Remarque sur les corrigés

Lire une solution, méme partielle, d’un exercice sans avoir vraiment
essayé de le résoudre (plusieurs heures, méme parfois plusieurs jours)
est presque totalement inutile. Faire un exercice en ayant la solution
sous les yeux est beaucoup plus facile, et ne prépare que trés mal a un
examen (qui se fait sans solutions).

Par conséquent, la lecture du présent corrigé est déconseillée, et se fait
a vos risques et périls.
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Solution 1.
On calcule avec les régles habituelles de la dérivation en gardant chaque fois une
variable constante:

af

(a) On a %(x, y) = 2ze™ + (22 + y?)ye™ = (22 + 2%y + y3)e™ et
0
a_f(x, y) = 2ye™ + (2% + y?)ze™ = (2y + 2° + zy?)e™.
Y

af in(x)+x T 8f x sin(x
(b) On a %(xay) s (z;;n?(JxC)OS( ) — % + cot(x) et a—y(w,y) = zyssin((x)) = ?l/

af of

Yz Tz Ty

of
(©) 35 @ 2) = Taps 5, (@ 9:2) = Tt © 5 (@ 9:2) = e

(d) Ici on se rappelle que v = e¥™® et donc f(z,y,2) = (z¥)* = @) =

evzIn(@) — ¥ Nous trouvons ainsi

g _ yz—1 g _ Yz g _ Yz
5 (x,y) = yzx o (,y,2) = zIn(x)x 5 (z,y,2) =yln(x)x

Solution 2.

(a) On a D(f) =R?\ {(z,y) € R? : zy = 0}, c.-a-d. le plan R? sans les deux axes
x et y. Les dérivées partielles sont

of Iy of

%('xay)zg_ﬁ et a_y<x7y):_

x+1
y2oox

Les dérivées partielles d’ordre 2 de la fonction f(x,y) = z + Y sont
y

9z2 Y T 3 Oyox HY) = y?2 a2
32f(x )__i_i 02_f<x )_2_x
Oxdy Y= y2 oz oy? Y= Y3

(b) Comme les puissances avec exposant réel sont seulement définies pour des
bases positives, on doit avoir > 0 et y > 0. Pour z il n’y a pas de restriction
si bien que D(f) = {(z,y,2) € R® : x > 0,y > 0}. Pour les dérivées partielles

on obtient directement %(x, y,2) = y* W)L,

Pour calculer g—g et g—ﬁ, il faut récrire f de maniére adéquate. Pour dériver par
rapport a y on écrit

f(x,y,2) = exp(y* In(z))

= A ay.2) = exply () - 2y In(e) = 2072y In(a)
Y



et pour dériver par rapport a z, on écrit

flz,y,2) = exp(exp (zln(y)) . ln(x))
pour obtenir

%(m, Y,z) = exp(exp (zIn(y)) ln(x)) -In(y) exp(zIn(y)) In(z)

= 2y In(z) In(y) .

Les dérivées partielles d’ordre 2 sont:

2 y*—1(,z z
O () = D
OF gy =™ (v")2* (In () | #y2*In(z) avy2In(a)
oy Y y? y? y?
a2f z 2\2 2 2 Z 2
oz @y, 2) =2 (y7)" (In(y))” (In (2))” + 27" (In ()" In (2)
0*f () zln (z) 2V Ytz
r,Y,z)= +
(%ﬁy( Y 2) y )
2 y* ), 2,,2—1 y*,z—1
8(18];(%%2):30 yywzln(x)+x ;i z
o*f P _ 2 (y?) In(y)In(z) =¥y In(y)
a$az(x>y72)_8zax(x7y7z)_ T + T
o0 f 0*f

M(xa Y, Z) = m(xa Y, Z)
@ () In(y) (I (2))*2 2y In(y)zn(z) 2y In (o)

