
Remarque sur les corrigés

Lire une solution, même partielle, d'un exercice sans avoir vraiment

essayé de le résoudre (plusieurs heures, même parfois plusieurs jours)
est presque totalement inutile. Faire un exercice en ayant la solution
sous les yeux est beaucoup plus facile, et ne prépare que très mal à un
examen (qui se fait sans solutions).

Par conséquent, la lecture du présent corrigé est déconseillée, et se fait
à vos risques et périls.
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Analyse II Corrigé 11
EPFL � Sections SIE/GC

Solution 1.

(a) Le système {
fx(x, y) = − sin(x) = 0

fy(x, y) = 6y = 0

donne les point stationnaires (x, y) = (kπ, 0) avec k ∈ Z. Puisque

Λ2(x, y) = det

(
− cos(x) 0

0 6

)
= −6 cos(x) ,

on a

Λ2(kπ, 0) =

{
−6, k pair

6, k impair

Les points (kπ, 0) avec k pair sont donc des points selle avec f(kπ, 0) = 3
tandis que pour k impair, l'égalité Λ1(kπ, 0) = − cos(kπ) = 1 > 0 implique
que f admet des minimums locaux aux points (kπ, 0) avec f(kπ, 0) = 1:
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(b) Comme{
fx(x, y) = 3x2 + 2x+ 2y = 0

fy(x, y) = −3y2 + 2x+ 2y = 0
⇒ 3(x2 + y2) = 0 ⇒ (x, y) = (0, 0),

le seul point stationnaire de la fonction f est (0, 0). Puisque

Λ2(x, y) = det

(
6x+ 2 2

2 −6y + 2

)
= −36xy + 12x− 12y ,

on a Λ2(0, 0) = 0 ce qui ne permet pas de conclure sur la nature du point
stationnaire. Mais comme f(x,−x) = 2x3 et f(0, 0) = 0 , la fonction f prend
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dans tout voisinage de (0, 0) des valeurs positives et négatives ; elle admet donc
un point selle en (0, 0):
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(c) On a {
fx(x, y) = −6x+ y2 = 0

fy(x, y) = 2y(x− 2y2) = 0
⇒ (x, y) = (0, 0),

et donc le seul point stationnaire de la fonction f est (0, 0). On trouve ensuite

Λ2(x, y) = det

(
−6 2y
2y 2x− 12y2

)
= 68y2 − 12x , d'où Λ2(0, 0) = 0 .

En isolant un carré parfait dans f(x, y), on obtient

f(x, y) = −3

(
x− y2

6

)2

− 11

12
y4 ou f(x, y) = −11

4
x2 −

(
y2 − x

2

)2
,

ce qui implique f(x, y) ≤ 0 pour tout (x, y) ∈ R2. Comme f(0, 0) = 0, la
fonction f admet un maximum local en (0, 0):
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Remarque: Puisque f(x, y) = 0 ⇒ (x, y) = (0, 0), le maximum de f en (0, 0)
est absolu.

(d) On résout le système
fx(x, y, z) = −4x + 4y = 0
fy(x, y, z) = 4x − 10y + 2z = 0
fz(x, y, z) = 2y − 2z = 0
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pour obtenir le seul point stationnaire (0, 0, 0). Ensuite on calcule le hessien
et les mineurs principaux dominants de la matrice hessienne:

Λ3(x, y, z) = det

−4 4 0
4 −10 2
0 2 −2

 , Λ2(x, y, z) = det

(
−4 4
4 −10

)
et Λ1(x, y, z) = −4.

En (0, 0, 0) on a

Λ1(0, 0, 0) = −4 < 0, Λ2(0, 0, 0) = 24 > 0 et Λ3(0, 0, 0) = −32 < 0,

et donc la fonction f admet un maximum local en (0, 0, 0) et f(0, 0, 0) = 2.

