Remarque sur les corrigés

Lire une solution, méme partielle, d’un exercice sans avoir vraiment
essayé de le résoudre (plusieurs heures, méme parfois plusieurs jours)
est presque totalement inutile. Faire un exercice en ayant la solution
sous les yeux est beaucoup plus facile, et ne prépare que trés mal a un
examen (qui se fait sans solutions).

Par conséquent, la lecture du présent corrigé est déconseillée, et se fait
a vos risques et périls.



Analyse 11 Corrigé 5
EPFL - Sections SIE/GC

Solution 1.
(a) Les fonctions f; : R — R?, fi1(t) = (1 + cos(t),sin(t)), f2 : R — R2, fo(t) =
(—1—cos(t),sin(t)) et f3: R — R? f3(t) = (—2—27+t,0) sont différentiables
sur R et donc en particulier continues sur R. Puisque fi(7) = fao(7) et fo(271) =

f5(2m), on a
Jim f(t) = lim f(t) = f() et lim f(t)= lim f(t)=f(27)

ce qui montre que la fonction f est continue.

(b) L’image de f est (le segment [—2,2] fait partie de I'image)

(c) La fonction f n’est pas injective car on a :

f(0) = f(2m +4) = (2,0) ou encore f(m)= f(2r +2) = (0,0) .

(d) La fonction f n’est pas différentiable en ¢ = 27, mais fi, fo et f3 sont diffé-
rentiables. On a :

2m+4

C= [IAONdE+ [ IfONd+ [ | f0)]]de
[t Jusnes ]

T 2w 2n+4
:/1dt+/1dt+/1dt
0 T 27

=2r+4.

Solution 2.
x = rcos(p)

y = rsin(y) omL &

(a) En passant en coordonnées polaires {

323 — 2y = o3 (3 COS((,O)S — QSin(go)S) et 2?4y =1r?

et donc
|f(z,y)| =7 ‘BCos(go)?’ - ZSin(go)S‘ <r.-5-—0
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lorsque (z,y) — 0. Il s’en suit que la fonction f: R? — R définie par

oy [ I @), st (@) #(0,0)
f(z,y) {O, si(x,y) = (0,0)

est le prolongement par continuité de la fonction f en (0,0). Le graphe de f
se trouve a la Fig. 1.

On considére les limites de deux cas particuliers de f:

. .0 . . 227
0 =inga =0 o gl =gty =2

(Formellement, cela revient a considérer les deux suites (£,0) et (£, 2), et

constater que les limites ne sont pas les mémes). Ainsi ( l)irrzo 0 f(z,y) n'existe
x?y _> K

pas et la fonction f : R? — R n’admet donc pas de prolongement par continuité
en (0,0) (voir Fig. 2 pour le graphe).

FIGURE 1 — FIGURE 2 —
On utilise encore une fois les coordonnées polaires { v oo s(¢) . Ainsi
y = rsin(y)
1 — cos(r
flz,y) = —2(), et comme cette expression ne dépend plus de ¢, on

peut calculer la limite & deux variables un utilisant une limite & une variable:

: . l—cos(r) .. 1—cos(r)?
(m,y)lEf%O,O) f(x7 y) Tl_l;I(l) r2 rli)l’(l) 7“2(1 + COS(T’))

_ (sin(r)\? 1 1
= lim : = —
r—0 r 1+ cos(r) 2

La fonction f: R? — R définie par

. {ﬂx,y), si (x,y) # (0,0)

fl,y) = L si (z,y) = (0,0)

est donc le prolongement par continuité de f en (0,0) (graphe de f alaFig. 3).
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Comme on a
0
. T 2 Y _
i £0.) =y g =0
on devrait avoir ( I)HI% : f(z,y) = 0 pour qu'un prolongement par continuité
z,y)—(0,0
de f en (0,0) existe. Or, en considérant la limite f(2¢,¢) on trouve

4% — t? 614 6
. _ 6

. 1 2 —
lim f(2t,¢) = lim 2¢ ar e - o T o5

Ainsi f ne peut pas étre prolongé par continuité au point (0,0) (voir Fig. 4).

