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2 CHAPITRE 0. PRELUDE

Chapitre 0: Prélude

0.1 Ensembles

Un ensemble est une collection d’objets (mathématiques). Exemples:
1) A= {1,2,3}. Ensemble contenant les nombres un, deux et trois.
2) N=1{0,1,2,3,...}. Ensemble des nombres naturels.
3) Z={...,—2,—1,0,1,2,3,... }. Ensemble des entiers relatifs.
4) Q,R,C. Ensembles des nombres rationnels, des nombres réels, et des nom-
bres complexes (revus plus tard).
5) Intervalles (revus plus tard) Ex: [2,5] = {x € R | 2 < 2 < 5} = nombres réels
compris entre 2 et 5 (inclus), ]2,5[= {r € R | 2 < = < 5}.
6) B=1{2,4,6,...}. Ensembles des nombres pairs positifs.
Notations:
e r € X signifie z est élément de X. Ex: 2€ A, —1€Z, —4¢ B.
e X CY,ou X CY, signifie X est sous-ensemble de Y. Ex: ACN, N¢ B.
e X\Y={zeX|z¢Y} ouX—Y,signifie X privé de Y. Ex: A\ {3,4,5} =
{1,2}, Z\N={-1,-2,-3,—-4,...}, N\ {0} ={1,2,3,...} = N~
e X xY ={(z,y) | v € X,y € Y} est le produit cartésien de X et Y; c’est
’ensemble des paires/couples (z,y). Ex: SiC' = {1,2}, D = {3,4},ona Cx D =
{(1,3),(1,4),(2,3),(2,4)}. (Attention: (z,y) # (y,x). Donc (3,1) ¢ C x D).

0.2 Fonctions

Une fonction est une maniére d’assigner des éléments y € Y a des z € X. Ex: X =
{1,2,3,4},Y = {1,8,12} et f assigne 2 — 1,3 — 8,4 — 8. Attention: Pas plus d’une
fleche partant du méme =x.
Si z — y, on note y = f(x) (y est 'image de x via f). Le domaine D(f) C X est
D(f) = {x € X | une fleche part de 2} = {x € X | f(x) est défini}.

L’ensemble image Im(f) C Y est

Im(f) ={y € Y| une fléeche arrive vers y} = {f(z) | x € D(f)}.
La notation f: A— B veut dire D(f) = A et Im(f) C B. f(z) =

... (formule) . ..
a— f(a)
sous-entend f: D — R avec D = D(f) C R le plus grand possible.
x> f(z)
Exemples:
(i) f(x) =2+ 1veutdire f: R— R

r—z+1
(ii) g(x) = L veut dire f: R\ {0} — R.

v 1
r— 1
X
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(iii)

0.3

Sig:{1,2,3} — {2,3,4} est tel que g(1) = 2,¢9(2) = 3,9(3) = 4, alors g est
comme f, mais avec des ensembles de départ et d’arrivée plus petits: g = f |ﬁ§;ﬁ

(restriction de f a {1,2,3} et corestriction de f a {2,3,4}).

Surjectivité et Injectivité

Définition. Une fonction f: X — Y est

Sif:

surjective si Im(f) =Y (tout y € Y est I'image d’au moins un x € X),
injective si f(z1) = f(x2) =, @1 = xo, ie. dés que f(x1) = f(x2), on a

implique
forcément x1 = x5 (tout y € Y est 'image d’au plus un x € X),

bijective si inj. + surjective (tout y € Y est 'image d’ezactement un x € X).

X — Y est bijective (et seulement dans ce cas!), on peut I""inverser":

Définition. Si f: X — Y est bijective, sa fonction réciproque est

fL Yy =X
Y= f_l(y) = unique x € X tel que f(z) =yv.

Exemples:

()
(i

(i)

0.4

Exemple visuel (vu en classe).
ffR—>R est bijective de réciproque f~!(z) =z — 1 (détails vus en classe).

r—x+1
f:R— R . Pas surjective: =3 ¢ R = Y, car un carré est toujours positif.
2
T T

On la corestreint & Ry = {z € R | z > 0} = [0,+oo[: ¢ =. La fonction
fIBz0 = g: R — R>q est surjective, mais pas injective: g(2) = 4 = g(—2), alors
T x?
que 2 # —2. On la restreint & R>o. La fonction gl , = f]ﬁig =h: Rsg— Ry
) T x?

est bijective, de réciproque h™': Rsy — Ry (détails et graphes vus en classe).

T N\/T

Autres exemples de fonctions

Polynomes: f(z) = ap,2™ + ap_12" '+ -+ + a1z + ag; les a; € R sont les coeffi-
cients, et n est le degré (si a, #0). Ex: f(z) =23 +22 — 1, f(z) =27,....
Si n est impair, f(x) = 2™ est bijective, et si n est pair, on doit co/restreindre

ah = f\ﬁig. Dans les deux cas la réciproque est notée {/x. Si x > 0, on peut

utiliser la notation z'/" = {/x.
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(ii) Exponentielles: Pour chaque base a > 0,

on a l'exponentielle en base a, notée 85 Y=
f=exp, :R—=R .Sia# 1, fIR0est 6l /
T+ exp,(z) = a”®
bijective; sa réciproque est le logarithme en 4 y = log(x)
base a, noté log,: R.g— R .Sia=¢e= 21
x — log,(z) — |
2,718... = nombre d’Euler, on note log,(z) = —4 —2 2 4 6 8 10
In(z) = log(z). —2|
_4 i
(iii) Fonctions trigonométriques: le sinus sin: R — R et y
le cosinus cos: R — R sont définis a l'aide de la 11

fissure ci-contre. On a sin(0) = 0,sin(3) = 1,....

D(sin) = D(cos) = R, et Im(sin) = Im(cos) = [—1,1].

