Remarque sur les corrigés

Lire une solution, méme partielle, d’un exercice sans avoir vraiment
essayé de le résoudre (plusieurs heures, méme parfois plusieurs jours)
est presque totalement inutile. Faire un exercice en ayant la solution
sous les yeux est beaucoup plus facile, et ne prépare que trés mal & un
examen (qui se fait sans solutions).

Par conséquent, la lecture du présent corrigé est déconseillée, et se fait
a vos risques et périls.



Analyse 11 Corrigé 11
EPFL - Sections SIE/GC

Solution 1.

(2)

Le systéme
fu(z,y) = —sin(x) =0
fy(@,y) =6y =0

donne les point stationnaires (z,y) = (km,0) avec k € Z. Puisque

Ao(z,y) = det (_ C%S(x) 2) = —6cos(x),
on a
—6, Kk pai
Aa(km,0) = ¢ 7 P
6, k impair

Les points (km,0) avec k pair sont donc des points selle avec f(km,0) = 3
tandis que pour k impair, I’égalité A;(km,0) = —cos(kr) = 1 > 0 implique
que f admet des minimums locaux aux points (k7,0) avec f(km,0) = 1:

Comme

AN =3 2 2 2y=0
{f@ FOR S =3(z* +y*) =0 = (z,9) = (0,0),

fo(z,y) = =3y* + 22 +2y =0
le seul point stationnaire de la fonction f est (0,0). Puisque

6z + 2 2
Ao(z,y) = det( 5 6y + 2) = —36xy + 122 — 12y,

on a A2(0,0) =0 ce qui ne permet pas de conclure sur la nature du point
stationnaire. Mais comme f(z, —z) = 223 et f(0,0) = 0, la fonction f prend



dans tout voisinage de (0, 0) des valeurs positives et négatives; elle admet donc
un point selle en (0,0):

e,

(c) On a

fy(flf,?/) = Qy(l’ — 2y2) =0 g (I,y) = (0,0),

et donc le seul point stationnaire de la fonction f est (0,0). On trouve ensuite

{f:c(xay) = —6x +y2 =0

o —6 2y o 2 [N _
As(z,y) = det(zy oy — 12?/2) = 68y” — 12z, d’ou A(0,0)=0.

En isolant un carré parfait dans f(x,y), on obtient

2

2
F,y) = -3 (as - %) ey R Py (R

ce qui implique f(z,y) < 0 pour tout (z,y) € R% Comme f(0,0) = 0, la
fonction f admet un maximum local en (0, 0):

Remarque: Puisque f(xz,y) =0 = (z,y) = (0,0), le maximum de f en (0,0)
est absolu.

(d) On résout le systéme

folr,y,2) = —dx + 4y =0
fy(x,y,2) = 4oz — 10y + 2z =
fz,y,2) = 2y — 2z =0



pour obtenir le seul point stationnaire (0,0,0). Ensuite on calcule le hessien
et les mineurs principaux dominants de la matrice hessienne:

—4 40 44
As(z,y,z)=det| 4 —10 2 |, As(z,y, 2) = det
0 9  _9 4 —=10

et  A(z,y,2) = —4.
En (0,0,0) on a
A0,0,0) = —4 <0,  As(0,0,0)=24>0 et As(0,0,0) =32 <0,

et donc la fonction f admet un maximum local en (0,0,0) et f(0,0,0) = 2.

Pour trouver les points stationnaire, on doit résoudre le systéme

folz,y,2) = 4o—322 =0 4r —32°=0
fu(zy,2)= 3y*—3 =0 & 3(y?—1)=0
f:(z,y,2) = —6rz+62z =0 —6z(x —1)=0

Donc y = +1 et soit z = 0 (ce qui implique = = 0), soit z = 1 (ce qui implique
z = i\%) Les points stationnaires de f sont alors

2 2 2
(07170)7 (07_170)7 (171, \f) (1,_1,7§>7 <1,1,—Tg> et (1,—1,—7§>
On a

4 0 —62
As(z,y,2) =det Hp(x,y,2) =det| 0 6y 0
—6z 0 —6(x—1)
= —72y(2(z — 1) + 32?),

4 0
As(z,y, 2) = det (0 6y> =24y et Ai(z,y,2)=4.