(e) Pour trouver les points stationnaire, on doit résoudre le système
fx(x, y, z) = 4x− 3z2 = 0
fy(x, y, z) = 3y2 − 3 = 0
fz(x, y, z) = −6xz + 6z = 0

⇔


4x− 3z2=0
3(y2 − 1)= 0

−6z(x− 1)= 0

Donc y = ±1 et soit z = 0 (ce qui implique x = 0), soit x = 1 (ce qui implique
z = ± 2√

3
). Les points stationnaires de f sont alors

(0, 1, 0), (0,−1, 0),
(
1, 1, 2√

3

)
,
(
1,−1, 2√

3

)
,
(
1, 1,− 2√

3

)
et
(
1,−1,− 2√

3

)
.

On a

Λ3(x, y, z) = detHf (x, y, z) = det

 4 0 −6z
0 6y 0

−6z 0 −6(x− 1)


= −72y

(
2(x− 1) + 3z2

)
,

Λ2(x, y, z) = det

(
4 0
0 6y

)
= 24y et Λ1(x, y, z) = 4 .

Evaluées aux points stationnaires ces expressions valent

Λ3(0, 1, 0) = 144 > 0, Λ2(0, 1, 0) = 24 > 0

Λ3(0,−1, 0) = −144 < 0, Λ2(0,−1, 0) = −24 < 0

Λ3

(
1, 1, 2√

3

)
= −288 < 0, Λ2

(
1, 1, 2√

3

)
= 24 > 0

Λ3

(
1,−1, 2√

3

)
= 288 > 0, Λ2

(
1,−1, 2√

3

)
= −24 < 0

Λ3

(
1, 1,− 2√

3

)
= −288 < 0, Λ2

(
1, 1,− 2√

3

)
= 24 > 0

Λ3

(
1,−1,− 2√

3

)
= 288 > 0, Λ2

(
1,−1,− 2√

3

)
= −24 < 0

Comme Λ1 > 0, f a un minimum local en (0, 1, 0) où f(0, 1, 0) = 2, et tous les
autres points stationnaires sont des points selle.
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Solution 2.

(a) Comme la fonction f admet des dérivées partielles partout à l'intérieur du
domaine D, ses extremums absolus se trouvent parmi les points stationnaires
à l'intérieur ou sur le bord de D.

Points stationnaires à l'intérieur de D:{
fx(x, y) = 2x − y − 1 = 0
fy(x, y) = −x + 2y − 1 = 0

⇒ (x, y) = (1, 1).

Puisque

Λ2(x, y) = det

(
2 −1
−1 2

)
= 3 > 0 et Λ1(x, y) = 2 > 0 ,

le point (1, 1) est un minimum local de f . De plus on a f(1, 1) = −1.

Sur le bord de D on a:

Notons d'abord que le bord de D est l'union des trois sous-ensembles suivants
de R2:

{(x, 0) : 0 ≤ x ≤ 3} ∪ {(0, y) : 0 ≤ y ≤ 3} ∪ {(x, 3− x) : 0 ≤ x ≤ 3}.

L'évaluation de la fonction f sur le bord donne

f(x, 0) = x2 − x =

(
x− 1

2

)2

− 1

4
, 0 ≤ x ≤ 3 ,

f(0, y) = y2 − y =

(
y − 1

2

)2

− 1

4
, 0 ≤ y ≤ 3 ,

f(x, 3− x) = 3(x2 − 3x+ 2) = 3

[(
x− 3

2

)2

− 1

4

]
, 0 ≤ x ≤ 3 .

L'idée est maintenant de chercher les extremums de ces fonctions unidimen-
sionnelles dans le domaine précisé qui se trouvent soit aux points stationnaires
soit aux extrémités du domaine (cf. Analyse I). Notons d'abord g(x) = f(x, 0) .
Alors g′(x) = 2

(
x− 1

2

)
= 0 ⇔ x = 1

2
et g

(
1
2

)
= −1

4
. Puisque g′′(x) = 2 >

0 , g a un minimum local en x = 1
2
. De plus on a g(0) = 0 et g(3) = 6 . On

a donc

max
0≤x≤3

f(x, 0) = f(3, 0) = 6 et min
0≤x≤3

f(x, 0) = f

(
1

2
, 0

)
= −1

4
.

