
Remarque sur les corrigés

Lire une solution, même partielle, d'un exercice sans avoir vraiment

essayé de le résoudre (plusieurs heures, même parfois plusieurs jours)
est presque totalement inutile. Faire un exercice en ayant la solution
sous les yeux est beaucoup plus facile, et ne prépare que très mal à un
examen (qui se fait sans solutions).

Par conséquent, la lecture du présent corrigé est déconseillée, et se fait
à vos risques et périls.
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Analyse II Corrigé 13
EPFL � Sections SIE/GC

Solution 1.

En coordonnées polaire, on a

D = {(r cosφ, r sinφ) | 0 ≤ r ≤ R et 0 ≤ φ ≤ 2π}.

On trouve donc (sans oublier le jacobien r !)

Aire(D) =

∫∫
D

1 dxdy =

∫ R

0

(∫ 2π

0

r dφ

)
dr =

∫ R

0

2πr dr = 2π

[
r2

2

]R
r=0

= πR2.

Solution 2.

(a) Le domaine D est représenté ci-contre.
Pour le changement de variables, on dé-
�nit l'application H : D → E telle que
(u, v) = H(x, y) avec{

u = x2 + y2 = H1(x, y)

v = x2 − y2 = H2(x, y)

x

y

0 1 2 3
0

1

2

3

x2
+ y2

� 5

x2
+ y2

� 9

x2
- y2

� 1

x2
- y2

� 4

Il suit de la dé�nition de D que E = [5, 9]× [1, 4] . La matrice Jacobienne de
H est

JH(x, y) =

(
∂xH1(x, y) ∂yH1(x, y)

∂xH2(x, y) ∂yH2(x, y)

)
=

(
2x 2y
2x −2y

)
et son Jacobien est det

(
JH(x, y)

)
= −8xy .

Soit G = H−1 : E → D la transformation inverse telle que (x, y) = G(u, v).
Pour calculer l'intégrale, on a besoin du Jacobien de G qui est

det
(
JG(u, v)

)
=

[
1

det
(
JH(x, y)

)]
(x,y)=G(u,v)

=

[
− 1

8xy

]
(x,y)=G(u,v)

Comme xy ̸= 0 sur D, le jacobien de G est bien dé�ni. L'intégrale est donc∫
D

x3y3 dx dy =

∫
E

[
x3y3

]
(x,y)=G(u,v)

· |det (JG(u, v))| du dv

=

∫
E

[
x3y3 · 1

8xy

]
(x,y)=G(u,v)

du dv =
1

8

∫
E

[
x2y2

]
(x,y)=G(u,v)

du dv.
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Pour exprimer x et y en fonction de u et v, observons que 2x2 = u + v et
2y2 = u− v . Ainsi

x2y2 =
1

4
(u+ v)(u− v) =

1

4
(u2 − v2)

et l'intégrale devient∫
D

x3y3 dx dy =
1

32

∫ 4

1

(∫ 9

5

(u2 − v2) du

)
dv =

1

32

∫ 4

1

[
1

3
u3 − uv2

]u=9

u=5

dv

=
1

32

∫ 4

1

(
93 − 53

3
− 4v2

)
dv =

1

24

∫ 4

1

(151− 3v2) dv

=
1

24

[
151v − v3

]4
1
=

390

24
=

65

4
.

(b) Le domaine D se trouve dans le premier quadrant
(car x, y ≥ 0) et est délimité d'une part par les
droites y = x et y = 4x et d'autre part par les
courbes xy = 1 et xy = 2 (voir ci-contre).
Pour calculer l'intégrale on dé�nit le changement de
variable H : D → E, où (u, v) = H(x, y) avec{

u = xy = H1(x, y)

v = y
x
= H2(x, y)

et, par dé�nition de D, E = [1, 2]× [1, 4]. x

y

0 1 2
0

1

2

3

y � x

y � 4 x

x y � 2

x y � 1

La matrice Jacobienne de H est

JH(x, y) =

(
∂xH1(x, y) ∂yH1(x, y)

∂xH2(x, y) ∂yH2(x, y)

)
=

(
y x

− y
x2

1
x

)
et son Jacobien est det

(
JH(x, y)

)
= 2 y

x
qui est bien dé�ni sur D car x ̸= 0.

