Remarque sur les corrigés

Lire une solution, méme partielle, d’un exercice sans avoir vraiment
essayé de le résoudre (plusieurs heures, méme parfois plusieurs jours)
est presque totalement inutile. Faire un exercice en ayant la solution
sous les yeux est beaucoup plus facile, et ne prépare que trés mal & un
examen (qui se fait sans solutions).

Par conséquent, la lecture du présent corrigé est déconseillée, et se fait
a vos risques et périls.
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Solution 1.

(2)

Soient x et y les longueurs des cathétes d’un triangle rectangle. Son aire est
alors A = % et 'hypothénuse est de longueur /22 + 32. Pour simplifier, on
définit une fonction-objectif équivalente, c.-a-d. f(z,y) = 2% + y* qu’on veut

minimiser sous la contrainte g(z,y) = zy — 24 = 0.

Notons que V(z,) = (z,5) = (0,0) < (z,y) = (0,0) mais que ¢(0,0) =
—2A # 0. Donc Vg(x,y) # 0 pour tout (z,y) satisfaisant g(x,y) = 0. La
fonction de Lagrange est alors

F(z,y,\) = f(z,y) — Ag(z,y) = 2° + y* — May — 24A)

ce qui meéne au systéme

F,=2x— )y =0 (1)
F,=2y— \x =0 (2)
Fy=—(zy—24) =0 (3)

pour les points stationnaires de F'.

De (1) on trouve z = 3y, d’out (2 — 1A%y = par (2). Si y = 0, (3) ne peut
étre satisfaite, donc on A\ = 4, ou encore A = £2. Ainsi 2 = £y mais comme
x,y sont les deux positifs, on doit avoir z = y. Il découle alors de (3) que
& =y = V2A. Par conséquent le triangle rectangle avec hypothénuse minimale
est le triangle rectangle isocéle dont chaque cathéte vaut v/2A.

On cherche le minimum de la fonction-objectif f(z,y,2) = x* + y? + 22
(distance du point (z,y, z) & origine au carré) sur ’'ensemble I' := {(z,y, 2) :
91(x,y,2) = 0 et ga(,y,2) = 0} avec

glzy,z) =2 +y* =2 et gey2)=vty-—z+ 1

On peut montrer que Vg (z,y,2) = (2z,2y, —22) et Vgo(x,y,2) = (1,1, 1)
sont linéairement indépendants sur I' par un argument similaire a celui a
I'Ex. 6 (b) de la série 11.

La fonction de Lagrange est

F(IE,@/,Z,)\,/L) = f($7y7z) - )‘gl<x7y7 Z) _:qu(xayvz)
=2+ P+ NP+ =) —prty— 2+ 1)

d’ou le systéme

(F, =22 -2 —p=21-Nz—p =0 (1)
Fy=2y—2\y—p=2(1-Ny—p =0 (2)
F,=2z4+2Xz24+pu=214+Nz+pu =0 (3)
Fy=—(2* +y* - 2?) =0 (4)
F,=—(r+y—2+1) =0 (5)




En faisant (1) — (2) on trouve 2(1—=A)(z —y)=0 = AX=1 ou xz=y.

Si A =1, alors 4 = 0 et par (3) on a z = 0. Par (4) il suit que x = y = 0. Mais
(0,0, 0) ne satisfait pas (5), donc ce n’est pas une solution.
Si x =y, alors z = 2x + 1 par (5). Pour un point de la forme (z,x,2z+ 1), (4)

s’écrit

2
20 +4x4+1=0 = m:—1i\/7_:y et z=-1+V2.

II reste alors & vérifier que ces valeurs de (x,y, 2z) sont compatibles avec les
équations (1) et (3). Pour ceci, insérons les valeurs obtenues dans (1) et (3) et

écrivons le tout sous forme matricielle A (2) =b:

_ _ V2 o, —
T (355 )0)- (29

Comme det(A) = £v/2 F 2v/2 = Fv/2 # 0, il existe des solutions pour A et u
(qu’on n’a pas besoin de chercher).

Ainsi les solutions du systéme VF = 0 sont

2 2
p1 = (—1+\/7_,—1+\/7_,—1+\/§) et

V2 V2
P2 = (—1—7,—1—7,—1—\6).

et
2 2
F1E 2122 -12v2) =2 (14 ¢) + (-1£v2) =674V2

Alinsi p; réalise la distance minimale 6 — 44/2.

Observons d’abord que les deux axes de I'ellipse sont les droites qui passent par
le centre et les deux points sur l'ellipse dont la distance au centre est maximale
respectivement minimale. On cherche donc les extremums de la distance au
centre.