De même, on cherche les extremums des fonctions h(y) = f(0, y) et k(x) =
f(x, 3− x). La fonction h a exactement le même comportement que g et pour
k on a

k′(x) = 6
(
x− 3

2

)
= 0 ⇔ x = 3

2
, k

(
3
2

)
= −3

4
,

k′′(x) = 6 > 0 (⇒ minimum local), k(0) = k(3) = 6,
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si bien qu'on obtient

max
0≤y≤3

f(0, y) = f(0, 3) = 6 , min
0≤y≤3

f(0, y) = f
(
0, 1

2

)
= −1

4
,

max
0≤x≤3

f(x, 3− x) = f(3, 0) = f(0, 3) = 6 , min
0≤x≤3

f(x, 3− x) = f
(
3
2
, 3
2

)
= −3

4
.

Il s'en suit que f admet un minimum absolu en (1, 1) de valeur f(1, 1) = −1
et des maximums absolus en (3, 0) et en (0, 3) de valeur f(3, 0) = f(0, 3) = 6:
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(b) Comme f est de classe C2 sur D, ses extremums absolus se trouvent soit en
un point stationnaire à l'intérieur de D, soit sur le bord de D.

Points stationnaires à l'intérieur de D:{
fx(x, y) = 4x − y − 6 = 0
fy(x, y) = −x + 4y − 6 = 0

⇒ (x, y) = (2, 2).

Puisque

Λ2(x, y) = det

(
4 −1
−1 4

)
= 15 > 0 et Λ1(x, y) = 4 > 0 ,

le point (2, 2) est un minimum local de f . De plus on a f(2, 2) = −12.

Sur le bord de D on a:

Le bord de D est l'union des deux sous-ensembles suivants de R2:{
(x, 0) : −4

√
2 ≤ x ≤ 4

√
2
}
∪
{
(x,

√
32− x2) : −4

√
2 ≤ x ≤ 4

√
2
}
.

L'évaluation de la fonction f sur le bord donne

f(x, 0) = 2x2 − 6x = 2

(
x− 3

2

)2

− 9

2
, −4

√
2 ≤ x ≤ 4

√
2 ,

f(x,
√
32− x2) = 64− 6x− (x+ 6)

√
32− x2 , −4

√
2 ≤ x ≤ 4

√
2 .

Sur la première partie du bord (le segment de l'axe x), f atteint son minimum
en x = 3

2
où f

(
3
2
, 0
)
= −9

2
et son maximum en x = −4

√
2 où f

(
− 4

√
2, 0
)
=
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8(8 + 3
√
2). L'autre extrémité x = 4

√
2 n'est pas candidat pour le maximum

global de f parce que f(4
√
2) < f(−4

√
2).

Pour la deuxième partie (le demi-cercle), soit g : [−4
√
2, 4

√
2] → R dé�nie par

g(x) = 64− 6x− (x+ 6)
√
32− x2.

Alors g est dérivable sur : ]− 4
√
2, 4

√
2[ : , où sa dérivée vaut

g′(x) = −6−
√
32− x2 +

x(x+ 6)√
32− x2

=
−6

√
32− x2 − 32 + 2x2 + 6x√

32− x2
.

Ainsi

g′(x) = 0 ⇒ x2 + 3x− 16 = 3
√
32− x2 ⇒ (x2 + 3x− 16)2 = 9(32− x2)

⇒ x4 + 6x3 − 14x2 − 96x− 32 = 0

En essayant des diviseurs de 32, on trouve les racines entières x1 = 4 et
x2 = −4. On véri�e que seul x1 est solution de g′(x) = 0 (et que les deux autres
racines non-entières ne sont pas des solutions de g′(x) = 0 (elles apparaissent
parce qu'on a pris le carré de l'équation.))

La valeur de g en son point stationnaire est g(4) = 0. De plus, les points au bord
de l'intervalle de dé�nition de g sont aussi des candidats pour les extremums
de g. On a g(−4

√
2) = 64 + 24

√
2 ≈ 97.9 et g(4

√
2) = 64− 24

√
2 ≈ 30.1 .

Ainsi le minimum global de f est atteint en (2, 2) et vaut f(2, 2) = −12 et le
maximum global est atteint en (−4

√
2, 0) et vaut f(−4

√
2, 0) = 8(8 + 3

√
2).

