Remarque sur les corrigés

Lire une solution, méme partielle, d’un exercice sans avoir vraiment
essayé de le résoudre (plusieurs heures, méme parfois plusieurs jours)
est presque totalement inutile. Faire un exercice en ayant la solution
sous les yeux est beaucoup plus facile, et ne prépare que trés mal & un
examen (qui se fait sans solutions).

Par conséquent, la lecture du présent corrigé est déconseillée, et se fait
a vos risques et périls.



Analyse 11 Corrigé 2
EPFL - Sections SIE/GC

Solution 1.
(a) La fonction y(x) = 2 est solution de 'équation. Pour y # 2 on a
dy dy 5 A
A =d = 1 -2|)= C, CeR
il Y —da w(y—2) =2 +C. Ce
= y—2=_Ce", C#0 = y=_Ce" + 2.
Avec C' = 0, on a y(z) = 2. Ainsi la solution générale est y(z) = Ce” + 2
avec C' € R pour z € R.

y—2 =

Cette EDO est linéaire: c’est ' — y = —2. L’équation homogéne corres-
pondante est ¥’ = y, qui a pour solution générale y,(z) = Ce", x € R.
On devine la soution particuliére y,(z) = 2. La solution générale est donc
{y(z) =Ce* + 2,2z € R,C € R}.

(b) La fonction y(z) = 1 est une solution. Pour y # 1, on a

dy dy 1, = .
—=—-2y—1) == ——=—a2dr = In(ly—1)=—z2"+C, CeR
o (y—1) - (ly =1) = 52"+
= y=Ce ™ 41, C#0.
Comme le cas C' = 0 correspond a y(z) = 1, la solution générale est y(x) =
12
Ce~7 41 avec C' € R pour z € R.
Cette EDO est linéaire: ¢’est y' +xy = . I.’équation homogéne correspondante
est ' + xy = 0, et on trouve en séparant les variables comme plus haut que sa
12 . . . .
solution générale est y,(z) = Ce™z +2 € R. On devine la solution particuliére
22
yp(z) = 1. Ainsi, la solution générale est {y(z) = y(x) =Ce 7 +1,2 € R,C €
R}.
(c) La fonction y(z) = 0 est une solution pour x € |—o00,0[ et pour = € |0, +o0|.
Siz,y#0ona

dy 3 dy  3d S
W_ _y:_% = In(jy)) = -3W(z))+C, CeR

dr  x Y
C C
= === C>0 = y=+—7 C>0
| z]? |z[?
C C
= y=— C+#0 = y=— C#0.
EE 3
e . . —-C
La derniére implication suit du fait que pour C € Ret x <0 on a W =—.
x x

Les deux solutions y(z) = 0 déja trouvées peuvent étre inclues en choisissant
C = 0. La solution générale du probléme est donc
Ce R} :

{y: ]—00,0 - R } {y: 10, +00] = R
CeRyU C

C
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L’EDO est linéaire homogene, la méthode vue en cours coincide donc avec la
méthode de séparation des variables ci-dessus.

dy

N

pour C, x € R. Ainsi la solution générale est y(z) = sinh(z+C') pour C, z € R.

(d) En intégrant = dx des deux cdtés on trouve arcsinh(y) = = + C

Cette EDO n’est pas linéaire.

Solution 2. p
a) On procéde par séparation des variables. En écrivant 3’ = Y I’équation de-
Y
x
vient
6(y — 1)*dy = (32 + 4) dx,

d’ou, par intégration des deux fonctions polynomiales,

20y -1 =a2* + 222 + C, CeR.
La forme explicite de la solution y est donc
Z/(a:):1—|—f—1(x2(%x—l—1)+0>, zel, CeR, (1)

ot f~1(u) est la fonction réciproque de f(z) = 2® et I est un intervalle ouvert
a définir. Comme f est bijective sur R, sa fonction réciproque f~! est aussi
définie sur R, & savoir par

fH(u) = sgn(u)ful".

Cette fonction est continue sur R mais elle n’est pas dérivable en u = 0, ce
qui fait que I’équation différentielle a plusieurs solutions y(x) données par la
méme expression (1) mais définies sur des intervalles ouverts différents.
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En effet comme on peut voir sur le graphe, la fonction y(x) est continue sur
R, mais elle n’est de classe C! que sur des intervalles ouverts a gauche et a
droite du point b ou le graphe de y(z) a un cusp et ou la fonction y(x) n’est
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pas dérivable. Ces intervalles I dépendent des racines réelles du polynome
xQ(%x + 1) + C', chaque solution étant définie sur un intervalle ouvert sur
lequel ce polynome est du méme signe.