) Y Y

(c) On a D(f) = R? Pour les dérivées partielles on trouve

of

a—(a:, y) = 2xy cos(x?y) cosh(y — x) — sin(z®y) sinh(y — )

x

?(:{;, y) = 2% cos(2y) cosh(y — x) + sin(z%y) sinh(y — )
Y

Les dérivées partielles d’ordre 2 sont

82
a—é(l‘, y) =2y cos (z*y) cosh (—y + z) — 42y’ sin (2”y) cosh (—y + )
x

+4 2y cos (2°y) sinh (—y + x) + sin (2%y) cosh (—y + z)



2
%(x, y) = — z'sin (2%y) cosh (—y + z) — 22” (2%y) sinh (—y + )+
)

+ sin (z%y) cosh (—y + z)

0? 0?
Wgy(x’ y) = ayaj;(x, y) =
= 2z cos (2°y) cosh (—y + x) — 22°y sin (2*y) cosh (—y + z)
—2zycos (2°y) sinh (—y + x) + 2° cos (2°y) sinh (—y + z)
—sin (2*y) cosh (—y + )

(d) Le domaine est D(f) = {(z,y,2) € R : 2 # 2}, c’est-a-dire R? sans le plan
z = 2. Les dérivées partielles sont

af 2 x + 3yz x+ 3yz
et = h
p) (x,y, 2) z_2smh< 2_2)608 <z—2

ﬁ(x,y,z): 6= Sinh<x+3g;z) cesh(x+3yz>

X
oy z2—2 z—

of 3y x+3yz\ . T+ 3yz T+ 3yz
8Z(x,y,z) 2 (2_2 (z—2)2) sin < Cos .

Les dérivées partielles d’ordre 2 sont
0*f 1 24 3yz\\’ . 4 3yz\\’
ZJ — h
(%Q(x,y,z) 2(2_2)2 ((cosh( po )) + | sin po
o*f 2* 3yz+2\\’ . 3yz+ 2\’
8—y2(x,y,z):18m (COSh( po— )) —|—(smh po
0% f y 3yz+z\° 3yz+ 2\’
ZJ =9 — h
822(x7ya2) (32_2 (z_2)2 COS PR
+2sinh(3yz+$> (—6 y 2+23yz+3§)cosh(3yz+x>
z—2 (z—2) (z—2) z2—2
+9 (sinn (22210 : gy __dyzt 2
z— 2 z—2 (Z—2)2

I 09.2) = 2T (,2)
axay %%Z - 3y8x 7y7




0% f z y 3yz+ 3yz+2\\"

8y82(x’y’z)_62—2(32—2_(2—2)2) (COSh( g )>
. 3yz+x 1 z 3yz+x

+281nh( 2_2)(3(2 2) 3(2_2)2)C08h( 2_2)

2
e z <inh 3yz+uw 5 Y _3yz~|—:12:
z—2 z—2 z—2 (2-2)

Solution 3.
Pour (z,y) # (0,0) les dérivées partielles sont

af( ) 0 2 — 92 4xy? N 2% —y?
—(z,y) = =— | x =2z ,
oz T e\ 2§ y? Y (2% 4 y?)? Yy y?
af( ) 0 2% — 2 —4z%y N 2% — 2
—(x = — | =X T .
ay P oy (Mg (@2 +92)? 2 +y?

Pour (z,y) = (0,0), on utilise la définition de la dérivée partielle:

of . f(h,O)—f(0,0)_. 0-0
a2 00 = Jim h == 0
of o f(0R) = f0,0) . 0-0
TR L S S S



Pour calculer les deuxiémes dérivées partielles mixtes en (0,0), on doit encore une
fois utiliser cette définition. On a

