
Remarque sur les corrigés

Lire une solution, même partielle, d’un exercice sans avoir vraiment
essayé de le résoudre (plusieurs heures, même parfois plusieurs jours)
est presque totalement inutile. Faire un exercice en ayant la solution
sous les yeux est beaucoup plus facile, et ne prépare que très mal à un
examen (qui se fait sans solutions).
Par conséquent, la lecture du présent corrigé est déconseillée, et se fait

à vos risques et périls.
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Analyse II Corrigé 6
EPFL – Sections SIE/GC

Solution 1.
On calcule avec les règles habituelles de la dérivation en gardant chaque fois une
variable constante:

(a) On a
∂f

∂x
(x, y) = 2xexy + (x2 + y2)yexy = (2x+ x2y + y3)exy et

∂f

∂y
(x, y) = 2yexy + (x2 + y2)xexy = (2y + x3 + xy2)exy.

(b) On a
∂f

∂x
(x, y) = y sin(x)+xy cos(x)

xy sin(x)
= 1

x
+ cot(x) et

∂f

∂y
(x, y) = x sin(x)

xy sin(x)
= 1

y
.

(c)
∂f

∂x
(x, y, z) = yz

1+(xyz)2
,
∂f

∂y
(x, y, z) = xz

1+(xyz)2
et

∂f

∂z
(x, y, z) = xy

1+(xyz)2
.

(d) Ici on se rappelle que xy = ey ln(x) et donc f(x, y, z) = (xy)z = ez ln(x
y) =

eyz ln(x) = xyz. Nous trouvons ainsi
∂f

∂x
(x, y) = yzxyz−1 ∂f

∂y
(x, y, z) = z ln(x)xyz ∂f

∂z
(x, y, z) = y ln(x)xyz

Solution 2.
(a) On a D(f) = R2 \ {(x, y) ∈ R2 : xy = 0}, c.-à-d. le plan R2 sans les deux axes

x et y. Les dérivées partielles sont

∂f

∂x
(x, y) =

1

y
− y

x2
et

∂f

∂y
(x, y) = − x

y2
+

1

x
.

Les dérivées partielles d’ordre 2 de la fonction f(x, y) =
x

y
+

y

x
sont

∂2f

∂x2
(x, y) =

2y

x3

∂2f

∂y∂x
(x, y) = − 1

y2
− 1

x2

∂2f

∂x∂y
(x, y) = − 1

y2
− 1

x2

∂2f

∂y2
(x, y) =

2x

y3
.

(b) Comme les puissances avec exposant réel sont seulement définies pour des
bases positives, on doit avoir x > 0 et y > 0. Pour z il n’y a pas de restriction
si bien que D(f) = {(x, y, z) ∈ R3 : x > 0, y > 0}. Pour les dérivées partielles
on obtient directement ∂f

∂x
(x, y, z) = yz x(yz)−1.

Pour calculer ∂f
∂y

et ∂f
∂z

, il faut récrire f de manière adéquate. Pour dériver par
rapport à y on écrit

f(x, y, z) = exp(yz ln(x))

⇒ ∂f

∂y
(x, y, z) = exp(yz ln(x)) · z yz−1 ln(x) = x(yz)z yz−1 ln(x) ,
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et pour dériver par rapport à z, on écrit

f(x, y, z) = exp
(
exp

(
z ln(y)

)
· ln(x)

)
pour obtenir

∂f

∂z
(x, y, z) = exp

(
exp

(
z ln(y)

)
ln(x)

)
· ln(y) exp

(
z ln(y)

)
ln(x)

= x(yz)yz ln(x) ln(y) .

Les dérivées partielles d’ordre 2 sont:

∂2f

∂x2
(x, y, z) =

xyz−1 (yz − 1) yz

x

∂2f

∂y2
(x, y, z) =

xyz (yz)2 z2 (ln (x))2

y2
+

xyzyzz2 ln (x)

y2
− xyzyzz ln (x)

y2

∂2f

∂z2
(x, y, z) = xyz (yz)2 (ln (y))2 (ln (x))2 + xyzyz (ln (y))2 ln (x)