FIGURE 3 — FIGURE 4 —

Solution 3.

(a)
(b)

2—3y 4-3 1
Cette fonction est continue en (2,1), d’ot  lim ‘ Y _ =-.
@y r+2y2 242 4

t
Cette fonction s’écrit f(z,y) = fi(u) = an(u)’ ou u = u(z,y) = 3z% + y*
u
Comme u est continue en (0,0), et # 0 si (z,y) # (0,0), on a :

i tan(3z? + y?) — lim tan(u) _ - sin(u) 1 )
(z,y)—=(0,0)  3x2 + 12 u—0 U u—0 U COS(U)

par un résultat du cours.

Ici, le passage en coordonnées polaires est tentant mais hélas inutile (et méne
souvent a une faute). En effet, en posant (z,y) = (r cos(¢), rsin(y)), on a

73 cos(g) sin?(y) _ . cos(y) sin?(¢)

72(cos?(p) + rZsin*(p)) - cos? () + r2sint ()

flz,y) =

Ce raisonnement est correct, mais c’est le passage d’une limite & 2 variables
(x,y) vers une limite a une variable r qui est faux. En effet, ici, la limite lorsque
r — 0 vaut zéro: Si cos(y) = 0, alors I'expression vaut 0, et sinon, I’expression
tend vers O - Ciij% = 0. Le probléme est qu’en faisant varier r tout seul, on
a effectivement "fixé" .

I serait plus correct de dire que ¢ peut dépendre de r: ¢ = p(r), (et la
cos(p(r)) sin? (¢ (r))
cos?(p(r))+r2 sin’ (¢(r))

limite a calculer serait donc r - ce qui est une autre paire de
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manches!), mais méme 1a c’est trop restrictif: on peut avoir "plusieurs ¢ pour
le méme 7", et donc ¢(r) n’est pas forcément bien défini...
cos(i) sin? (¢)
cos2(p)+r2 sin?(¢)
cice 2(a), mais en essayant, on s’aper¢oit que si ¢ est suffisamment proche

de m/2 et r suffisament petit, le dénominateur peut étre trés petit, et donc
I’expression trés grande...

Un dernier espoir serait de borner le terme comme dans ’exer-

En effet, cette limite n’existe pas. On peut le voir directement sans passer par

les coordonnées polaires: Sur une suite de points de la forme (z,,0), avec z,, # 0
T, - 02 .

et lim z, =0ona lim f(x,,0) = ——— = lim 0 = 0. Et d’autre part, sur

n—o00 n—o00 x% —+ 04 n—00

une suite de points (y2,v,) avec y, # 0 et lim 3, = 0 on a lim f(y2,yn) =

lim —2“"— = —. Donc la limite n’exi )

nl_g)lo 2)° + 4 5 onc la limite n'existe pas

Pour (z,y) € R*\ {(0,0)} on a

2 2

T T
— |yl < Ayl <yl — 0
0 = ||l < gl < o
lorsque (x,y) — (0,0). (Noter que la borne sur = ﬁ‘ est vraie méme si
x = 0, donc dans tous les cas on a |f(z,y)| < |y|. Ainsi  lim  f(x,y) = 0.
(2,9)—(0,0)

Le plus simple est d’utiliser un développement limité log(1 + t) = t + te(t).
Ainsi, pour (z,y) assez proche de (0,0), on a

o) = B yeW)l 2y H el o o4 2y
’ /x2+y2 - /x2+y2 - /x2+y2

ot lon a utilisé le fait que £(y*) — 0 lorsque y — 0, et est donc < 1 en
valeur absolue pour y assez proche de 0. Un passage en coordonnées polaires
(z,y) = (rcosp,rsing) donne alors

