
Remarque sur les corrigés

Lire une solution, même partielle, d’un exercice sans avoir vraiment
essayé de le résoudre (plusieurs heures, même parfois plusieurs jours)
est presque totalement inutile. Faire un exercice en ayant la solution
sous les yeux est beaucoup plus facile, et ne prépare que très mal à un
examen (qui se fait sans solutions).
Par conséquent, la lecture du présent corrigé est déconseillée, et se fait

à vos risques et périls.
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Analyse II Corrigé 5
EPFL – Sections SIE/GC

Solution 1.
(a) Les fonctions f1 : R → R2, f1(t) = (1 + cos(t), sin(t)), f2 : R → R2, f2(t) =

(−1−cos(t), sin(t)) et f3 : R → R2, f3(t) = (−2−2π+ t, 0) sont différentiables
sur R et donc en particulier continues sur R. Puisque f1(π) = f2(π) et f2(2π) =
f3(2π), on a

lim
t→π−

f(t) = lim
t→π+

f(t) = f(π) et lim
t→2π−

f(t) = lim
t→2π+

f(t) = f(2π)

ce qui montre que la fonction f est continue.

(b) L’image de f est (le segment [−2, 2] fait partie de l’image)

−2 −1 1 2

−1

1

(c) La fonction f n’est pas injective car on a :

f(0) = f(2π + 4) = (2, 0) ou encore f(π) = f(2π + 2) = (0, 0) .

(d) La fonction f n’est pas différentiable en t = 2π, mais f1, f2 et f3 sont diffé-
rentiables. On a :

ℓ =

π∫
0

||f ′
1(t)|| dt+

2π∫
π

||f ′
2(t)|| dt+

2π+4∫
2π

||f ′
3(t)|| dt

=

π∫
0

1 dt+

2π∫
π

1 dt+

2π+4∫
2π

1 dt

= 2π + 4 .

Solution 2.

(a) En passant en coordonnées polaires
{

x = r cos(φ)
y = r sin(φ)

on a

3x3 − 2y3 = r3
(
3 cos(φ)3 − 2 sin(φ)3

)
et x2 + y2 = r2

et donc
|f(x, y)| = r

∣∣3 cos(φ)3 − 2 sin(φ)3
∣∣ ≤ r · 5 −→ 0

2



lorsque (x, y) → 0. Il s’en suit que la fonction f̂ : R2 → R définie par

f̂(x, y) =

{
f(x, y), si (x, y) ̸= (0, 0)

0, si (x, y) = (0, 0)

est le prolongement par continuité de la fonction f en (0, 0). Le graphe de f̂
se trouve à la Fig. 1.

(b) On considère les limites de deux cas particuliers de f :

lim
x→0

f(x, 0) = lim
x→0

0

5x2
= 0 et lim

x→0
f(x, 2x) = lim

x→0

2x2

x2
= 2 .

(Formellement, cela revient à considérer les deux suites ( 1
n
, 0) et ( 1

n
, 2
n
), et

constater que les limites ne sont pas les mêmes). Ainsi lim
(x,y)→(0,0)

f(x, y) n’existe

pas et la fonction f : R2 → R n’admet donc pas de prolongement par continuité
en (0, 0) (voir Fig. 2 pour le graphe).
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(c) On utilise encore une fois les coordonnées polaires
{

x = r cos(φ)
y = r sin(φ)

. Ainsi

f(x, y) =
1− cos(r)

r2
, et comme cette expression ne dépend plus de φ, on

peut calculer la limite à deux variables un utilisant une limite à une variable:

lim
(x,y)→(0,0)

f(x, y) = lim
r→0

1− cos(r)

r2
= lim

r→0

1− cos(r)2

r2(1 + cos(r))

= lim
r→0

(
sin(r)

r

)2

· 1

1 + cos(r)
=

1

2

La fonction f̂ : R2 → R définie par

f̂(x, y) =

{
f(x, y), si (x, y) ̸= (0, 0)
1
2
, si (x, y) = (0, 0)

est donc le prolongement par continuité de f en (0, 0) (graphe de f̂ à la Fig. 3).
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(d) Comme on a

lim
t→0

f(t, t) = lim
t→0

t2
0

4t4
= 0 ,

on devrait avoir lim
(x,y)→(0,0)

f(x, y) = 0 pour qu’un prolongement par continuité

de f en (0, 0) existe. Or, en considérant la limite f(2t, t) on trouve

lim
t→0

f(2t, t) = lim
t→0

2t2
4t2 − t2

(4t2 + t2)2
= lim

t→0

6t4

25t4
=

6

25
̸= 0 .

