Remarque sur les corrigés

Lire une solution, méme partielle, d’un exercice sans avoir vraiment
essayé de le résoudre (plusieurs heures, méme parfois plusieurs jours)
est presque totalement inutile. Faire un exercice en ayant la solution
sous les yeux est beaucoup plus facile, et ne prépare que trés mal & un
examen (qui se fait sans solutions).

Par conséquent, la lecture du présent corrigé est déconseillée, et se fait
a vos risques et périls.
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Solution 1.
En coordonnées polaire, on a

D ={(rcosp,rsing) |0<r<R et 0<¢p<2r}.

On trouve donc (sans oublier le jacobien r!)

R 27 R 217
Aire(D) = ldzxdy = rde | dr= 2nrdr =21 | — = 1R?.
2
D 0 0 0 r=0

Solution 2.

(a) Le domaine D est représenté ci-contre.
Pour le changement de variables, on dé-
finit l'application H: D — FE telle que 3|
(u,v) = H(x,y) avec

Y)

u=a*+y* = H(z,y) d
v=a? -y = Hy(z,y)

0 T T T Ll
0 1 2 3 X

Il suit de la définition de D que E = [5,9] x [1,4]. La matrice Jacobienne de

H est
aacHl (Ia y) ay]{1 (l’, y)) _ (21‘ 2y )
axHQ(xa y) 6yH2(l’, y) 2z _2y

Ju(z,y) = (

et son Jacobien est det(Jy(z,y)) = —8zy.

Soit G = H™': E — D la transformation inverse telle que (z,y) = G(u,v).
Pour calculer 'intégrale, on a besoin du Jacobien de G qui est

1

det(JG(uv U)) - [m

_ { 1 ]
(z,y)=G(u,v) 8£Ey (z,y)=G(u,v)

Comme zy # 0 sur D, le jacobien de G est bien défini. I’intégrale est donc
/ 2y da dy = / [a:?’yﬂ |det (Jg(u, v))| dudv
D E (z,y)=G(u,v)

1 1
:/ [x?’yg . —} du dv = —/ [nyﬂ du dv.
B 87Y | (2= (u) 8Je (.y)=G(uv)



Pour exprimer z et y en fonction de u et v, observons que 222 = u + v et
2y? = u — v . Ainsi

et 'intégrale devient

/ Sdr d 1/4 / du ) d LML 2u:9d
rdy = — u? —v?)du | dv = — —u” —uv v
o T ey 32/, 13 s
A I
= dv=— [ (151 — 3v%)d
32/1 ( ) V=g ), BTy
1 4390 65
St -] =TT =22
24[ TV T T
(b) Le domaine D se trouve dans le premier quadrant YA y=4x
(car z,y > 0) et est délimité d’une part par les
droites y = = et y = 4x et d’autre part par les 3/
courbes zy = 1 et zy = 2 (voir ci-contre). y=Xx
Pour calculer I'intégrale on définit le changement de
variable H: D — E, ot (u,v) = H(z,y) avec 27
{U =Ty = Hl( 7y) 14 9
v=1%= Xy=
Y = Hy(,y) 1
et, par définition de D, F = [1,2] x [1,4]. 00 7 5 =~

La matrice Jacobienne de H est

e = (an o) = (s 1)

2

et son Jacobien est det(JH(ac, y)) = 2% qui est bien défini sur D car x # 0.

Soit G = H™': E — D la transformation inverse telle que (z,y) = G(u,v). Le
Jacobien de G est alors

1

x 1
det (Jg(u,v)) = [—] = {_} -
det (JH(x, y)) (o)) 2y ()= (w0) 20

car v = 2. Comme v > 0 sur I, ce Jacobien est bien défini. Ainsi

4 2,2 1111 u=2 1
/nydedy—/ (/ u—du)dv_/ _l_u?,} dv—/ z—dv
D 1 1 2v 1 2v |3 uel 1 6o
4



Solution 3.
On introduit des nouvelles coordonnées par l'application H: D — FE telle que
(u,v) = H(z,y) avec

_ 2 2
{Z:;f; ot E=[3,4x[L2].

La matrice Jacobienne de H est

2v 2

et son Jacobien est det(Jy(z,y)) = —8xy. Soit 'application inverse G = H~'. On a

1 [l
|det (JH<I7 y)) |] (2,y)=G(u,v) 8$y (z,y)=G(u,v)

|det (Jg(u,v))‘ = [

Comme zy > 0 pour (z,y) € D, le jacobien de G est bien défini.