Evaluées aux points stationnaires ces expressions valent

A5(0,1,0) = 144 > 0, A5(0,1,0) = 24 > 0
As(0,—1,0) = —144 < 0, As(0,—1,0) = —24 < 0
( 1,%) 288 < 0, ( 1,%):24>0

( 1,%):288>0, ( 1,%):—24«)
( %):—288<0, ( %)=24>0
Ag( , —7§> — 9288 > 0, ( jg) — _24<0

Comme A; > 0, f a un minimum local en (0, 1,0) ot f(0,1,0) = 2, et tous les
autres points stationnaires sont des points selle.
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Solution 2.
(a) Comme la fonction f admet des dérivées partielles partout a l'intérieur du
domaine D, ses extremums absolus se trouvent parmi les points stationnaires
a I'intérieur ou sur le bord de D.

Points stationnaires i U'intérieur de D:

{fx(lny): 20— Yy —

1=0
fylz,y)= —o + 2y — 1=0 = (x,y) = (1,1).

Puisque

A2($,y):det(_21 _21> =3>0 et A(z,y)=2>0,

le point (1,1) est un minimum local de f. De plus on a f(1,1) = —1.

Sur le bord de D on a:

Notons d’abord que le bord de D est 'union des trois sous-ensembles suivants
de R2:

{(,0): 0 <2 <3}U{(0,y) :0<y<3tU{(z,3—2x):0<x<3}

L’évaluation de la fonction f sur le bord donne

1\N? 1

f(z,0) =2 -z <x 2) 1 0<z<3,
1\N? 1

fOy)=y"—y=(y—=] ——, 0<y<3,
9 4

2
flz,3—2)=3(2*—-3r+2)=3 [(m—%) —i] : 0<z<3.
L’idée est maintenant de chercher les extremums de ces fonctions unidimen-
sionnelles dans le domaine précisé qui se trouvent soit aux points stationnaires
soit aux extrémités du domaine (cf. Analyse I). Notons d’abord g(x) = f(z,0).
Alors ¢'(z)=2(z—3)=0 & =3 et g(3) =—1. Puisque ¢"(z)=2>
0, ¢ a un minimum local en z = 3. De pluson a g(0) =0 et g(3) =6. On

a donc

max f(z,0) = f(3,0) =6 et Ogliggf(x,()) =f (1 0) = —}1.

0<a<3 2’
De méme, on cherche les extremums des fonctions h(y) = f(0,y) et k(z) =
f(xz,3 —z). La fonction h a exactement le méme comportement que g et pour
k on a

Hlz)=6(z—-3)=0 & a= k(3)=-3

2 47

k(0) = k(3) =6,

3
29
);

K'(r) =6 >0 (= minimum local



si bien qu’on obtient

— — i — 1y - 1
0123%(3f(07y) _f<073)_67 Orgnylgg.f(()vy) _f(Oaz) - 4
_ _ — ; _ - 3 3y - _3
0123§3f(x73_$)_f<370)_f(073)_67 orgnxlggf(x’g 'T>_f(272)_ 4
Il s’en suit que f admet un minimum absolu en (1,1) de valeur f(1,1) = —1
et des maximums absolus en (3,0) et en (0,3) de valeur f(3,0) = f(0,3) = 6:

(b) Comme f est de classe C* sur D, ses extremums absolus se trouvent soit en
un point stationnaire a l'intérieur de D, soit sur le bord de D.

Points stationnaires a 'intérieur de D:

fas(x,y): do — y — 6=0 B
{fy(x,y): —r + 4y — 6=0 = <$,y)—(2,2),

Puisque

4

Ag(as,y):det( 1 _41):15>O et Ai(z,y)=4>0,

le point (2,2) est un minimum local de f. De plus on a f(2,2) = —12.

