
Remarque sur les corrigés

Lire une solution, même partielle, d'un exercice sans avoir vraiment

essayé de le résoudre (plusieurs heures, même parfois plusieurs jours)
est presque totalement inutile. Faire un exercice en ayant la solution
sous les yeux est beaucoup plus facile, et ne prépare que très mal à un
examen (qui se fait sans solutions).

Par conséquent, la lecture du présent corrigé est déconseillée, et se fait
à vos risques et périls.
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Analyse II Corrigé 2
EPFL � Sections SIE/GC

Solution 1.

(a) La fonction y(x) = 2 est solution de l'équation. Pour y ̸= 2 on a

dy

dx
= y − 2 ⇒ dy

y − 2
= dx ⇒ ln(|y − 2|) = x+ C̃, C̃ ∈ R

⇒ y − 2 = Cex, C ̸= 0 ⇒ y = Cex + 2 .

Avec C = 0, on a y(x) = 2. Ainsi la solution générale est y(x) = Cex + 2
avec C ∈ R pour x ∈ R.

Cette EDO est linéaire: c'est y′ − y = −2. L'équation homogène corres-
pondante est y′ = y, qui a pour solution générale yh(x) = Cex, x ∈ R.
On devine la soution particulière yp(x) = 2. La solution générale est donc
{y(x) = Cex + 2, x ∈ R, C ∈ R}.

(b) La fonction y(x) = 1 est une solution. Pour y ̸= 1, on a

dy

dx
= −x(y − 1) ⇒ dy

y − 1
= −xdx ⇒ ln(|y − 1|) = −1

2
x2 + C̃, C̃ ∈ R

⇒ y = Ce−
1
2
x2

+ 1, C ̸= 0 .

Comme le cas C = 0 correspond à y(x) = 1, la solution générale est y(x) =

Ce−
x2

2 + 1 avec C ∈ R pour x ∈ R.

Cette EDO est linéaire: c'est y′+xy = x. L'équation homogène correspondante
est y′+xy = 0, et on trouve en séparant les variables comme plus haut que sa

solution générale est yh(x) = Ce−
x2

2 +x ∈ R. On devine la solution particulière

yp(x) = 1. Ainsi, la solution générale est {y(x) = y(x) = Ce−
x2

2 +1, x ∈ R, C ∈
R}.

(c) La fonction y(x) = 0 est une solution pour x ∈ ]−∞, 0[ et pour x ∈ ]0,+∞[.
Si x, y ̸= 0 on a

dy

dx
= −3y

x
⇒ dy

y
= −3dx

x
⇒ ln(|y|) = −3 ln(|x|) + C̃, C̃ ∈ R

⇒ |y| = C

|x|3
, C > 0 ⇒ y = ± C

|x|3
C > 0

⇒ y =
C

|x|3
C ̸= 0 ⇒ y =

C

x3
C ̸= 0 .

La dernière implication suit du fait que pour C ∈ R et x < 0 on a
C

|x|3
=

−C

x3
.

Les deux solutions y(x) = 0 déjà trouvées peuvent être inclues en choisissant
C = 0. La solution générale du problème est donc{

y : ]−∞, 0[ → R

x 7→ C

x3

∣∣∣∣∣C ∈ R

}
∪

{
y : ]0,+∞[ → R

x 7→ C

x3

∣∣∣∣∣C ∈ R

}
.
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L'EDO est linéaire homogène, la méthode vue en cours coïncide donc avec la
méthode de séparation des variables ci-dessus.

(d) En intégrant
dy√
y2 + 1

= dx des deux côtés on trouve arcsinh(y) = x + C

pour C, x ∈ R. Ainsi la solution générale est y(x) = sinh(x+C) pour C, x ∈ R.

Cette EDO n'est pas linéaire.

Solution 2.