(c) Soit D = {(x, y, z) : x2 + y2 + z2 ≤ 4} la boule considérée. On commence par
chercher les extremums de f à l'intérieur de D. Les points stationnaires de f
satisfont

fx = 2x− 2 = 0

fy = 2y + 2 = 0

fz = 2z − 1 = 0

⇒ (x, y, z) =

(
1,−1,

1

2

)
est le seul point stationnaire

qui est bien à l'intérieur de D car 12 + (−1)2 +
(
1
2

)2
= 9

4
≤ 4.

Pour trouver les extremums de f sur le bord de D, on dé�nit g(x, y, z) = x2+
y2 + z2 − 4 en sorte que le bord de D est l'ensemble {(x, y, z) : g(x, y, z) = 0}.
Notons qu'on a ∇g(x, y, z) = (2x, 2y, 2z) = 0 ⇔ x = y = z = 0 mais
g(0, 0, 0) = −4 ̸= 0 et donc ∇g ̸= 0 sur le bord de D.

On introduit la fonction de Lagrange

F (x, y, z, λ) = f(x, y, z)− λg(x, y, z)

= x2 + y2 + z2 − 2x+ 2y − z − 5

4
− λ(x2 + y2 + z2 − 4).
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et on résout le système qui décrit les points stationnaires de F , à savoir
Fx = 2x− 2− 2λx = 2(1− λ)x− 2 = 0 (1)

Fy = 2y + 2− 2λy = 2(1− λ)y + 2 = 0 (2)

Fz = 2z − 1− 2λz = 2(1− λ)z − 1 = 0 (3)

Fλ = −
(
x2 + y2 + z2 − 4

)
= 0 (4)

Comme λ ̸= 1 (sinon (1) à (3) ne sont pas satisfaites), on peut diviser par
1− λ pour obtenir à partir de (1) à (3)

x =
1

1− λ
, y = − 1

1− λ
, z =

1

2(1− λ)

qu'on met ensuite dans (4) qui devient

2

(1− λ)2
+

1

4(1− λ)2
− 4 = 0 ⇔ 9− 16(1− λ)2 = 0 ⇔ 16λ2 − 32λ+7 = 0

⇔ λ2 − 2λ+
7

16
=

(
λ− 7

4

)(
λ− 1

4

)
= 0 ⇔ λ1 =

7

4
, λ2 =

1

4
.

Ainsi on a

x1 = −4

3
, y1 =

4

3
, z1 = −2

3
et x2 =

4

3
, y2 = −4

3
, z2 =

2

3
.

On calcule la valeur de f aux extremums potentiels sur D

(x, y, z)
(
1,−1, 1

2

) (
−4

3
, 4
3
,−2

3

) (
4
3
,−4

3
, 2
3

)
f(x, y, z) −7

2
35
4

−13
4

Ainsi le minimum de f sur D est −7
2
, atteint en

(
1,−1, 1

2

)
, et le maximum est

35
4
, atteint en

(
−4

3
, 4
3
,−2

3

)
.

Solution 3.

Comme les dérivées partielles de f sont continues sur tout le domaine D, les extre-
mums absolus sont atteints aux points stationnaires à l'intérieur ou sur le bord de

D. Puisque
∂f

∂y
= −1 ne s'annule jamais sur D, la fonction f n'admet aucun point

stationnaire.

Puisque le domaine D est un parallélépipède rectangle parallèle aux axes, on peut
déterminer le comportement de f sur le bord de D en examinant ses dérivées par-
tielles. Pour (x, y, z) ∈ D on a :

∂f

∂x
= z + 1 > 0 ⇒ f est croissante dans la direction x et donc maximale

en x = a et minimale en x = 0.

∂f

∂y
= −1 < 0 ⇒ f est décroissante dans la direction y et donc maximale

en y = 0 et minimale en y = b.

∂f

∂z
= x+ 2 > 0 ⇒ f est croissante dans la direction z et donc maximale

en z = c et minimale en z = 0.
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La fonction f a donc son maximum absolu en (a, 0, c) et son minimum absolu en
(0, b, 0).