Sur le bord de D on a:

Le bord de D est 'union des deux sous-ensembles suivants de R?:
{(:L',O) 42 <2 < 4\/5} U {(:C, V32 —a?): A42<r< 4\/5} )

L’évaluation de la fonction f sur le bord donne

3\? 9
f(x,O):2x2—6x:2(x—§) — 5 —4V2 <z <4V2,
f(z,V/32—22) =64 — 62 — (x +6)V32 — 22, —4vV2<ax<4V2.

Sur la premiére partie du bord (le segment de I’axe x), f atteint son minimum
en xr = g ol f(%,()) = —% et son maximum en z = —4/2 ol f( —4\/5,0) =
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8(8 4+ 3\/5) [autre extrémité z = 4v/2 n’est pas candidat pour le maximum
global de f parce que f(4v/2) < f(—4v/2).

Pour la deuxiéme partie (le demi-cercle), soit g: [—4v/2,4v/2] — R définie par
g(x) =64 — 6 — (v +6)V32 — a2

Alors g est dérivable sur : | — 4v/2,4v/2[: , ol sa dérivée vaut

6) —6v32— 22 —32+222+6
g’(x)=—6—m+x(””+>: V32 —a% — 324+ 22% + 6o
V32 —a? N

Ainsi
d(x)=0 = 2> +32—-16=3V32 — 22 = (2°+ 37 — 16)* = 9(32 — 2?)
= 24 62° — 142 — 962 — 32 =0

En essayant des diviseurs de 32, on trouve les racines entiéres z; = 4 et
x9 = —4. On vérifie que seul x; est solution de ¢’(x) = 0 (et que les deux autres
racines non-entiéres ne sont pas des solutions de ¢'(z) = 0 (elles apparaissent
parce qu’on a pris le carré de 1’équation.))

La valeur de g en son point stationnaire est g(4) = 0. De plus, les points au bord
de l'intervalle de définition de g sont aussi des candidats pour les extremums
de g. On a g(—4v2) = 64 +24y/2 ~ 97.9 et g(4v/2) = 64 — 24/2 ~ 30.1.

Ainsi le minimum global de f est atteint en (2,2) et vaut f(2,2) = —12 et le
maximum global est atteint en (—44/2,0) et vaut f(—4v/2,0) = 8(8 + 3v/2).

Soit D = {(z,y, 2) : 2> + y* + 2* < 4} la boule considérée. On commence par
chercher les extremums de f a l'intérieur de D. Les points stationnaires de f
satisfont

fo=2x—-2=0 |
fu=2y+2=0 = (z,y,2) = (1, -1, 5) est le seul point stationnaire
f:=22—-1=0

qui est bien & l'intérieur de D car 12 4+ (—1)? + (%)2 = % < 4.

Pour trouver les extremums de f sur le bord de D, on définit g(z,y, z) = 2 +
y* + 22 — 4 en sorte que le bord de D est Pensemble {(z,vy, 2) : g(x,y,2) = 0}.
Notons qu’on a Vg(z,y,2) = (27,2y,22) = 0 < z =y =2z = 0 mais
9(0,0,0) = —4 # 0 et donc Vg # 0 sur le bord de D.

On introduit la fonction de Lagrange

F(z,y,z,\) = f(z,y,2) — A\g(z, 9y, 2)

)
:$2+y2+22—2x+2y—z—Z—)\(x2+y2+22—4).



et on résout le systéme qui décrit les points stationnaires de F', & savoir

F,=20-2-2r=2(1-Nz-2 =0 (1)
Fy=2y+2-2y=201-Ny+2 =0 (2)
Fo=22—1-2=2(1-)\z—-1 =0 (3)
Fy=—(®+y*+7°—4) =0 (4)