(a) On procède par séparation des variables. En écrivant y′ =
dy

dx
l'équation de-

vient
6(y − 1)2 dy = x(3x+ 4) dx ,

d'où, par intégration des deux fonctions polynomiales,

2(y − 1)3 = x3 + 2x2 + C̃, C̃ ∈ R.

La forme explicite de la solution y est donc

y(x) = 1 + f−1
(
x2
(
1
2
x+ 1

)
+ C

)
, x ∈ I, C ∈ R, (1)

où f−1(u) est la fonction réciproque de f(x) = x3 et I est un intervalle ouvert
à dé�nir. Comme f est bijective sur R, sa fonction réciproque f−1 est aussi
dé�nie sur R, à savoir par

f−1(u) = sgn(u)|u|1/3.

Cette fonction est continue sur R mais elle n'est pas dérivable en u = 0, ce
qui fait que l'équation di�érentielle a plusieurs solutions y(x) données par la
même expression (1) mais dé�nies sur des intervalles ouverts di�érents.

En e�et comme on peut voir sur le graphe, la fonction y(x) est continue sur
R, mais elle n'est de classe C1 que sur des intervalles ouverts à gauche et à
droite du point b où le graphe de y(x) a un cusp et où la fonction y(x) n'est
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pas dérivable. Ces intervalles I dépendent des racines réelles du polynôme
x2
(
1
2
x+ 1

)
+ C , chaque solution étant dé�nie sur un intervalle ouvert sur

lequel ce polynôme est du même signe.

La condition initiale y(0) = 0 implique que 0 = 1 + sgn(C)|C|1/3 , c'est-à-
dire C = −1. Soit maintenant b > 0 l'unique solution réelle de l'équation
x2
(
1
2
x+ 1

)
− 1 = 0. (On peut voir que b est l'unique solution et qu'elle est

positive par une étude de la fonction g(x) = x2
(
1
2
x+ 1

)
− 1.) C'est donc l'in-

tervalle à gauche de b qui contient le point x0 = 0 où la condition initiale est
spéci�ée.

On obtient donc la solution maximale pour la condition initiale donnée :

y(x) = 1−
∣∣x2
(
1
2
x+ 1

)
− 1
∣∣1/3 = 1− 3

√
1− x2

(
1
2
x+ 1

)
, x ∈ : ]−∞, b[ : ,

(b) On applique la même méthode:

y y′ − ey
2−4x = 0 ⇒ y e−y2dy = e−4xdx ⇒ −1

2
e−y2 = −1

4
e−4x + C̃, C̃ ∈ R

⇒ e−y2 =
1

2
e−4x + C, C ∈ R ⇒ y2 = − ln

((
1

2
e−4x + C

))
, C ∈ R

En fait, la constante C ne peut pas prendre toutes les valeurs dans R parce
que y2 ≥ 0 et le logarithme doit être dé�ni. Mais comme on ne s'intéresse pas
à la solution générale ici, il n'est pas nécessaire de trouver le domaine exact de
C, il su�ra de trouver la valeur de C à partir de la condition initiale et puis
le domaine de x en fonction.

La forme explicite de la solution y est alors

y(x) = ±
√

− ln
(
1
2
e−4x + C

)
.

La condition initiale y(0) =
√

ln(2) implique que le signe est positif, et, de
plus, √

ln(2) = +
√
− ln

(
1
2
+ C

)
⇒ C = 0.

La solution particulière pour la condition initiale donnée est donc

y(x) =
√

4x+ ln(2)

qui est à priori dé�nie pour x ≥ − ln(2)
4

. Or, y′(x) =
2√

4x+ ln(2)
n'est pas

dé�nie en x = − ln(2)
4
. La solution maximale pour la condition initiale donnée

est donc

y(x) =
√

4x+ ln(2), x ∈
]
− ln(2)

4
,∞
[
.