Comme l'axe du cylindre 22 +y? = 4 est I’axe z, le centre de Dellipse se trouve
aussi sur l'axe z, i.e. il est de la forme (0,0, z). De plus, Uellipse est dans le
plan x4+ y+ 2z = 2, et donc son centre est (0,0, 1). On cherche donc les droites
qui contiennent les extremums de la fonction f: R?* — R définie par

f(@y,2) =2 +y* + (2 — 1)%,

sur I' = {(z,9,2) : gi(2,y,2) = 0 et go(z,y,2) = 0}, ot g1(x,y,2) = 22 +
v —4 et go(r,y,2)=x+y+22—2.



Or, Vgi(z,y,2) = (22,2y,0) et Vgo(z,y,2) = (1,1,2) sont linéairement
dépendants seulement en des points (0,0, z) qui ne sont pas contenus dans le
cylindre.

En posant F(.Z‘7y, Z, )\,/L) = f(x>ya Z) - )\gl(ﬂi,y,Z) - MQZ('T?ya Z) on obtient
le systéme suivant :

(F, =2z —2\x — =0 (1)
F,=2y—2\y—p =0 (2)
F,=2z-2-2u =0 (3)
F\=—(2>+y* —4) =0 (4)
F,=—(x+y+22—-2) =0 (5)

De (1) et (2) on obtient x = ﬁ = y . Supposons donc pour l'instant que

A # 1, le cas A = 1 sera traité apres. Par (3) on a

—1
z=p+1 et donc x:y:2(21—_)\). (6)
En récrivant (5) en fonction de z, on a

z—1

1—-A

1 3

Quand z = 1, il suit de (6) que x = y = 0. Mais le point (0,0, 1) ne satisfait
pas (4), donc ce n’est pas une solution.

Quand \ = g, (6) implique que x =y = 1 — z et si bien que (4) devient
21 —2)? —4=2(2-22-1)=0 = z=1+£2

et donc x =y = $\/§.

Lorsque A = 1, on a u = 0 par (1) et (2), d’ou il suit par (3) que z = 1. De
(5) on tire que x = —y, qui, inséré dans (4), donne

2y = 4 = y:j:\/§ = T = TFV2.

Les solutions du systéme sont donc

(2.9,2) € {(-V2,~V2,1+V2), (V2, V2,1 - V2),
(—V2, \/§,1>,(\/§,—\/§,1)}
et on a
F(=V2,—V2,14+V2) = f(V2,V/2,1-V2) =6 et
f(=vV2,v2,1) = f(vV2,-V2,1) = 4.



Ainsi le grand axe de 'ellipse est sur la droite d; et le petit axe sur la droite
do définies par

dlz{(%yw%’)GR?’:xzt,y:t,z:l—t,teR}
dy={(z,y,2) ER*:x =5,y =—s,2=1,s € R}.

Noter qu’on a utilisé le centre (0,0, 1) de I’ellipse comme point de référence.

Solution 2.

(2)

On note x, y les dimensions de la base rectangulaire, et z la hauteur. Le volume
est zyz, et la surface est xy+2x2z+2yz. On cherche donc a optimiser f(z,y, z) =
xyz sous la contrainte g(x,y,z) = xy + 2xz + 2yz — 12 = 0. On introduit la
fonction de Lagrange

Le systéme a résoudre est donc

yz — My + 22) 0
B xz — Nz + 22) 0
VF(.I',y,Z,)\) - [L‘y—)\(Ql‘—i—2y> 0
—xy — 2xz — 2yz + 12 0
La premiére équation donne A\ = -2 (on peut exclure le cas y+2z = 0, car cela

y+2z
méne a une solution ot y = 0 ou z = 0, qui ne donne pas le volume maximal).

On remplace cela dans la deuxiéme équation pour finalement trouver x = y
(en excluant le cas z = 0). De 14, on déduit facilement que la seule solution
avec x, ¥, z positifs est

1
r=2 y=2 z=1, (et)\:§).

Il faut donc prendre une base carrée de 2 m de coté et une hauteur de 1m
pour avoir un volume maximal de 4 m?.

La situation est similaire au point (a), mais la fonction objectif et la contrainte
sont inversées. La fonction & minimiser est f(z,y, z) = xy + 2xz + 2yz sous la
contrainte g(z,y, z) = xyz — 4 = 0. On écrit la fonction de Lagrange

F(z,y,z,\) = f(z,y,2) — Ag(2,y, 2) = 2y + 222 + 2yz — A\zyz.

Le systéme a résoudre est donc

Y+ 2z — A\yz 0

T+ 2z — d\xz 0

VE(z,y,2,4) = 20 +2y—dxy | |0
4 —xyz 0

En soustrayant la premiére équation (multipliée par x) avec la seconde (mul-
tipliée par y), puis en divisant par 2z, on trouve que y = x. On remplace dans
la troisiéme pour trouver A = ﬁ, d’ot, en utilisant la deuxiéme a nouveau, on
tire z = 7. On remplace dans la derniere, pour trouver x = 2, et donc y = 2,
z = 1. La surface minimale est donc bien 2-24+2-2-1+2-2-1 =12 m?.