La condition initiale y(0) = 0 implique que 0 = 1 4 sgn(C)|C|"?, c’est-a-
dire C' = —1. Soit maintenant b > 0 l'unique solution réelle de 1’équation
IQ(%I + 1) — 1 = 0. (On peut voir que b est I'unique solution et qu’elle est
positive par une étude de la fonction g(z) = 2?(3z 4+ 1) — 1.) C’est donc I'in-
tervalle & gauche de b qui contient le point xy = 0 ou la condition initiale est
spécifiée.

On obtient donc la solution maximale pour la condition initiale donnée :

vy =1 (e +1) -1 =1 {1 -2 (e +1) . wer] ool

On applique la méme méthode:
1

1 ~ .
yy — e =0 = yeVdy = e dr = —§e’y2 = —1—1674‘? +C,CeR

1 1
= eV = 56741—1-0, CeR = y*=—In ((56414-0)) , CeR
En fait, la constante C' ne peut pas prendre toutes les valeurs dans R parce
que y? > 0 et le logarithme doit étre défini. Mais comme on ne s’intéresse pas
a la solution générale ici, il n’est pas nécessaire de trouver le domaine exact de

C, il suffira de trouver la valeur de C' a partir de la condition initiale et puis
le domaine de z en fonction.

La forme explicite de la solution y est alors
y(x) = j:\/— In(3e* +C).
La condition initiale y(0) = 1/In(2) implique que le signe est positif, et, de

plus,
VIn(2) =+,/-In(3+C) = C=0.

La solution particuliére pour la condition initiale donnée est donc

y(z) = /4z + 1n(2)

2
qui est a priori définie pour x > —h‘f) . Or, 9/(r) = —————= n’est pas
V4z + In(2)
définie en x = —#. La solution maximale pour la condition initiale donnée
est donc

R T A et

C’est une équation linéaire, on applique donc la méthode vue en cours. (i) On
résout I’équation homogene: 3’ — ysin(x) = 0. En séparant les variables, on
obtient

yn(z) = Ce™ Jsin@)de — Cp=cos@) yyec O € R.
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(ii) Pour trouver une solution particuliére de I’équation compléte (i.e. avec
second membre), on utilise la méthode de variation de la constante:

yp(x) = C(x)e™ @),

On a alors

yo(z) = [C'(z) + C(x) sin(z)] e~ )
et en substituant, on trouve:

[C"(x) 4+ C(z) sin(x)] e~ @) —sin(z)C(z)e™ @ = 4sin(x)e®

& C'(x)e™ @) = 4sin(z)e@
Par conséquent C'(x) = 4sin(x)e?°*@ et en intégrant on trouve C(z) =
—2e2¢5@)  Alinsi y,(r) = —2e°@). Notons qu'une éventuelle constante d’in-

tégration de cette étape serait combinée avec la constante de la solution de
I’équation homogéne, donc il n’y a pas besoin d’ajouter une constante ici.

(ili) La solution générale de I’équation différentielle est donc
y=uyp+ Y, = Ce™ cos(z) 2€COS(I), r eR.

La condition initiale y(g) = 1 implique que C'—2 =1, d’ou C' = 3. La solution
pour la condition initiale donnée est donc

y(z) = e cos@) _ gecos(@), z eR.

C’est également une équation linéaire. A cause du logarithme dans 1’équation,
on a x > 0, et donc I’équation donnée est équivalente a

1
' Zy=4ln(z).
vy n(z)

(i) On résout I'équation homogéne associée par séparation des variables. On
trouve:

yn(x) = Ce /5 = 0@ = O g, x>0, CeR.

(ii) Par la méthode de variation de la constante, on pose y,(z) = C(x)z et en
substituant dans I’équation initiale on trouve que C'(x) = 4ln(z) h;(”””)

on trouve

. En intégrant

C(z) = 4/ Mdﬂ? = 4/ [ln(x)]/ln(x) dr =2In(z)* .

X

Il n’y a de nouveau pas de constante d’intégration a cette étape. Par conséquent
y,() = 2z In(x)>.
(iii) La solution générale est donc:
y=yn+y,=(C+2n(z)’) z, x €]0, o0l
La solution pour la condition initiale y(1) = 1 est:

y(z) = (14 2n(z)?) z, x €10, 00][.
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Solution 3.
(a) Pour £ = 0, la solution maximale est yo(x) = €*, x € R. Pour £ > 0 on utilise
la séparation des variables

d_y _ 14e€ dy

d:}:_y At y1+a_ R

ce qui donne, aprés intégration, la solution générale

1
— =x+C, avec(CeR
EY*

La condition initiale implique que

Ainsi

et la solution recherchée est donc

1

ye(w) = (1—ex) xe]_oo,g[.

(L’intervalle de définition pour x s’obtient & partir du fait que 1 — ez doit étre
positif.)