∂2f

∂x∂y
(x, y, z) =

xyz−1 (yz)2 z ln (x)

y
+

xyz−1yzz

y

∂2f

∂y∂x
(x, y, z) =

xyzyzyz−1z ln (x)

x
+

xyzyz−1z

x

∂2f

∂x∂z
(x, y, z) =

∂2f

∂z∂x
(x, y, z) =

xyz (yz)2 ln (y) ln (x)

x
+

xyzyz ln (y)

x

∂2f

∂z∂y
(x, y, z) =

∂2f

∂y∂z
(x, y, z)

=
xyz (yz)2 ln (y) (ln (x))2 z

y
+

xyzyz ln (y) z ln (x)

y
+

xyzyz ln (x)

y

(c) On a D(f) = R2. Pour les dérivées partielles on trouve

∂f

∂x
(x, y) = 2xy cos(x2y) cosh(y − x)− sin(x2y) sinh(y − x)

∂f

∂y
(x, y) = x2 cos(x2y) cosh(y − x) + sin(x2y) sinh(y − x)

Les dérivées partielles d’ordre 2 sont

∂2f

∂x2
(x, y) =2 y cos

(
x2y
)
cosh (−y + x)− 4x2y2 sin

(
x2y
)
cosh (−y + x)

+4xy cos
(
x2y
)
sinh (−y + x) + sin

(
x2y
)
cosh (−y + x)
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∂2f

∂y2
(x, y) =− x4 sin

(
x2y
)
cosh (−y + x)− 2x2

(
x2y
)
sinh (−y + x)+

+ sin
(
x2y
)
cosh (−y + x)

∂2f

∂x∂y
(x, y) =

∂2f

∂y∂x
(x, y) =

= 2x cos
(
x2y
)
cosh (−y + x)− 2x3y sin

(
x2y
)
cosh (−y + x)

−2xy cos
(
x2y
)
sinh (−y + x) + x2 cos

(
x2y
)
sinh (−y + x)

− sin
(
x2y
)
cosh (−y + x)

(d) Le domaine est D(f) = {(x, y, z) ∈ R3 : z ̸= 2}, c’est-à-dire R3 sans le plan
z = 2. Les dérivées partielles sont

∂f

∂x
(x, y, z) =

2

z − 2
sinh

(
x+ 3yz

z − 2

)
cosh

(
x+ 3yz

z − 2

)
∂f

∂y
(x, y, z) =

6z

z − 2
sinh

(
x+ 3yz

z − 2

)
cosh

(
x+ 3yz

z − 2

)
∂f

∂z
(x, y, z) = 2

(
3y

z − 2
− x+ 3yz

(z − 2)2

)
sinh

(
x+ 3yz

z − 2

)
cosh

(
x+ 3yz

z − 2

)
Les dérivées partielles d’ordre 2 sont

∂2f

∂x2
(x, y, z) = 2

1

(z − 2)2

((
cosh

(
x+ 3 yz

z − 2

))2

+

(
sinh

(
x+ 3 yz

z − 2

))2
)

∂2f

∂y2
(x, y, z) = 18

z2

(z − 2)2

((
cosh

(
3 yz + x

z − 2

))2

+

(
sinh

(
3 yz + x

z − 2

))2
)

∂2f

∂z2
(x, y, z) = 2

(
3

y

z − 2
− 3 yz + x

(z − 2)2

)2(
cosh

(
3 yz + x

z − 2

))2

+ 2 sinh

(
3 yz + x

z − 2

)(
−6

y

(z − 2)2
+ 2

3 yz + x

(z − 2)3

)
cosh

(
3 yz + x

z − 2

)
+ 2

(
sinh

(
3 yz + x

z − 2

))2(
3

y

z − 2
− 3 yz + x

(z − 2)2

)2

∂2f

∂x∂y
(x, y, z) =

∂2f

∂y∂x
(x, y, z)

= 6
z

(z − 2)2

((
cosh

(
3 yz + x

z − 2

))2

+

(
sinh

(
3 yz + x

z − 2

))2
)

4



∂2f

∂x∂z
(x, y, z) =

∂2f

∂z∂x
(x, y, z)

= 2
1

z − 2

(
3

y

z − 2
− 3 yz + x

(z − 2)2

)(
cosh

(
3 yz + x

z − 2

))2

− 2
1

(z − 2)2
sinh

(
3 yz + x

z − 2

)
cosh

(
3 yz + x

z − 2

)
+ 2

1

z − 2

(
sinh

(
3 yz + x

z − 2

))2(
3

y

z − 2
− 3 yz + x

(z − 2)2

)