A�n de calculer les valeurs extrémales de f , on doit trouver son expression. A partir
des dérivées partielles données, on obtient successivement

∂yf(x, y, z) = −1 ⇒ f(x, y, z) = −y + g(x, z) ⇒ ∂xf(x, y, z) = ∂xg(x, z) = z + 1

⇒ g(x, z) = (z + 1)x+ h(z) ⇒ ∂zf(x, y, z) = x+ h′(z) = x+ 2

⇒ h(z) = 2z + C, C ∈ R ⇒ g(x, z) = (z + 1)x+ 2z + C

⇒ f(x, y, z) = −y + (z + 1)x+ 2z + C

La condition f(0, 0, 0) = 3 implique alors que C = 3 et f(x, y, z) = (z + 1)x −
y + 2z + 3. Ainsi le maximum absolu de f est f(a, 0, c) = a(c + 1) + 2c + 3 et son
minimum absolu est f(0, b, 0) = 3− b .

Remarque: On aurait aussi pu calculer l'expression de f dès le départ mais l'approche
prise ici est plus instructive.

Solution 4.

Le gradient de g est

∂g

∂θ
= 2 cos(θ)

(
sin(φ)− cos(φ)

)
+ sin(θ)

∂g

∂φ
= 2 sin(θ)

(
cos(φ) + sin(φ)

)
Pour trouver les points stationnaires on distingue deux cas :

1) Si θ ∈ {0, π} on a sin(θ) = 0 et cos(θ) ̸= 0, d'où sin(φ) = cos(φ). Ainsi φ =

{
π
4

5π
4

ce qui mène aux points stationnaires

p1 = (0, π
4
), p2 = (0, 5π

4
), p3 = (π, π

4
), p4 = (π, 5π

4
) .

2) θ ∈ ]0, π[: Comme sin(θ) ̸= 0 on a cos(φ) = − sin(φ) et donc φ =

{
3π
4

7π
4

. La

première équation devient alors

4 sin(φ)︸ ︷︷ ︸
± 1√

2

+tan(θ) = 0 ⇒ tan(θ) = ∓2
√
2 ⇒ θ =

{
arctan(−2

√
2) + π

arctan(2
√
2)

Ainsi on a encore trouvé les deux points stationnaires

p5 =
(
arctan(−2

√
2) + π, 3π

4

)
et p6 =

(
arctan(2

√
2), 7π

4

)
.

Pour déterminer la nature de tous les points stationnaires trouvés on calcule la
matrice hessienne de g

Hg(θ, φ) =

(
cos(θ)− 2 sin(θ)

(
sin(φ)− cos(φ)

)
2 cos(θ)

(
cos(φ) + sin(φ)

)
2 cos(θ)

(
cos(φ) + sin(φ)

)
2 sin(θ)

(
cos(φ)− sin(φ)

))
9



et son déterminant

Λ2(θ, φ) = 2 sin(θ) cos(θ)
(
cos(φ)− sin(φ)

)
+ 4 sin(θ)2

(
cos(φ)− sin(φ)

)2
− 4 cos(θ)2

(
cos(φ) + sin(φ)

)2
= 2 sin(θ) cos(θ)

(
cos(φ)− sin(φ)

)
+ 4 sin(θ)2 − 4 cos(θ)2 − 8 cos(φ) sin(φ) .

Pour tous les points du cas 1) on a Λ2(pi) = −8 < 0 (i = 1, . . . , 4), ce sont donc des
points selle.

Comme

tan(x)2 =
sin(x)2

cos(x)2
=

sin(x)2

1− sin(x)2
⇔ sin(x)2 =

tan(x)2

1 + tan(x)2

et de manière similaire

cos(x)2 =
1

1 + tan(x)2
,

on a pour les points du cas 2), p5 et p6,

sin(θ) =
2
√
2

3
, cos(θ) = ∓1

3
, sin(φ) = ± 1√

2
, cos(φ) = ∓ 1√

2
.

Ainsi Λ2(p5) = Λ2(p6) = 8 > 0 et comme Λ1(θ, φ) = cos(θ) − 2 sin(θ)
(
sin(φ) −

cos(φ)
)
, on a Λ1(p5,6) = ∓1

3
∓ 8

3
= ∓3 . La fonction g admet donc un maximum

local en p5 et un minimum local en p6. Les directions R3 qui y correspondent sont

up5 =

sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)

 =

2
√
2

3
· − 1√

2
2
√
2

3
· 1√

2

−1
3

 =

−2
3

2
3

−1
3

 et up6 =

 2
3

−2
3

1
3

 .