Soit G = H−1 : E → D la transformation inverse telle que (x, y) = G(u, v). Le
Jacobien de G est alors

det
(
JG(u, v)

)
=

[
1

det
(
JH(x, y)

)]
(x,y)=G(u,v)

=

[
x

2y

]
(x,y)=G(u,v)

=
1

2v

car v = y
x
. Comme v > 0 sur E, ce Jacobien est bien dé�ni. Ainsi∫

D

x2y2 dx dy =

∫ 4

1

(∫ 2

1

u2

2v
du

)
dv =

∫ 4

1

1

2v

[
1

3
u3

]u=2

u=1

dv =

∫ 4

1

7

6

1

v
dv

=
7

6

[
ln(v)

]4
1
=

7

6
ln(4) =

7

3
ln(2) .
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Solution 3.

On introduit des nouvelles coordonnées par l'application H : D → E telle que
(u, v) = H(x, y) avec{

u = x2 + y2

v = x2 − y2
et E = [3, 4]× [1, 2] .

La matrice Jacobienne de H est

JH(x, y) =

(
2x 2y
2x −2y

)
,

et son Jacobien est det(JH(x, y)) = −8xy. Soit l'application inverse G = H−1. On a

∣∣det (JG(u, v))∣∣ = [ 1∣∣det (JH(x, y))∣∣
]
(x,y)=G(u,v)

=

[
1

8xy

]
(x,y)=G(u,v)

.

Comme xy > 0 pour (x, y) ∈ D, le jacobien de G est bien dé�ni.

Dans les nouvelles coordonnées on a

I =

∫
D

(x5y + y5x) dx dy =

∫
E

[ (
x5y + y5x

) ]
(x,y)=G(u,v)

·
∣∣det (JG(u, v))∣∣ du dv

=

∫
E

[(
x5y + y5x

)
· 1

8xy

]
(x,y)=G(u,v)

du dv

=
1

8

∫
E

[
x4 + y4

]
(x,y)=G(u,v)

du dv

On a u2 = (x2 + y2)2 = x4 + 2x2y2 + y4 et v2 = (x2 − y2)2 = x4 − 2x2y2 + y4 et
donc

x4 + y4 =
1

2

(
u2 + v2

)
.

Ainsi

I =
1

16

∫ 2

1

(∫ 4

3

(
u2 + v2

)
du

)
dv

=
1

16

∫ 2

1

[
1

3
u3 + uv2

]u=4

u=3

dv =
1

16

∫ 2

1

(
43 − 33

3
+ v2

)
dv =

1

48

[
37v + v3

]2
1
=

11

12
.

Solution 4.

Le volume cherché V est donné par une intégrale triple sur le domaine représenté à
la Fig. 1 ci-dessous. Observons que le domaine est dé�ni par les inégalités suivantes :

x2 + z2 ≤ 1 , x+ y + z ≥ 1 , 2y − z ≤ 6 et z ≥ 0 .
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x y

z

-1

1

1
3

1

x2
+ z2

� 1

x + y + z � 1

2 y - z � 6

Figure 1 �

A partir de ces contraintes (et en regardant la Fig. 1), on trouve que les bornes de
l'intégrale triple sont

−1 ≤ x ≤ 1, 0 ≤ z ≤
√
1− x2 et 1− x− z ≤ y ≤ 3 +

z

2
.