∂2f

∂z∂y
(x, y, z) = 6

z

z − 2

(
3

y

z − 2
− 3 yz + x

(z − 2)2

)(
cosh

(
3 yz + x

z − 2

))2

+ 6
1

z − 2
sinh

(
3 yz + x

z − 2

)
cosh

(
3 yz + x

z − 2

)
− 6

z

(z − 2)2
sinh

(
3 yz + x

z − 2

)
cosh

(
3 yz + x

z − 2

)
+ 6

z

z − 2

(
sinh

(
3 yz + x

z − 2

))2(
3

y

z − 2
− 3 yz + x

(z − 2)2

)

∂2f

∂y∂z
(x, y, z) = 6

z

z − 2

(
3

y

z − 2
− 3 yz + x

(z − 2)2

)(
cosh

(
3 yz + x

z − 2

))2

+ 2 sinh

(
3 yz + x

z − 2

)(
3 (z − 2)−1 − 3

z

(z − 2)2

)
cosh

(
3 yz + x

z − 2

)
+ 6

z

z − 2

(
sinh

(
3 yz + x

z − 2

))2(
3

y

z − 2
− 3 yz + x

(z − 2)2

)

Solution 3.
Pour (x, y) ̸= (0, 0) les dérivées partielles sont

∂f

∂x
(x, y) =

∂

∂x

(
xy

x2 − y2

x2 + y2

)
= xy

4xy2

(x2 + y2)2
+ y

x2 − y2

x2 + y2
,

∂f

∂y
(x, y) =

∂

∂y

(
xy

x2 − y2

x2 + y2

)
= xy

−4x2y

(x2 + y2)2
+ x

x2 − y2

x2 + y2
.

Pour (x, y) = (0, 0), on utilise la définition de la dérivée partielle :

∂f

∂x
(0, 0) = lim

h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

0− 0

h
= 0 ,

∂f

∂y
(0, 0) = lim

h→0

f(0, h)− f(0, 0)

h
= lim

h→0

0− 0

h
= 0 .
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Pour calculer les deuxièmes dérivées partielles mixtes en (0, 0), on doit encore une
fois utiliser cette définition. On a

∂2f

∂y∂x
(0, 0) = lim

h→0

∂f
∂x
(0, h)− ∂f

∂x
(0, 0)

h
= lim

h→0

−h3

h2 − 0

h
= lim

h→0

(−h)− 0

h
= −1

∂2f

∂x∂y
(0, 0) = lim

h→0

∂f
∂y
(h, 0)− ∂f

∂y
(0, 0)

h
= lim

h→0

h3

h2 − 0

h
= lim

h→0

h− 0

h
= +1.

On constate que
∂2f

∂y∂x
(0, 0) ̸= ∂2f

∂x∂y
(0, 0).

Remarque: Dans un cas comme ici où les dérivées partielles mixtes ne sont pas
égales, il faut faire attention à la notation qui n’est malheureusement pas vraiment
standardisée. Lorsqu’on a d’abord dérivé par rapport à x et ensuite par rapport à y,

on écrit dans ce cours
∂2f

∂y∂x
. Dans la littérature et en particulier aussi dans le livre

Calcul différentiel et intégral de Jacques Douchet et Bruno Zwahlen, on voit aussi
l’inverse (i.e. x et y échangé). Vive donc les fonctions suffisamment régulières où ce
problème ne se pose pas...

Solution 4.

esin(y)
(

2 2x cos(y)

2x cos(y) x2
(
cos(y)2−sin(y)

))
esin(y)

(
x2
(
cos(y)2−sin(y)

)
2x cos(y)

2x cos(y) 2

) esin(y)
(

2 2x cos(y)

2x cos(y) x2 cos(y)2

)
esin(y)

(
2 2x cos(y)

2x cos(y) −x2 sin(y)

)

Solution 5.
La dérivée f ′ d’une fonction f dérivable de deux variables au point (x0, y0) est donnée
par

f ′(x0, y0) =

(
∂f

∂x
(x0, y0)

∣∣∣ ∂f

∂y
(x0, y0)

)
.