(c) On obtient les mémes valeurs d’aire et de volume. C’est intuitivement clair:
si avec 12 m? de carton, on forme une boite d’un volume maximal de 4 m3
(point (a)), alors on a besoin d’au minimum 12 m? de carton pour une boite
d’un volume de 4 m? (sinon on aurait "pu faire mieux" au point (a)).

Solution 3.
(a) Intégrer d’abord par rapport a = correspond a I'intégrale donnée. On obtient

200 , M1 . 177 21 f
[ e mvae)a= [t —ve] ar= (G0
0 0 0 =0 0

B {1 3 4/3]922_ 1—-3v2
Yy

POV I 2

(b) En inversant l'ordre d’intégration on a

1/ f2 1 y=2 1 3
/ (/ (173 — y1/3) dy) dr = / {x?’y — §y4/3] dr = / 213 — 3—\/5 dx
0o \Jo 0 4 y=0 0 2

r=1
[1 . 3V2 ] 1392
2

27 2

=0

Les résultats sont les mémes (Théoréme de Fubini-Tonelli).

Solution 4.
(a) Le domaine d’intégration est représenté a la Fig. 1. On a

[ (o) ] o]

B /2 (sin(l +y)— Sin(y))dy = [ —cos(l+y) + Cos(y)] 2_1

) =1 —cos(1) + cos(2) — cos(3) .

(b) Le domaine d’intégration est représenté a la Fig. 2. On a

1 2x 1 y=2x 1
/ (/ ety dy) dx = / [e“y} dx = / (e — e*")dx
0o \Jaz 0 y=x 0

_13236:1_ 12xx:1_1 3 _1 2 _

=0
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Solution 5.
(a) Le domaine D est représenté a la Fig. 3. On a
1 2 19 =2
/\/x+ydxdy:/ (/ \/x—l—yda:) dy:/ [g(x+y)3/2] dy
D 0 0 0 =0
19 4 !
- / 3 (@) =) dy = [1—5((2 +y)*? - y5/2)]
0 0

:%(9\/5—4\/5—1).

(b) Le domaine D est représenté a la Fig. 5 ci-dessus. On a

2 x 271 y=a> 2
/nydasdy:/ / 2y dydx:/ [—nyQ} da::/ —28dx
D 0 0 0 L2 y=0 0 2
1 .]* 64
e —X = —,
4 1, 7

(c) Le domaine D est représenté a la Fig. 4 ci-dessus. Observons que z —y > 0
et x+y—2<0 sur D. Ainsi (x —y)(z +y —2) <0 et donc f(x,y) =

2



—(@-yle+y-2)=—(2"-22-y*+2y). Ona

</ x —2x—y2+2y)dy) dx
0

/ (2% — 20 — y* + 2y) dy dx
0

/D [z, y) dody =

1 L7
= (22 —22)y — =y° +y dx
3 =0
2 1. y=2e
{m—Qxy— y‘ﬂ—yﬂ dx
3 =0
2 2 (2
i dx — / —(2—2)—(2—2)°)dx
3 1 \3
1

II*
D = O\

Pour I’étape * on a récrit le premier terme dans la deuxiéme intégrale comme
(2 —22)2-2)=—2(2—2)’=(2-2)—-2)2-2)"=(2—2)"—2(2—2)°

pour arriver a

(22— 20)(2—2) — ~2— )P+ (2 —2)? = %(2 C 2P (2— a)?

3

et ainsi éviter de développer tous les polynomes.

Solution 6.

(2)

En respectant 1'ordre d’intégration donné, on doit trouver une primitive de
la fonction e par rapport a x, ce qui est impossible. Il faut donc inverser
lordre d’intégration et reparamétriser le domaine D qui est représenté a la
Fig. 6 ci-dessous.

Dans 'ordre donné, on parcourt D du bas en haut selon des lignes horizontales.
Inverser I'ordre d’intégration revient a parcourir D de gauche a droite en selon
des lignes verticales. Ainsi x varie entre 0 et 1 et y varie entre 0 et x. On a

1 1 ) 1 T ) 1 o] Y=T
/ (/ e(x)dx)dy:/ (/ e(x)dy)dac:/ [ye(x)] dx
0 y 0 0 0 y=0
1 1
= / ze™) dx = Fe(”ﬂ)} _e ! .
0 2 0 2

On doit de nouveau inverser 'ordre d’intégration pour pouvoir calculer cette
intégrale. Il faut donc parcourir le domaine D (cf. Fig. 7) de gauche a droite




selon des lignes verticales, c’est-a-dire laisser varier x entre 0 et 1 et y entre 0
3
et x°.