On a donc

V =

∫ 1

−1

(∫ √
1−x2

0

(∫ 3+ z
2

1−x−z

dy

)
dz

)
dx

=

∫ 1

−1

(∫ √
1−x2

0

(
3 +

z

2
− (1− x− z)

)
dz

)
dx

=

∫ 1

−1

(∫ √
1−x2

0

(
2 + x+

3

2
z

)
dz

)
dx =

∫ 1

−1

[
(2 + x)z +

3

4
z2
]√1−x2

0

dx

=

∫ 1

−1

(
(2 + x)

√
1− x2 +

3

4
(1− x2)

)
dx = 2

∫ 1

−1

√
1− x2 dx+

3

4

∫ 1

−1

(1− x2) dx ,

où la dernière égalité est justi�ée par le fait que la fonction x
√
1− x2 est impaire

et donc son intégrale entre −1 et 1 est nulle.

Pour la première intégrale, on pose le changement de variable x = φ(t) = sin(t)
si bien que φ′(t) = cos(t) et la nouvelle variable t varie entre −π

2
et π

2
. On trouve

alors ∫ 1

−1

√
1− x2 dx =

∫ π
2

−π
2

√
1− φ(t)2 · φ′(t) dt =

∫ π
2

−π
2

cos(t)2 dt

qu'on intègre par parties avec f ′(t) = g(t) = cos(t) :∫ π
2

−π
2

cos(t)2 dt =
[
sin(t) cos(t)

]π
2

−π
2

+

∫ π
2

−π
2

sin(t)2 dt = 0 +

∫ π
2

−π
2

(
1− cos(t)2

)
dt

= π −
∫ π

2

−π
2

cos(t)2 dt .

Il s'en suit que ∫ π
2

−π
2

cos(t)2 dt =
π

2
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et donc

V = 2 · π
2
+

3

4

∫ 1

−1

(1− x2) dx = π +
3

4

[
x− 1

3
x3

]1
−1

= π +
3

4
· 4
3
= π + 1 .

Solution 5.

Méthode 1: On utilise les coordonnées cylindriques (r, φ, z) dé�nies par G : E → D
telle que

(x, y, z) = G(r, φ, z) =
(
r cos(φ), r sin(φ), z

)
.

Le Jacobien est donc

JG(r, φ, z) = det

cos(φ) −r sin(φ) 0
sin(φ) r cos(φ) 0

0 0 1

 = r .

Les équations du cône x2+ y2 =
(
1
2
z − 3

)2
et de la sphère x2+ y2+(z− 1)2 = 25

s'écrivent en coordonnées cylindriques comme r2 =
(
1
2
z − 3

)2
et r2+(z−1)2 = 25 .

A l'extérieur du cône on a alors r2 ≥
(
1
2
z − 3

)2
et à l'intérieur de la sphère on a

r2 + (z − 1)2 ≤ 25. En combinant ces deux équations on obtient(
1

2
z − 3

)2

+ (z − 1)2 ≤ 25 ⇔ 1

4
z2 − 3z + 9 + z2 − 2z + 1 ≤ 25

⇔ 5

4
z2 − 5z − 15 ≤ 0 ⇔ z2 − 4z − 12 ≤ 0 ⇔ (z + 2)(z − 6) ≤ 0

⇔ z ≥ −2 et z ≤ 6 .

Ainsi

E =
{
(r, φ, z) : 0 ≤ φ ≤ 2π , 3− 1

2
z ≤ r ≤

√
25− (z − 1)2 , −2 ≤ z ≤ 6

}
et le volume est donc∫

D

dx dy dz =

∫
E

|JG(r, φ, z)| dr dφ dz =

∫ 6

−2

(∫ √
25−(z−1)2

3− z
2

(∫ 2π

0

r dφ

)
dr

)
dz

= 2π

∫ 6

−2

[
1

2
r2
]√25−(z−1)2

3− z
2

dz = π

∫ 6

−2

(
15 + 5z − 5

4
z2
)
dz

= 5π

[
3z +

1

2
z2 − 1

12
z3
]6
−2

= 5π

(
24 + 16− 56

3

)
=

320π

3
.

Comme illustration, l'intersection de D avec le plan x = 0 est représentée à la Fig. 2.