(c) C'est une équation linéaire, on applique donc la méthode vue en cours. (i) On
résout l'équation homogène: y′ − y sin(x) = 0. En séparant les variables, on
obtient

yh(x) = Ce−
∫
(− sin(x))dx = Ce− cos(x) avec C ∈ R.
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(ii) Pour trouver une solution particulière de l'équation complète (i.e. avec
second membre), on utilise la méthode de variation de la constante:

yp(x) = C(x)e− cos(x).

On a alors
y ′
p(x) =

[
C ′(x) + C(x) sin(x)

]
e− cos(x)

et en substituant, on trouve:

[C ′(x) + C(x) sin(x)] e− cos(x) − sin(x)C(x)e− cos(x) = 4 sin(x)ecos(x)

⇔ C ′(x)e− cos(x) = 4 sin(x)ecos(x) .

Par conséquent C ′(x) = 4 sin(x)e2 cos(x) et en intégrant on trouve C(x) =
−2e2 cos(x) . Ainsi yp(x) = −2ecos(x). Notons qu'une éventuelle constante d'in-
tégration de cette étape serait combinée avec la constante de la solution de
l'équation homogène, donc il n'y a pas besoin d'ajouter une constante ici.

(iii) La solution générale de l'équation di�érentielle est donc

y = yh + yp = Ce− cos(x) − 2ecos(x), x ∈ R.

La condition initiale y
(
π
2

)
= 1 implique que C−2 = 1, d'où C = 3. La solution

pour la condition initiale donnée est donc

y(x) = 3e− cos(x) − 2ecos(x), x ∈ R.

(d) C'est également une équation linéaire. A cause du logarithme dans l'équation,
on a x > 0, et donc l'équation donnée est équivalente à

y′ − 1

x
y = 4 ln(x) .

(i) On résout l'équation homogène associée par séparation des variables. On
trouve:

yh(x) = Ce−
∫
− 1

x
dx = Celn(x) = C x , x > 0, C ∈ R.

(ii) Par la méthode de variation de la constante, on pose yp(x) = C(x)x et en

substituant dans l'équation initiale on trouve que C ′(x) = 4 ln(x)
x

. En intégrant
on trouve

C(x) = 4

∫
ln(x)

x
dx = 4

∫ [
ln(x)

]′
ln(x) dx = 2 ln(x)2 .

Il n'y a de nouveau pas de constante d'intégration à cette étape. Par conséquent

yp(x) = 2x ln(x)2.

(iii) La solution générale est donc:

y = yh + yp =
(
C + 2 ln(x)2

)
x , x ∈]0,∞[.

La solution pour la condition initiale y(1) = 1 est:

y(x) =
(
1 + 2 ln(x)2

)
x , x ∈ ]0,∞[ .
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Solution 3.

(a) Pour ε = 0, la solution maximale est y0(x) = ex, x ∈ R. Pour ε > 0 on utilise
la séparation des variables

dy

dx
= y1+ε ⇔ dy

y1+ε
= dx ,

ce qui donne, après intégration, la solution générale

− 1

ε yε
= x+ C , avec C ∈ R.

La condition initiale implique que

−1

ε
= C .

Ainsi

y−ε = −ε

(
x− 1

ε

)
et la solution recherchée est donc

yε(x) = (1− εx)−
1
ε , x ∈

]
−∞,

1

ε

[
.

(L'intervalle de dé�nition pour x s'obtient à partir du fait que 1− εx doit être
positif.)

(b) Notons que pour ε > 0 assez petit, tout x ∈ R est contenu dans le domaine de
dé�nition de yε. Ainsi, la limite à calculer fait du sens. On a

lim
ε→0

yε(x) = lim
ε→0

(1− εx)−
1
ε

= lim
ε→0

exp

[
−1

ε
ln(1− εx)

]
.

Comme la fonction exponentielle est continue, on peut échanger l'évaluation
de la fonction et la limite et l'on obtient

lim
ε→0

yε(x) = exp

[
lim
ε→0

(
− ln(1− εx)

ε

)]
.