Comme A # 1 (sinon (1) & (3) ne sont pas satisfaites), on peut diviser par
1 — X pour obtenir & partir de (1) a (3)
1 1 1
r = —— = —— = ——
D U A 21—\
qu’on met ensuite dans (4) qui devient

2 1
TESVER TSN

7 7 1 7 1
<:>)\2—2>\+—:()\——><)\——):O<:>)\121, )\QZZ

-—4=0& 9-16(1-X)?=0 & 16A*—=32A+7=0

16 4 4
Ainsi on a
4 4 2 ; 4 4 2
I =—= ==, 1 =—= e Ty = — = ——. Zop= —.
1 3’ U1 3’ 1 3 2 3’ Yo 3 2 3

On calcule la valeur de f aux extremums potentiels sur D
1 44 2 4 4 2
(,y.2) | (1L,-13) (=55 -3) (553

35 13

fawz)| - : u

Ainsi le minimum de f sur D est —%, atteint en (1, -1, %), et le maximum est
2 atteint en (-3, 3, —%)

NN
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Solution 3.

Comme les dérivées partielles de f sont continues sur tout le domaine D, les extre-
mums absolus sont atteints aux points stationnaires a l'intérieur ou sur le bord de

. 0 L . .
D. Puisque (9_f = —1 ne s’annule jamais sur D, la fonction f n’admet aucun point
Y
stationnaire.
Puisque le domaine D est un parallélépipéde rectangle paralléle aux axes, on peut
déterminer le comportement de f sur le bord de D en examinant ses dérivées par-
tielles. Pour (z,y,2) € D on a:

% =z+1>0 = f est croissante dans la direction x et donc maximale
en r = a et minimale en z = 0.

of . o .

8_3/ =—-1<0 = f est décroissante dans la direction y et donc maximale
en y = 0 et minimale en y = b.

% =x+2>0 = f est croissante dans la direction z et donc maximale

en z = ¢ et minimale en z = 0.



La fonction f a donc son maximum absolu en (a,0,c¢) et son minimum absolu en

(0,b,0).

Afin de calculer les valeurs extrémales de f, on doit trouver son expression. A partir
des dérivées partielles données, on obtient successivement

O f(x,y,2)=—1 = f(z,y,2) = —y+9(x,2) = &f(r,y,z)=0g(x,z) =2+1
=  g(z,2)=(2+ 1)z + h(2) = Of(x,y,z)=x+h(z)=x+2
= h(z)=224C, CeR = g(x,2) = (z+1r+224+C
= flr,y,2)=—-y+(z+1Dz+224+C

La condition f(0,0,0) = 3 implique alors que C = 3 et f(x,y,2) = (z + 1)z —
y + 2z + 3. Ainsi le maximum absolu de f est f(a,0,¢) = a(c+ 1) + 2¢c + 3 et son
minimum absolu est f(0,6,0) =3 —b.

Remarque: On aurait aussi pu calculer 'expression de f dés le départ mais 'approche
prise ici est plus instructive.

Solution 4.
Le gradient de g est

% = 2cos(f) (sin(p) — cos(y)) + sin(6)
g—i = 2sin(0) (cos(p) + sin(p))

Pour trouver les points stationnaires on distingue deux cas:

1)Si6 € {0,7} on asin(f) = 0 et cos(#) # 0, d’otu sin(yp) = cos(p). Ainsi ¢ = {

g =

ce qui méne aux points stationnaires

pr=00.%). p2=05), ps=(m7), p=(m5).
3

2) 0 € ]0,7[: Comme sin(f) # 0 on a cos(p) = —sin(yp) et donc ¢ = {74; La
1

premiére équation devient alors

4sin(p) +tan(d) =0 = tan(d) = F2vV2 = 0=
——
+

arctan(—2v/2) + 7
arctan(2y/2)

N

Ainsi on a encore trouvé les deux points stationnaires

D5 = (arctan(—Q\/i) +m,3) et ps= (arctan(Z\/ﬁ), ).