Méthode 2: On remarque que c'est le solide de rotation engendré par la rotation de

D0 =

{
(y, z) | y2 + (z − 1)2 ≤ 25 et y ≥ 1

2
z − 3

}
6
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Figure 2 �

autour de l'axe z. Ainsi, par un résultat du cours

Vol(D) = 2πRcgAire(D0).

La distance Rcg entre le centre de gravité et l'axe des z est la coordonnée y du centre
de gravité, donc

Rcg =
1

Aire(D0)

∫
D0

y dydz.

On simpli�e alors les Aire(D0) pour trouver

Vol(D) = 2π

∫
D0

y dydz = 2π

∫ 6

−2

(∫ √
25−(z−1)2

1
2
z−3

y dy

)
dz

= π

∫ 6

−2

(
(25− (z − 1)2)− (

1

2
z − 3)2

)
dz

= π

∫ 6

−2

(
−5z2

4
+ 5z + 15

)
dz =

320π

3
.

Solution 6.

La masse totale du domaine D est donnée par l'intégrale triple

I =

∫
D

ρ(x, y, z) dx dy dz .

Le domaine est donné par les inégalités

0 ≤ x ≤ 1 , x2 ≤ y ≤ 1 et y ≤ z ≤ 1 ,

et l'intégrale triple peut donc être exprimée par des intégrales itérées

I =

∫ 1

0

(∫ 1

x2

(∫ 1

y

z7/2 e−y3/2z3/2 dz

)
dy

)
dx .

Pour faciliter l'intégration, on change l'ordre d'intégration. Il faut donc récrire les
inégalités en changeant le sens de parcours des régions dé�nies par les deux dernières
inégalités (cf. Fig. 3).
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0 ≤ x ≤ √
y

x

y

0 1

0

1

y � x2

y Î Ax2, 1E

x Î B0, y F

Figure 3 �

Les nouvelles inégalités décrivant le domaine D sont

0 ≤ z ≤ 1 , 0 ≤ y ≤ z et 0 ≤ x ≤ √
y .

L'intégrale triple peut donc aussi être exprimée en terme des intégrales itérées sui-
vantes :

I =

∫ 1

0

(∫ z

0

(∫ √
y

0

z7/2 e−y3/2z3/2 dx

)
dy

)
dz .

On a successivement

I =

∫ 1

0

(∫ z

0

[
z7/2 e−y3/2z3/2x

]x=√
y

x=0
dy

)
dz =

∫ 1

0

(∫ z

0

z7/2 e−y3/2z3/2√y dy

)
dz

I =

∫ 1

0


∫ z

0

z7/2
(
−2

3

1

z3/2

)
·
(
−3

2
z3/2y1/2

)
e−y3/2z3/2︸ ︷︷ ︸

=φ′(y) exp(φ(y))

dy

 dz

=

∫ 1

0

[
−2

3

1

z3/2

(
z7/2 e−y3/2z3/2

)]y=z

y=0

dz = −2

3

∫ 1

0

[
z2 e−y3/2z3/2

]y=z

y=0

dz

= −2

3

∫ 1

0

(
z2 e−z3 − z2

)
dz

et donc

I = −2

3

∫ 1

0

(
z2 e−z3 − z2

)
dz = −2

3

[
−1

3
e−z3 − 1

3
z3
]1
0

= −2

3

(
−1

3
e−1 − 1

3
+

1

3

)
=

2

9e
.

Solution 7.

Des coordonnées indiquées sur la �gure de l'énoncé on déduit que le haut du domaine
(partie grise sur la Fig. 4 ci-dessous) appartient au plan d'équation y + 2z = 2 .
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y

z

1

2

1 y+2 z=2

Figure 4 �

Ainsi les bornes du domaine D sont

0 ≤ x ≤ 1 , 0 ≤ y ≤ 2 et 0 ≤ z ≤ 2− y

2
.