La co/restriction sin]%ilz’l]q est bijective, de réciproque
272

arcsin: [—1,1] — [~7,5]. La co/restriction cos\{o ;]1 est

bijective, de réciproque arccos: [—1,1] — [0, 7]. La tan-

gente est définie comme tan(z) = 22(2)) On a D(tan) =

{r € R | cos(z) # 0} = R\ {5 +km | k € Z} et
Im(tan) = R. La restrlctlon tan ||z = est bijective, de

réciproque arctan: R —] — 7, 7[. Graphes:

y=arcsin(x)

y=arccos(z)
‘

s
y=tan(z) 2

1

y=arctan(z)

T =

2

Définition. La composée (ou composition) de deux fonctions f: A — B, g: B — C

est la fonction go f: A — C
argo fla) =g(f(a)).
Ex: sin(2?) = go f(z) = g(f(z)) avec f: R— R et g: R—> R

x> x> sin(z).

On remarque que si f: A — B est bijective, alors g: B — A est sa réciproque si et

seulement si go f(z) =x et fog(x) =



Chapitre 1: Nombres

1.1 Entiers et nombres rationnels

e N={0,1,2,...} = nombres/entiers naturels. N* = N\ {0} ={1,2,3,...}.
o Z={...,—2,-1,0,1,2,3,...} = NU —N = entiers relatifs.
e Q={}{|a€cZbecZ =17Z\{0}} = nombres rationnels. (Peut étre identifié a

Z x Z* via "¢ = (a,b)", mais ot 'on déclare § = £ si ad = bc)

Malgré la quantité impressionnante de nombres dans Q, on a malheureusement:

Proposition 1.1. L’équation x> = 2 n’a pas de solution x € Q.

Preuve. Par Pabsurde. Supposons qu’il existe une solution x = 3. On peut supposer
que soit a, soit b est impair (sinon on peut simplifier la fraction). Alors 22 = 2 = (%)2 =
2 = a? = 2b® = a? est pair. Si a était impair, on aurait a = 2k + 1 pour un k € Z, et

donc a? = (2k + 1)? = 4k? + 4k + 1 = 2(2k® + 2k) + 1 serait aussi impair. Donc a est
—_———

M
forcément pair = a = 2c¢. Il suit a® = (2¢)? = 2b* = 4¢? = 20? = 2¢* = b? = b? est pair
= b est pair (cf méme argument que pour a). Donc a et b sont tous les deux pairs: c¢’est
absurde! (On avait supposé que 1'un ou lautre était impair). Il ne peut donc exister de
solution z € Q. O

Remarque 1.1. Cela dit, en observant le triangle ci-contre, on s’apercoit 1 &

que le coté z est tel que 22 = 2! Il nous manque donc des nombres... N

1.2 Construction des nombres réels

Idée (de génie): utiliser la relation d’ordre x < y sur Q pour "ajouter" des nombres aux
bons endroits.

Définition 1.1. Soit A C Q un ensemble non-vide (A # @).

majorant
minorant

>
e Un de 'ensemble A est un x € Q tel que i - Z pour tout a € A.

majorant

minorant
maximum
. . e A.
minimum

e S’il existe un x de A tel que x € A, alors x est unique et s’appelle le

majoré un majorant
, A . - )
e L’ensemble A est minoré s’il admet un minorant .
borné les deux

Exemples:

e SiA={xreQ]0<zx <1}, alors A admet 1,2,%,... comme majorants et

0, -3, —% comme minorants. Il est donc borné, et on a max A =1 et min A = 0.
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e B={r€Q|0<z < 1} admet les mémes majorants et minorants que A,
et est donc borné. En revanche, max B et min B n’existent pas (B n’a pas de
majorant /minorant dans B).

e C = N posséde 0 comme minorant, mais pas de majorants. Il n’est donc pas
majoré (et pas borné). max C' n’existe pas, et min C' = 0.

Moralement, B devrait avoir comme "maximum" 1 et "minimum" 0. Cela motive:

Définition 1.2. Soit A C Q un ensemble non-vide.
e Le suprémum de A est sup A = min({x € Q | = est un majorant de A}).
C’est le plus petit des majorants.

e L'infimum de A est inf A = max({z € Q | x est un minorant de A}).
C’est le plus grand des minorants.

. joré A= .
Remarque 1.2. Si A n’est pas major(’aj alors on pose Sub +OO. (Attention: ce sont
minoré inf A=—o00

supA =max A

. max A
des symboles +00, pas des nombres). De plus, si m f A — min A -

inA

existe, alors

Reprenons les exemples précédents:
e supA=maxA=1,et infA=min A =0.
e sup B =1 méme si max B n’existe pas, et inf B = 0 méme si min B n’existe pas.
e infC'=minC =0 et supC = +oo (il n’y a pas de majorant).
Remarque 1.3. Pour un ensemble borné, si min, max peuvent ne pas exister, on s’attend
a ce que inf et sup existent toujours.

Contre-exemple fondamental: D = {z € Q | 2? < 2}. L’ensemble D est borné
(majoré par 3, car 2 <2< 2 = (2)2 = 2 < 3, et minoré¢ par —3). En revanche, on a:
Proposition 1.2. Si x = sup D ezxiste, alors x> = 2.

Preuve. 1) Supposons par 'absurde que z* < 2. On choisit un entier n > ;f;% et on

posed:x—{—%.AlorsdGD:eneffet,de@etdzz(x—l—%)zzxsz%x#—n—lzS

2 2x 1 _ .2 2x+1 : 2 2x+1 2x+1 2 2z+41
P24 S = 2?4 25 <2 (puisque 274 2T <2 & 2R <277 & n > $P).

Doncde Detd=x+ % > x. C’est absurde, car x est un majorant de D.
2) Supposons par I'absurde que z* > 2. Alors ... (exercice difficile!) ... Absurde!
3) Comme on n’a ni 22 < 2, ni 22 > 2, on a 2? = 2. O

Corollaire 1.3. sup D n’existe pas dans Q.

Preuve. 1 n’y a pas de v € Q avec 22 = 2, cf Prop. 1.1. O

Cette procédure nous indique ot ajouter des nombres !

