
Remarque sur les corrigés

Lire une solution, même partielle, d'un exercice sans avoir vraiment

essayé de le résoudre (plusieurs heures, même parfois plusieurs jours)
est presque totalement inutile. Faire un exercice en ayant la solution
sous les yeux est beaucoup plus facile, et ne prépare que très mal à un
examen (qui se fait sans solutions).

Par conséquent, la lecture du présent corrigé est déconseillée, et se fait
à vos risques et périls.
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Analyse II Corrigé 12
EPFL � Sections SIE/GC

Solution 1.

(a) Soient x et y les longueurs des cathètes d'un triangle rectangle. Son aire est
alors A = xy

2
et l'hypothénuse est de longueur

√
x2 + y2. Pour simpli�er, on

dé�nit une fonction-objectif équivalente, c.-à-d. f(x, y) = x2 + y2 qu'on veut
minimiser sous la contrainte g(x, y) = xy − 2A = 0.

Notons que ∇g(x, y) = (x, y) = (0, 0) ⇔ (x, y) = (0, 0) mais que g(0, 0) =
−2A ̸= 0. Donc ∇g(x, y) ̸= 0 pour tout (x, y) satisfaisant g(x, y) = 0. La
fonction de Lagrange est alors

F (x, y, λ) = f(x, y)− λg(x, y) = x2 + y2 − λ(xy − 2A)

ce qui mène au système
Fx = 2x− λy = 0 (1)

Fy = 2y − λx = 0 (2)

Fλ = −(xy − 2A) = 0 (3)

pour les points stationnaires de F .

De (1) on trouve x = λ
2
y, d'où (2 − 1

2
λ2)y = par (2). Si y = 0, (3) ne peut

être satisfaite, donc on λ2 = 4, ou encore λ = ±2. Ainsi x = ±y mais comme
x, y sont les deux positifs, on doit avoir x = y. Il découle alors de (3) que
x = y =

√
2A. Par conséquent le triangle rectangle avec hypothénuse minimale

est le triangle rectangle isocèle dont chaque cathète vaut
√
2A.

(b) On cherche le minimum de la fonction-objectif f(x, y, z) = x2 + y2 + z2

(distance du point (x, y, z) à l'origine au carré) sur l'ensemble Γ := {(x, y, z) :
g1(x, y, z) = 0 et g2(x, y, z) = 0} avec

g1(x, y, z) = x2 + y2 − z2 et g2(x, y, z) = x+ y − z + 1.

On peut montrer que ∇g1(x, y, z) = (2x, 2y,−2z) et ∇g2(x, y, z) = (1, 1,−1)
sont linéairement indépendants sur Γ par un argument similaire à celui à
l'Ex. 6 (b) de la série 11.

La fonction de Lagrange est

F (x, y, z, λ, µ) = f(x, y, z)− λ g1(x, y, z)− µ g2(x, y, z)

= x2 + y2 + z2 − λ(x2 + y2 − z2)− µ(x+ y − z + 1)

d'où le système

Fx = 2x− 2λx− µ = 2(1− λ)x− µ = 0 (1)

Fy = 2y − 2λy − µ = 2(1− λ)y − µ = 0 (2)

Fz = 2z + 2λz + µ = 2(1 + λ)z + µ = 0 (3)

Fλ = −(x2 + y2 − z2) = 0 (4)

Fµ = −(x+ y − z + 1) = 0 (5)
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En faisant (1)− (2) on trouve 2(1− λ)(x− y) = 0 ⇒ λ = 1 ou x = y .

Si λ = 1, alors µ = 0 et par (3) on a z = 0. Par (4) il suit que x = y = 0. Mais
(0, 0, 0) ne satisfait pas (5), donc ce n'est pas une solution.

Si x = y, alors z = 2x+1 par (5). Pour un point de la forme (x, x, 2x+1), (4)
s'écrit

2x2 + 4x+ 1 = 0 ⇒ x = −1±
√
2

2
= y et z = −1±

√
2 .

