
Remarque sur les corrigés

Lire une solution, même partielle, d'un exercice sans avoir vraiment

essayé de le résoudre (plusieurs heures, même parfois plusieurs jours)
est presque totalement inutile. Faire un exercice en ayant la solution
sous les yeux est beaucoup plus facile, et ne prépare que très mal à un
examen (qui se fait sans solutions).

Par conséquent, la lecture du présent corrigé est déconseillée, et se fait
à vos risques et périls.
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Analyse II Corrigé 10
EPFL � Sections SIE/GC

Solution 1.

(a) Soit f(x, y) = x3y + x2 + y2. L'équation du plan tangent à la surface z =
f(x, y) au point (x0, y0, z0) , où z0 = f(x0, y0) est (voir le cours)

z = f(x0, y0) + ∂xf(x0, y0)(x− x0) + ∂yf(x0, y0)(y − y0) .

Puisque ∂xf(x, y) = 3x2y + 2x et ∂yf(x, y) = x3 + 2y , l'équation s'écrit
pour (x0, y0) = (1, 1) :

z = 3 + 5(x− 1) + 3(y − 1) ⇔ 5x+ 3y − z = 5 .

(b) Soit F (x, y, z) = xz2 − 2x2y + y2z. En évaluant F au point (1, 1, z0) on a

F (1, 1, z0) = 0 ⇔ z20 − 2 + z0 = 0 ⇔ z0 = 1 ou z0 = −2 .

Selon le cours sur les fonctions implicites, l'équation du plan tangent à la
surface F (x, y, z) = 0 au point (x0, y0, z0) est

(r − r0) · ∇F (x0, y0, z0) = 0, où r = (x, y, z) et r0 = (x0, y0, z0).

On calcule

∇F = (∂xF, ∂yF, ∂zF ) =
(
z2 − 4xy, −2x2 + 2yz, 2xz + y2

)
.

Ainsi, pour le point (x0, y0, z0) = (1, 1, 1), on a ∇F (1, 1, 1) = (−3, 0, 3) et
l'équation du plan tangent estx− 1
y − 1
z − 1

 ·

−3
0
3

 = 0 ⇔ −3(x− 1)+ 0(y− 1)+ 3(z− 1) = 0 ⇔ x− z = 0 ,

et pour (x0, y0, z0) = (1, 1,−2) on a ∇F (1, 1,−2) = (0,−6,−3) et l'équation
du plan tangent estx− 1
y − 1
z + 2

 ·

 0
−6
−3

 = 0 ⇔ 0(x− 1)− 6(y − 1)− 3(z + 2) = 0 ⇔ 2y + z = 0 .

Solution 2.

(a) Le polynôme de Taylor p1(x, y) d'ordre 1 de f(x, y) au voisinage de (1,−2) est
donné par

p1(x, y) = f(1,−2) + fx(1,−2) (x− 1) + fy(1,−2) (y + 2).

Comme

f(x, y) = 3xy + x2 − y + 5x− 3 ,

fx(x, y) = 3y + 2x+ 5 , fy(x, y) = 3x− 1 ,

on trouve f(1,−2) = −1, fx(1,−2) = 1, fy(1,−2) = 2, et donc

p1(x, y) = −1 + (x− 1) + 2(y + 2) = x+ 2y + 2 .
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(b) Le polynôme de Taylor p2(x, y) d'ordre 2 d'une fonction f(x, y) au voisinage
de l'origine est donné par

p2(x, y) = f(0, 0) + fx(0, 0)x+ fy(0, 0) y

+
1

2
fxx(0, 0)x

2 + fxy(0, 0)xy +
1

2
fyy(0, 0) y

2.