/01 </\;\/mdx>dy:/l </$3mdy)dx

:/ [y\/1+x4 = dx—/ 3V1+ 2tde
0 =0

1 1

L3 NV l 4\3/2 _1 .
/044:17(1+x) do = |2 (1+2)"] == (2v2-1)

0

y
1 1+
0 0
0 1 X 0 1 X
FIGURE 6 — FIGURE 7 —
Solution 7.

Les points du domaine D satisfont
—Vr<y<vz et 2-6<y<uw;
on a donc les inégalités
max(— \/z,z — 6) <y < min(y/z, z) et r—6<+x.
On fait les calculs:

r—6< -z & (V2)+vV/z-6<0
<~

r<vr & Vi(Vr-1)<0 & 0<vz2<1l & 0<x<1,



max(—\/E,x_(g):{_\/E si 0<r<4

z—6 sl xz>4

c’est-a-dire D est le domaine représenté a la Fig. 8. (Remarque: On peut aussi
arriver a ces résultats en tragant les graphes, et puis chercher les points d’intersection
nécessaires.)

3r y:VGZ
y=X

2t yz_\/Y
y=x-6

FIGURE 8 —

On peut décomposer le domaine D en trois sous-domaines en coupant selon les
droites verticales © = 1 et x = 4. L’aire de D est alors

Jpaoar= [ ([ an)ars [ ([ a)ars [ ([ L)

1 4 9
—/ (x+\/5)dx+/ 2\/;de+/ (Vo —2+6)dr
0 1 4
1 4 9
= 11’24—2:173/2 + 2 a2 + 2$3/2—1$2+6(L’
27 37 |, 13 ], I3 2 )

1 2 32 4 4 81 16 62

=(=-+= — — = — - — 4) - — — 24 | = —.

G+3)«(5-3) < (G-Fm)-(F-s+2)-5
Solution 8.

Les équations des droites délimitant le parallélogramme D sont:

Y,




On décompose le domaine en trois sous-domaines en coupant selon les droites ver-
ticales x = 2 et x = 5. Ainsi l'aire du parallélogramme est

2 20—1 5 1r42 6 let2
/dxdy:/ / dy dx+/ / dy dm+/ / dy | dx
D 1 loti 2 dz+3 5 207

2

(3 3 °3 °( 3
= —xr——|d —d — d
J(Gemg)oe [ [ (S50
1 2 5 1 6
:§ —2? — x| 4 |z| +|—=2®+62 :§-4:6.
2\ |2 1 5 2 5 2

Pour calculer 'aire de D par un changement de variable, il est utile de ré-exprimer
les équations des droites comme suit:

20—y =1 ot r—2y =-1
20—y =7 r—2y =-—4

On définit alors une application H telle que (u,v) = H(z,y) avec
u=2zx—y=H/zy)
v=1—2y = Hy(z,y)
et on voit que 'image de D par H est E = [1,7] x [—4, —1], c’est-a-dire H: D — E.
Le matrice jacobienne de H et son jacobien sont

0. Hy(z,y) 8yH1(:v,y)> _ <2 -1

JH(I,Z/) = <0IH2(5177?J) 8yH2(ZU>?J) 1 -2

) et det(Jy(z,y)) = -3.

Soit G = H™': E — D la transformation inverse telle que (z,y) = G(u,v). Le
Jacobien de G se calcule & partir de Jy(z,y):

1
[det (JH(xv y)) ] (2,9)=G(u,v)

L’aire du parallélogramme est alors

-1 s 7
/dxdy:/}det(Jg(u,v))’dudv:/ (/ 1du) dv:l-3-6:6.
D B —1 \J1 3 3

Le résultat est évidemment le méme qu’avant. Mais on a vu qu’il est plus rapide
d’utiliser un changement de variables adéquat.

det(Jg(u,v)) =

Solution 9.

Le disque est D = {(z,y) € R? | 2% + y* < R%*}. En coordonnées cartésiennes, on le
paramétrise comme:

D={(r,y) eR*| - R<x <R, et —VR2-12<y<VR2-—212}.

11



Ainsi

R VRZ=2? R
Aire(D) = // ldzdy = / / dy | doe = / 2V R? — 22 dx.
D -R —VR2—x2 -R

On fait le changement de variable = Rsin(#). Donc dx = Rcos(6)df et comme z
varie entre —R et R, 0 varie entre —7 et 7. Ainsi

™

Aire(D) = /_’5 2/ R2(1 — sin(0))? - Rcos(#)dd = /_2 2R* cos()? db.

Wl
Wl

Pour calculer cette intégrale, on peut utiliser une formule trigonométrique:
2 cos(0)? = cos(26) + 1.

L’intégrale vaut donc

12