Il reste alors à véri�er que ces valeurs de (x, y, z) sont compatibles avec les
équations (1) et (3). Pour ceci, insérons les valeurs obtenues dans (1) et (3) et

écrivons le tout sous forme matricielle A

(
λ
µ

)
= b:2(1− λ)

(
−1±

√
2
2

)
− µ = 0

2(1 + λ)
(
−1±

√
2
)
+ µ = 0

⇔
(
−2±

√
2 1

−2± 2
√
2 1

)(
λ
µ

)
=

(
−2±

√
2

2∓ 2
√
2

)

Comme det(A) = ±
√
2∓ 2

√
2 = ∓

√
2 ̸= 0, il existe des solutions pour λ et µ

(qu'on n'a pas besoin de chercher).

Ainsi les solutions du système ∇F = 0 sont

p1 =

(
−1 +

√
2

2
,−1 +

√
2

2
,−1 +

√
2

)
et

p2 =

(
−1−

√
2

2
,−1−

√
2

2
,−1−

√
2

)
.

et

f
(
−1±

√
2
2
,−1±

√
2
2
,−1±

√
2
)
= 2

(
−1±

√
2
2

)2
+
(
−1±

√
2
)2

= 6∓ 4
√
2

Ainsi p1 réalise la distance minimale 6− 4
√
2.

(c) Observons d'abord que les deux axes de l'ellipse sont les droites qui passent par
le centre et les deux points sur l'ellipse dont la distance au centre est maximale
respectivement minimale. On cherche donc les extremums de la distance au
centre.

Comme l'axe du cylindre x2+y2 = 4 est l'axe z, le centre de l'ellipse se trouve
aussi sur l'axe z, i.e. il est de la forme (0, 0, z). De plus, l'ellipse est dans le
plan x+y+2z = 2, et donc son centre est (0, 0, 1). On cherche donc les droites
qui contiennent les extremums de la fonction f : R3 → R dé�nie par

f(x, y, z) = x2 + y2 + (z − 1)2,

sur Γ = {(x, y, z) : g1(x, y, z) = 0 et g2(x, y, z) = 0}, où g1(x, y, z) = x2 +
y2 − 4 et g2(x, y, z) = x+ y + 2z − 2 .

3



Or, ∇g1(x, y, z) = (2x, 2y, 0) et ∇g2(x, y, z) = (1, 1, 2) sont linéairement
dépendants seulement en des points (0, 0, z) qui ne sont pas contenus dans le
cylindre.

En posant F (x, y, z, λ, µ) = f(x, y, z)− λ g1(x, y, z)− µ g2(x, y, z) on obtient
le système suivant :

Fx = 2x− 2λx− µ = 0 (1)

Fy = 2y − 2λy − µ = 0 (2)

Fz = 2z − 2− 2µ = 0 (3)

Fλ = −(x2 + y2 − 4) = 0 (4)

Fµ = −(x+ y + 2z − 2) = 0 (5)

De (1) et (2) on obtient x = µ
2(1−λ)

= y . Supposons donc pour l'instant que

λ ̸= 1, le cas λ = 1 sera traité après. Par (3) on a

z = µ+ 1 et donc x = y =
z − 1

2(1− λ)
. (6)

En récrivant (5) en fonction de z, on a

z − 1

1− λ
+ 2z − 2 =

(
2 +

1

1− λ

)
(z − 1) = 0 ⇒ z = 1 ou λ =

3

2
.

Quand z = 1, il suit de (6) que x = y = 0. Mais le point (0, 0, 1) ne satisfait
pas (4), donc ce n'est pas une solution.

Quand λ = 3
2
, (6) implique que x = y = 1− z et si bien que (4) devient

2(1− z)2 − 4 = 2(z2 − 2z − 1) = 0 ⇒ z = 1±
√
2

et donc x = y = ∓
√
2.

Lorsque λ = 1, on a µ = 0 par (1) et (2), d'où il suit par (3) que z = 1. De
(5) on tire que x = −y, qui, inséré dans (4), donne

2y2 = 4 ⇒ y = ±
√
2 ⇒ x = ∓

√
2.