0 5200 = 30,00 | —fz =0 _ . (=h) =0
e T
02 f G0 =g00 B _g  p_0
8x8y<0’ 0)= A h =i = o h i

o2 f % f

On constate que

0,0

8y8x< )7 0xdy
Remarque: Dans un cas comme ici ou les dérivées partielles mixtes ne sont pas
égales, il faut faire attention a la notation qui n’est malheureusement pas vraiment

standardisée. Lorsqu’on a d’abord dérivé par rapport a x et ensuite par rapport a y,
2

oyor
Calcul différentiel et intégral de Jacques Douchet et Bruno Zwahlen, on voit aussi
I'inverse (i.e. x et y échangé). Vive donc les fonctions suffisamment réguliéres ou ce
probléme ne se pose pas...

on écrit dans ce cours Dans la littérature et en particulier aussi dans le livre

Solution 4.
2 2z cos(y)

. . 2 2z cos(y)
sin(y) csin(y)
. € ( 2xcos(y)  x? (cos(y)Q—sin(y)) > D ( 2zcos(y)  x2cos(y)? )
. 2 2 i . 2 2z cos(y)
sin(y) [ T ( cos(y) sm(y)) 2z cos(y) esm(y)
D ¢ ( D 2z cos(y) —xz2 sin(y)

2z cos(y) 2

Solution 5.
La dérivée f’ d’une fonction f dérivable de deux variables au point (g, 3o) est donnée
par

f'(@o, o) = (g(fﬂoayo) ’ g—g(l’myo)) :

Pour simplifier I’écriture, on va omettre le (xg, o) dans la suite. On a donc

(@) o (a(ga-;h) ‘ 6(98;;h)) <@+ah dg 8h>

or " or | 9y oy
~ (90g | Og oh | oh\  ,
N <8x 8y) + (&r Gy) =g +h

dg | 9Jg L )
h(ax a_y> (ax )‘h“gh




dg on  9g,  Oh

Solution 6.

(a)

(b)

po (2l | Ay 0:" 9 on Nz 0y
ox dy h? h?
_1(99 | 99\ _g (0h  Oh\ _L . 9,
R \O0x | Oy R2\ox | Oy) h h?
2zy

Cette fonction est égale a sur R? tout entier! (Pas de probléme

24+y?+1
en (0,0), gotcha). C’est donc juste une fonction rationnelle, qui est C*° sur

D =TR?% On a donc D = R? pour (i), (ii), (iii), (iv).

Pour (i), la fonction est continue sur R? \ {(0,0)} (composée de log qui est
continue, et de fonctions polynomiales, également continues). En (z,y) = (0, 0)
on passe en coordonnées polaires: |f(r cos(p),rsin(p))] < r?log(r) — 0 et
donc ( l)iirzo ) f(x,y) = 0= f(0,0). Ainsi f est continue sur D = R.

z,y)—(0,

Pour (ii), si (x,y) # (0,0), on a

of s o 21%y of 5 oy 2wy?
e =y et () = ety
et les dérivées partielles en (x,y) = (0,0) sont

J— . . 2 —_ J——
g(0,0):hm f(0O+h,0) f(0,0):hmh 0-In(h?) O:limo 0:0
Ox h—0 h h—0 h h—0

— -h-In(h?) — —
9 (0, 0) = tim L@ 0FM = 0.0 _ ) O-h-Wm) =0\ 0=0_
dy h—0 h h—0 h h—0

Ainsi, les dérivées partielles existent sur tout D = R2,

Pour (iii), on remarque déja que les dérivées partielles calculées en (ii) sont
continues en tout (z,y) # (0,0), car il s’agit & nouveau d’une composée de
fonctions continues. Ainsi f est C', au moins sur R? \ {(0,0)}, et par un
théoréme du cours, f est donc aussi différentiable sur R?\ {(0, 0)}. Pour traiter
le cas (z,y) = (0,0), le plus simple est de sauter directement & (iv), ot 'on
constate que f est en fait C! sur D = R? tout entier, et donc également
différentiable sur D = R?.