En comparant avec l'Ex. 6(c) de la Série 9, on voit que le sens du vecteur up5 qui
maximise la pente g est celui du gradient de f au point concerné. Et le sens du
vecteur up6 de pente minimale est celui de −∇f .

Solution 5.

Soit d la distance entre le point P = (x, y) et la droite x+y = a (a > 0). Puisque la
distance entre un point et une droite est mesurée dans la direction perpendiculaire

à la droite, le point (x, y) + d
(

1√
2
, 1√

2

)
est sur la droite et véri�e donc

(
x+

d√
2

)
+

(
y +

d√
2

)
= a ⇒ d =

√
2

2
(a− x− y).

Les distances de P aux droites x = 0 et y = 0 sont respectivement x et y. Par
conséquent le produit des distances de P aux trois droites est donnée par la fonction

f(x, y) =

√
2

2
xy(a− x− y), D(f) = {(x, y) : x, y ≥ 0 et x+ y ≤ a}.
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Comme on cherche P à l'intérieur du triangle ABC et que la fonction f admet des
dérivées partielles en chaque point de D(f), le maximum cherché est atteint en un
point stationnaire de f à l'intérieur du domaine.

On résout donc le système
fx(x, y) =

1√
2
(ay − 2xy − y2) = 0 (1)

fy(x, y) =
1√
2
(ax− 2xy − x2) = 0 (2)

en calculant d'abord
√
2 ·
(
(1)− (2)

)
:

x2 − y2 − a(x− y) = (x− y)(x+ y − a) = 0 ⇒
x+y<a

x− y = 0 ⇒ x = y.

En insérant x = y dans (1), on obtient ax−3x2 = x(a−3x) = 0 ⇒ x = y = 1
3
a

car on cherche un point à l'intérieur de D(f) (i.e. x > 0).

Il reste à véri�er que f atteint un maximum au point
(
1
3
a, 1

3
a
)
. Le hessien de f est

Λ2(x, y) = det

(
−
√
2y a√

2
−
√
2(x+ y)

a√
2
−

√
2(x+ y) −

√
2x

)

= 2xy −
(

a√
2
−

√
2(x+ y)

)2

= −2x2 − 2y2 − 2xy + 2a(x+ y)− a2

2

et donc Λ2

(
1
3
a, 1

3
a
)
= 1

6
a2 > 0 et Λ1

(
1
3
a, 1

3
a
)
= −

√
2
3
a < 0 .

La fonction f atteint donc son maximum au point
(
1
3
a, 1

3
a
)
et on a f

(
1
3
a, 1

3
a
)
=

√
2

54
a3.

Solution 6.

(a) On cherche les extremums de la fonction-objectif f(x, y) = x3 + y3 sous la
contrainte g(x, y) = x4 + y4 − 32 = 0 . Notons que ∇g(x, y, z) = (4x3, 4y3) =
0 ⇔ (x, y) = 0 mais que g(0, 0) ̸= 0 et donc ∇g(x, y) ̸= 0 pour tout (x, y)
satisfaisant g(x, y) = 0.

La fonction de Lagrange est

F (x, y, λ) = f(x, y)− λg(x, y) = x3 + y3 − λ(x4 + y4 − 32).

On cherche les points stationnaires de F qui sont solutions du système
Fx = 3x2 − 4λx3 = x2(3− 4λx) = 0 (1)

Fy = 3y2 − 4λy3 = y2(3− 4λy) = 0 (2)

Fλ = −(x4 + y4 − 32) = 0 (3)

A partir de (1) et (2) on trouve plusieurs solutions :

(1) ⇒ x = 0 ou λx =
3

4
et (2) ⇒ y = 0 ou λy =

3

4

• Si x = y = 0, (3) n'est pas satisfaite, donc impossible.
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• Si x = 0, alors (3) implique que y = ± 4
√
32 = ±2 4

√
2. Il existe alors une

valeur de λ pour satisfaire (2).