Les solutions du système sont donc

(x, y, z) ∈
{
(−

√
2,−

√
2, 1 +

√
2), (

√
2,
√
2, 1−

√
2),

(−
√
2,
√
2, 1), (

√
2,−

√
2, 1)

}
et on a

f(−
√
2,−

√
2, 1 +

√
2) = f(

√
2,
√
2, 1−

√
2) = 6 et

f(−
√
2,
√
2, 1) = f(

√
2,−

√
2, 1) = 4.
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Ainsi le grand axe de l'ellipse est sur la droite d1 et le petit axe sur la droite
d2 dé�nies par

d1 = {(x, y, z) ∈ R3 : x = t, y = t, z = 1− t, t ∈ R}

d2 = {(x, y, z) ∈ R3 : x = s, y = −s, z = 1, s ∈ R}.

Noter qu'on a utilisé le centre (0, 0, 1) de l'ellipse comme point de référence.

Solution 2.

(a) On note x, y les dimensions de la base rectangulaire, et z la hauteur. Le volume
est xyz, et la surface est xy+2xz+2yz. On cherche donc à optimiser f(x, y, z) =
xyz sous la contrainte g(x, y, z) = xy + 2xz + 2yz − 12 = 0. On introduit la
fonction de Lagrange

F (x, y, z, λ) = f(x, y, z)− λg(x, y, z) = xyz − λ(xy + 2xz + 2yz − 12).

Le système a résoudre est donc

∇F (x, y, z, λ) =


yz − λ(y + 2z)
xz − λ(x+ 2z)
xy − λ(2x+ 2y)

−xy − 2xz − 2yz + 12

 =


0
0
0
0

 .

La première équation donne λ = yz
y+2z

(on peut exclure le cas y+2z = 0, car cela

mène à une solution où y = 0 ou z = 0, qui ne donne pas le volume maximal).
On remplace cela dans la deuxième équation pour �nalement trouver x = y
(en excluant le cas z = 0). De là, on déduit facilement que la seule solution
avec x, y, z positifs est

x = 2, y = 2, z = 1, (et λ =
1

2
).

Il faut donc prendre une base carrée de 2 m de côté et une hauteur de 1m
pour avoir un volume maximal de 4 m3.

(b) La situation est similaire au point (a), mais la fonction objectif et la contrainte
sont inversées. La fonction à minimiser est f(x, y, z) = xy+ 2xz + 2yz sous la
contrainte g(x, y, z) = xyz − 4 = 0. On écrit la fonction de Lagrange

F (x, y, z, λ) = f(x, y, z)− λg(x, y, z) = xy + 2xz + 2yz − λxyz.

Le système a résoudre est donc

∇F (x, y, z, λ) =


y + 2z − λyz
x+ 2z − λxz
2x+ 2y − λxy

4− xyz

 =


0
0
0
0

 .

En soustrayant la première équation (multipliée par x) avec la seconde (mul-
tipliée par y), puis en divisant par 2z, on trouve que y = x. On remplace dans
la troisième pour trouver λ = 4

x
, d'où, en utilisant la deuxième à nouveau, on

tire z = x
2
. On remplace dans la dernière, pour trouver x = 2, et donc y = 2,

z = 1. La surface minimale est donc bien 2 · 2 + 2 · 2 · 1 + 2 · 2 · 1 = 12 m2.
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(c) On obtient les mêmes valeurs d'aire et de volume. C'est intuitivement clair:
si avec 12 m2 de carton, on forme une boite d'un volume maximal de 4 m3

(point (a)), alors on a besoin d'au minimum 12 m2 de carton pour une boite
d'un volume de 4 m3 (sinon on aurait "pu faire mieux" au point (a)).

Solution 3.

(a) Intégrer d'abord par rapport à x correspond à l'intégrale donnée. On obtient∫ 2

0

(∫ 1

0

(
x3 − y1/3

)
dx

)
dy =

∫ 2

0

[
1

4
x4 − y1/3 x

]x=1

x=0

dy =

∫ 2

0

(
1

4
− y1/3

)
dy

=

[
1

4
y − 3

4
y4/3

]y=2

y=0

=
1− 3 3

√
2

2
.