2 22 2 2 2'2
o y)] =< ¢+ 2y :r(cos (p) + 2sin (w))gr-?,—m

V2 +y? r

lorsque r — 0. Ainsi ~ lim  f(z,y) = 0.
(z,y)—(0,0)

A nouveau, un développement limité nous vient en aide: ' = 1+t +te(t). On
a alors, pour (z,y) assez proche de (0,0)

PO Sk ik ) Pl L o [ O
) £C2—|—y2 - x2+y2 _l'2+y2

ol l'on a utilisé le fait que e(x®) — 0 lorsque # — 0, et est donc < 1 en valeur
absolue pour z assez proche de 0. Ainsi

222
1‘2 + y2

——
<2

|f(2,y)] <

Jx| < 2|z — 0

>



lorsque (z,y) — (0,0), dot lim  f(z,y) =0.
(z,9)—(0,0)

Cette limite n’existe pas: si y =0, f(z,y) =0 —0,et siz=0et y >0, on a

Y B 1
y+y2  1+y

— 1

flx,y) =

lorsque y — 07. (Formellement, on prend les suites (%,0) et (0, %), et on
constatte que les limites sont différentes).

On a

22 — 2y YT

(22 +12)2 (22 + 2)?

La seconde partie tend vers 0: en effet

2\
= (I2+y2> ‘y’?)g ’y‘3—>0

<1

flx,y) =

y7

(132 + y2)2

lorsque (z,y) — (0,0). Pour la premiére, un passage en coordonnées polaires
(z,y) = (r cos g, rsinp) donne

w’y? — ay®  ri(cos’(p) sin(p) — cos(p) sin’(p))
(22 + y2)? 4
= cos?(ip) sin?(p) — cos(y) sin®(y).

On voit donc que cette expression ne dépend plus de r, mais bel et bien de
¢! Ainsi, en prenant ¢ = 0, on a f(rcosp,rsing) = 0 — 0 et en prenant
p=7%,0ona f(reosp,rsing)=1-2—1. 3\[ # 0 +— 0. 11 suit que la limite

472
n’existe pas.
(Avec les suites, cela revient & prendre une suite (= cos(0),  sin(0)) = (£,0)

pour ¢ = 0, et (£ cos(m/3), L sin(r/3)) = (5 f) pour ¢ = 7r/3) '

2n? 2n

Solution 4.
Soit la fonction f: R? — R définie par

y ln(l + (2% + y2)2)

exp (Va2 + ) (a2 4+ y2)

flz,y) =

pour (x,y) # (0,0). Alors,

[]
[]

lim T =0 lim T n’existe pas
(z,y)—(0,0) f( y) . (z,y)—(0,0) f( y) P
lim T =1 lim T
(z,y)—(0,0) J(x.y) = D (x,y)—(0,0) Hay) =



On calcule les limites le long des axes z et y. On a

0- 1n<1 + (x2)2>

hm f(z,0) = lim =lim 0 =
z—0 exp(@) (xz) z—0
et
yIn(1+ (y?)° 1
lim f(0,y) = lim ( ) = lim . lim (1 +y7) :

y—0t y—0t exp( /yg) (yQ)g y—07t exp( /y2> y—0+ y4
La premiére limite se calcule directement :

1 1
lim = =1.

y—0t exp( \/?) exp(0)

La deuxiéme limite est de la forme 8 et on peut utiliser Bernoulli-I'Hospital :

4 4y

. ln(l +y ) . 1+y4
1lm —_— = hm e
y—0t y4 y—0t 4y3

=1.

Pui li 0 li 0 la limit li t
uisque lim f(z,0) # yg& f(0,y) la limite (W)lirzo O)f(:v ,y) n’existe pas.