Ainsi f ne peut pas être prolongé par continuité au point (0, 0) (voir Fig. 4).
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Solution 3.

(a) Cette fonction est continue en (2,1), d’où lim
(x,y)→(2,1)

x2 − 3y

x+ 2y2
=

4− 3

2 + 2
=

1

4
.

(b) Cette fonction s’écrit f(x, y) = f1(u) =
tan(u)

u
, où u = u(x, y) = 3x2 + y2.

Comme u est continue en (0, 0), et ̸= 0 si (x, y) ̸= (0, 0), on a :

lim
(x,y)→(0,0)

tan(3x2 + y2)

3x2 + y2
= lim

u→0

tan(u)

u
= lim

u→0

sin(u)

u
· 1

cos(u)
= 1

par un résultat du cours.

(c) Ici, le passage en coordonnées polaires est tentant mais hélas inutile (et mène
souvent à une faute). En effet, en posant (x, y) = (r cos(φ), r sin(φ)), on a

f(x, y) =
r3 cos(φ) sin2(φ)

r2(cos2(φ) + r2 sin4(φ))
= r · cos(φ) sin2(φ)

cos2(φ) + r2 sin4(φ)

Ce raisonnement est correct, mais c’est le passage d’une limite à 2 variables
(x, y) vers une limite à une variable r qui est faux. En effet, ici, la limite lorsque
r → 0 vaut zéro: Si cos(φ) = 0, alors l’expression vaut 0, et sinon, l’expression
tend vers 0 · sin2(φ)

cos(φ)+0
= 0. Le problème est qu’en faisant varier r tout seul, on

a effectivement "fixé" φ.

Il serait plus correct de dire que φ peut dépendre de r: φ = φ(r), (et la
limite à calculer serait donc r · cos(φ(r)) sin2(φ(r))

cos2(φ(r))+r2 sin4(φ(r))
ce qui est une autre paire de

4



manches !), mais même là c’est trop restrictif: on peut avoir "plusieurs φ pour
le même r", et donc φ(r) n’est pas forcément bien défini...

Un dernier espoir serait de borner le terme cos(φ) sin2(φ)

cos2(φ)+r2 sin4(φ)
comme dans l’exer-

cice 2(a), mais en essayant, on s’aperçoit que si φ est suffisamment proche
de π/2 et r suffisament petit, le dénominateur peut être très petit, et donc
l’expression très grande...

En effet, cette limite n’existe pas. On peut le voir directement sans passer par
les coordonnées polaires: Sur une suite de points de la forme (xn, 0), avec xn ̸= 0

et lim
n→∞

xn = 0 on a lim
n→∞

f(xn, 0) =
xn · 02

x2
n + 04

= lim
n→∞

0 = 0. Et d’autre part, sur

une suite de points (y2n, yn) avec yn ̸= 0 et lim
n→∞

yn = 0 on a lim
n→∞

f(y2n, yn) =

lim
n→∞

y2ny
2
n

(y2n)
2 + y4n

=
1

2
. Donc la limite n’existe pas.

(d) Pour (x, y) ∈ R2 \ {(0, 0)} on a

|f(x, y)| =
∣∣∣∣ x2

x2 + y4

∣∣∣∣ · |y| ≤ ∣∣∣∣ x2

x2 + 0

∣∣∣∣ · |y| ≤ |y| −→ 0

lorsque (x, y) → (0, 0). (Noter que la borne sur =
∣∣∣ x2

x2+y4

∣∣∣ est vraie même si
x = 0, donc dans tous les cas on a |f(x, y)| ≤ |y|. Ainsi lim

(x,y)→(0,0)
f(x, y) = 0.

(e) Le plus simple est d’utiliser un développement limité log(1 + t) = t + tε(t).
Ainsi, pour (x, y) assez proche de (0, 0), on a

|f(x, y)| = |x2 + y2 + y2ε(y2)|√
x2 + y2

≤ x2 + y2 + y2|ε(y2)|√
x2 + y2

≤ x2 + 2y2√
x2 + y2

où l’on a utilisé le fait que ε(y2) → 0 lorsque y → 0, et est donc ≤ 1 en
valeur absolue pour y assez proche de 0. Un passage en coordonnées polaires
(x, y) = (r cosφ, r sinφ) donne alors

|f(x, y)| =≤ x2 + 2y2√
x2 + y2

=
r2(cos2(φ) + 2 sin2(φ))

r
≤ r · 3 −→ 0

lorsque r → 0. Ainsi lim
(x,y)→(0,0)

f(x, y) = 0.