Ici on a

f(x, y) = x2y + 2xy + 3y2 − 5x+ 1 ,

fx(x, y) = 2xy + 2y − 5 , fy(x, y) = x2 + 2x+ 6y ,

fxx(x, y) = 2y , fxy(x, y) = 2x+ 2 , fyy(x, y) = 6 ,

d'où

f(0, 0) = 1, fx(0, 0) = −5, fy(0, 0) = 0,

fxx(0, 0) = 0, fxy(0, 0) = 2, fyy(0, 0) = 6,

et donc

p2(x, y) = 1+ (−5) ·x+0 · y+ 1

2
· 0 ·x2+2 ·xy+ 1

2
· 6 · y2 = 1− 5x+2xy+3y2.

(c) Comme vu en cours, le polynôme de Taylor p2(x, y, z) d'ordre 2 d'une fonction
f(x, y, z) de trois variables autour de l'origine est donné par

p2(x, y, z) = f(0, 0, 0) + fx(0, 0, 0)x+ fy(0, 0, 0) y + fz(0, 0, 0) z+

1

2
fxx(0, 0, 0)x

2 +
1

2
fyy(0, 0, 0) y

2 +
1

2
fzz(0, 0, 0) z

2+

fxy(0, 0, 0)xy + fxz(0, 0, 0)xz + fyz(0, 0, 0) yz

Ici on a

f(x, y, z) = ex + y sinh(z) ,

fx(x, y, z) = ex , fy(x, y, z) = sinh(z) , fz(x, y, z) = y cosh(z) ,

fxx(x, y, z) = ex , fyy(x, y, z) = 0 , fzz(x, y, z) = y sinh(z) ,

fxy(x, y, z) = 0 , fxz(x, y, z) = 0 , fyz(x, y, z) = cosh(z) ,

d'où

f(0, 0, 0) = 1, fx(0, 0, 0) = 1, fy(0, 0, 0) = 0, fz(0, 0, 0) = 0,

fxx(0, 0, 0) = 1, fyy(0, 0, 0) = 0, fzz(0, 0, 0) = 0,

fxy(0, 0, 0) = 0 = fxz(0, 0, 0), fyz(0, 0, 0) = 1,

et donc

p2(x, y, z) = 1 + 1 · x+ 0 · y + 0 · z + 1

2
· 1 · x2 +

1

2
· 0 · y2 + 1

2
· 0 · z2+

0 · xy + 0 · xz + 1 · yz

= 1 + x+
1

2
x2 + yz.
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(d) Méthode 1 : Les dérivées partielles de la fonction f(x, y, z) sont

fx(x, y, z) = 2z e2xz+y, fy(x, y, z) = e2xz+y, fz(x, y, z) = 2x e2xz+y

fxx(x, y, z) = 4z2 e2xz+y, fyy(x, y, z) = e2xz+y, fz(x, y, z) = 4x2 e2xz+y

fxy(x, y, z) = 2z e2xz+y, fxz(x, y, z) = (2 + 4xz) e2xz+y, fyz(x, y, z) = 2x e2xz+y

et on a

fx(0, 0, 0) = 0, fy(0, 0, 0) = 1, fz(0, 0, 0) = 0

fxx(0, 0, 0) = 0, fyy(0, 0, 0) = 1, fz(0, 0, 0) = 0

fxy(0, 0, 0) = 0, fxz(0, 0, 0) = 2, fyz(0, 0, 0) = 0

Ainsi le polynôme de Taylor p2(x, y, z) d'ordre 2 est

p2(x, y, z) = 1 + y +
y2

2
+ 2xz .

Méthode 2 : On a f(x, y, z) = g(h(x, y, z)) avec g(u) = eu et h(x, y, z) =
2xz + y . Puisque h(0, 0, 0) = 0, on doit utiliser le développement limité (DL)
de g en u = 0, c'est-à-dire

eu = 1 + u+
u2

2
+ u2ε̃(u),

avec limu→0 ε̃(u) = 0. On remplace u = 2xz + y :

f(x, y, z) = 1 + 2xz + y +
(2xz + y)2

2
+ (2xz + y)2ε̃(2xz + y)

= 1 + 2xz + y +
y2

2
+ 2x2z2 + 2xyz + (2xz + y)2ε̃(2xz + y)

= 1 + 2xz + y +
y2

2
+ d2ε(x, y, z) ,

avec d =
√

x2 + y2 + z2 et

ε(x, y, z) =
2x2z2 + 2xyz + (2xz + y)2ε̃(2xz + y)

x2 + y2 + z2
.