(b) Notons que pour € > 0 assez petit, tout © € R est contenu dans le domaine de
définition de y.. Ainsi, la limite & calculer fait du sens. On a

o =

limy.(z) =lim (1 —ex)”
e—0 e—0

) 1
= lg% exp [—g In(1 — gx)l :

Comme la fonction exponentielle est continue, on peut échanger ’évaluation
de la fonction et la limite et I’on obtient

b0 g (- 20255)]

9

Puisque limIn(1 — ez) = In(1) = 0 et lime = 0, on peut appliquer Bernoulli-
e—0 e—0

I’Hospital pour calculer la limite, ce qui donne

lim y. (z) = exp [lgg( 4 )] exp [?351—5331 exp () = yo() .




Solution 4.
On récrit ’équation

dy dy / dy /
g Ve y(a —by) y(a —by)

On décompose le terme de gauche en éléments simples:

y a—by y(a —by)

done Az% et B:S.Ainsi

1 1 b 1 1
SRS R ) dy=-In(ly) - ~n(ja—b
/y(a—by) y /ay y+/a(a_by) y=—1n(lyl) = —In(la = byl),

et donc on a pour C > 0

1/a

= Cet & L = 100t
a— by

)
a— by

1 1
- In(|y|) — - In(la —by|) =t +In(C) <

On pose alors C* := £C°* € R* et on continue

- yb =C*" & y=Cea—-by) & y(l+bCe")=aC* e
— by

aC*e™ aC* a 7
~ y = 1 +bC*€at = efat +bC* = e—at b = 1 e—at
o T + 5=
On détermine la valeur de C* pour condition initiale y(0) = yo:
b aC” Yo
0)=—>— = = & aC*=y(bC*+1) & C*=
La solution cherchée est donc
y(t) = — iy = T
14 astw) - 1 (o = 1)e
Noter que pour les conditions initiales yo = 0 ou yo = 7, les solutions de I'équation
différentielle sont des fonctions constantes, a savoir y(t) = 0 et y(t) = § respective-
ment.
La croissance de la solution y(t) est déterminée par le facteur \ := By — 1 devant

Iexponentielle. Si yo > ¢, alors A < 0 et donc y(t) est décroissante. Si yo < ¢ on a
A > 0 et y(t) est croissante. Puisque tlim y(t) = ¢, la droite y = ¢ est une asymptote
—00

horizontale et n’est donc jamais intersectée par y(t).

Solution 5.



Remarque : rappelons que la méthode de la séparation des variables ne permet en
général pas de trouver toutes les solutions d’une équation différentielle, car en sépa-
rant les variables on est souvent amené a diviser par des expression qui peuvent s’an-
nuler. Ces valeurs éventuelles sont a inspecter séparément. Dans le présent exemple
ce sont les valeursx =0, x =1,y =0 ety = 1 qui sont de ce type. Par conséquence,
les deux solutions y(x) =0, v € R et y(zr) =1, x € R ne peuvent pas étre trouvées
par la méthode de la séparation des variables, mais on vérifie facilement que ce sont
bien des solutions. Les points x = 0 et x = 1 sont a controler pour chacune des
solutions, car il pourrait s’agir de point ow, comme dans Uexercice 2(a) la fonction
qui définit la solution n’est pas dérivable. La situation est différente dans le présent
ezemple. Ici toutes les solutions sont régulieres aussi bien en v = 0 qu'en v = 1,
mais ce sont néanmoins des points particuliers, car il s’agit de points de non unicité
de Uéquation différentielle. En effet, comme on peut voir dans le graphique en bas,
il existe une infinité de solutions de U’équation différentielles qui satisfont y(0) = 0
ou y(1) =1 et ces points sont de ce fait difficile & traiter d’un point de vu théorique.
Hélas, en pratique ce souvent des points de ce type qui sont intéressants, raison pour
laquelle nous présentons ces exemples ici.

Observons d’abord que les fonctions constantes y(z) = 0 et y(z) = 1 sont des
solutions pour z € R.
Siz,y#0etxy+#1, 'équation différentielle donnée s’écrit

dy ~ dx

yly—1)  z(@-1)°

puis, en décomposant chaque terme en éléments simples:

1 1 1 1
(e Yae (L)
y y—1 z x—1

En intégrant les deux co6tés on obtient

—Inly|+Injy—1| = —In|z| +Injz — 1|+ In(C), C >0,
-1 -1 ~ ~
s | ‘:mz +In(¢) C >0,
Yy T
1 alz—1] -
& ‘y— —Ct ‘ C >0, (2)
Yy T

L’équation (2) est équivalente &

y—l_C:z:—l

Y

, CeR\{0}, (3)

car, si un couple (r,y) satisfait I'équation (2) pour un certain C, il satisfait aussi
I'équation (3) avec C' = C ou C = —C, et si un couple (z,y) satisfait I'équation (3)
pour un certain C, il satisfait aussi I'équation (2) pour C = |C|.