La masse totale I est donc

I =

∫
D

ρ(x, y, z) dx dy dz =

∫ 1

0

(∫ 2

0

(∫ (2−y)/2

0

4x2 dz

)
dy

)
dx

= 4

(∫ 2

0

(∫ (2−y)/2

0

dz

)
dy

)(∫ 1

0

x2 dx

)
= 2

(∫ 2

0

(2− y) dy

)(∫ 1

0

x2 dx

)
= 2 ·

[
2y − 1

2
y2
]2
0

·
[
1

3
x3

]1
0

= 2 · 2 · 1
3
=

4

3
.

Le centre de gravité est alors G =
(
I1
I
, I2

I
, I3

I

)
, où

I1 =

∫
D

x · ρ(x, y, z) dx dy dz =

∫ 1

0

(∫ 2

0

(∫ (2−y)/2

0

4x3 dz

)
dy

)
dx

= 4

(∫ 2

0

(∫ (2−y)/2

0

dz

)
dy

)(∫ 1

0

x3 dx

)
= 4 ·

[
1

4
x4

]1
0

= 4 · 1
4
= 1 ,

I2 =

∫
D

y · ρ(x, y, z) dx dy dz =

∫ 1

0

(∫ 2

0

(∫ (2−y)/2

0

4x2y dz

)
dy

)
dx

= 4

(∫ 2

0

(∫ (2−y)/2

0

y dz

)
dy

)(∫ 1

0

x2 dx

)
= 2

(∫ 2

0

y(2− y) dy

)
· 1
3

= 2 ·
[
y2 − 1

3
y3
]2
0

· 1
3
= 2 · 4

3
· 1
3
=

8

9
,
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I3 =

∫
D

z · ρ(x, y, z) dx dy dz =

∫ 1

0

(∫ 2

0

(∫ (2−y)/2

0

4x2z dz

)
dy

)
dx

= 4

(∫ 2

0

(∫ (2−y)/2

0

z dz

)
dy

)(∫ 1

0

x2 dx

)
= 4

(∫ 2

0

[
1

2
z2
](2−y)/2

0

dy

)
· 1
3

=
1

2

(∫ 2

0

(2− y)2 dy

)
· 1
3
=

1

2

[
−1

3
(2− y)3

]2
0

· 1
3
=

1

2
· 8
3
· 1
3
=

4

9
.

Ainsi le centre de gravité est G =
(
3
4
, 2

3
, 1

3

)
.

Solution 8.

Soit D le domaine de l'ennoncé. Comme D est un secteur sphérique, on utilise les
coordonnées sphériques G : E → D telles que

(x, y, z) = G(r, θ, φ) =
(
r sin(θ) cos(φ), r sin(θ) sin(φ), r cos(θ)

)
et donc le Jacobien de ce changement de coordonnées est

JG(r, θ, φ) = det

sin(θ) cos(φ) r cos(θ) cos(φ) −r sin(θ) sin(φ)
sin(θ) sin(φ) r cos(θ) sin(φ) r sin(θ) cos(φ)

cos(θ) −r sin(θ) 0

 = r2 sin(θ) .

Sur la �gure de l'énoncé on voit que le domaine d'intégration E est dé�ni par

0 ≤ r ≤ 2 ,
π

2
≤ φ ≤ 3π

2
et 0 ≤ θ ≤ π

4
.

Comme la densité de masse est proportionnelle à la distance à l'origine (notons
qu'une éventuelle constante de proportionnalité s'annule dans le calcul du centre de
gravité), elle est ρ(x, y, z) =

√
x2 + y2 + z2 et son analogue exprimé en coordonnées

sphériques est ρ(r, θ, φ) = r .