Les termes 2x2z2 et 2xyz on été mis dans le reste car ils sont d'ordre supérieur
à 2 (4 et 3 dans ce cas). On véri�e que lim(x,y,z)→0 ε(x, y, z) = 0. En utilisant
les coordonnées sphériques on véri�e facilement que

lim
(x,y,z)→0

2x2z2

x2 + y2 + z2
= 0, lim

(x,y,z)→0

2xyz

x2 + y2 + z2
= 0

et |(2xz+y)2/(x2+y2+z2)| < C pour tout (x, y, z), avec C > 0 une constante.
Il s'ensuit

lim
(x,y,z)→0

∣∣∣∣(2xz + y)2ε̃(2xz + y)

x2 + y2 + z2

∣∣∣∣ ≤ lim
(x,y,z)→0

C|ε̃(2xz + y)| = 0,

vu que limu→0 ε̃(u) = 0. On a donc bien trouvé lim(x,y,z)→0 ε(x, y, z) = 0 et
donc

p2(x, y, z) = 1 + y +
y2

2
+ 2xz .
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(e) On a cos(x)sin(y) = exp(sin(y) log(cos(x))). On va utiliser les développements
limités suivants (tous en 0):

• cos(x) = 1− x2

2
+ x2ε(x)

• log(1 + x) = x+ xε(x)

• sin(y) = y + yε(y)

• exp(x) = 1 + x+ xε(x)

On calcule:

log(cos(x)) = log
(
1 +

[
−x2

2
+ x2ε(x)

])
=

[
−x2

2
+ x2ε(x)

]
+
[
−x2

2
+ x2ε(x)

]
ε
([

−x2

2
+ x2ε(x)

])
= −x2

2
+ x2ε(x)

(tous les termes sauf −x2

2
ont été mis dans le nouveau reste x2ε(x), cf Ana-

lyse I). Ainsi

exp(sin(y) log(cos(x))) = exp
(
(y + yε(y))

(
−x2

2
+ x2ε(x)

))
= exp(−x2y

2
+ x2y(ε(x)− 1

2
ε(y) + ε(x)ε(y)︸ ︷︷ ︸
=ε(x,y)

))

= 1− x2y

2
+ x2yε(x, y) + (· · · )ε(· · · ),

où (· · · ) = −x2y
2
+x2yε(x, y). On voir alors que le reste est de la forme x2yε(x, y)

pour une (nouvelle) fonction ε(x, y) qui tend vers 0 lorsque (x, y) → (0, 0). En

passant en coordonnées polaires, on remarque que |x2y|
∥(x,y)∥3 = | cos2 φ sinφ| ≤ 1,

d'où

lim
(x,y)→(0,0)

|x2y|ε(x, y)
∥(x, y)∥3

≤ lim
(x,y)→(0,0)

ε(x, y) = 0.

En d'autres termes, on a montré que

cos(x)sin(y) = 1− x2y

2
+ ∥(x, y)∥3ε(x, y)

pour un (nouvel) ε(x, y) qui tend vers 0 lorsque (x, y) → (0, 0). Ainsi

p3(x, y) = 1− x2y

2
.

(f) On change les coordonneés u = x− x0 = x− 2, et v = y− y0 = y+ 1 ; on doit
alors trouver le polynôme de Taylor d'ordre 5 de

f(x, y) = log(x+ y) = log((u+ 2) + (v − 1)) = log(1 + u+ v)

autour de (u0, v0) = (0, 0). On utilise un DL5 de log(1 + t) en t = 0 pour
trouver

log(1 + u+ v) = (u+ v)− (u+v)2

2
+ (u+v)3

3
− (u+v)4

4
+ (u+v)5

5
+ |u+ v|5ε(u+ v).
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Un passage en coordonnées polaires (u, v) = (cosφ, sinφ) montre que

|u+ v|5

∥(u, v)∥5
≤ | cosφ+ sinφ|5 ≤ 25

et on a donc

lim
(u,v)→(0,0)

|u+ v|5ε(u+ v)

∥(u, v)∥5
≤ 25 lim

(u,v)→(0,0)
ε(u+ v) = 0.