(f) A nouveau, un développement limité nous vient en aide: et = 1+ t+ tε(t). On
a alors, pour (x, y) assez proche de (0, 0)

|f(x, y)| = |1− 1− x3 − x3ε(x3)|
x2 + y2

≤ |x3|+ |x3| · |ε(x3)|
x2 + y2

≤ 2|x3|
x2 + y2

où l’on a utilisé le fait que ε(x3) → 0 lorsque x → 0, et est donc ≤ 1 en valeur
absolue pour x assez proche de 0. Ainsi

|f(x, y)| ≤ 2x2

x2 + y2︸ ︷︷ ︸
≤2

·|x| ≤ 2|x| −→ 0
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lorsque (x, y) → (0, 0), d’où lim
(x,y)→(0,0)

f(x, y) = 0.

(g) Cette limite n’existe pas: si y = 0, f(x, y) = 0 → 0, et si x = 0 et y > 0, on a

f(x, y) =
y

y + y2
=

1

1 + y
−→ 1

lorsque y → 0+. (Formellement, on prend les suites ( 1
n
, 0) et (0, 1

n
), et on

constatte que les limites sont différentes).

(h) On a

f(x, y) =
x2y2 − xy3

(x2 + y2)2
− y7

(x2 + y2)2

La seconde partie tend vers 0: en effet∣∣∣∣ y7

(x2 + y2)2

∣∣∣∣ = (
y2

x2 + y2

)2

︸ ︷︷ ︸
≤1

|y|3 ≤ |y|3 −→ 0

lorsque (x, y) → (0, 0). Pour la première, un passage en coordonnées polaires
(x, y) = (r cosφ, r sinφ) donne

x2y2 − xy3

(x2 + y2)2
=

r4(cos2(φ) sin2(φ)− cos(φ) sin3(φ))

r4

= cos2(φ) sin2(φ)− cos(φ) sin3(φ).

On voit donc que cette expression ne dépend plus de r, mais bel et bien de
φ ! Ainsi, en prenant φ = 0, on a f(r cosφ, r sinφ) = 0 −→ 0 et en prenant
φ = π

3
, on a f(r cosφ, r sinφ) = 1

4
· 3
4
− 1

2
· 3

√
3

8
̸= 0 ̸−→ 0. Il suit que la limite

n’existe pas.

(Avec les suites, cela revient à prendre une suite ( 1
n
cos(0), 1

n
sin(0)) = ( 1

n
, 0)

pour φ = 0, et ( 1
n
cos(π/3), 1

n
sin(π/3)) = ( 1

2n
,
√
3

2n
) pour φ = π/3).

Solution 4.
Soit la fonction f : R2 → R définie par

f(x, y) =
y ln

(
1 + (x2 + y2)

2
)

exp
(√

x2 + y2
) (

x2 + y2
) 5

2

pour (x, y) ̸= (0, 0). Alors,

lim
(x,y)→(0,0)

f(x, y) = 0

lim
(x,y)→(0,0)

f(x, y) = 1

lim
(x,y)→(0,0)

f(x, y) n’existe pas

lim
(x,y)→(0,0)

f(x, y) = 1
4
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On calcule les limites le long des axes x et y. On a

lim
x→0

f(x, 0) = lim
x→0

0 · ln
(
1 + (x2)

2
)

exp
(√

x2
) (

x2
) 5

2

= lim
x→0

0 = 0

et

lim
y→0+

f(0, y) = lim
y→0+

y ln
(
1 + (y2)

2
)

exp
(√

y2
) (

y2
) 5

2

= lim
y→0+

1

exp
(√

y2
) · lim

y→0+

ln(1 + y4)

y4
.

La première limite se calcule directement :

lim
y→0+

1

exp
(√

y2
) =

1

exp(0)
= 1 .

La deuxième limite est de la forme 0
0

et on peut utiliser Bernoulli-l’Hospital :

lim
y→0+

ln(1 + y4)

y4
= lim

y→0+

4y3

1+y4

4y3
= 1 .