Alternativement, on peut traiter le cas (z,y) = (0,0) a 'aide d’'un calcul de
limites: il faut vérifier que (cf condition équivalente a la dérivabilité, vue en
cours)

. flz,y) = £(0,0) =VF(0,0"(y) . zylog(z* + ¢*)
lim = lim
(2,5)—(0,0) (2, )|l @y)=00) /a2 4 92

Un passage en cooreonnées polaires donne alors:

= 0.

zylog(x? + y?)
/1.2 + y2

7

<rlog(r) — 0




et la limite vaut donc bien 0. Ainsi f est différentiable sur D = R2.

. _ 0 0 .
Pour (iv), on remarque que les fonctions —f et —f sont donc continues sur

ox dy

R?\ {(0,0)} en tant que compositions de fonctions continues. Pour étudier leur
continuité en (0,0), on utilise les coordonnées polaires. On trouve

3 2
‘g—f(x,y)‘ = |rsin(6) In(r?) + 2! COS(QZ sm(@)’ < 2|rin(r)| + 2r
x r
3 : 2
‘g—i(x,y)‘ = |rcos(6) In(r?) + 9! cos(i);m(&) < 2|rIn(r)| + 2r

On calcule la limite du premier terme dans ces expressions avec Bernoulli-
L’Hospital :

1 1
lim 7In(r) = lim ngr) B i & =—lim r=0.
r—0+ r—0t - r—0+ 3 r—0+
Ainsi
. af of ) af af
| — =0=—-—(0,0 t | — =0=—-—(0,0).
(w4)(0.0) Oz (=9) 89[:( 0) e (23)(0.0) Dy (:9) 33/( -0)

Les dérivées partielles de f sont continues sur tout R?, et f est donc de classe
Cl sur D = R2

Commencons par observer que sur A =R x R* = {(z,y) € R? | y # 0}, on a

of 1 yt of x 213

or ($7y) 1 +x2/y4 $2+y4 € ay (xvy) yarc an(yg) x2—|—y4

Ces fonctions sont continues car composition de fonctions continues et de fonc-
tions rationnelles. Ainsi, f est de classe C!, donc différentiable et continue sur
et les dérivées partielles existent sur A. Il reste a voir ce qui se passe aux points
de la forme (z,0) € R2

Pour (i), observons que f(x,y) =0siy =0, et si y # 0, comme arctan prend
des valeurs dans [—3, 2], on a | f(x,y)| < Zy*. Dans les deux cas, on a donc la
borne
T o2
@yl < 59" —0

lorsque y — 0. Ainsi

T
lim x, < lim =y*=0= f(x,0).
(z,y)—(20,0) |f( y>|  (z,9)—(20,0) Qy f( 0 )

Cela montre donc que f est continue en tout (g, 0), et donc sur tout D = R

Pour (ii), on calcule

g(ﬂ:o,O)=limf(x0+h’0)_f(x0’o) . 0-0

ox h—0 h h—0 h




. f(zo,h) — f(x0,0) . h*arctan(zo/h)
8_<IO’O) —]1113(1) 3 _fllli% - =0

car arctan(-) est a valeurs dans [—7, 7]. Ainsi, les dérivées partielles existent
sur tout D = R?%,

Pour (iii), on vérifie la condition équivalente a la différentiabilité en (z,0):
On doit montrer que la limite

lim fry) = 0. 0) =¥ o, OF (x ;%) = lim f(z,y)

(2,4)—(20,0) (= 20,9l (@)= (@0,0) || (2 — 0, y)|]

vaut 0. En bornant |f(x,y)| < 5¢°, puis en utilisant les coordonnées polaires
centrées en (z9,0), i.e. (z,y) = (zo + rcosp,rsinp), on trouve

[flyl = Y _rrtsity oo
Iz =z, ~ 2 [z =m0, 2 r =2

lorsque 7 — 0. Cela montre que f est différentiable en tout (xg,0), et donc sur
tout 'ensemble D = R2.