Le reste est donc de la forme ∥(u, v)∥5ε(u, v) pour un (nouvel) ε(u, v) qui tend
vers 0 lorsque (u, v) → (0, 0). On a donc trouvé le DL5 de log(1 + u + v) en
(u0, v0) = (0, 0), et on le réécrit avec les variables x, y pour trouver le DL5 de
log(x+ y) en (x0, y0) = (2,−1):

log(x+ y) = ((x− 2) + (y + 1))− ((x−2)+(y+1))2

2
+ ((x−2)+(y+1))3

3

− ((x−2)+(y+1))4

4
+ ((x−2)+(y+1))5

5

+ |(x− 2) + (y + 1)|5ε((x− 2) + (y + 1)).

Ainsi

p5(x, y) = x+ y − 1− (x+y−1)2

2
+ (x+y−1)3

3
− (x+y−1)4

4
+ (x+y−1)5

5
.

Solution 3.

(a) On utilise le DL de f pour trouver

g(t) = f(tx, ty) = pN(tx, ty) + ∥(tx, ty)∥Nε(tx, ty)

= pN(tx, ty) + |t|N
(
∥(x, y)∥ε(tx, ty)

)
.

Pour (x, y) �xé, pN(tx, ty) est un polynome en t de degré ≤ N . De plus, on a

lim
t→0

(
∥(x, y)∥ε(tx, ty)

)
= ∥(x, y)∥ lim

t→0
ε(tx, ty) = 0

car lim
(x,y)→(0,0)

ε(x, y) = 0. Ainsi, on a montré que

g(t) = pN(tx, ty) + |t|Nε(t)

pour un (nouvel) ε(t) qui tend vers 0 lorsque t → 0. C'est donc le DL d'ordre
N de g(t) en t0 = 0.

(b) Le DL de g(t) est aussi donné par la formule de Taylor. On a donc

N∑
k=0

g(k)(0)

k!
tk = pN(tx, ty).

On applique cela en t = 1 pour trouver

pN(x, y) = g(0) + g′(0) +
1

2!
g′′(0) + · · ·+ 1

N !
g(N)(0).
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Solution 4.

Il su�t de montrer que la norme ∥f(t)∥ est une fonction constante de t (car alors f(t)
est sur le cercle de centre (0, 0) et de rayon R = ∥f(t)∥). De manière équivalente,
il faut montrer que la norme au carré ∥f(t)∥2 est une fonction constante de t, où
encore mieux, que la dérivée de la norme au carré est nulle:

d

dt

(
∥f(t)∥2

)
= 0.

On peut voir cela de (au moins !) deux façons di�érentes:

1. On pose f(t) = (f1(t), f2(t)), et on a

∥f(t)∥2 = f1(t)
2 + f2(t)

2

d'où, en dérivant,

d

dt

(
∥f(t)∥2

)
= 2f1(t)f

′
1(t) + 2f2(t)f

′
2(t) = 2⟨f(t), f ′(t)⟩ = 0

car les vecteurs f(t) et f ′(t) sont orthogonaux.

2. La fonction t 7→ ∥f(t)∥2 est la composée h ◦ f où h est la fonction

h : R2 −→ R
(x, y) 7−→ h(x, y) = x2 + y2.

La dérivée (= matrice jacobienne de h) est

h′(x, y) = ∇h(x, y)T =

(
2x
2y

)T

= 2

(
x
y

)T

et donc, en utilisant la règle des composées

d

dt

(
∥f(t)∥2

)
= h′(f(t)) · f ′(t) = 2 (f(t))T · f ′(t) = 2⟨f(t), f ′(t)⟩ = 0.