Construction des nombres réels: R s’obtient & partir de Q en ajoutant les sup et les inf
de tous les sous-ensembles bornés A C Q. (Voir régle de coupure de Dedekind).
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1.3 Propriétés des nombres réels

(i) R est un corps (on a 0, 1,4+, -, inverses, distributivité,...) muni d’un ordre total
(x <wy).
(ii) Les définitions de majoré, minoré, max, min, suprémum, infimum restent les
mémes que pour Q (remplacer R par Q dans les définitions).
(iii) La procédure de la construction de R a réussi. En effet, on a:

majoré sup A

Théoréme 1.4. Pour A C R non vide et =~ 7" ", .
minoré’ inf A

est unique.

existe toujours € R et

En fait, si D = {z € R | 2 < 2}, alors sup D et inf D existent, et sont solutions
de 22 = 2. Donc sup D = /2 et inf D = —/2.

: . A .supA €A
(iv) Pour A C R non-vide et borné, maxAL oviste si et seulement si o P4 € ‘Y et dans
max A = sup A min A infAe A
€CC8% minA=infA -

Ezxemples de calcul de de sup / inf:
1) A= {3+ % |ne N} Aest majoré par 3 et minoré par 4, donc borné. Comme
4 € A on asupA = maxA = 4. On va montrer que inf A = 3. C’est bien un
minorant, mais est-ce le plus grand ? On va montrer qu’aucun x > 3 ne peut étre
un minorant, en construisant un a € A tel que a < z. Soit z > 3. On choisit
neNtelquen>ﬁ,etonposea:?)—l—%.AlorsaEAeta:3+%<:7c,
puisque 3 + % <xr & % <zr—3&n> x%z Ainsi x n’est pas un minorant, et 3
est donc le plus petit; c’est inf A. Comme 3 ¢ A, min A n’existe pas.
2) Intervalles:

la,b) ={r eR|a <z <b} la,+oo[ ={x €R|a <z}| inf=a
la,b] = < < la,+o0[ = < |sup = 400
la,b] = < < |—00,b] ={x € R| 2z <b}|inf = —c0
la,b] = < < |—00,0] = < sup =b
bornés, inf =a, sup="> non-bornés
1.4 Représentation décimale
Tout x € R s’écrit
r ==+ dldgdn . dn+1dn+2--- avec di S {0,1,,9}
décimales avant la virgule, U, décimales aprés la virgule,
en nombre fini en nombre fini ou infini

Exemple: Représentation finie: 1 = 1.0 = 1.000. . ., % = 1.5, %) = 13.75. Représentation

périodique: g = 0.714285 = 0.7142857142857 .. .. Mais: v/2 = 1.414213562373095 . . .
semble ne pas se répéter...

Théoréme 1.5. Soit x € R. Alors v € Q < x a une représentation décimale finie ou
périodique.
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Idée de preuve. Vu en classe. Exemple représentation finie: x = 3.745 = ﬁ.

Ex. représ. périodique: z = 41.70102 = 10%z = 4170.102 = 102103 - z = 4170102.102.
Donc 10?103z — 10?2 = 4170102 — 4170 =y € Z, d’ott x = m € Q. O

o

Avec la méme idée, on montre que 0.9 = 1. Conséquences du théoréme:
e La représentation décimale de v/2 est infinie non-périodique.
e £ =0,101001000100001 ... ¢ Q.
e Densité de Q dans R : Pour tous x < y € R, il existe a € Q tel que x < a <y
(explications vues en classe).
e YV € R, Ja € Q arbitrairement proche de z. Ex: x = V2 = 1.414235... =
1;1.4;1.41;1.414; ... sont € Q et s’approchent de v/2.
Autres propriétés des nombres (réels):

(i) Récapitulatif: N C Z C Q € R. Les nombres irrationnels sont: R\ Q.

(ii) L’ensemble Q est dénombrable: on peut lister ses éléments. (Mathématiquement,
dénombrable veut dire qu’il existe une fonction bijective f: N — Q). Idée de
preuve vue en classe.

(iii) L’ensemble R est indénombrable (< il n’existe pas de liste de R).

Preuve. Par l'absurde. Supposons que R est dénom- . —04d

.. . . 1— Y1 _
brable. Alors ]0,1[ lest aussi; il existe donc une liste 2y= 0. dy
de tous ses éléments: voir ci-contre. On choisit b; # dy, Ta= O’_ 673
by # dy,...,b, # d,,... et on pose y = 0,b1by---b,---. ’
Alors y € ]0,1[, mais y n’est pas dans cette liste (pour

chaque n € N*, z,, et y, different en leur n-iéme déci- *n= O_ ____ dn_
male). Cette liste est donc incompléte ; absurde. O
(iv) La valeur absolue d'un nombre = € R est
x siz >0
lz| = T = distance entre 0 et x.
—x six <0

Propriétés: |z| = 0 < o = 0,| —z| = |z|, |z| > 0, |zy| = |z|ly], |z|] = Va?,
|z +y| < |z| + |y| (inégalité triangulaire).

1.5 Nombres complexes

Il y a beaucoup de nombres dans R, on a par exemple une solution de 2% = a pour tout
a > 0. Mais pas de solutions a 2 = —1 (Si x € R, alors z? est toujours positif). Faut-il
rajouter des nombres ? Débatable, mais en rétrospective: SUPER IDEE!
Construction: On munit 'ensemble R? = R x R = {(a,b) | a,b € R}:
1) D’une addition: (a,b) + (¢,d) = (a + ¢,b + d). Interprétation géométrique: c¢’est
I'addition des vecteurs de R2.
2) D’une multiplication: (a,b)- (¢, d) = (ac—bd, ad+bc). Interprétation géométrique:
plus tard! Ex: (1,2) - (3,4) = (-5, 10).
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Fait important: Cela fait de R? un corps (on a +,-,0 = (0,0),1 = (1,0), des inverses,
la distributivité,...)
Notations:
(i) (a,0)4(b,0) = (a+b,0) et (a,0)-(b,0) = (ab,0). Cela fait donc sens d’identifier
{(x,0) | x € R} avec R (via (x,0) <> x).
(ii) De plus (a,b) = (a,0) + (0,0) = a+b-(0,1). Le "nombre" (0,1) est intéressant:
ona (0,1)-(0,1) = (—1,0) = —1. On lappelle 'unité imaginaire i = (0,1).
Ainsi i est solution de x? = —1, et on peut écrire (a,b) = a + b(0,1) = a + bi.