A partir de (3) on trouve Pexpression explicite de y en fonction de z,

X

Cylx—1)=2(y—1) = y(Cx—C —2)=—2 = y(x):m.



Pour C' # 0 et C' # 1 la fonction y(z) définit deux solutions, une sur Uintervalle
}—oo, %[ et une sur l'intervalle }%,oo[. (Le dénominateur de y s’annule en
x = =2 dans ce cas.)

Pour C =0,0ona y(z) =1 et pour C =1,ona y(x)=z. Tout comme la solution
triviale y(z) = 0, ces deux solutions sont définies pour z € R. La solution générale
de I'équation donnée est donc

xXr
y(x):ma CeR\{0,1}, =z €]-o00,z5[our €]z, 0]
y(z) =1, C=0, z € R,
y(zr) =z, C=1, z € R,
y(z) =0 - r € R.

Pour trouver les solutions particuliéres pour les conditions initiales y(xo) = yo don-
nées, on met la condition initiale dans la solution générale et on résout pour C. Les
solutions sont:

ro=—1Ly=—1 = C=1 = y=uzu, reR
xo=—-1,yp=1 = C=0 = y=1, reR
To=2, yo=14 = C=3% = y=2, x €] — 00, 3[*
xo =2, Yo = —4 = C:g = Y=i5, xe]g,oo[*

* .« . . . .
On a choisi l'intervalle qui contient xzg.

T T T T

-5 -4 -3 -

Graphe des solutions (les points correspondent aux conditions initiales).

Solution 6.

On commence par chercher la solution générale. Soit y(t) une telle solution. On re-
marque déja que y(t) > 0 (car sinon la racine n’est pas définie), et y(t) est croissante
(car 'EDO implique que y/(t) > 0). On voit alors que la fonction identiquement nulle
y(t) = 0,t € R est une solution.



Supposons que y n’est pas identiquement nulle — il existe alors to € R avec y(ty) =
yo > 0. Comme y est continue, il existe un voisinage (= intervalle ouvert) J contenant
to tel que y(t) > 0 pour tout ¢ € J. Dans un tel intervalle, on a

Y (t) = y()'? = y(t) 2/ () = L.

On intégre entre ¢y et t € J pour trouver

t t
/ y(r)™V?y/ (1) dr = / dr = [2y(r)"?], = [7], = 29(0)"/* — 20" =t — 1o,

to to

Ainsi y(t) = M. Cet argument est valable sur tout intervalle contenant ¢y
et tel que y(t) > 0, donc sur I'intervalle ]to — 2,/Yo, +00 [

Arrivé la, on se demande si on peut prolonger cette solution pour ¢ <ty — 2,/yo (si
on ne peut pas, cette solution est maximale et on a terminé). Supposons qu’il existe
un tel prolongement y(t). Comme y(to —2,/yo) = 0 et y(t) est forcément positive et
croissante, le seul cas de figure restant est y(t) = 0 pour ¢ <ty — 2,/y. Avec un tel
prolongement, on remarque que la fonction y est bien C! sur R tout entier — on a
donc trouvé la solution maximale

y: R — R )
(t—to+2+/%0) .
t y y(t) — 4 t 2 tU 2\/ Yo
0 t S tg - 2,/y0.
En renommant les paramétres, on trouve donc la solution générale
(t=C)*
— t>C
t)=0,te R} U t) = 4 > teR,CeRy.

(a) Parmis toutes ces solutions, la seule vérifiant y(0) = 1 est de la seconde forme,

_ 2
avec nécessairement C' < 0. En remplacant, on trouve % =1=C=-2.
Ainsi, la solution maximale est

y: R—R (1422

t%y(t)Z{ 5 i

-2
—2.

IN TV

(b) Ici, la solution est soit de la prmiére forme, soit de la seconde forme pour
n’importe quel C' > 0 (car si C' < 0, on a y(0) > 0). Ainsi on a les solutions
maximales suivantes:

R LR y: R — R .
Y f 0 et PN @ sit>C  pour tout C > 0.
0 sit<(C
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Solution 7.

1
MW u(r) = G

Solution 8.

[y =m(2)
W2 =2nhQ)

Solution 9.

] u(m)

[ ] y(x) = arccos ({W)

|| y(x) = arccos <

-1

1
2

20t 4+ 322 + C

)

11

1 -
Du(ﬂ.):zl_@? DU(W):Z
[Jy(2)=2m(2)+2
[(Jy(2)=—2n(2)

[ ] y(z) = arcsin (
W (2) = arccos (

1
224 + 312 + C)

1
20* + 322 4 C)