Puisque lim
x→0

f(x, 0) ̸= lim
y→0+

f(0, y) la limite lim
(x,y)→(0,0)

f(x, y) n’existe pas.

Remarque 1: Ci dessus on a pris une suite y → 0 avec y > 0. Si on prenait
y → 0 avec y < 0 on aurait obtenu limy→0− f(0, y) = −1, du au fait que dans ce
cas y

(y2)5/2
= sign(y)

|y|4 = −1
y4

. Remarque 2: Ceci est une manière de trouver la réponse,
mais d’autres méthodes sont aussi possibles. Par exemple, si on prend une suite
(xn, yn) avec xn = 0 et yn = (−1)n

n
, alors f(xn, yn) s’approche de 1 pour n pair et de

−1 pour n impair. Donc la limite n’existe pas.

Solution 5.
(a) Comme f(x, y) = c ⇔ y = 1

2
(x2 − c), les lignes de niveau de f sont de la

forme y = 1
2
(x2−c). Les lignes pour c = −2, 0, 2 sont tracées à la Fig. 5 (dans

cet ordre de haut en bas). De plus on a

∇f(x0, y0) =

(
∂f

∂x
(x0, y0),

∂f

∂y
(x0, y0)

)
(x0, y0) = (2x0,−2)

et ainsi

∇f(−2, 3) = (−4,−2) ∇f
(
1, 1

2

)
= (2,−2) ∇f(2, 1) = (4,−2) .

Les gradients en ces points sont orthogonaux aux lignes de niveau correspon-
dantes (voir Fig. 5). Pour information, la Fig. 6 représente le graphe de f avec
des lignes de niveau f(x, y) = const ainsi que les éléments de la Fig. 5 en 3D.
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(b) Les surfaces de niveau de g sont définies par

g−1(c) = {(x, y, z) ∈ R3 | g(x, y, z) = c}

pour un c ∈ R fixé. Comme le graphe de f est

G(f) :=
{
(x, y, z) ∈ R3 | z = f(x, y)

}
,

on peut définir g : R3 → R par

g(x, y, z) = f(x, y)− z = x2 − 2y − z .

Ainsi G(f) correspond à g−1(0), i.e. à la surface de niveau avec g(x, y, z) = 0.
Pour c ∈ R général, on a g(x, y, z) = c ⇔ z = f(x, y) − c si bien que la
surface de niveau est le graphe de la fonction f̃ : R2 → R , f̃(x, y) = f(x, y)−c .
La Fig. 7 montre ces surfaces pour c = −8, 0, 8 .
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Solution 6.
Si (x, y) ̸= (0, 0), on a x2 + y2 > 0, donc (x2 + y2)α est bien défini, et comme
f est combinaison de fonctions continues, on conclut que f est continue en tout
(x, y) ̸= (0, 0) pour tout α ∈ R. Étudions la continuité en (0, 0). En utilisant une
transformation en coordonnées polaires, on trouve

f(x, y) = r2(1−α) cos(φ) sin(φ).
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Ainsi, si α < 1, l’exposant du r est positif et on a

|f(x, y)| = r2(1−α) | cos(φ) sin(φ)|︸ ︷︷ ︸
≤1

≤ r2(1−α) −→ 0

lorsque (x, y) −→ 0. Ainsi la fonction est continue dans ce cas.

Si α = 1, on a f(x, y) = cos(φ) sin(φ). Comme la limite lorsque r → 0 dépend de φ,
la limite de f(x, y) n’existe pas, et donc la fonction n’est pas continue.

Finalement, si α > 1, on peut par exemple poser φ = π
4

et trouver

f(x, y) = r2(1−α) · 1
2
→ ∞

et la limite de f(x, y) n’existe pas non plus dans ce cas.

Pour résumer, la fonction est continue en (0, 0) si et seulement si α ∈ ]−∞, 1[.

Solution 7.

La fonction f(x, y) =

{
0 si x ̸= 0
1 si x = 0

n’admet pas de limite en (0, 0) mais on peut

vérifier que lim
t→0

f(t, α t2) = 0.

Solution 8.

La chaine d’implications est:

(f) (a) (e) (d)

(c) (b)

Pour la chaîne du haut, les limites se traduisent par: il existe un nombre ℓ ∈ R tel
que pour toute suite ((xk, yk)) ⊆ R2

(f) telle que ((xk, yk) ̸= (0, 0) et) (xk, yk) → (0, 0), on a lim
k→∞

f(xk, yk) = ℓ = f(0, 0).