Définition 1.3. I.’ensemble R? muni de ces opérations + et - est le corps des nombres
complexes, noté C.

Remarque 1.4. e Tout nombre complexe z € C s’écrit z = a+bi avec a,b € R. C’est
la forme cartésienne de z.

e On peut "oublier" la définition compliquée de -, et retenir seulement i> = —1. En
effet: (a + bi)(c+ di) = ac + adi + bci + bdi® = ad — be + (ad + be)i; on retrouve
la multiplication définie plus haut.

Représentation graphique: Dans le plan R?, on renomme 1’axe horizontal "axe réel R"
et axe vertical "axe imaginaire" ¢R. Les nombres complexes sont donc représentés
comme des points de R? (détails vus en classe).

Définition 1.4. Soit z = a + bi € C.

1) La partie réelle de z est Re(z) = a. La partie imaginaire de z est Im(z) = b.

2) Le module (ou valeur absolue) de z est |z|] = Va?+b> € [0,400]. Clest la
distance entre z et 0 (comme pour |z| dans R).

3) L’argument de z est arg(z) = angle entre z et 'axe réel, mesuré € | — 7, 7). Pour
a,b >0, on a arg(z) = arctan(b/a), et il existe des formules dans les autres cas.

4) Le conjugué complexe de z est Z = a — bi,

1.6 Propriétés des nombres complexes

Z+Z 22—z . . , 4 ,
et Im(z) = 5 En effet, si z = a + bi, alors 22 = W -
i

(i) Re(z) =

27“ = a, et de maniére analogue Z;f = b.
(i) 21 + 20 =Z1+ 22,21 - 22 = Z1 - 22,21/ 22 = Z1/Z3. (Preuve: Exercices).
(iii) |z|> = 2z. En effet, 2z = (a+bi)(a—bi) = a* — (bi)* = a*+b* = |z|?. Conséquence:

|z120] = |21] - |22]- En effet, |z120]* = 21207122 = 21212072 = |21]?|22]?, et on obtient
I’égalité voulue en prenant la racine. 1 1
(iv) Proposition 1.6 (Inversion). Soit z € C* = C\ {0}. Alors — = WZ.
z |z

1
|21

Preuve. Si 2/ = -7, alors 22/ = % =1. O

Remarque 1.5. Pour s’en rappeler, on peut "multiplier" par Z en haut et en bas.
o1 1 2-3 _ 2-3i _ 2 _ 3
Exemple: 575 = 557 575 = 97797 = 13— 130

(v) Inégalité triangulaire: |21 + 29| < |z1] + |22]-
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Trois représentations des nombres complexes:
1) Tout z € C s’écrit z = a + bi, avec a,b € R; c’est la forme cartésienne.
2) Sir = |z|, et 6 = arg(z), alors cos(d) = 2 et sin(d) = 2. Donc tout z € C s’écrit
z=a+bi =r(cos(f) +isin(f)) avec r € R>g et 6 € R; c’est la forme polaire.
3) Pour z € R, on définit: € = cos(z) + isin(z). (Justification plus tard!) Avec
cette notation, tout z € C s’écrit z = re?, avec r € Rsg et 6 € R; c’est la forme
polaire-exponentielle.

Remarque 1.6. Attention: Si z = re, alors r = |2| et § = arg(z) & k2, pour k € Z.

Définition 1.5 (Exponentielle complexe). Pour z = a + bi € C, on définit
e* = e%e™ = e*(cos(b) + isin(b)).

Remarque 1.7. En forme cartésienne, les additions et soustractions sont faciles, mais les
multiplications et divisions sont plus compliquées. En forme polaire-exp, c¢’est 'inverse:
si 21 = re’ et 2 = s€'?, alors 212y = (rs)e’=%) et 2 /2 = (r/s)e’?=%),

Exemples: Si z = 1414, alors |z| = /2 et arg(z) = T, donc z = v/2e/4. Si z = e™/3,
alors z = 1 + \/732 (détails vus en classe).

Conséquences de I'exponentielle complexe:
e Pour z € C, on a e* = € (preuve en exercice). Donc si z = re, on a z = re™%,

e Interprétation géométrique de la multiplication complexe: Les modules se multi-
plient (= agrandissement) et les arguments s’ajoutent (= rotation). Ainsii-z = z
tourné d’un angle de 7/2 (détails vus en classe).

e Formule d’Euler: ™ + 1 = 0. Donc €™ = —1.

e Formule de Moivre: (cosf + isinf)™ = cos(n#) + isin(nf) pour n € N: Cela suit
du fait que (e?)" = ei?,

e Formules pour cos@, sin 6:
i0 | —if 0 _ ,—if
cos(f) = %, sin(f) = %
En effet, cos(f) = Re(e?) et sin(f) = Im(e?); ces formules suivent donc des
formules pour Re(z) et Im(z) vues plus haut.

Remarque 1.8. Pour résumer, si 2 = a + bi = re? et w = c+ di = se’?, on a
z=w & a=cetb=d & r=setf=¢+k-27rpourun ke Z.

1.7 Calculs dans C

1) Calcul de (1 —+/3i)%°. Trés long si on doit développer! Mieux: 1 — /3i = 2¢~/3
(dessin vu en classe) et donc (1 — /37)30 = 2307107 — 230(_1)10 — 930,

2) Equation 2™ = 1. On pose z = 7 - €? pour trouver z" = 1 < 7" - ™ = 1. €,
Donc 7" =1=r=1carr € Ry et nf = 0+ k27 = 6 = 2% pour un k € Z. Les
solutions sont donc {1-e*2™/" | k € Z} = {(¢,)* | k € Z} on ¢, = /™. Comme
(¢n)" =1, il y a en fait n solutions distinctes:

{1’ gm CrQL? o 7(2—1} _ {1’ ei27r/n7 ei47r/n, e ei27r(n—1)/n}‘
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Exemple:
e 22 =1& €1, e’?”/Q} ={1,-1}.
e B=1sze{leT 7} =11, ——+£z —1- 32’}. Ces solutions forment
un triangle equﬂateral
e 20 =1 posséde 6 solutions qui forment un hexagone régulier.