Pour simplifier l’écriture, on va omettre le (x0, y0) dans la suite. On a donc

(a) f ′ =

(
∂(g + h)

∂x

∣∣∣ ∂(g + h)

∂y

)
=

(
∂g

∂x
+

∂h

∂x

∣∣∣ ∂g

∂y
+

∂h

∂y

)
=

(
∂g

∂x

∣∣∣ ∂g

∂y

)
+

(
∂h

∂x

∣∣∣ ∂h

∂y

)
= g′ + h′

(b) f ′ =

(
∂(gh)

∂x

∣∣∣ ∂(gh)

∂y

)
=

(
∂g

∂x
h+ g

∂h

∂x

∣∣∣ ∂g

∂y
h+ g

∂h

∂y

)
= h

(
∂g

∂x

∣∣∣ ∂g

∂y

)
+ g

(
∂h

∂x

∣∣∣ ∂h

∂y

)
= h g′ + g h′
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(c)
f ′ =

(
∂(g/h)

∂x

∣∣∣ ∂(g/h)

∂y

)
=


∂g

∂x
h− g

∂h

∂x
h2

∣∣∣
∂g

∂y
h− g

∂h

∂y

h2


=

1

h

(
∂g

∂x

∣∣∣ ∂g

∂y

)
− g

h2

(
∂h

∂x

∣∣∣ ∂h

∂y

)
=

1

h
g′ − g

h2
h′

Solution 6.
(a) Cette fonction est égale à

2xy

x2 + y2 + 1
sur R2 tout entier ! (Pas de problème

en (0, 0), gotcha). C’est donc juste une fonction rationnelle, qui est C∞ sur
D = R2. On a donc D = R2 pour (i), (ii), (iii), (iv).

(b) Pour (i), la fonction est continue sur R2 \ {(0, 0)} (composée de log qui est
continue, et de fonctions polynômiales, également continues). En (x, y) = (0, 0)
on passe en coordonnées polaires: |f(r cos(φ), r sin(φ))| ≤ r2 log(r) −→ 0 et
donc lim

(x,y)→(0,0)
f(x, y) = 0 = f(0, 0). Ainsi f est continue sur D = R2.

Pour (ii), si (x, y) ̸= (0, 0), on a

∂f

∂x
(x, y) = y ln(x2+y2)+

2x2y

x2 + y2
et

∂f

∂y
(x, y) = x ln(x2+y2)+

2xy2

x2 + y2

et les dérivées partielles en (x, y) = (0, 0) sont

∂f

∂x
(0, 0) = lim

h→0

f(0 + h, 0)− f(0, 0)

h
= lim

h→0

h · 0 · ln(h2)− 0

h
= lim

h→0

0− 0

h
= 0

∂f

∂y
(0, 0) = lim

h→0

f(0, 0 + h)− f(0, 0)

h
= lim

h→0

0 · h · ln(h2)− 0

h
= lim

h→0

0− 0

h
= 0 .

Ainsi, les dérivées partielles existent sur tout D = R2.

Pour (iii), on remarque déjà que les dérivées partielles calculées en (ii) sont
continues en tout (x, y) ̸= (0, 0), car il s’agit à nouveau d’une composée de
fonctions continues. Ainsi f est C1, au moins sur R2 \ {(0, 0)}, et par un
théorème du cours, f est donc aussi différentiable sur R2\{(0, 0)}. Pour traiter
le cas (x, y) = (0, 0), le plus simple est de sauter directement à (iv), où l’on
constate que f est en fait C1 sur D = R2 tout entier, et donc également
différentiable sur D = R2.

Alternativement, on peut traiter le cas (x, y) = (0, 0) à l’aide d’un calcul de
limites: il faut vérifier que (cf condition équivalente à la dérivabilité, vue en
cours)

lim
(x,y)→(0,0)

f(x, y)− f(0, 0)−∇f(0, 0)T ( x
y )

∥(x, y)∥
= lim

(x,y)→(0,0)

xy log(x2 + y2)√
x2 + y2

= 0.

Un passage en cooreonnées polaires donne alors:∣∣∣∣∣xy log(x2 + y2)√
x2 + y2

∣∣∣∣∣ ≤ r log(r) −→ 0
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et la limite vaut donc bien 0. Ainsi f est différentiable sur D = R2.