(b) En inversant l'ordre d'intégration on a∫ 1

0

(∫ 2

0

(
x3 − y1/3

)
dy

)
dx =

∫ 1

0

[
x3y − 3

4
y4/3

]y=2

y=0

dx =

∫ 1

0

(
2x3 − 3 3

√
2

2

)
dx

=

[
1

2
x4 − 3 3

√
2

2
x

]x=1

x=0

=
1− 3 3

√
2

2
.

Les résultats sont les mêmes (Théorème de Fubini-Tonelli).

Solution 4.

(a) Le domaine d'intégration est représenté à la Fig. 1. On a∫ 2

−1

(∫ 1

0

cos(x+ y) dx

)
dy =

∫ 2

−1

[
sin(x+ y)

]x=1

x=0
dy

=

∫ 2

−1

(
sin(1 + y)− sin(y)

)
dy =

[
− cos(1 + y) + cos(y)

]2
−1

= 1− cos(1) + cos(2)− cos(3) .

(b) Le domaine d'intégration est représenté à la Fig. 2. On a∫ 1

0

(∫ 2x

x

ex+y dy

)
dx =

∫ 1

0

[
ex+y

]y=2x

y=x
dx =

∫ 1

0

(
e3x − e2x

)
dx

=

[
1

3
e3x
]x=1

x=0

−
[
1

2
e2x
]x=1

x=0

=
1

3

(
e3 − 1

)
− 1

2

(
e2 − 1

)
=

1

3
e3 − 1

2
e2 +

1

6
.
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Solution 5.

(a) Le domaine D est représenté à la Fig. 3. On a∫
D

√
x+ y dx dy =

∫ 1

0

(∫ 2

0

√
x+ y dx

)
dy =

∫ 1

0

[
2

3
(x+ y)3/2

]x=2

x=0

dy

=

∫ 1

0

2

3

(
(2 + y)3/2 − y3/2

)
dy =

[
4

15

(
(2 + y)5/2 − y5/2

)]1
0

=
4

15

(
9
√
3− 4

√
2− 1

)
.

(b) Le domaine D est représenté à la Fig. 5 ci-dessus. On a

∫
D

x2y dx dy =

∫ 2

0

(∫ x2

0

x2y

)
dy dx =

∫ 2

0

[
1

2
x2y2

]y=x2

y=0

dx =

∫ 2

0

1

2
x6 dx

=

[
1

14
x7

]2
0

=
64

7
.

(c) Le domaine D est représenté à la Fig. 4 ci-dessus. Observons que x − y ≥ 0
et x + y − 2 ≤ 0 sur D. Ainsi (x − y)(x + y − 2) ≤ 0 et donc f(x, y) =
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−(x− y)(x+ y − 2) = −(x2 − 2x− y2 + 2y). On a∫
D

f(x, y) dx dy = −
∫ 1

0

(∫ x

0

(x2 − 2x− y2 + 2y) dy

)
dx

−
∫ 2

1

∫ 2−x

0

(x2 − 2x− y2 + 2y) dy dx

= −
∫ 1

0

[
(x2 − 2x)y − 1

3
y3 + y2

]y=x

y=0

dx

−
∫ 2

1

[
(x2 − 2x)y − 1

3
y3 + y2

]y=2−x

y=0

dx

∗
= −

∫ 1

0

(
2

3
x3 − x2

)
dx−

∫ 2

1

(
2

3
(2− x)3 − (2− x)2

)
dx

= −
[
1

6
x4 − 1

3
x3

]1
0

+

[
1

6
(2− x)4 − 1

3
(2− x)3

]2
1

= −
(
1

6
− 1

3

)
+

(
−1

6
+

1

3

)
=

1

3
.

Pour l'étape ∗ on a récrit le premier terme dans la deuxième intégrale comme

(x2 − 2x)(2− x) = −x(2− x)2 =
(
(2− x)− 2

)
(2− x)2 = (2− x)3 − 2(2− x)2

pour arriver à

(x2 − 2x)(2− x)− 1

3
(2− x)3 + (2− x)2 =

2

3
(2− x)3 − (2− x)2

et ainsi éviter de développer tous les polynômes.

Solution 6.