Dans les nouvelles coordonnées on a

I:/D(:I:E’y—iry‘:’x)dxdy:/E[(x5y+y5x)}

1
= / {(mSy + y%) . —} du dv
B 82Y ] (@.1)=cu)

1 / [ 4 4
= - T+ } du dv
8JE Y (z,y)=G (u,v)

Ona u?= (22 +9y*)? =2' + 22022 + ¢y et v? = (22 —y?)? =2t — 22%% + 9! et
donc

(2,y)=G(u,v) - }det (JG(U, ’U))‘ du dv

x4—|—y = (u2+v2) .

1
2
Ainsi

1 2 4 , ,
I:E1 (/3 (u —H})du)dv

IE U 1243 — 3 1 > 11
A do = — 2 d:—[37 3]:—.
16 J, {3“ +”ULZ3 YT 16, 3 U=V T

Solution 4.
Le volume cherché V' est donné par une intégrale triple sur le domaine représenté a
la Fig. 1 ci-dessous. Observons que le domaine est défini par les inégalités suivantes:

:1:2—|—z2§1, r+y+z>1, 20 —2<6 et z>0.



FiGURE 1 -

A partir de ces contraintes (et en regardant la Fig. 1), on trouve que les bornes de
I'intégrale triple sont

—1<x<1, 0<2<V1—22 et 1—x—z§y§3+§.

On a donc

1 Vi—a? 3+%
V= / / / dy | dz | dx
-1 0 l—x—2
1 1—z2
z
:/1 /O <3+§—(1—x—z)>dz>dm
1 1—2? 3 1 3 1—a?
:/ / 242+ -z |dz dx:/ (2+z)z + =22 dx
_1 \Jo 2 1 41,

_/_1 (<2+x>M+Z<1_I2>)dx_z/_lldeZ/l(l—x?)dx,

1 -1

onl la derniére égalité est justifiée par le fait que la fonction z+/1 — 22 est impaire
et donc son intégrale entre —1 et 1 est nulle.

Pour la premiére intégrale, on pose le changement de variable = = ¢(t) = sin(t)
si bien que '(t) = cos(t) et la nouvelle variable ¢ varie entre —7 et 7. On trouve

alors . . .
/ V1—22de = /2 1— ()2 ¢'(t)dt = /2 cos(t)* dt
1 _ _

us Jus
2 2

qu’on intégre par parties avec f'(t) = g(t) = cos(t):

/_’5

us
2

sin(t)?dt = 0 + /2 (1 — cos(t)?) dt

us —
2

cos(t)* dt = [sin(t) Cos(t)}g +/_

us
2

Il s’en suit que



et donc

3 [ 3 1] 3 4
V:2-g+1/(1—x2)dx:7r—|——[x——x3}_1:7r+1~§:7r+1.

Solution 5.
Méthode 1: On utilise les coordonnées cylindriques (r, ¢, z) définies par G : E — D
telle que

(z,y,2) = G(r,¢, 2) = (rcos(p), rsin(p), z).

Le Jacobien est donc

cos(p) —rsin(p) 0
Ja(r,p,z) = det | sin(p) rcos(p) 0] =r.
0 0 1

Les équations du cone 22 +y* = (32 — 3)2 et de la sphére 22+ y*+ (2 —1)? =25

. , . 2
s’écrivent en coordonnées cylindriques comme 72 = (32 —3)" et r?4(z2—1)* = 25.
. . 2 e .

A Textérieur du cone on a alors r? > (%z — 3) et a l'intérieur de la sphére on a

r? + (2 — 1)? < 25. En combinant ces deux équations on obtient

1 2 1
(52—3) +(z—1)2§25 = 122—32+9+z2—22+1§25

5
& 122_52_1530@ P —42-12<0 & (24+2)(2—6)<0
z <

& 2> -2 et 6.

Ainsi
Ez{(r,gp,z) 0 < p<2m, 3—%Z§T§ 25— (2 —1)%, —2§z§6}

et le volume est donc

6 25— (2—1)2 2
/dxdydz:/]Jg(r,gp,z)|drdcpdz:/ / (/ rdgp) dr | dz
D E -2 \J/3- 0
6 1 25—(z—1)2 6 5
= zn/ {—ﬁ] dz = w/ (15 +52 — —z2> dz
—92 2 3_% —92 4

1 1 .]° 56 320
:5wl3z+§z2——z3] :57r(24+16—§>:—7r.
-2

Comme illustration, l'intersection de D avec le plan x = 0 est représentée a la Fig. 2.