(a) telle que (xk, yk) ̸= (0, 0) et (xk, yk) → (0, 0), on a lim
k→∞

f(xk, yk) = ℓ.

(e) de la forme (xk, yk) = (rk cosφ, rk sinφ) avec rk → 0+, on a lim
k→∞

f(xk, yk) = ℓ.

(d) de la forme (xk, yk) = (rk cosφ, rk sinφ) avec rk → 0+, lim
k→∞

f(xk, yk) existe.

Il est clair que les conditions deviennent de moins en moins fortes (de plus en plus
restrictives), d’où la chaine d’implications. Noter que la condition en gris au (f) est
superflue, car comme la limite en question doit de toute façon être égale à f(0, 0),
les suites ont le "droit" de toucher le point (0, 0).

Pour la chaine du bas, remarquons que (c) est équivalent à (c’) ci-dessous:

(c) Il existe ℓ ∈ R tel que pour toute suite ((xk, yk)) ⊆ R2 telle que (xk, yk) ̸= (0, 0)
et (xk, yk) → (0, 0), on a lim

k→∞
f(xk, 0) = ℓ.

(c’) Il existe ℓ ∈ R tel que pour toute suite (xk) ⊆ R telle que xk → 0, on a
lim
k→∞

f(xk, 0) = ℓ.
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En effet:
(c) ⇒ (c’): Pour (xk) ⊆ R telle que xk → 0, on applique (c) à la suite (xk,

1
k
) ;

on a alors (xk, yk) ̸= (0, 0) et (xk, yk) → (0, 0), et on conclut que
lim
k→∞

f(xk, 0) = ℓ.
(c) ⇐ (c’): Pour ((xk, yk)) ⊆ R2 telle que (xk, yk) ̸= (0, 0) et (xk, yk) → (0, 0),

on applique (c’) à la suite (xk) ⊆ R ; on a alors xk → 0 et on conclut
que lim

k→∞
f(xk, 0) = ℓ.

Les limites du bas se traduisent donc par: il existe un nombre ℓ ∈ R tel que pour
toute suite ((xk, yk)) ⊆ R2 convergeant vers (0, 0)

(f) on a lim
k→∞

f(xk, yk) = ℓ = f(0, 0).

(c’) et de la forme (xk, yk) = (xk, 0), on a lim
k→∞

f(xk, yk) = ℓ.

(b) et de la forme (xk, yk) = (xk, 0) avec xk ̸= 0, on a lim
k→∞

f(xk, yk) = ℓ.

A nouveau, les conditions deviennent de plus en plus restrictives, d’où la chaine
d’implications.

Finalement, pour (e) ⇒ (b), en prenant φ = 0 et φ = π dans (e), on trouve que

lim
r↓0

f(r, 0) = ℓ = lim
r↓0

f(−r, 0).

En renommant la variable à x, on voit que les limites lim
x↓0

f(x, 0) et lim
x↑0

f(x, 0) existent

et sont égales, et ainsi lim
x→0

f(x, 0) existe aussi.

Les contre-exemples sont décrits dans le tableau suivant (voir liste en dessous):

(a) (b) (c) (d) (e) (f)
(a) ⇒ 1 1
(b) ⇒ 2 1 2 2 1
(c) ⇒ 2 2 2 2
(d) ⇒ 3 4 1 4 1
(e) ⇒ 3 1 1
(f) ⇒

1. Il faut prendre une fonction qui vérifie (a), (b), (d), (e), mais pas (c) ou (f).
On choisit une fonction qui n’est pas continue en (0, 0), et pas constante sur

l’axe des x: par exemple f(x, y) =

{
0 si (x, y) ̸= (0, 0)
1 si (x, y) = (0, 0).

2. Ici, il faut trouver une fonction qui vérifie (b) et (c), mais pas (a), (d), (e), ou
(f). On prend f constante sur l’axe des x, mais dont la limite n’existe pas sur

l’axe des y: par exemple f(x, y) =

{
0 si y = 0
sin( 1

y
) si y ̸= 0.

3. On prend une fonction vérifiant (e), (d), mais pas (a): par exemple: f(x, y) ={
0 si y ̸= x2

1 si y = x2.
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4. Finalement, on trouve une fonction vérifiant (d), mais pas (b) ou (e): par

exemple f(x, y) =

{
1 si y = 0 et x > 0
0 sinon.
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