On calcule d'abord la masse totale I du domaine

I =

∫
D

ρ(x, y, z) dx dy dz =

∫
E

ρ(r, θ, φ) |JG(r, θ, φ)| dr dθ dφ

=

∫ 3π
2

π
2

(∫ π
4

0

(∫ 2

0

r3 sin(θ) dr

)
dθ

)
dφ =

(∫ 2

0

r3 dr

)(∫ π
4

0

sin(θ) dθ

)(∫ 3π
2

π
2

dφ

)

=

[
1

4
r4
]2
0

·
[
− cos(θ)

]π
4

0
· π = 4 ·

(
1−

√
2

2

)
· π = 2π(2−

√
2) .

Notons que sin(θ) ≥ 0 pour θ ∈
[
0, π

4

]
et donc |JG(r, θ, φ)| = r2 sin(θ) (sans valeur

absolue).
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La coordonnée zG du centre de gravité de D est alors

zG =
1

I

∫
D

z · ρ(x, y, z) dx dy dz =
1

I

∫
E

z(r, θ, φ) ρ(r, θ, φ) |JG(r, θ, φ)| dr dθ dφ

=
1

I

∫ 3π
2

π
2

(∫ π
4

0

(∫ 2

0

r cos(θ) · r3 sin(θ) dr
)
dθ

)
dφ

=
1

I

(∫ 2

0

r4 dr

)(∫ π
4

0

sin(θ) cos(θ) dθ

)(∫ 3π
2

π
2

dφ

)

=
1

I
·
[
1

5
r5
]2
0

·
[
1

2
sin(θ)2

]π
4

0

· π =
1

I
· 32
5

· 1
4
· π =

1

2π(2−
√
2)

· 8π
5

=
2(2 +

√
2)

5
.

Solution 9.

La construction du tore D implique que son grand rayon est a est son petit rayon
est b. Pour intégrer sur D on utilise les coordonnées dites curvilignes (cf Fig. 5): On
a (t, β, φ) dé�nies par G : E → D telles que

(x, y, z) = G(t, β, φ) =
(
(a+ t cos(β)) cos(φ), (a+ t cos(β)) sin(φ), t sin(β)

)

m = Ÿ Ÿ ŸD s „ x „ y „z = Ÿ Ÿ ŸD sHrL
¶∂Hx, y, zL
¶∂Hr, J, jL „r „ J „ j =

= Ÿpê2
3 pê2

Ÿ0
pê4

Ÿ0
2
r ÿ r2 sinJ „r „ J „ j = Ÿ0

2
r3 „r Ÿ0

pê4
sinJ „ J Ÿpê2

3 pê2
„ j =

= 1
4 Ar

4E
2
0

ÿ @-cos JD
p ê4
0

ÿ p = 4 ÿ J1 - 2
2 N ÿ p = 2 I2 - 2 M p ,

Ÿ Ÿ ŸD z ÿ s „ x „ y „z = Ÿ Ÿ ŸD z ÿ sHrL
¶∂Hx, y, zL
¶∂Hr, J, jL „r „ J „ j =

= Ÿpê2
3 pê2

Ÿ0
pê4

Ÿ0
2
r cosJ ÿ r ÿ r2 sinJ „r „ J „ j = Ÿ0

2
r4 „r Ÿ0

pê4
sinJ cosJ „ J Ÿpê2

3 pê2
„ j =

= 1
5 Ar

5E
2
0

ÿ A
1
2 sin2 JE

p ê4
0

ÿ p = 32
5 ÿ 12 ÿ 12 ÿ p = 8

5 p .

Par conséquent:

zG =
8
5 p

2 I2- 2 M p
= 2

5 I2 + 2 M = 1, 3657.

4.   La forme du domaine suggère d'utiliser les coordonnées curvilignes   Ht, j, bL   définies par :

x = Ha+ t cosbL cosj , y = Ha+ t cosbL sinj , z = t sinb .

x

y

z

a

a

a

b

tj
b

Etant donné que     
¶∂Hx, y, zL
¶∂Ht, j, bL = t Ha + t cosbL ,   l'intégrale devient