3) Equation 2" = w. Etape 1: Trouver une solution z (par exemple, si w = se'?,
20 = {/5€%/"). Btape 2: On a 2" = w = 2§ & (%)n =le 2 e{l,G.... '}
On trouve donc & nouveau n solutions distinctes:

{20, 20€" 2" Zoe® I zoei%(”’l)/”}.
Exemple:

o 23 =i Etape 1: 20 = —i (oui = ™2 = 2z, = ei“/6) Etape 2: Les solutions
sont —i-{solutions de 2% = 1} = {—1, £+2 i, B—1i} = {e7 /2 em/6 ¢i5m/0},

o 2> = 5412 Etape 1: On a 5 + 12i = 13elar°‘tan<12/5>,
donc on peut prendre zo = /bHelarctan(12/5)/2 o qui est
difficile & simplifier. Mieux: en posant zg = a + bi = 2? =
a? — b?> 4+ 2abi = 5 + 12i. En combinant avec 1’équation { ¢2 —p2 =5
|20|> = |5 + 12i] = 13, on trouve le systéme ci-contre: 2ab = 12
En sommant I'équation 1 et 3, on a 2a®> = 18 = a = 3, | 2+ =13
d’ou b = 2 grace a I'équation 2. Ainsi zy = 3 + 21, et les
solutions sont: {£(3 4 2i)}.

4) Factorisation de polynéomes:

Théoréme 1.7 (Théoréme fondamental de 1'algébre). Tout polynome P(z) =
2" + ay 12" V- + a1z + ag (avec a; € C) se factorise en
P(z) =an(z —21)(z — 22) -+ (2 — z) (les z; sont les racines de P.)

Corollaire 1.8. Toute équation polynémiale P(z) = 0 de degré n a n solutions
complezxes (en comptant les multiplicités).

Exemple: Si P(z) = az? + bz + ¢, alors les solutions de P(z) = 0 sont 2z =
=btvbi—dac V;’L‘m, ol 'on interpréte /0% — 4ac comme les deux solutions complexes de
I'équation u? = b? — 4ac. Donc si a,b,c € R et b> — 4ac > 0, on a des solutions
réelles, et si b — 4dac < 0, on a u? = b*> — dac = i*(4ac — V*) = u = +iv/4dac — V2.
Remarque 1.9. Si P(z) est a coefficients réels (les a; € R), alors les racines non-
réeles viennent par paires conjuguées (exercice!). En les groupant, on trouve donc
une factorisation réelle.

Exemple: P(z) = 224 1. On résout P(z) = 0 & 2% = —1 comme avant. On trouve
les 4 solutions {ﬂﬂ} On a donc une factorisation complexe et réelle:

= (e B e e ) = (e D )
Remarque 1.10. En développant, on trouve (si a,, = 1):
2" +a,_q 2"t + -+ ao =(z—21) - (2 — zn)
:Zn —(Z1+...+Zn)zn_1 _|_ P + (_1)77'21...2”

Ainsi la somme des 4 racines i\%i vaut 0 et leur produit vaut 1.




12 CHAPITRE 2. SUITES

Chapitre 2: Suites

2.1 Définitions et exemples

Définition 2.1. Une suite de nombres réels est une fonction a: N — R
Notation (au lieu de la notation de fonctions): n— a(n) = ay.

(an)HEN = (a'n)nzo = (an)n = (an) = (a'07 ay, g, ... )

Exemples:
1) a, =2n+1 (n € N). Ce sont les nombres impairs:
(@n)nen = (ao =1l,a=3,a2=5,a3=7,9, 11,. )

1
2) Suite harmonique: a,, = — (n € N*):
n

1 11
n)neN* — :17 = 3> =35 S =
(@n)nen (al as as 315

3) Suite arithmétique: a,, = bn +c (n € N,b,c € R):

(an)nen = (ao =c,ay=b+c,a, =2b+c,a3 = 3b+c,4b+c,5b+c,...).
Exemples: b =2,c=1=a,=2n+1;b=1,c=0=a, =n;b=0= (a,) =
(¢, e ¢ ¢ ¢, ... ) (suite constante).

4) Suite géométrique: a, = ar™ (n € N a,r € R; le r est la raison de la suite):

).

| =

(an)nen = (ag =a,a; = ar,ay = ar’,as = ar’, ar, ar’®, . .. )
Exemples: a = 1,7 =2 = a, =2" (ap = 1,2,4,8,16,...);a=1,r =1 = a, =
s law=1%1%..);a=lLr==1=a,=(-1)" (ap=1,-1,1,-1,1,...).
Définition 2.2. Une suite (a,)nen est

1) majorée (resp. minorée, bornée) si 'ensemble A = {a,, | n € N} I'est.

2) croissante (resp. strictement croissante, décroissante, strictement décroissante)
si, pour tout n € N, on a a,1 > a, (resp. Aptl > Ay Gprl < Qp, Gpg1 < an).

3) (strictement) monotone si (strictement) croissante ou (strictement) décroissante.

Proposition 2.1. Une suite (a,) est bornée < il existe M € R tel que |a,| < M pour
tout n € N.

Preyve. Exercice. O

Exemples:
1) ap, =2n+1= A ={1,3,5,7,...}. A est minoré par 1, mais pas majoré, donc
pas borné. C’est pareil pour la suite (a,) (mais en accordant les adjectifs!). De

plus, a,y1 =2(n+1)+1=2n+3 > 2n+ 1 = a,, donc la suite est strictement
croissante (et donc aussi strictement monotone).

2) Suite harmonique: a, = = = A = {1,3,3,1,

n
(majorée par 1, minorée par 0) et strictement décroissante (a, 11 =

... }. La suite est donc bornée

1 1 _
P < E_a”)
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3) Suite arithmétique: a,, = bn+c. Si b > 0, (a,) est strictement croissante, minorée
par ¢ = ap mais pas majorée: en effet, si M € R, alors a,, > M dés que n > Mb’c
(car bn+ ¢ > M < n > M=),

4) Suite géométrique: a, = ar™. Si a > 0, la suite est strictement croissante pour
r > 1, strictement décroissante pour 0 < r < 1, bornée pour r € [—1,1], pas

majorée pour r > 1 (cf exercices).