Remarque 1: Ci dessus on a pris une suite y — 0 avec y > 0. Si on prenait

y — 0 avec y < 0 on aurait obtenu lim,_,o- f(0,y) = —1, du au fait que dans ce
cas —Lo = 9" — =1 Remarque 2: Ceci est une maniére de trouver la réponse,
(y2)>/ ly] y

mais d’autres méthodes sont aussz possibles. Par exemple, si on prend une suite
(Tn, Yn) avec x, =0 et y, = G ——, alors f(x,,yn) s’approche de 1 pour n pair et de
—1 pour n tmpair. Donc la limite n’existe pas.

Solution 5.

(a) Comme f(z, ) =c¢ & y = 1(z? - ¢), les lignes de niveau de f sont de la
forme y = % 22 —¢). Les lignes pour ¢ = —2, 0, 2 sont tracées a la Fig. 5 (dans
cet ordre de haut en bas). De plus on a

Vf(xoyyo) = (g—i(%,yo% g—z(xmyo)) (Io,yo) = (2%7 —2)

et ailnsi
Vf(-2,3) = (—4,-2) Vi(L,1)=(2-2) Vf(2,1)=(4,-2).

Les gradients en ces points sont orthogonaux aux lignes de niveau correspon-
dantes (voir Fig. 5). Pour information, la Fig. 6 représente le graphe de f avec
des lignes de niveau f(z,y) = const ainsi que les éléments de la Fig. 5 en 3D.



(b) Les surfaces de niveau de g sont définies par
g (0) = {(z,y,2) €R*| g(2,y,2) = c}
pour un ¢ € R fixé. Comme le graphe de f est
G(f) = {(x,y,2) eR® | 2 = f(z,y)},
on peut définir g : R® — R par
g(x,y,2) = f(z,y) —z2 =2 =2y — 2.

Ainsi G(f) correspond a g~1(0), i.e. a la surface de niveau avec g(x,y, z) = 0.
Pour ¢ € R général, on a g(x,y,z) = ¢ < z = f(x,y) — ¢ si bien que la
surface de niveau est le graphe de la fonction f : RZ — R, f(m, y) = f(z,y)—c.
La Fig. 7 montre ces surfaces pour ¢ = -8, 0, 8.

y

FIGURE 6 — FIGURE 7 —

Solution 6.

Si (z,y) # (0,0), on a z* + y* > 0, donc (22 + y?)* est bien défini, et comme
f est combinaison de fonctions continues, on conclut que f est continue en tout
(z,y) # (0,0) pour tout a € R. Etudions la continuité en (0,0). En utilisant une
transformation en coordonnées polaires, on trouve

Fl,y) = r*17 cos(p) sin(p).



Ainsi, si a < 1, exposant du r est positif et on a
£, y)| = 207 [cos(p) sin(p)] < r07) — 0
<1

lorsque (z,y) — 0. Ainsi la fonction est continue dans ce cas.

Sia=1,ona f(z,y) = cos(p) sin(¢). Comme la limite lorsque r — 0 dépend de ¢,
la limite de f(x,y) n’existe pas, et donc la fonction n’est pas continue.

Finalement, si @ > 1, on peut par exemple poser ¢ = 7 et trouver

1
flay) =r*=. 2 = o0

et la limite de f(x,y) n’existe pas non plus dans ce cas.

Pour résumer, la fonction est continue en (0,0) si et seulement si o € |—o0, 1].

Solution 7.
. |0 siz#0
La fonction f(z,y) = { 1 size0
vérifier que lim f(¢, at?) = 0.
t—0

n’admet pas de limite en (0,0) mais on peut

Solution 8. (f) (a) (e) (d)

La chaine d’implications est: \ \

Pour la chaine du haut, les limites se traduisent par: il existe un nombre ¢ € R tel
que pour toute suite ((zg,yr)) C R?