Finalement, pour (iv), les calculs précédents montrent que

4 N 5 '
ﬁ(:L’,y) — Jfﬁy“ y#0 ot a_<x7y) _ 2y arctan(y%) - xzzfy4 siy#0

0
Supposons d’abord que zy # 0. Pour —f, on remarque que l’expression se

ox
4

Y si (z,y) # (0,0). Comme c’est une fonction

0
snnphﬁe en a—i(l',y) = x2—+y4

. 0 .
rationnelle, of est donc continue en (zg,0).

ox

Pour 5, Prenons une suite (z,,y,) qui converge vers (zo,0), le fait que

arctan(-) € [—m/2,m/2] implique

g(xn yn) = Zyn arCtan(;—g) - j%‘é’% — 00— :E(Q)O+O =0 si Yn ?é 0
% 0—0 siy, =0

Dans les deux cas, on a donc a—(xn,yn) — 0, d’ou
Yy

i af of
lim ——(z,y) =0= —=(20,0),
(2,y)—(x0,0) ay( v) 0y( 0,0)

0
et —f est donc continue en (zo,0).

dy



Les deux dérivées partielles sont donc continues en (zg,0) dés que 2y # 0. Cela
montre que f est de classe C' sur D = R?\ {(0,0)}.

I1 reste le cas ou g = 0. Dans ce cas, on observe que pour la suite (z,,y,) =
(la 0)7 on a
n

of
%(fpmyn) =0 O,
alors que si (z,,y,) = (0,1), on a
of __mt
g o ¥n) = g @ m T L L

0
La fonction 8_f n’est donc pas continue en (0,0), et f n’est donc pas C! sur
x
R?, mais seulement sur D = R?\ {(0,0)}.

. 0 .
(En revanche, on peut vérifier que a—f est continue en (0,0) /)
Y
Pour (i), remarquons que f est une composée de fonctions continues, donc
continue sur D = R2,

Pour (ii)-(iv), les seuls problémes peuvent venir lorsque que le terme dans la
valeur absolue est 0, i.e. lorsque

sin(z) ‘

xy—sin(z)=0 < x=0 ou z#0ety=

Notons A = {(z,y) €R? |z =0} et B = {(z,y) € R* |2 # 0 et y = L2 1.
En effet, pour (z,y) ¢ AU B, on a f(x,y) = £x(zy — sin(z)), et les dérivées
partielles sont

of of 2

ZL = 42y — — s A =+
e (x,y) xy — xcos(x) —sin(zr) e e (z,y) x
qui sont continues. La fonction f est donc une fonction C'! au moins sur D; =
R?\ (AUB). D; est déssiné en bleu dans la figure ci-dessous, avec les ensembles
A en jaune et B en orange; le point (0, 1) est en rouge et sera d’une importance
particuliére pour (iii) et (iv).

<

10



Pour (ii), il faut encore traiter les points de AU B. Traitons d’abord les points

de B, i.e., de la forme (¢, yo), ot g # 0 et yo = Sm(xo). On calcule la dérivée
To
partielle g a 'aide de la définition:
Y
of . f(wo,y0 + h) — f(z0,%0)
8_y<x0’ Yo) = ,1112% h
iy 20 |[Zo(yo + h) — sin(zo)| — lim 2|0 - m’
h—0 h h—0 h

ou la derniére égalité suit du fait que zgyo — sin(xg) = 0. Comme cette limite

n’existe pas, on conclut que —— n’existe en aucun point (zy,yo) de B.

dy

Pour les points de A, c’est a dire de la forme (0, 1), on a

af _ f(h'7 yO) B f(7 yO) 1 h|hy0 _ Sln(h)‘ _
3¢ (0> t0) = lim n = Jim n =0
et of FOy0+ 1) — fOg) 0
o Yo + - yYo) . Mo
gy 0 v0) = Jim n =y =0

Ainsi, les dérivées partielles existent en tout point (0,yy) € A. Pour (ii), on a
donc D = R?\ B.