(a) En respectant l'ordre d'intégration donné, on doit trouver une primitive de
la fonction e(x

2) par rapport à x, ce qui est impossible. Il faut donc inverser
l'ordre d'intégration et reparamétriser le domaine D qui est représenté à la
Fig. 6 ci-dessous.

Dans l'ordre donné, on parcourtD du bas en haut selon des lignes horizontales.
Inverser l'ordre d'intégration revient à parcourir D de gauche à droite en selon
des lignes verticales. Ainsi x varie entre 0 et 1 et y varie entre 0 et x. On a∫ 1

0

(∫ 1

y

e(x
2) dx

)
dy =

∫ 1

0

(∫ x

0

e(x
2) dy

)
dx =

∫ 1

0

[
ye(x

2)
]y=x

y=0
dx

=

∫ 1

0

xe(x
2) dx =

[
1

2
e(x

2)

]1
0

=
e− 1

2
.

(b) On doit de nouveau inverser l'ordre d'intégration pour pouvoir calculer cette
intégrale. Il faut donc parcourir le domaine D (cf. Fig. 7) de gauche à droite
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selon des lignes verticales, c'est-à-dire laisser varier x entre 0 et 1 et y entre 0
et x3.∫ 1

0

(∫ 1

3
√
y

√
1 + x4 dx

)
dy =

∫ 1

0

(∫ x3

0

√
1 + x4 dy

)
dx

=

∫ 1

0

[
y
√
1 + x4

]y=x3

y=0
dx =

∫ 1

0

x3
√
1 + x4 dx

=

∫ 1

0

1

4
4x3(1 + x4)1/2 dx =

[
1

6

(
1 + x4

)3/2]1
0

=
1

6

(
2
√
2− 1

)

x

y

0 1

0

1

y � x

Figure 6 �

x

y

0 1

0

1
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Figure 7 �

Solution 7.

Les points du domaine D satisfont

−
√
x ≤ y ≤

√
x et x− 6 ≤ y ≤ x ;

on a donc les inégalités

max
(
−

√
x, x− 6

)
≤ y ≤ min

(√
x, x
)

et x− 6 ≤
√
x .

On fait les calculs :

x− 6 ≤ −
√
x ⇔ (

√
x)2 +

√
x− 6 ≤ 0 ⇔ (

√
x− 2)(

√
x+ 3) ≤ 0

⇔ 0 ≤
√
x ≤ 2 ⇔ 0 ≤ x ≤ 4 ,

x ≤
√
x ⇔

√
x(
√
x− 1) ≤ 0 ⇔ 0 ≤

√
x ≤ 1 ⇔ 0 ≤ x ≤ 1 ,

x− 6 ≤
√
x ⇔ (

√
x)2 −

√
x− 6 ≤ 0 ⇔ (

√
x+ 2)(

√
x− 3) ≤ 0

⇔ 0 ≤
√
x ≤ 3 ⇔ 0 ≤ x ≤ 9 .

Pour 0 ≤ x ≤ 9 on a donc

min
(√

x, x
)
=

{
x si 0 ≤ x ≤ 1
√
x si x > 1

et
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max
(
−

√
x, x− 6

)
=

{
−
√
x si 0 ≤ x ≤ 4

x− 6 si x > 4

c'est-à-dire D est le domaine représenté à la Fig. 8. (Remarque: On peut aussi
arriver à ces résultats en traçant les graphes, et puis chercher les points d'intersection
nécessaires.)

y=x
y= x

y=x-6

1 4

y=- x

6 9 x

-2

-1

1

2

3

y

Figure 8 �

On peut décomposer le domaine D en trois sous-domaines en coupant selon les
droites verticales x = 1 et x = 4. L'aire de D est alors∫

D

dx dy =

∫ 1

0

(∫ x

−
√
x

dy

)
dx+

∫ 4

1

(∫ √
x

−
√
x

dy

)
dx+

∫ 9

4

(∫ √
x

x−6

dy

)
dx

=

∫ 1

0

(
x+

√
x
)
dx+

∫ 4

1

2
√
x dx+

∫ 9

4

(√
x− x+ 6

)
dx

=

[
1

2
x2 +

2

3
x3/2

]1
0

+

[
4

3
x3/2

]4
1

+

[
2

3
x3/2 − 1

2
x2 + 6x

]9
4

=

(
1

2
+

2

3

)
+

(
32

3
− 4

3

)
+

(
54

3
− 81

2
+ 54

)
−
(
16

3
− 8 + 24

)
=

62

3
.