Pour (iv), on remarque que les fonctions
∂f

∂x
et

∂f

∂y
sont donc continues sur

R2\{(0, 0)} en tant que compositions de fonctions continues. Pour étudier leur
continuité en (0, 0), on utilise les coordonnées polaires. On trouve∣∣∣∣∂f∂x (x, y)

∣∣∣∣ = ∣∣∣∣r sin(θ) ln(r2) + 2
r3 cos(θ)2 sin(θ)

r2

∣∣∣∣ ≤ 2|r ln(r)|+ 2r∣∣∣∣∂f∂y (x, y)
∣∣∣∣ = ∣∣∣∣r cos(θ) ln(r2) + 2

r3 cos(θ) sin(θ)2

r2

∣∣∣∣ ≤ 2|r ln(r)|+ 2r

On calcule la limite du premier terme dans ces expressions avec Bernoulli-
L’Hospital :

lim
r→0+

r ln(r) = lim
r→0+

ln(r)
1
r

BH
= lim

r→0+

1
r

− 1
r2

= − lim
r→0+

r = 0 .

Ainsi

lim
(x,y)→(0,0)

∂f

∂x
(x, y) = 0 =

∂f

∂x
(0, 0) et lim

(x,y)→(0,0)

∂f

∂y
(x, y) = 0 =

∂f

∂y
(0, 0) .

Les dérivées partielles de f sont continues sur tout R2, et f est donc de classe
C1 sur D = R2.

(c) Commençons par observer que sur A = R× R∗ = {(x, y) ∈ R2 | y ̸= 0}, on a

∂f

∂x
(x, y) =

1

1 + x2/y4
=

y4

x2 + y4
et

∂f

∂y
(x, y) = 2y arctan(

x

y2
)− 2xy3

x2 + y4

Ces fonctions sont continues car composition de fonctions continues et de fonc-
tions rationnelles. Ainsi, f est de classe C1, donc différentiable et continue sur
et les dérivées partielles existent sur A. Il reste à voir ce qui se passe aux points
de la forme (x0, 0) ∈ R2.

Pour (i), observons que f(x, y) = 0 si y = 0, et si y ̸= 0, comme arctan prend
des valeurs dans [−π

2
, π
2
], on a |f(x, y)| ≤ π

2
y2. Dans les deux cas, on a donc la

borne
|f(x, y)| ≤ π

2
y2 −→ 0

lorsque y → 0. Ainsi

lim
(x,y)→(x0,0)

|f(x, y)| ≤ lim
(x,y)→(x0,0)

π

2
y2 = 0 = f(x0, 0).

Cela montre donc que f est continue en tout (x0, 0), et donc sur tout D = R2.

Pour (ii), on calcule

∂f

∂x
(x0, 0) = lim

h→0

f(x0 + h, 0)− f(x0, 0)

h
= lim

h→0

0− 0

h
= 0
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et
∂f

∂y
(x0, 0) = lim

h→0

f(x0, h)− f(x0, 0)

h
= lim

h→0

h2 arctan(x0/h)

h
= 0

car arctan(·) est à valeurs dans [−π
2
, π
2
]. Ainsi, les dérivées partielles existent

sur tout D = R2.

Pour (iii), on vérifie la condition équivalente à la différentiabilité en (x0, 0):
On doit montrer que la limite

lim
(x,y)→(x0,0)

f(x, y)− f(x0, 0)−∇f(x0, 0)
T

(
x− x0

y

)
∥(x− x0, y)∥

= lim
(x,y)→(x0,0)

f(x, y)

∥(x− x0, y)∥

vaut 0. En bornant |f(x, y)| ≤ π
2
y2, puis en utilisant les coordonnées polaires

centrées en (x0, 0), i.e. (x, y) = (x0 + r cosφ, r sinφ), on trouve

|f(x, y)|
∥(x− x0, y)∥

≤ π

2

y2

∥(x− x0, y)∥
=

π

2

r2 sin2 φ

r
≤ π

2
r −→ 0

lorsque r → 0. Cela montre que f est différentiable en tout (x0, 0), et donc sur
tout l’ensemble D = R2.

Finalement, pour (iv), les calculs précédents montrent que

∂f

∂x
(x, y) =

{
y4

x2+y4
y ̸= 0

0 y = 0
et

∂f

∂y
(x, y) =

{
2y arctan( x

y2
)− 2xy3

x2+y4
si y ̸= 0

0 si y = 0.