Pour (iv), on sait que f est C'! sur D; = R?\(AUB). De plus, pour tout (0,y,) €
A différent de (0,1), les dérivées partielles sont définies dans un voisinage de
(0,90). En prenant les formules calculées plus haut, on voit facilement que

. of of . of of
] =L —0= L t ] =L —0=2200.1).
i B (z,y) =0 B (0,y0) e e By (z,y) =0 8y( .Yo)

0
Ainsi, les dérivées partielles sont continues sur R? \ (BU{(0,1)}). Comme 8_f

n’est pas définie sur B, elle n’est définie dans aucun voisinage de (0, 1), et ne
peut donc pas étre continue en (0, 1). On a donc bien trouvé ’ensemble le plus
grand pour (iv): c’est D =R?\ (BU{(0,1)}).

Pour (iii), on sait que f est différentiable sur R? \ (B U {(0,1)}), car elle est
C! sur cet ensemble. Comme 8_f n’est pas définie sur B, f ne peut pas étre

différentiable en un point de B. Il reste donc seul le point (0,1) a traiter: il
faut vérifier que

, f(z,y) — f(0,1) —Vf(O,l)T(ii(f) L r|lry —sin(z)]
lim = lim = 0.
(2,9)—(0,1) [(z,y) — (0, 1) @)=01) /22 + (y — 1)

En coordonnées polaires centrées en (0, 1), i.e. (x,y) = (rcos(p), 1 +1rsin(p)),

11



on trouve

x|zy — sin(z)|
w2+ (y— 1)

_ | cos(¢)| - |rcos(p)(1 + rsin(p)) — sin(r cos(p))|

< 7| cos(p) (1 + rsin(p))| + | sin(r cos(p))|
< 2r + |rcos(p)|
<3r—90

lorsque r — 0, ot l'on a utilisé 'inégalité |sin(u)| < |u| pour u proche de 0.
Ainsi f est différentiable en (0, 1). Pour (iii), on peut donc prendre D = R\ B.
Récapitulatif:

(i) D =R?

(i) D=R>\Bou B={(z,y) €eR* |z #0et y =20}
(iii) D=R*\ B
(iv) D=R*\ (BU{(0,1)})

Solution 7.
of

a) Si f est différentiable en (xg, 1), alors = (g, yo) et = (o, yo) existent.
0 0
x y
B Ve [ ] Faux

Voir une proposition du cours.

. 0 )
(b) Si f est de classe C?, alors 8_£(x0’y0) = a—“;(xo,yo).

[ ] Vrai B Faux

Pour une fonction f: R* — R de classe C? on a pour tout (zg, o) € R?

(%ay Zo,Yo) = 8y8x Lo, Yo

mais il n’existe en général aucun lien entre les dérivées partielles premiéres

%(mo, Yo) et g—i(xo, Yo). Un contre exemple explicite est donné par f(z,y) = x.

(c) Si f est différentiable en (zq,yo), alors

: f(@,y) = f(zo,90) = G (w0, 0) (x — o) — G (w0, 90) (v — o)
lim

(z,y)—=(zo,y0) \/(:L" —20)2 + (y — y0)?

B Ve [ ] Faux

Découle de la définition de différentiable vue en cours.

=0.
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(d) Si f est différentiable en (zo,yo), alors

i F@o + hi,yo + ha) — f(20,y0) — L (20, yo) by — g—i(l‘o, Yo) ha 0

(h1,h2)—(0,0) VI +h3
B Vi [ ] Faux

Découle de la définition de différentiable vue en cours.

2 h2 —
(e) Si f est de classe C?, alors a—f(xo,yg) = }lg% f(o + ’y;zg I (20, yo)

0x?

[ ] Vrai B Faux

La formule correcte est:

32_f($ ) = lim %(xo + h, yo) — %(%,yo)
§z2 Y0 Yo) =1 h '

Un contre exemple explicite est donné par f(z,y) = .

13