Solution 8.

Les équations des droites délimitant le parallélogramme D sont:

y=
1

2
x+

1

2

  y=
1

2
x+2

y=2x-1

y=2x-7

1 2 3 4 5 6 7 x

1

2

3

4

5

y
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On décompose le domaine en trois sous-domaines en coupant selon les droites ver-
ticales x = 2 et x = 5. Ainsi l'aire du parallélogramme est∫

D

dx dy =

∫ 2

1

(∫ 2x−1

1
2
x+ 1

2

dy

)
dx+

∫ 5

2

(∫ 1
2
x+2

1
2
x+ 1

2

dy

)
dx+

∫ 6

5

(∫ 1
2
x+2

2x−7

dy

)
dx

=

∫ 2

1

(
3

2
x− 3

2

)
dx+

∫ 5

2

3

2
dx+

∫ 6

5

(
−3

2
x+ 9

)
dx

=
3

2

([
1

2
x2 − x

]2
1

+

[
x

]5
2

+

[
−1

2
x2 + 6x

]6
5

)
=

3

2
· 4 = 6 .

Pour calculer l'aire de D par un changement de variable, il est utile de ré-exprimer
les équations des droites comme suit:

2x− y = 1
2x− y = 7

et
x− 2y = −1
x− 2y = −4.

On dé�nit alors une application H telle que (u, v) = H(x, y) avec{
u = 2x− y = H1(x, y)

v = x− 2y = H2(x, y)

et on voit que l'image de D par H est E = [1, 7]× [−4,−1], c'est-à-dire H : D → E.

Le matrice jacobienne de H et son jacobien sont

JH(x, y) =

(
∂xH1(x, y) ∂yH1(x, y)

∂xH2(x, y) ∂yH2(x, y)

)
=

(
2 −1

1 −2

)
et det

(
JH(x, y)

)
= −3 .

Soit G = H−1 : E → D la transformation inverse telle que (x, y) = G(u, v). Le
Jacobien de G se calcule à partir de JH(x, y) :

det
(
JG(u, v)

)
=

[
1

det
(
JH(x, y)

)]
(x,y)=G(u,v)

= −1

3
.

L'aire du parallélogramme est alors∫
D

dx dy =

∫
E

∣∣det(JG(u, v))∣∣ du dv =

∫ −1

−4

(∫ 7

1

1

3
du

)
dv =

1

3
· 3 · 6 = 6 .

Le résultat est évidemment le même qu'avant. Mais on a vu qu'il est plus rapide
d'utiliser un changement de variables adéquat.

Solution 9.

Le disque est D = {(x, y) ∈ R2 | x2 + y2 ≤ R2}. En coordonnées cartésiennes, on le
paramétrise comme:

D = {(x, y) ∈ R2 | −R ≤ x ≤ R, et −
√
R2 − x2 ≤ y ≤

√
R2 − x2}.
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Ainsi

Aire(D) =

∫∫
D

1 dxdy =

∫ R

−R

(∫ √
R2−x2

−
√
R2−x2

dy

)
dx =

∫ R

−R

2
√
R2 − x2 dx.

On fait le changement de variable x = R sin(θ). Donc dx = R cos(θ)dθ et comme x
varie entre −R et R, θ varie entre −π

2
et π

2
. Ainsi

Aire(D) =

∫ π
2

−π
2

2
√

R2(1− sin(θ))2 ·R cos(θ)dθ =

∫ π
2

−π
2

2R2 cos(θ)2 dθ.

Pour calculer cette intégrale, on peut utiliser une formule trigonométrique:

2 cos(θ)2 = cos(2θ) + 1.

L'intégrale vaut donc

R2

[
sin(2θ)

2
+ θ

]π
2

θ=−π
2

= πR2.
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