Pour déterminer la nature de tous les points stationnaires trouvés on calcule la
matrice hessienne de g

~ (cos(#) — 2sin(6) (sin(p) — cos(p)) 2 cos(8)( cos(p) + sin(p))
Hy(0,0) = ( 2 cos(6) (cos(ip) + sin(yp)) 2sin(6) (cos(p) — sin(y)) >

9



et son déterminant
As(0,¢) = 2sin(0) cos(8) (cos(p) — sin(p)) + 4sin(6)*( cos(p) — sin(gp))2

— 4 cos(0)*( cos(ip) + sin(ap))2
= 2sin(f) cos(6) ( cos(p) — sin(y)) + 4sin(#)* — 4 cos(9)* — 8 cos(ip) sin(yp) .

Pour tous les points du cas 1) on a Ay(p;)) = =8 < 0 (i =1,...,4), ce sont donc des
points selle.
Comme
sin(x)? sin(z)? s tan(z)?
an(z) cos(z)? 1 —sin(z)? sin(z) 1 + tan(z)?

et de maniére similaire )
2

cos(z)” = 17 tan(z)?

)

on a pour les points du cas 2), ps et pg,

sin(f) = 23£, cos(f) = IFé sin(p) = i%, cos(p) = $% :

Ainsi As(ps) = Aa(ps) = 8 > 0 et comme Aq(0, ) = cos() — 2sin(f)(sin(p) —
cos(gp)) ,ona Ai(psg) = :F% T % = F3. La fonction g admet donc un maximum
local en ps et un minimum local en pg. Les directions R® qui y correspondent sont

. 2v2 1
sin(6) cos(¢) R —2 2
u,, = | sin(f)sin(p) | = ¥ . % =| 2 et Uy = | =2
cos(0) -1 —1 !

En comparant avec 'Ex. 6(c) de la Série 9, on voit que le sens du vecteur u,, qui
maximise la pente g est celui du gradient de f au point concerné. Et le sens du
vecteur u,, de pente minimale est celui de =V f.

Solution 5.
Soit d la distance entre le point P = (x,y) et la droite x+y = a (a > 0). Puisque la
distance entre un point et une droite est mesurée dans la direction perpendiculaire

a la droite, le point (z,y) + d (\/ii, \%) est sur la droite et vérifie donc

R T PP B !

Les distances de P aux droites x =0 et y = 0 sont respectivement z et y. Par
conséquent le produit des distances de P aux trois droites est donnée par la fonction

V2

flay) = ayla—x—y), D(f)={(z.y):zy=20etz+y<a}.

10



Comme on cherche P a 'intérieur du triangle ABC' et que la fonction f admet des
dérivées partielles en chaque point de D(f), le maximum cherché est atteint en un
point stationnaire de f a l'intérieur du domaine.

On résout donc le systéme

fol@,y) = —=(ay — 22y —y*) =0 (1)

[\

fy(@,y) = —=(ax — 20y — 2%) = 0 (2)

N

en calculant d’abord v2 - ((1) — (2)):

Py ae—y)=@-ylty-a=0 = w-y=0 = z=y
zty<a

En insérant x = y dans (1), on obtient ax—32? = z(a—32) =0 = z=y=

car on cherche un point a l'intérieur de D(f) (i.e. z > 0).

Il reste & vérifier que f atteint un maximum au point (% a, % a). Le hessien de f est

—V2y 75— V2(z + )
Ay(z,y) = det (\%—\/ﬁ(x+y) V2 A )

2
= 2zy — <%—\/§(m+y)> :—2x2—2y2—2xy+2a(m+y)—%

et donc Ay(3a,5a) =3a?>0 et Al(%a,%a):—‘ga<0.

La fonction f atteint donc son maximum au point (la la) et on a f (la la) =

/s 3773 3773
V3 3
54CL.