[ SIS

Méthode 2: On remarque que c’est le solide de rotation engendré par la rotation de
2 2 1

6



FIGURE 2 —

autour de I'axe z. Ainsi, par un résultat du cours
Vol(D) = 2n R 4Aire(Dy).

La distance R, entre le centre de gravité et ’axe des z est la coordonnée y du centre
de gravité, donc

1
Fieg = Aire(Dy) /Do

ydydz.
On simplifie alors les Aire(Dy) pour trouver

varo) <2r [ itz =2 [ [ i) o
= 77/_62 <(25 —(z—1)H) - (éz — 3)2> dz

6 2
5z 3207
———+5 15) dz = ——.
71'/_2 ( 1 + oz + ) z 3
Solution 6.

La masse totale du domaine D est donnée par 'intégrale triple

NI

—_

I= / plx,y,z)dxdydz.
D

Le domaine est donné par les inégalités
0<z<1, 2*<y<l et y<z<1,

et I'intégrale triple peut donc étre exprimée par des intégrales itérées

! ! ! 3/2.,3/2
I:/ (/ </ 2712 ey dz)dy) dz .
0 x2 y

Pour faciliter I'intégration, on change I'ordre d’intégration. Il faut donc récrire les
inégalités en changeant le sens de parcours des régions définies par les deux derniéres
inégalités (cf. Fig. 3).
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FIGURE 3 —
Les nouvelles inégalités décrivant le domaine D sont

0<z<1, 0<y<z et 0<z</y.

L’intégrale triple peut donc aussi étre exprimée en terme des intégrales itérées sui-

vantes : L i
Z Yy 2 2
I = / (/ </ T/2 gyt dx) dy) dz .
0 0 0

On a successivement

' ’ 7/2 3/2,3/2 ]%=VY ! ? 2 3/2,3/2
I:/O (/0 [2/ e v xL:O dy)dz:/o (/0 212 ey "2 \/ﬂdy)dz
1 z
2 1 3 .3/2.3/2
_ 2 _2 - X _2.3/2,1/2 z
L) ) e

=o' () exp(p(y))

1r y=2 1 s
— / _§3L/2 <Z7/2 6yB/2z3/2):| ds — _%/ l22 €y3/223/2} d»
0o L z 0 .

=0

et donc

Solution 7.
Des coordonnées indiquées sur la figure de I’énoncé on déduit que le haut du domaine
(partie grise sur la Fig. 4 ci-dessous) appartient au plan d’équation y + 2z =2 .



FIGURE 4 —

Ainsi les bornes du domaine D sont
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Le centre de gravité est alors G = (

L2 ey
]1:/x-p(x,y,z)dmdydz:/ (/ (/ 4x3dz> dy) dx
D 0 0 0
2 (2—y)/2 1 1 1! 1
=4 / / dz | dy (/ xgda:): -[—af*} =4--=1,
0 0 0 4 0 4
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1 2 (2-1)/2
I3 :/ z-p(x,y,z)dedydz = / </ </ 4x2zdz> dy) dx
D 0 0 0
2 (2—y)/2 1 2 1 (2—y)/2 1
4 / / zdz | dy (/ z? dac) = / {—zﬂ dy | - =
0 0 0 o L2 Jo 3

1/ [? 1 1 1 21 181 4
—— 2 y)l2dy) === |—=2—y)?| —==.2.= ——
2(/0( v) y>3 2{3( y)Lg 2'3'3° 9

Ainsi le centre de gravité est G = (%, %, %)

Solution 8.

Soit D le domaine de I'ennoncé. Comme D est un secteur sphérique, on utilise les
coordonnées sphériques G : £ — D telles que

(z,y,2) = G(r,0,¢) = (rsin(f) cos(p), rsin(h)sin(p), rcos())
et donc le Jacobien de ce changement de coordonnées est
sin(f) cos(p) rcos(f) cos(p) —rsin(

0
Ja(r,0,¢) = det | sin(f) sin(p) rcos(f)sin(p) rsin()
cos(0) —rsin(6) 0

) sin(p)
cos(p) | = r*sin(f) .