       Ÿ Ÿ ŸD z2 „ x „ y „z = Ÿ Ÿ ŸD z2
¶∂Hx, y, zL
¶∂Ht, j, bL „ t „ j „ b

= Ÿ0
2 p

Ÿ0
2 p

Ÿ0
b
Ht sinbL2 ÿ t Ha + t cosbL „ t „ j „ b

= 2 p Ÿ0
2 p

Ÿ0
b
Ht sinbL2 ÿ t Ha + t cosbL „ t „ b

= 2 p Ÿ0
2 p
Ba t4
4 +

t5
5 cosbE 

b
0

ÿ sin2 b „ b = 2 p b4 Ÿ0
2 p

B
a
4 +

b
5 cosbF sin2 b „ b =

= 2 p b4 ÿ
a
4 ÿ p + B

b
5 ÿ

sin3 b
3 F

2 p
0

=
p2 a b4
2 .

 

3

Figure 5 �

Le Jacobien de ce changement de coordonnées est

JG(t, β, φ) = det

cos(β) cos(φ) −t sin(β) cos(φ) −(a+ t cos(β)) sin(φ)
cos(β) sin(φ) −t sin(β) sin(φ) (a+ t cos(β)) cos(φ)

sin(β) t cos(β) 0


= −t(a+ t cos(β))

et on a |JG(t, β, φ)| = t(a + t cos(β)) parce que a > t et donc le terme dans la
parenthèse est positif. Puisque

E = {(t, β, φ) : 0 ≤ t ≤ b , 0 ≤ β ≤ 2π 0 ≤ φ ≤ 2π} ,

11



l'intégrale devient

I =

∫
D

z2 dx dy dz =

∫
E

z(t, β, φ)2 |JG(t, β, φ)| dt dβ dφ

=

∫ 2π

0

(∫ 2π

0

(∫ b

0

(
t sin(β)

)2 · t(a+ t cos(β)
)
dt

)
dβ

)
dφ

=

(∫ 2π

0

dφ

)(∫ 2π

0

(
sin(β)2

∫ b

0

(
at3 + t4 cos(β)

)
dt

)
dβ

)
= 2π

∫ 2π

0

sin(β)2
(
1

4
ab4 +

1

5
b5 cos(β)

)
dβ

=
π

2
ab4
∫ 2π

0

sin(β)2 dβ +
2π

5
b5
∫ 2π

0

sin(β)2 cos(β) dβ

=
π

2
ab4
∫ 2π

0

sin(β)2 dβ +
2π

5
b5
[
1

3
sin(β)3

]2π
0

=
π

2
ab4
∫ 2π

0

sin(β)2 dβ .

En intégrant la dernière intégrale par parties on trouve∫ 2π

0

sin(β)2 dβ =
[
− cos(β) sin(β)

]2π
0

+

∫ 2π

0

cos(β)2 dβ = 2π −
∫ 2π

0

sin(β)2 dβ

⇒
∫ 2π

0

sin(β)2 dβ = π

et donc I =
π2ab4

2
.

Solution 10.

L'aire de D a été calculée a l'exercice 8 de la série 12 ; elle vaut 6. Par symétrie, le
centre de gravité (pour distribution de masse uniforme) est le point c = (7

2
, 3). On

peut donc utiliser le résultat du cours pour les solides de rotation:

(a) La distance entre c et l'axe des x est la coordonnée y de c, donc 3. Ainsi

Vol(Drot) = Aire(D) · 2π · 3 = 36π.

(b) La distance entre c et l'axe des y est la coordonnée x de c, donc 7
2
. Ainsi

Vol(Drot) = Aire(D) · 2π · 7
2
= 42π.

(c) La perpendiculaire à y = −2x passant par c est y = 1
2
x + 5

4
. Le point d'in-

tersection est donc d = (−1
2
, 1) et la distance entre c et la droite d'équation

y = −2x est donc
dist(c,d) =

√
42 + 22 = 2

√
5.

Ainsi
Vol(Drot) = Aire(D) · 2π · 2

√
5 = 24

√
5π.
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