), 0) ∈ R3 est le point d'intersection entre la
droite passant par (0, 0,−1) et (x, y, z), et le plan horizontal z = 0. Récipro-
quement, pour un point (x, y) du plan, l'image v(x, y) est l'intersection entre
la droite passant par (0, 0,−1) et (x, y, 0), et la sphère unité.

Pour véri�er cela, le plus simple est de montrer que les trois points p =

(0, 0,−1), q = (x, y, 0), et r = v(x, y) =
(

2x
1+x2+y2

, 2y
1+x2+y2

, 1−x2−y2

1+x2+y2

)
. sont

toujours alignés, en véri�ant que le produit vectoriel (p− q)× (p− r) est nul.
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