Supposons d’abord que x0 ̸= 0. Pour
∂f

∂x
, on remarque que l’expression se

simplifie en
∂f

∂x
(x, y) =

y4

x2 + y4
si (x, y) ̸= (0, 0). Comme c’est une fonction

rationnelle,
∂f

∂x
est donc continue en (x0, 0).

Pour
∂f

∂y
, prenons une suite (xn, yn) qui converge vers (x0, 0), le fait que

arctan(·) ∈ [−π/2, π/2] implique

∂f

∂y
(xn, yn) =

{
2yn arctan(

xn

y2n
)− 2xny3n

x2
n+y4n

−→ 0− 0
x2
0+0

= 0 si yn ̸= 0

0 −→ 0 si yn = 0

Dans les deux cas, on a donc
∂f

∂y
(xn, yn) −→ 0, d’où

lim
(x,y)→(x0,0)

∂f

∂y
(x, y) = 0 =

∂f

∂y
(x0, 0),

et
∂f

∂y
est donc continue en (x0, 0).
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Les deux dérivées partielles sont donc continues en (x0, 0) dès que x0 ̸= 0. Cela
montre que f est de classe C1 sur D = R2 \ {(0, 0)}.
Il reste le cas où x0 = 0. Dans ce cas, on observe que pour la suite (xn, yn) =
( 1
n
, 0), on a

∂f

∂x
(xn, yn) = 0 −→ 0,

alors que si (xn, yn) = (0, 1
n
), on a

∂f

∂x
(xn, yn) =

(1/n)4

0 + (1/n)4
= 1 −→ 1.

La fonction
∂f

∂x
n’est donc pas continue en (0, 0), et f n’est donc pas C1 sur

R2, mais seulement sur D = R2 \ {(0, 0)}.

(En revanche, on peut vérifier que
∂f

∂y
est continue en (0, 0) !)

(d) Pour (i), remarquons que f est une composée de fonctions continues, donc
continue sur D = R2.

Pour (ii)-(iv), les seuls problèmes peuvent venir lorsque que le terme dans la
valeur absolue est 0, i.e. lorsque

xy − sin(x) = 0 ⇔ x = 0 ou x ̸= 0 et y =
sin(x)

x
.

Notons A = {(x, y) ∈ R2 | x = 0} et B = {(x, y) ∈ R2 | x ̸= 0 et y = sin(x)
x

.}.
En effet, pour (x, y) /∈ A ∪ B, on a f(x, y) = ±x(xy − sin(x)), et les dérivées
partielles sont

∂f

∂x
(x, y) = ±2xy − x cos(x)− sin(x) et

∂f

∂x
(x, y) = ±x2

qui sont continues. La fonction f est donc une fonction C1 au moins sur D1 =
R2\(A∪B). D1 est déssiné en bleu dans la figure ci-dessous, avec les ensembles
A en jaune et B en orange ; le point (0, 1) est en rouge et sera d’une importance
particulière pour (iii) et (iv).

x

y
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Pour (ii), il faut encore traiter les points de A∪B. Traitons d’abord les points

de B, i.e., de la forme (x0, y0), où x0 ̸= 0 et y0 =
sin(x0)

x0

. On calcule la dérivée

partielle
∂f

∂y
à l’aide de la définition:

∂f

∂y
(x0, y0) = lim

h→0

f(x0, y0 + h)− f(x0, y0)

h

= lim
h→0

x0 |x0(y0 + h)− sin(x0)|
h

= lim
h→0

x0|x0| ·
|h|
h
,

où la dernière égalité suit du fait que x0y0 − sin(x0) = 0. Comme cette limite

n’existe pas, on conclut que
∂f

∂y
n’existe en aucun point (x0, y0) de B.

Pour les points de A, c’est à dire de la forme (0, y0), on a

∂f

∂x
(0, y0) = lim

h→0

f(h, y0)− f(, y0)

h
= lim

h→0

h|hy0 − sin(h)|
h

= 0

et
∂f

∂y
(0, y0) = lim

h→0

f(0, y0 + h)− f(0, y0)

h
= lim

h→0

0

h
= 0.

Ainsi, les dérivées partielles existent en tout point (0, y0) ∈ A. Pour (ii), on a
donc D = R2 \B.