Solution 6.
(a) On cherche les extremums de la fonction-objectif f(z,y) = z® +3* sous la
contrainte g(x,y) = 2* + y* — 32 = 0. Notons que Vg(z,y, 2) = (423, 41>) =
0 & (x,y) = 0 mais que ¢(0,0) # 0 et donc Vg(z,y) # 0 pour tout (z,y)
satisfaisant g(z,y) = 0.

La fonction de Lagrange est

F(z,y,A) = f(z,y) — Aglz,y) = 2° + y* — Maz* + y* — 32).

On cherche les points stationnaires de F' qui sont solutions du systéme

F, =32 —4)2® = 2*(3 — 4 ) =0 (1)
F, =3y -4’ =943 —-4\y) =0 (2)
Fy=—(2* +y* - 32) =0 (3)
A partir de (1) et (2) on trouve plusieurs solutions:
3 3
(1) = x=0 ou /\x:Z et (2) = y=0 ou Ay:Z

e Siz =1y =0, (3) nest pas satisfaite, donc impossible.
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e Siz =0, alors (3) implique que y = +£+v/32 = £2+v/2. 1l existe alors une
valeur de \ pour satisfaire (2).

e Siy=0,alors z = +2v/2 et (1) peut étre satisfaite.
e Si aucune des variables n’est nulle, alors z = y = 2 par (1) et (2). Par

(3) il suit que 2 357 =32 = =z =y==£2

Les solutions du systéme sont donc
(z.y) € {(0.2V2), (0,-2V2), (2¥/2,0), (-2V/2,0), (2,2), (2. -2)}
et on a le tableau suivant
(w.y) | (0,2V2) (0,-2v2) (2V2,0) (-2v2,0) (2,2) (-2,-2)
f(z,y) . g.23/4 _8.2%4 g.23/4 _g§.234 1§ —16

Comme 24 < 2, la valeur maximale de f est 16, atteint en (2,2), et la valeur
minimale est —16, atteint en (—2, —2).

On cherche les extremums de f sur Pensemble I' := {(z,y,2) : gi1(z,y,2) =
0 et go(w,y,2) = 0} avec g1(z,y,2) = 22 + > + 22 — 1 et go(z,y,2) = © —
y — 1. Pour montrer que Vgi(x,y,2) = (2z,2y,22) et Vg(z,y,2) =
(1,—1,0) sont linéairement indépendants sur I', supposons que aVg;(z,y, z)+
BV gs(z,y,2z) =0 . Du systéme

ar+ =0
ay— =0
az =10

il suit que si @« = 0 alors § = 0. Si a # 0, alors z = 0 et la somme des
deux premiéres équations donne y = —z. Observons gs(x, —x,0) =2z —1 =0

implique z = % = —y mais (%, —%, O) ¢ I" a cause de g;. Ainsi Vg, et Vgs sont

linéairement indépendants sur I'.

La fonction de Lagrange est

F(x,y,z,)\,,u) = f(xaya Z) —)\91($,y,2’) _MQQ(xayv Z)
=z+y+z-A(®+y*+22—1) —plz—y—1).

et on résout le systéme VF = 0:

(F,=1-2\z—p =0 (1)
F,=1-2\y+pu =0 (2)
F,=1-2\z =0 (3)
Fy=—-("+y*+2"-1) =0 (4)
F,=—(x—y—1) =0 (5)

\

Par (3) on sait que A # 0 et donc z = 5 . Ensuite
1
MH+12) = 2-2\z+y)=0 = :c—iry:X:Zz

12



Deplus () = y=2—1 etdonc z=2x— % . On insére ces expressions dans
(4)

1\’ 1
:1:2+(:L’—1)2—|—(a:—§) —1:3x2—3x+zl:0,

ce qui donne deux solutions :

3+v6 1, 1 1,1 1
_3xV6 1,1 y=—5t 5 et z=d—

6 2= V6

et les solutions du systéme sont

{(é(3+\/6), é(—3+\/6), %) : (é(?)— Vé),é(—za— \/6),—%)}.