Solution 5.

On montre: (a) ⇒ (b) ⇒ (c) ⇒ (a). De plus, comme M est symétrique, on remarque
que b = c.

Pour (a) ⇒ (b) , soit λ une valeur propre, avec v ̸= 0 son vecteur propre associé.

Comme M est dé�nie positive, ⟨v,Mv⟩ > 0 par hypothèse. On calcule

⟨v,Mv⟩ = ⟨v, λv⟩ = λ⟨v,v⟩ = λ∥v∥2.

Comma v ̸= 0, le terme ∥v∥2 est > 0, et on peut le simpli�er pour trouver

λ∥v∥2 > 0 ⇒ λ > 0.

Pour (b) ⇒ (c) , soient λ1, λ2 > 0 les valeurs propres. On utilise les relations d'al-

gèbre linéaire
det(M) = λ1λ2 et tr(M) = λ1 + λ2.
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On a Λ2 = det(M) = λ1λ2 > 0 car λ1 et λ2 sont > 0. Donc, comme det(M) = ad−b2,
on trouve ad−b2 > 0 ⇒ ad > b2 ≥ 0, et donc ad > 0. Cela implique que a et d ont le
même signe: soit tous les deux > 0, soit < 0. Mais comme tr(M) = a+d = λ1+λ2 >
0, les deux ne peuvent pas être négatifs. Donc a et d sont > 0, d'où Λ1 = a > 0.

Finalement, pour (c) ⇒ (a) , si v =

(
x
y

)
, on a

⟨v,Mv⟩ =
〈(

x
y

)
,

(
ax+ by
bx+ dy

)〉
= ax2 + 2bxy + dy2.

Comme Λ1 = a > 0 et Λ2 = det(M) = ad− b2 > 0, on a

ad > b2 ⇒ d >
b2

a
.

Ainsi, si y ̸= 0, on a dy2 > b2

a
y2, d'où

⟨v,Mv⟩ > ax2 + 2bxy +
b2

a
y2 =

a2x2 + 2abxy + b2y2

a
=

(ax+ by)2

a
≥ 0,

et donc ⟨v,Mv⟩ > 0. Et si y = 0, alors x ̸= 0 (car v ̸= 0) et on a

⟨v,Mv⟩ = ax2 > 0.

Solution 6.

Pour les cas (a) � (d) on peut utiliser la matrice hessienne H en (0, 0) qui est
diagonale. (On peut aussi s'en passer et utiliser les mêmes arguments que pour (e)
� (h)).On a:

(a) detH = 22 > 0 et H11 = 2 > 0 ⇒ le point (0, 0) est un minimum (en fait
global) ;

(b) detH = 2 · (−2) < 0 ⇒ il s'agit d'un point selle ;

(c) detH = (−2) · 2 < 0 ⇒ il s'agit d'un point selle ;

(d) detH = (−2)2 > 0 et H11 = −2 < 0 ⇒ le point (0, 0) est un maximum (en
fait global).

Pour les cas (e) � (h) on doit utiliser un autre argument (car la matrice hessienne
est nulle). Noter que cet argument marche aussi pour les cas (a) � (d).

(e) Comme f(x, y) = x4+y4 > 0 = f(0, 0) pour tout (x, y) ̸= (0, 0), le point (0, 0)
est le minimum global.

(f) Soit ε > 0. Alors f(ε, 0) = ε4 > 0 = f(0, 0) > f(0, ε) = −ε4, donc (0, 0) est un
point selle.

(g) Aussi un point selle: f(ε, 0) = −ε4 < 0 = f(0, 0) < f(0, ε) = ε4 pour tout
ε > 0.

(h) f(x, y) = −(x4+y4) < 0 pour tout (x, y) ̸= (0, 0), donc (0, 0) est le maximum
global de f .
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