Définition 2.3 (Suites définies par récurrence). ag = valeur fixée, a,,1 = g(a,) pour
n € N, ou g: R — R est une fonction.

Ex:ap =0, g(z) =2+ 1. Donc a; = g(ag) =0+1=1,a =g(a;) =1+ 1=2,a3 =3,
ay = 4... Aflirmation: a,, = n pour tous n € N.

Pour démontrer ce genre de résultat, on utilise la:

Définition 2.4 (Preuve par récurrence). Si P(n) est une proposition qui dépend d’un
entier n, et si

1) Initialisation: P(ng) est vraie et

2) Pas de récurrence: P(n) = P(n + 1) pour tous n > ny,
alors P(n) est vraie pour tout n > ny.

Preuve de laffirmation. On montre P(n) = "a, = n" par récurrence sur n > 0.

1) Initialisation: ag = 0, donc P(0) est vraie.
2) Pas de récurrence: On a
ani1 = g(a,) = a, +1 par définition
=n+1 par hypothése de récurrence P(n).
Donc P(n) = P(n+1).
On conclut donc que P(n) =

"a, = n" est vraie pour tout n > 0. O
Fausses preuves par récurrence:
1) Pour tout n € N, on an = n+ 7. En effet, si P(n) = "n =n+ 7", alors on a
n+1" (n+7)+1=(n+1)+7, et donc P(n) = P(n+1), et P(n) est vraie
pour tout n > 0.
Faute: On a oublié l'initialisation: P(0) est fausse, car 0 # 7.

2) Tous les chats sont de la méme couleur. Traité en classe.

Définition 2.5 (Preuve par récurrence forte). Si P(n) est une proposition qui dépend
d’un entier n, et si
1) Initialisation: P(ng) est vraie et
2) Pas de récurrence forte: {P(ng), P(no + 1),...,P(n)} = P(n + 1) pour tous
n 2 no,
alors P(n) est vraie pour tout n > ny.

Retour aux exemples de suites définies par récurrence:
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1) ap=c¢,ap41 =an+b = a, =bn+ c. (Exercice)

2) ap=a,a,1 =a,-r = a, =ar". (Exercice)

3) agp =0, a,41 = a,+2n+1. Attention: ce n’est techniquement pas une suite définie
par récurrence au sens de la définition précédente, car la fonction g(x) = x+2n+1
dépend de n. Onaag=0,a1 =ap+2-0+1=1l,as=a;1+2-1+1=1+3=
4,a3=4+5=09.

Affirmation: a, = n’.
Preuve. Par récurrence sur n > 0.
1) Initialisation: ag = 0 = 02
2) Pas de récurrence: any1 = a, +2n + 1 o) n’+2n+1=(n+1)>%
Donc a,, = n? pour tout n > 0. O

4) Suite de Fibonacci: fo =0, f1 = 1, et foi2 = fui1 + fn- Attention: pas non plus
"définie par récurrence", car f,11 = g(fnr1, fn)- Ona fo=1,f3=2f, =3, f5 =
5, fe =8,13,21,34,....

p g NP B2V . _ 1=V
Prop: fn——oua—JrTeitloe nombre d’or et 3 = 5.
Preuve. 1) Initialisati(\)/@: P(0) \:[O‘ \;55 — % =0=fo.
al—p! 1/2+V5/2—1/2+V5/2
P(1): ot = MESEBVER ) =y,
2) Pas de récurrence: On suppose que P(n) et P(n+1) sont vraies, et on montre
que P(n + 2) est vraie (cf Exercices!) O

Une meilleure preuve sera (peut-étre) vue en algébre linéaire.

2.2 Convergence et limites

Idée: On considére a,, = %(n € N*). Alors a,, s’approche de plus en plus de 0. Plus
précisément: a, devient et reste arbitrairement proche de (0, pourvu qu’on prenne n
assez grand.

Définition 2.6. Une suite (a,),eny converge vers a € R si pour tout € > 0, il existe
N € N tel que pour tout n > N, on a |a, — a] < . Notation: a, =% 4, a, — a,

lim a, = a. Dans ce cas, a est la limite de la suite. Si (a,) ne converge vers aucun
n—oo

a € R, on dit que la suite diverge.

Intuition: € est la distance "visée", et N est le cran/l'indice & partir duquel la distance
la, — a| entre a, et a est < e. Exemples:

1) Soit a, = % (n € N*). Alors a, — 0 < lim a, = 0.

n—oo
Preuve formelle. (Intuition de la preuve vue en cours.) Soit £ > 0 arbitraire. On
choisit N € N tel que N > % Alors dés que n > N, on a

1 11 1
— -0 =-< <5 (carNSEE@NZ—)-

Comme ¢ était arbitraire, on a montré:
Ve >03dN € N tel que Vn > N, on a |a, — 0| <e. D’ou a, — 0. O

m | =
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2) Soit a, = (—1)" (n € N). Alors (a,,) diverge. Intuition de la preuve vue en cours.
Preuve formelle. Soit a € R. On pose € = 0.9. Alors pour tout NV € N, on a:

e Sia >0, on prend n > N impair, de sorte que a, = —1, et donc |a, —a| > 1,
et si @ <0, on prend n > N pair, de sorte que a,, = 1, et donc |a,, —a| > 1.
m

3) Soit a, =n (n € N). Alors (a,) diverge.
Preuve. Soit a € R. On pose ¢ = 1. Alors pour tout N € N, dés que n >
max(N,a+2), on a |a, —a| =|n —a| >2>1=¢, donc a, reste loin de a. O

4) Soit a,, = ¢ (suite constante). Alors a,, — c.
Preuve. Soit € > 0. On pose N = 0. Alors dés que n > N, on a |a, —c| = |c—¢| =
0<e. O

Proposition 2.2 (Unicité de la limite). Si (a,) converge, sa limite est unique.
Preuve. Supposons par I'absurde que a, — a et a,, —> bavec a # b. On pose € = %.
Par définition, il existe N, tel que |a, — a| < & dés que n > N, et il existe NN, tel que
la, — b| < e dés que n > N,. Donc pour n > N,, N}, on a

la —bl=la—a,+a,—b| <l|a,—a|l+|b,—bl <e+e=2<|a—Dbl
donc |a — b| < |a — b|, ce qui est absurde. O

Proposition 2.3. Si (a,) converge, alors (a,) est bornée.