Puisque lim
ε→0

ln(1 − εx) = ln(1) = 0 et lim
ε→0

ε = 0, on peut appliquer Bernoulli-

l'Hospital pour calculer la limite, ce qui donne

lim
ε→0

yε(x) = exp

[
lim
ε→0

(
−

−x
1−εx

1

)]
= exp

[
lim
ε→0

x

1− εx

]
= exp (x) = y0(x) .

6



Solution 4.

On récrit l'équation

dy

dt
= y(a− by) ⇔ dy

y(a− by)
= dt ⇔

∫
dy

y(a− by)
=

∫
dt

On décompose le terme de gauche en éléments simples :

A

y
+

B

a− by
=

A(a− by) +By

y(a− by)
⇔ 1 = A(a− by) +By = Aa− (Ab−B)y ,

donc A = 1
a

et B = b
a
. Ainsi∫

1

y(a− by)
dy =

∫
1

ay
dy +

∫
b

a(a− by)
dy =

1

a
ln(|y|)− 1

a
ln(|a− by|) ,

et donc on a pour C > 0

1

a
ln(|y|)− 1

a
ln(|a− by|) = t+ ln(C) ⇔

∣∣∣∣ y

a− by

∣∣∣∣1/a = Cet ⇔ y

a− by
= ±Caeat

On pose alors C∗ := ±Ca ∈ R∗ et on continue

y

a− by
= C∗eat ⇔ y = C∗eat(a− by) ⇔ y(1 + bC∗eat) = aC∗eat

⇔ y =
aC∗eat

1 + bC∗eat
=

aC∗

e−at + bC∗ =
a

e−at

C∗ + b
=

a
b

1 + e−at

bC∗

On détermine la valeur de C∗ pour condition initiale y(0) = y0 :

y(0) =
a
b

1 + 1
bC∗

=
aC∗

bC∗ + 1
= y0 ⇔ aC∗ = y0(bC

∗ + 1) ⇔ C∗ =
y0

a− by0

La solution cherchée est donc

y(t) =
a
b

1 + e−at(a−by0)
by0

=
a
b

1 +
(

a
by0

− 1
)
e−at

.

Noter que pour les conditions initiales y0 = 0 ou y0 =
a
b
, les solutions de l'équation

di�érentielle sont des fonctions constantes, à savoir y(t) = 0 et y(t) = a
b
respective-

ment.

La croissance de la solution y(t) est déterminée par le facteur λ := a
by0

− 1 devant

l'exponentielle. Si y0 > a
b
, alors λ < 0 et donc y(t) est décroissante. Si y0 < a

b
on a

λ > 0 et y(t) est croissante. Puisque lim
t→∞

y(t) = a
b
, la droite y = a

b
est une asymptote

horizontale et n'est donc jamais intersectée par y(t).

Solution 5.
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Remarque : rappelons que la méthode de la séparation des variables ne permet en

général pas de trouver toutes les solutions d'une équation di�érentielle, car en sépa-

rant les variables on est souvent amené à diviser par des expression qui peuvent s'an-

nuler. Ces valeurs éventuelles sont à inspecter séparément. Dans le présent exemple

ce sont les valeurs x = 0, x = 1, y = 0 et y = 1 qui sont de ce type. Par conséquence,

les deux solutions y(x) = 0, x ∈ R et y(x) = 1, x ∈ R ne peuvent pas être trouvées

par la méthode de la séparation des variables, mais on véri�e facilement que ce sont

bien des solutions. Les points x = 0 et x = 1 sont à contrôler pour chacune des

solutions, car il pourrait s'agir de point où, comme dans l'exercice 2(a) la fonction

qui dé�nit la solution n'est pas dérivable. La situation est di�érente dans le présent

exemple. Ici toutes les solutions sont régulières aussi bien en x = 0 qu'en x = 1,
mais ce sont néanmoins des points particuliers, car il s'agit de points de non unicité

de l'équation di�érentielle. En e�et, comme on peut voir dans le graphique en bas,

il existe une in�nité de solutions de l'équation di�érentielles qui satisfont y(0) = 0
ou y(1) = 1 et ces points sont de ce fait di�cile à traiter d'un point de vu théorique.