(f) telle que ((xy, y) # (0,0) et) (zx, yx) — (0,0), on a klim fzk,yx) = €= £(0,0).

a) telle que (zx, yx) # (0,0) et (zx,yx) — (0,0), on a Jim [z, yr) = L.
—00

)
(a)
(e) dela forme (xy, yx) = (rx cos p, 1 sin ) avec r, — 07, on a klim fzr,ye) = L.
—00
)

d) de la forme (1, yr) = (1 cos p, rpsinw) avec r, — 07, lim f(x, yi) existe.
k
—00

Il est clair que les conditions deviennent de moins en moins fortes (de plus en plus
restrictives), d’ou la chaine d’implications. Noter que la condition en gris au (f) est
superflue, car comme la limite en question doit de toute fagon étre égale a f(0,0),
les suites ont le "droit" de toucher le point (0, 0).

Pour la chaine du bas, remarquons que (c) est équivalent a (c¢’) ci-dessous:
(c) Texiste £ € R tel que pour toute suite ((zx, yr)) € R? telle que (zx, yx) # (0,0)
et (x/myk) — (070)7 on a khm f(xlﬁo) = (.
—00

(¢") Il existe £ € R tel que pour toute suite (x;) € R telle que z, — 0, on a
klim f(zg, 0) = £
—00



En effet:
(c) = (¢)): Pour (z;) € R telle que z;, — 0, on applique (c) a la suite (2, 7);
on a alors (zx,yx) # (0,0) et (zx,yx) — (0,0), et on conclut que
kh_}rgo f(zg,0) = ¢.

(c) = (¢): Pour ((zx,y)) C R? telle que (w4, yx) # (0,0) et (zx,yx) — (0,0),
on applique (c¢’) a la suite (z;) € R; on a alors 2, — 0 et on conclut
que klim f(zx,0) = ¢.

—00

Les limites du bas se traduisent donc par: il existe un nombre ¢ € R tel que pour
toute suite ((zx, yx)) C R? convergeant vers (0,0)

(f) ona klim f(@n, ye) = €= f(0,0).
—00
(c’) et de la forme (zg,yx) = (2%, 0), on a klim f(r, yk) = £.
—00
(b) et de la forme (zx, yx) = (v, 0) avec zx # 0, on a klim f (g, yk) = ¢.
—00

A nouveau, les conditions deviennent de plus en plus restrictives, d’ou la chaine
d’implications.

Finalement, pour (e) = (b), en prenant ¢ = 0 et ¢ = 7 dans (e), on trouve que

1}&)1]00” 0)—€—hmf( ,0).

En renommant la variable & z, on voit que les limites liﬂ)l f(z,0) et li%l f(z,0) existent
Z. T

et sont égales, et ainsi lin% f(z,0) existe aussi.
z—

Les contre-exemples sont décrits dans le tableau suivant (voir liste en dessous):

() (b) (¢) (d) (¢) (f)
(a) = 1 1
(b) = | 2 1 2 2 1
c)=1| 2 I8 2 2 2
=3 4 1 4 1
(e)=| 3 1 1
(f) =

1. 11 faut prendre une fonction qui vérifie (a), (b), (d), (e), mais pas (¢) ou (f).
On choisit une fonction qui n’est pas continue en (0,0), et pas constante sur

0 si(z,y) # (0,0)

1 si(z,y) = (0,0).

2. Ici, il faut trouver une fonction qui vérifie (b) et (c), mais pas (a), (d), (e), ou
(f). On prend f constante sur I'axe des z, mais dont la limite n’existe pas sur

0 siy=20
I'axe des y: par exemple f(z,y) = { sin(l) si z 20,
y

I'axe des x: par exemple f(z,y) = {

3. On prend une fonction vérifiant (e), (d), mais pas (a): par exemple: f(z,y) =
{ 0 siy#a?

1 siy=a2



4. Finalement, on trouve une fonction vérifiant (d), mais pas (b) ou (e): par

1 siy=0etz>0
exemple f(x,y) = { 0 sinyon-
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