Pour (iv), on sait que f est C1 sur D1 = R2\(A∪B). De plus, pour tout (0, y0) ∈
A différent de (0, 1), les dérivées partielles sont définies dans un voisinage de
(0, y0). En prenant les formules calculées plus haut, on voit facilement que

lim
(x,y)→(0,y0)

∂f

∂x
(x, y) = 0 =

∂f

∂x
(0, y0) et lim

(x,y)→(0,y0)

∂f

∂y
(x, y) = 0 =

∂f

∂y
(0, y0).

Ainsi, les dérivées partielles sont continues sur R2 \ (B ∪{(0, 1)}). Comme
∂f

∂y
n’est pas définie sur B, elle n’est définie dans aucun voisinage de (0, 1), et ne
peut donc pas être continue en (0, 1). On a donc bien trouvé l’ensemble le plus
grand pour (iv): c’est D = R2 \ (B ∪ {(0, 1)}).
Pour (iii), on sait que f est différentiable sur R2 \ (B ∪ {(0, 1)}), car elle est

C1 sur cet ensemble. Comme
∂f

∂y
n’est pas définie sur B, f ne peut pas être

différentiable en un point de B. Il reste donc seul le point (0, 1) à traiter: il
faut vérifier que

lim
(x,y)→(0,1)

f(x, y)− f(0, 1)−∇f(0, 1)T
(
x−0
y−1

)
∥(x, y)− (0, 1)∥

= lim
(x,y)→(0,1)

x|xy − sin(x)|√
x2 + (y − 1)2

= 0.

En coordonnées polaires centrées en (0, 1), i.e. (x, y) = (r cos(φ), 1+ r sin(φ)),
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on trouve∣∣∣∣∣ x|xy − sin(x)|√
x2 + (y − 1)2

∣∣∣∣∣ = r| cos(φ)| · |r cos(φ)(1 + r sin(φ))− sin(r cos(φ))|
r

≤ r| cos(φ)(1 + r sin(φ))|+ | sin(r cos(φ))|
≤ 2r + |r cos(φ)|
≤ 3r −→ 0

lorsque r → 0, où l’on a utilisé l’inégalité | sin(u)| ≤ |u| pour u proche de 0.
Ainsi f est différentiable en (0, 1). Pour (iii), on peut donc prendre D = R\B.

Récapitulatif:

(i) D = R2

(ii) D = R2 \B où B = {(x, y) ∈ R2 | x ̸= 0 et y = sin(x)
x

.}
(iii) D = R2 \B
(iv) D = R2 \ (B ∪ {(0, 1)})

Solution 7.
(a) Si f est différentiable en (x0, y0), alors

∂f

∂x
(x0, y0) et

∂f

∂y
(x0, y0) existent.

Vrai Faux

Voir une proposition du cours.

(b) Si f est de classe C2, alors
∂f

∂x
(x0, y0) =

∂f

∂y
(x0, y0).

Vrai Faux

Pour une fonction f : R2 → R de classe C2 on a pour tout (x0, y0) ∈ R2

∂2f

∂x∂y
(x0, y0) =

∂2f

∂y∂x
(x0, y0)

mais il n’existe en général aucun lien entre les dérivées partielles premières
∂f
∂x
(x0, y0) et ∂f

∂y
(x0, y0). Un contre exemple explicite est donné par f(x, y) = x.

(c) Si f est différentiable en (x0, y0), alors

lim
(x,y)→(x0,y0)

f(x, y)− f(x0, y0)− ∂f
∂x
(x0, y0) (x− x0)− ∂f

∂y
(x0, y0) (y − y0)√

(x− x0)2 + (y − y0)2
= 0 .

Vrai Faux

Découle de la définition de différentiable vue en cours.
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(d) Si f est différentiable en (x0, y0), alors

lim
(h1,h2)→(0,0)

f(x0 + h1, y0 + h2)− f(x0, y0)− ∂f
∂x
(x0, y0)h1 − ∂f

∂y
(x0, y0)h2√

h2
1 + h2

2

= 0 .

Vrai Faux

Découle de la définition de différentiable vue en cours.

(e) Si f est de classe C2, alors
∂2f

∂x2
(x0, y0) = lim

h→0

f(x0 + h2, y0)− f(x0, y0)

h2
.

Vrai Faux

La formule correcte est:

∂2f

∂x2
(x0, y0) = lim

h→0

∂f
∂x
(x0 + h, y0)− ∂f

∂x
(x0, y0)

h
.

Un contre exemple explicite est donné par f(x, y) = x.
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