Hélas, en pratique ce souvent des points de ce type qui sont intéressants, raison pour

laquelle nous présentons ces exemples ici.

Observons d'abord que les fonctions constantes y(x) = 0 et y(x) = 1 sont des
solutions pour x ∈ R.

Si x, y ̸= 0 et x, y ̸= 1, l'équation di�érentielle donnée s'écrit

dy

y(y − 1)
=

dx

x(x− 1)
,

puis, en décomposant chaque terme en éléments simples:(
−1

y
+

1

y − 1

)
dy =

(
−1

x
+

1

x− 1

)
dx .

En intégrant les deux côtés on obtient

− ln |y|+ ln |y − 1| = − ln |x|+ ln |x− 1|+ ln(C̃), C̃ > 0,

⇔ ln

∣∣∣∣y − 1

y

∣∣∣∣ = ln

∣∣∣∣x− 1

x

∣∣∣∣+ ln(C̃) C̃ > 0,

⇔
∣∣∣∣y − 1

y

∣∣∣∣ = C̃

∣∣∣∣x− 1

x

∣∣∣∣ C̃ > 0, (2)

L'équation (2) est équivalente à

y − 1

y
= C

x− 1

x
, C ∈ R \ {0} , (3)

car, si un couple (x, y) satisfait l'équation (2) pour un certain C̃, il satisfait aussi
l'équation (3) avec C = C̃ ou C = −C̃, et si un couple (x, y) satisfait l'équation (3)
pour un certain C, il satisfait aussi l'équation (2) pour C̃ = |C|.
A partir de (3) on trouve l'expression explicite de y en fonction de x,

Cy(x− 1) = x(y − 1) ⇒ y(Cx− C − x) = −x ⇒ y(x) =
x

(1− C)x+ C
.
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Pour C ̸= 0 et C ̸= 1 la fonction y(x) dé�nit deux solutions, une sur l'intervalle]
−∞, C

C−1

[
et une sur l'intervalle

]
C

C−1
,∞
[
. (Le dénominateur de y s'annule en

x = C
C−1

dans ce cas.)

Pour C = 0, on a y(x) = 1 et pour C = 1, on a y(x) = x . Tout comme la solution
triviale y(x) = 0 , ces deux solutions sont dé�nies pour x ∈ R. La solution générale
de l'équation donnée est donc

y(x) =
x

(1− C)x+ C
, C ∈ R \ {0, 1} , x ∈

]
−∞, C

C−1

[
ou x ∈

]
C

C−1
,∞
[
,

y(x) = 1 , C = 0 , x ∈ R,
y(x) = x , C = 1 , x ∈ R,
y(x) = 0 , - x ∈ R.

Pour trouver les solutions particulières pour les conditions initiales y(x0) = y0 don-
nées, on met la condition initiale dans la solution générale et on résout pour C. Les
solutions sont:

x0 = −1, y0 = −1 ⇒ C = 1 ⇒ y = x, x ∈ R
x0 = −1, y0 = 1 ⇒ C = 0 ⇒ y = 1, x ∈ R
x0 = 2, y0 = 4 ⇒ C = 3

2
⇒ y = 2x

3−x
, x ∈]−∞, 3[ ∗

x0 = 2, y0 = −4 ⇒ C = 5
2

⇒ y = 2x
5−3x

, x ∈]5
3
,∞[ ∗

∗
On a choisi l'intervalle qui contient x0.