• Si y = 0, alors x = ±2 4
√
2 et (1) peut être satisfaite.

• Si aucune des variables n'est nulle, alors x = y = 3
4λ

par (1) et (2). Par
(3) il suit que 2 81

256λ4 = 32 ⇒ x = y = ±2.

Les solutions du système sont donc

(x, y) ∈
{
(0, 2

4
√
2), (0,−2

4
√
2), (2

4
√
2, 0), (−2

4
√
2, 0), (2, 2), (−2,−2)

}
et on a le tableau suivant

(x, y) (0, 2 4
√
2) (0,−2 4

√
2) (2 4

√
2, 0) (−2 4

√
2, 0) (2, 2) (−2,−2)

f(x, y) 8 · 23/4 −8 · 23/4 8 · 23/4 −8 · 23/4 16 −16

Comme 23/4 < 2, la valeur maximale de f est 16, atteint en (2, 2), et la valeur
minimale est −16, atteint en (−2,−2).

(b) On cherche les extremums de f sur l'ensemble Γ := {(x, y, z) : g1(x, y, z) =
0 et g2(x, y, z) = 0} avec g1(x, y, z) = x2 + y2 + z2 − 1 et g2(x, y, z) = x −
y − 1. Pour montrer que ∇g1(x, y, z) = (2x, 2y, 2z) et ∇g2(x, y, z) =
(1,−1, 0) sont linéairement indépendants sur Γ, supposons que α∇g1(x, y, z)+
β∇g2(x, y, z) = 0 . Du système 

αx+ β = 0

αy − β = 0

αz = 0

il suit que si α = 0 alors β = 0. Si α ̸= 0, alors z = 0 et la somme des
deux premières équations donne y = −x. Observons g2(x,−x, 0) = 2x− 1 = 0
implique x = 1

2
= −y mais

(
1
2
,−1

2
, 0
)
/∈ Γ à cause de g1. Ainsi ∇g1 et ∇g2 sont

linéairement indépendants sur Γ.

La fonction de Lagrange est

F (x, y, z, λ, µ) = f(x, y, z)− λ g1(x, y, z)− µ g2(x, y, z)

= x+ y + z − λ
(
x2 + y2 + z2 − 1

)
− µ(x− y − 1).

et on résout le système ∇F = 0 :

Fx = 1− 2λx− µ = 0 (1)

Fy = 1− 2λy + µ = 0 (2)

Fz = 1− 2λz = 0 (3)

Fλ = −(x2 + y2 + z2 − 1) = 0 (4)

Fµ = −(x− y − 1) = 0 (5)

Par (3) on sait que λ ̸= 0 et donc z = 1
2λ

. Ensuite

(1) + (2) ⇒ 2− 2λ(x+ y) = 0 ⇒ x+ y =
1

λ
= 2z

12



De plus (5) ⇒ y = x− 1 et donc z = x− 1
2
. On insère ces expressions dans

(4)

x2 + (x− 1)2 +

(
x− 1

2

)2

− 1 = 3x2 − 3x+
1

4
= 0 ,

ce qui donne deux solutions :

x =
3±

√
6

6
=

1

2
± 1√

6
⇒ y = −1

2
± 1√

6
et z = ± 1√

6

et les solutions du système sont{(
1

6

(
3 +

√
6
)
,
1

6

(
− 3 +

√
6
)
,

1√
6

)
,

(
1

6

(
3−

√
6
)
,
1

6

(
− 3−

√
6
)
,− 1√

6

)}
.

La fonction f admet un maximum en
(

1
6

(
3 +

√
6
)
, 1
6

(
−3 +

√
6
)
, 1√

6

)
de va-

leur
√

3
2
et un minimum en

(
1
6

(
3−

√
6
)
, 1
6

(
−3−

√
6
)
,− 1√

6

)
de valeur −

√
3
2
.

Solution 7.