Sur la figure de I’énoncé on voit que le domaine d’intégration E est défini par

0<r<2, géwé%ﬁ et 0<6<

N

Comme la densité de masse est proportionnelle & la distance a l'origine (notons
qu'une éventuelle constante de proportionnalité s’annule dans le calcul du centre de

graviteé), elle est p(z,y,2) = /22 + y? + 22 et son analogue exprimé en coordonnées
sphériques est p(r,0,¢) = 1.

On calcule d’abord la masse totale I du domaine

I=/p(fr,y72)dxdydz:/ﬁ(rﬂ,@IJG(T,Q,w)IdeGdso
D E

:/ (/0 (/027" sm(e)dr> d@) dp = </02r3dr)</ozsin(9)d9></2:¥rd@)

2

- Fr‘*r. [—cos(e)]z.w:zl. (1—£> 1 =2m(2—V2).

3

2

[e=]
[en]

Notons que sin(f) > 0 pour 6 € [0,75] et donc |J(r, 8, ¢)| = r*sin(f) (sans valeur
absolue).

10



La coordonnée zg du centre de gravité de D est alors
1 1 )
2g = f/ z-plx,y,z)dedydz = f/ 2(r,8,0) p(r,0,¢) |Ja(r,0, )| drdd de
D

E
3

_ %/ (/O (/OQTC()s(e) ¥ sin(6) dr) d9> dy
-1 < /0 " dr) ( /0 sin(6) cos(6) d@) ( / B d¢>

z;Erf’r-Fsin(Q)zF bzl 1 8r_202+V)

N

INE]

™
0 I 5 4 2m(2—+2) 5 5

0

Solution 9.

La construction du tore D implique que son grand rayon est a est son petit rayon
est b. Pour intégrer sur D on utilise les coordonnées dites curvilignes (cf Fig. 5): On
a (t, 5, ) définies par G : E — D telles que

(x,y,2) =G(t,B,¢) = ( (a+tcos(B)) cos(p), (a+tcos(B))sin(p), tsin(f) )

FIGURE 5 -

Le Jacobien de ce changement de coordonnées est

cos(f8) cos(p) —tsin(fB) cos(p) —(a+ tcos(f))sin(yp)
Jolt, B,¢) = det [ cos(B)sin(¢) —tsin(B)sin(p) (a-+tcos(3)) cos(s)
sin() t cos(B) 0

= —t(a +tcos(B))

et on a |Jg(t,B8,¢)| = t(a+ tcos(f)) parce que a > t et donc le terme dans la
parenthése est positif. Puisque

E={(t,B¢) : 0<t<b, 0<p <21 0<¢p <27},

11



I'intégrale devient

I= [ Pdvdyds = [ 2507 olt.6.0)] dtdpd
D E

= /0% (/O% (/Ob (tsin(8))” - t(a + tcos(B)) dt) dﬁ) dg
= ( /O " dgo) ( /O " <sin(5)2 /O ’ (at® + t* cos(B)) dt) dﬁ)

=2 /027r sin(3)? (iab4 + %b5 cos(ﬁ)) g

— Tt /027r sin(3)% dB + 2%1)5 /027T sin(B)? cos(3) dB

2
T o 2 1 . S o
— 5ab4/0 sin(B)*dB + ?b5 {g sm(ﬁ)rj} 0 = 5ab4/0 sin(3)*dg..

En intégrant la derniére intégrale par parties on trouve

2

/027r sin(6)* dg = [— cos(3) Sin(ﬁ)] + /027r cos(B)*dp = 2w — /027r sin(B)2 d3

0

= /027r sin(8)*dp =7

m2ab*

td I =
et donc 5

Solution 10.

L’aire de D a été calculée a l'exercice 8 de la série 12; elle vaut 6. Par symétrie, le
centre de gravité (pour distribution de masse uniforme) est le point ¢ = (3,3). On
peut donc utiliser le résultat du cours pour les solides de rotation:

(a) La distance entre c et 'axe des x est la coordonnée y de ¢, donc 3. Ainsi

Vol(D,ot) = Aire(D) - 2m - 3 = 367.
(b) La distance entre ¢ et 'axe des y est la coordonnée x de ¢, donc % Ainsi

Vol(Dyuy) = Aire(D) - 27 - g —son

(c) La perpendiculaire & y = —2x passant par ¢ est y = %m + %. Le point d’in-
tersection est donc d = (—%, 1) et la distance entre ¢ et la droite d’équation
y = —2x est donc
dist(e, d) = V42 4+ 22 = 2V/5.
Ainsi

Vol(D,o;) = Aire(D) - 21 - 2v/5 = 24+/57.
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