-4

-3

-2

-1

1

2

3

4

5

-5 -4 -3 -2 -1 1 2 3 4 5

y � 1

y � x
y �

2 x

3 - x

y �

2 x

5 - 3 x

x

y

Graphe des solutions (les points correspondent aux conditions initiales).

Solution 6.

On commence par chercher la solution générale. Soit y(t) une telle solution. On re-
marque déjà que y(t) ≥ 0 (car sinon la racine n'est pas dé�nie), et y(t) est croissante
(car l'EDO implique que y′(t) > 0). On voit alors que la fonction identiquement nulle
y(t) = 0, t ∈ R est une solution.
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Supposons que y n'est pas identiquement nulle � il existe alors t0 ∈ R avec y(t0) =
y0 > 0. Comme y est continue, il existe un voisinage (= intervalle ouvert) J contenant
t0 tel que y(t) > 0 pour tout t ∈ J . Dans un tel intervalle, on a

y′(t) = y(t)1/2 ⇒ y(t)−1/2y′(t) = 1.

On intègre entre t0 et t ∈ J pour trouver∫ t

t0

y(τ)−1/2y′(τ) dτ =

∫ t

t0

dτ ⇒
[
2y(τ)1/2

]t
t0
=
[
τ
]t
t0
⇒ 2y(t)1/2 − 2y

1/2
0 = t− t0.

Ainsi y(t) =
(t−t0+2

√
y0)2

4
. Cet argument est valable sur tout intervalle contenant t0

et tel que y(t) > 0, donc sur l'intervalle
]
t0 − 2

√
y0,+∞

[
.

Arrivé là, on se demande si on peut prolonger cette solution pour t ≤ t0 − 2
√
y0 (si

on ne peut pas, cette solution est maximale et on a terminé). Supposons qu'il existe
un tel prolongement y(t). Comme y(t0 − 2

√
y0) = 0 et y(t) est forcément positive et

croissante, le seul cas de �gure restant est y(t) = 0 pour t ≤ t0 − 2
√
y0. Avec un tel

prolongement, on remarque que la fonction y est bien C1 sur R tout entier � on a
donc trouvé la solution maximale

y : R −→ R
t 7−→ y(t) =

{
(t−t0+2

√
y0)2

4
t ≥ t0 − 2

√
y0

0 t ≤ t0 − 2
√
y0.

En renommant les paramètres, on trouve donc la solution générale

{y(t) = 0, t ∈ R} ∪
{
y(t) =

{
(t−C)2

4
t ≥ C

0 t ≤ C,
t ∈ R, C ∈ R

}
.

(a) Parmis toutes ces solutions, la seule véri�ant y(0) = 1 est de la seconde forme,

avec nécessairement C < 0. En remplaçant, on trouve (0−C)2

4
= 1 ⇒ C = −2.

Ainsi, la solution maximale est

y : R −→ R
t 7−→ y(t) =

{
(t+2)2

4
t ≥ −2

0 t ≤ −2.

(b) Ici, la solution est soit de la prmière forme, soit de la seconde forme pour
n'importe quel C ≥ 0 (car si C < 0, on a y(0) > 0). Ainsi on a les solutions
maximales suivantes:

y : R −→ R
t 7−→ 0

et

y : R −→ R

t 7−→

{
(t−C)2

4
si t ≥ C

0 si t ≤ C

pour tout C ≥ 0.
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Solution 7.

u(π) =
1

6
u(π) =

1

2
u(π) =

1

4 e2
u(π) =

e2

4

Solution 8.

y(2) = ln (2)

y(2) = 2 ln(2)

y(2) = 2 ln (2) + 2

y(2) = −2 ln (2)

Solution 9.

y(x) = arccos
(
e
− 2

2x4+3x2+C

)
y(x) = arccos

(
−1

2x4 + 3x2 + C

) y(x) = arcsin

(
1

2x4 + 3x2 + C

)
y(x) = arccos

(
1

2x4 + 3x2 + C

)
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