On cherche les extremums de f(x, y, z) = z sous la contrainte g(x, y, z) = 4x2 +
3y2 +2yz+3z2 − 4x− 1 = 0 . Notons que ∇g(x, y, z) = (8x− 4, 6y+2z, 2y+6z) =
(0, 0, 0) ⇔ (x, y, z) =

(
1
2
, 0, 0

)
mais g

(
1
2
, 0, 0

)
= −2 ̸= 0 et donc ∇g ̸= 0 pour tout

(x, y, z) tel que g(x, y, z) = 0.

La fonction de Lagrange est

F (x, y, z, λ) = f(x, y, z)− λg(x, y, z) = z − λ(4x2 + 3y2 + 2yz + 3z2 − 4x− 1)

et il faut résoudre le système
Fx = −λ(8x− 4) = 0 (1)

Fy = −λ(6y + 2z) = 0 (2)

Fz = 1− λ(2y + 6z) = 0 (3)

Fλ = −
(
4x2 + 3y2 + 2yz + 3z2 − 4x− 1

)
= 0 (4)

Observons que λ ̸= 0 à cause de (3). Par (1) on a alors x = 1
2
et par (2) on a

z = −3y, qu'on insère dans (3) pour obtenir y = − 1
16λ

. Tout cela inséré dans (4)
donne

1 +
3

256λ2
− 6

256λ2
+

27

256λ2
− 2− 1 =

24

256λ2
− 2 = 0 ⇒ λ2 =

12

256

⇒ λ = ±2
√
3

16
⇒ y = ∓ 1

2
√
3

et z = ±
√
3

2
.

Ainsi les solutions du système sont

(x, y, z) ∈

{(
1

2
,−

√
3

6
,

√
3

2

)
,

(
1

2
,

√
3

6
,−

√
3

2

)}

et les valeurs maximale et minimale de z sont
√
3
2

et −
√
3
2
; elles sont réalisées aux

points
(

1
2
,−

√
3
6
,
√
3
2

)
et
(

1
2
,
√
3
6
,−

√
3
2

)
.
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Solution 8.

On note (x1, y1) les points sur la première courbe, et (x2, y2) les points sur la seconde.
On cherche le minimum de la fonction de 4 variables

f̃(x1, y1, x2, y2) = dist((x1, y1), (x2, y2)) =
√
(x1 − x2)2 + (y1 − y2)2,

où, ce qui est équivalent, le minimum du carré de cette fonction (pour enlever les
racines)

f(x1, y1, x2, y2) = (x1 − x2)
2 + (y1 − y2)

2,

sous les deux contraintes g1 = 0 et g2 = 0 données par

g1(x1, y1, x2, y2) = y1 − x2
1, g2(x1, y1, x2, y2) = y2 − 2x2 + 6.

On véri�e facilement que les gradients de g1 et g2 sont linéairement indépendants.
La fonction de Lagrange est

F (x1, y1, x2, y2, λ1, λ2) = (x1 − x2)
2 + (y1 − y2)

2 − λ1(y1 − x2
1)− λ2(y2 − 2x2 + 6).

On calcule

∇F (x1, y1, x2, y2, λ1, λ2) =


2(x1 − x2) + 2λ1x1

2(y1 − y2)− λ1

−2(x1 − x2) + 2λ2

−2(y1 − y2)− λ2

x2
1 − y1

2x2 − 6− y2


?
= 0.

En ajoutant la première et la troisième équation, on trouve λ2 = −λ1x1, et en
ajoutant la deuxième et la quatrième, on a λ2 = −λ1. En combinant ces deux
équations, on trouve −λ1 = −λ1x1, ce qui force λ1 = 0 ou x1 = 1. Le cas λ1 = 0
implique (equations 1 et 2) que x1 = x2 et y1 = y2, donc que les points (x1, y1)
et (x2, y2) sont les mêmes ; c'est impossible (car les deux courbes ne s'intersectent
pas !). Ainsi x1 = 1, d'où y1 = 1 (equation 5). L'équation 1 plus 2 fois l'équation 2
donne alors

2(1− x2) + 4(1− y2) = 0 ⇔ 2x2 = 6− 4y2.

On substitue dans la dernière équation pour trouver y2 = 0 d'où x2 = 3.

Les points les plus proches sont donc (1, 1) ∈ C1 et (3, 0) ∈ C2, séparés d'une
distance de

√
5.

-2 2 4

-2

2

4

5

14