La fonction f admet un maximum en (% (3 + \/_) , é ( 3+ \/_) ) de va-
leur \/g et un minimum en (% (3 — \/6) ( ) , —%) de valeur — %
Solution 7.

On cherche les extremums de f(z,y,2) = z sous la contrainte g(z,y,2) = 42 +
3y? +2yz + 322 — 4z — 1 =0 . Notons que Vg(z,y,2z) = (8¢ — 4,6y + 22,2y + 62) =
(0,0,0) & (z,y,2) = (%,0,0) mais g( 0 0) —2 # 0 et donc Vg # 0 pour tout
(2,9, 2) tel que g(z,y, 2) = 0.
La fonction de Lagrange est

F(z,y,2,\) = f(z,y,2) — Mgz, y,2) = 2 — M4a® + 3y* + 2yz + 32° — 4z — 1)

et il faut résoudre le systéme

F, = -8z —4) =0 (1)
F, = —\(6y +2z) =0 (2)
F.=1- )2y +62) =0 (3)
Fy=— (42> +3y> +2yz+ 32> —da — 1) =0 (4)

Observons que A # 0 a cause de (3). Par (1) on a alors x = 1 et par (2) on a

z = =3y, qu’'on insére dans (3) pour obtenir y = 16/\ Tout cela inséré dans (4)
donne
3 6 27 24 12
1 — —2—-1= —-2=0 = XN=-—"
+ 25672 2562 + 2562 2562 256
2V/3 1 V3
= A=t— = =F—— et =+—.
16 YTy T T

Ainsi les solutions du systéme sont

e )
Y 2’62 ) \2 6 2

et les valeurs maximale et minimale de z sont \/75 et —\/73; elles sont réalisées aux
points <%,—%, ‘g) et <§, \6F, ‘2[)
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Solution 8.
On note (1, y1) les points sur la premiére courbe, et (3, y2) les points sur la seconde.
On cherche le minimum de la fonction de 4 variables

f(l’b Y1, T2, y2) = dist((z1, 1), (T2, 92)) = \/(351 —22)? + (Y1 — ¥2)?,

ol, ce qui est équivalent, le minimum du carré de cette fonction (pour enlever les
racines)

f(@1, y1, w2, 92) = (21 — $2)2 + (y1 — y2)2,
sous les deux contraintes g; = 0 et go = 0 données par
91(T1, Y1, T2, Y2) = Y1 — xi 92(71, Y1, T2, Y2) = Y2 — 272 + 6.

On vérifie facilement que les gradients de g; et g, sont linéairement indépendants.
La fonction de Lagrange est

F(21, 91,2, Y2, A1, A2) = (71 — 22)* + (11 — 12)® — Mi(y1 — 27) — Xa(y2 — 279 + 6).

On calcule
2<ZL'1 - ZEQ) + 2)\1!171

21 —y2) — M
—2(1’1 — .CZIQ) + 2)\2 ?
F AL, Ag) = =0.
v (xlayh*rQayQa 1, 2) _2<y1 . y2> N )\2 O
Ty —
219 — 6 — ¥

En ajoutant la premiére et la troisiéme équation, on trouve Ay = —A\jz, et en
ajoutant la deuxiéme et la quatriéme, on a A = —A;. En combinant ces deux
équations, on trouve —\; = —A\;zq, ce qui force Ay =0 ou x; = 1. Le cas \; = 0

implique (equations 1 et 2) que z1 = x9 et y; = yo, donc que les points (x1,y;)
et (xq,y2) sont les mémes; c’est impossible (car les deux courbes ne s’intersectent
pas!). Ainsi z; = 1, d’ott y; = 1 (equation 5). I’équation 1 plus 2 fois I’équation 2
donne alors

2(1—x2)+4(1—y2) =0<< 21, :6—4y2.
On substitue dans la derniére équation pour trouver yo = 0 d’ott x5 = 3.

Les points les plus proches sont donc (1,1) € C; et (3,0) € Cy, séparés d’une
distance de /5.
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