Idée de la preuve. Vue en classe. (Preuve formelle laissée en exercice) []
Remarque 2.1. L’autre direction est fausse: a, = (—1)" est bornée, mais diverge.

Proposition 2.4 (Caractérisation des sup/inf avec les suites). Soit A C R non-vide
r=supA r>a

borné. Alors : =
z=1Inf A r<aq

Va € A et s’il existe une suite (a,) C A telle que
a, —> .

Preyve. Exercice. O

2.3 Propriétés des limites

Proposition 2.5 (Propriétés algébriques des limites). Si (a,) et (b,) sont deux suites
convergentes, alors:

1) lim (pa, + gb,) = p lim a, +q lim b,  pour tous p,q € R,
n—00 n—00 n—00

2) lim a,b, = (lim an> (lim bn>,
n—oo

n—oo n—oo
a lim a,
8) lim — =" g lim b, # 0.
n—oo b, lim b, n—00
n—oo

Preuve. Posons a = lim a,, et b = lim b,. Soit £ > 0.
n—o0 n—oo
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1) On choisit N tel que pour n > N, on a |a, —a| < 55 et |bn, — b] < 357. Donc, dés
quen > N, on a

[pan, + gb, — (pa + qb)| = |p(an, — a) + q(b, — b)|

e ¢
< |pllan —a|+|g| [by —b]. < 5+ 5 ==
—— —— 2 2
<e/2lp| <6/2\QI
2) On choisit N tel que pour n > N, on a |a, —a| < 3 s o |b, — b| < s et < L.
Donc, dés que n > N, on a
|anb, — ab| = |a,b, — ab, + ab, — ab|
e & ¢
<la, —al [bu| Hla||bp—b] <|a, —al(1+ b))+ 5 <5+5=¢
~~~ e e 2 2 2
=|bp—b+b| <e/2|al Sm
<[bn—b|+(b]
<1+[b)
3) Exercice.
Comme € > 0 était arbitraire, 1),2) et 3) en découlent. O
Exemples:
43 Con243/n) Jm2+3/n o4 .
1) lim = lim = = = = —. Attention:
n—oo 3n — 5 n—oo n(3 — 5/n) lim 3 —5/n 3-0 3
n—oo
. 2n+37é7}l,I202n+3 limit existent
im car ces limites n’existent pas.
nooo 30 —5 7 lim 3n— 5 P
n—oo
2) Fausse preuve que 1 = 2 (vu en classe).
3) Les suites arithmétiques a,, = bn + ¢ divergent si b # 0.
. . . . ap —C a—=cC .
Preuve. Sinon, on aurait lim a, = a, et donc lim n = lim = . Mais
on a vu que lim n n’existe pas! n

n—o0

Proposition 2.6. Si (a,) et (b,) convergent et a, < b, pour n assez grand', alors

lim a, < lim b,.
n—oo n—oo

Preuve. Soit € > 0 arbitraire, et N € N tel que pour tous n > N, on a a, < b,,
lan —al < Set b, —a| < 5. Alorsa<a,+5<b,+5<b+5+5=0b+e Onadonc
montré que a < b+ ¢, pour tout € > 0. D’ott a < D. n

Théoréme 2.7 (Deux Gendarmes / Sandwich). Si a, < b, < ¢, pour n assez grand,
et si a, — { et ¢, — ¢, alors b, — /.

Preuve. Soit € > 0. On choisit N € N tel que pour tout n > N, on a a, < b, < ¢,

la, — €| <eet|c,—l <e. Alors —e <a,—l<b,—(<c¢c,—l{<e,don—e<b,—(<
e< b, — (] <e. O

1. c’est & dire §’il existe N € N tel que a,, < b, dés que n > N
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Exemples plus compliqués:
1) Pour tout z > 0, on a lim {/z = 1. (Revu plus tard!)

n—oo

Preuve. Siz >1,ona0 < {/z—1 < =L En effet, comme 1 < z, on a ¥/1 < {/z,
et donc /z — 1 > 0. De Pautre coteé, on a, par un exercice:
y" -1

Dy 2y D) = =1 = —1= .
(y=D" +y y+1) =y Y S T B

On applique cela & y = {/z, pour trouver

r—1 r—1
O S C/E_ 1 = n—1 n—2 1 S O
n n n 1 n
xn +xn +-o-+an +
>1 >1 >1

Par le théoreme des deux gendarmes on a donc {/x —1 — 0, d’on Vzr — 1.
Etsiz <1, on posey = - L > 1, et on utilise la partie précédente pour trouver

1 1
hm\/:E—hm—__—:—:L 0
2) Soit a, = 2. Alors lim a, = 0 (traité en classe). De maniére similaire, x_' —0
n—00 n.

pour tout T e R.
3) Suites géométriques a,, = ar™, pour a > 0 et > 0. La suite converge vers 0 si

0 <r <1, est constante = a si r = 1, et diverge si r > 1.
Preuve. Sir > 1, on montre par récurrence que a, > a(r—1)n (suite arithmétique

= non-bornée). Init: ag = a > 0. Pas de récurrence:
api1 = (Apy1 —ap) +a, =" a(r—1)+ a, >alr—1)(n+1).

21 >a(r— 1)
Sir <1, soit € > 0. On pose b, = as avecs—— > 1, et donc b, n’est pas
bornée (par la partie précédente). On trouve donce N tel que pour tout n > N,
on a b, > % Alors, dés que n > N, |a, — 0| = a, = bln <e. O

2.4 Limites infinies

Définition 2.7. Une suite (a,) tend vers jz si pour tout A € R, il existe N € N

a, > . .
"= Notation: lim a, = +o0, a,, — +o0.

tel que pour tout n > N, on a <A Jim

. . d .
Avec des mots: a,, devient et reste arbitrairement g;ea:CI; ; » pour n assez grand. Attention:

Si lim a, = +o00, la suite (a,) n’est pas bornée, donc divergente! Exemples:
n—oo

e limn = +4o0. Soit A € R. On choisit N > A. Alors dés que n > N, on a

n—oo

a, =n >N > A. Comme A était arbitraire, on a a,, —> +00.

e lim n” = 400, hm v/n = +00: Vu en classe.
n—oo
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Proposition 2.8 (Opérations algébriques sur les limites infinies). Soient (a,) et (b,)
deux suites.

1) +00 + 00 = 0 Si lim a, _ T tim b, = +oo et p,q > 0, alors on a
—00 — 00 = —00 n—00 —00 n—00 —00

lim (pay + qba) = 1 °°
n—oo -

. Attention: co — oo et 0 - 0o ne sont pas définis.

2) |£oo + ¢ = foo| Si lim a, = oo et (b,) est bornée, alors lim (a, + b,) = £oo.
n—00 n—00

>
3) | Théoreme du gendarme seul / de la tartine| Si lim a, = oo bn 2
0 n—o00 —Oo0 bn S Ay,

n assez grand, alors lim b, =
n—ro0 -

pour

00
4) | (+00) - (£o0) = oo Si lim a, = 400, lim b, = +o0, alors lim (a,b,) = too.

n—oo n—o0 n—oo

5) | == =09 lim a, = oo et (b,) est bornée, alors lim — = 0. Attention: = et
+oo n—00 n—oco @y, o0

Y ne sont pas définis.
Preuve. 1)-4) exercice facile. Pour 5) soit € > 0. Soit M tel que |b,| < M et N € N

tel que pour tous n > N, on a |a,| > A = % (possible car a,, — +00). Alors, pour
n>N, |2—Z —0| = bl < M < o Comme ¢ était arbitraire, on a bien b’:l — 0. O

T an] = an] an

Formes indéterminées:

1) oo — oo. On considére les trois suites a, = (n+ 1)> = n% b, = (n+ 1) — n, et
¢n = vVn+1—y/n. En prenant la limite, les trois sont du type oo — oo, mais on
a a, — 00,b, — 1, et ¢, —> 0 (détails vus en classe).

2) oo+ 0. On considére les suites a,, = n* - %, b, =n - %, et ¢, = +/n - % En prenant
la limite, les trois sont du type oo - 0, mais on a a,, — 00,b, — 1, et ¢, — 0.

3) 2. On considére a, = Zii; Sik=1,a, — o0,sik=2,a, — letsi k=23,
a, — 0.

4) %. Prendre l'inverse en haut et en bas dans ’exemple précédent.

2.5 Liminf et Limsup

Définition 2.8. Soit (a,) une suite. On note {a>,} = {a,, | m > n}, et on définit:
limsup a,, = lim sup{as,} et liminf a, = lim inf{a>,}
n—00 - n—o00 -

n—00 n—00

Exemple: Considérons la suite a,, = (2 + %) (=1)™, pour n > 1. Alors

(an) = (—1,2.5,—1.6,2.25, —1.8,2.16, . . .) 2 ., 0 2.,

as ap 5)
{as1} ={-1,2.5,-1.6,2.25,—1.8,2.16,... }, et {a>2} (resp. {a>3}, ...) s'obtiennent en
enlevant le premier (resp. les deux premiers,...) éléments de cet ensemble. On a donc le

tableau suivant:
n 1 2 3 4 5 6 7 8

sup{asn} | a2 =25 a3 =25 ]a,=225]a, =225 ag | ag | as | as
inf{as,} | -2 ) 2 2 | 2| 2] 2|2
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Ainsi
(inf{asn})n = (—2,—-2,-2,...) et (sup{asn})n = (a2, az, as, a4, ag, ag, - .. ),

1
d’ ou liminfa, = —2 et limsupa, = lim a9, = lim {2+ — | = 2.

. . . . 1
Remarque 2.2. En fait, on voit que ’}LHOIO Aopq1 = klg]gO (2 g 1) (=1)=-2.

Définition 2.9. Pour une suite (a,)nen et une suite d’entiers (ng)reny C N strictement
croissante (ngi1 > ny), la sous-suite correspondante est (an, )gen-

Exemple: Si a,, = n+r4 et ny=2k+1,0onaa, = (2k+11)+4 = 2k1+5. Attention: n, = 5 et
1

nj = 3 ne sont pas des indices valables.

. — k— . .
Remarque 2.3. Si a, —> a, alors a,, — a pour toute sous-suite (a,, ) (Exercice.)

Théoréme 2.9. Pour une suite bornée (a,), on a
{limites de sous—suites}

lim sup a,, = max et liminf a,, = min

) {limites de sous—suites}

00 convergentes n—o0 convergentes
Remarque 2.4. e Pour (a,) générale, lim a, n’existe pas forcément, mais lim inf a,,
n—oo n—oo
et limsup a,, existent toujours (dans R si la suite est bornée, et dans R U {£oo}

n—o0
si elle ne l'est pas). Cf section suivante !

e On a liminfa, < limsupa,, avec égalité si et seulement si lim a, existe! Dans

n—oo n—oo n—oo
ce cas, liminfa, = lim a, = limsup a,.
n—oo n—oo n—o00

Exemples:
e a, = (—1)". Avec le théoréme: Si n; = 2k, alors a,, = (—1)* =1 — 1. Comme
a, < 1,il n’y a pas de sous-suite plus grande! D’ou lim sup a,, = 1. Similairement,

n—oo
si ng = 2k + 1, alors a,, = (—1)*™ = -1 — —1 = liminfa, = —1.
n—oo
Sans le théoréme: (a,) = (1,—-1,1,—-1,1,...) = {a>,} = {-1,1} Vn. D’ou
sup{a>,} =1— 1= limsupa, =1 et inf{a>,} = -1 - —1 = liminfa, = —1.
- n—00 N n—oo
(—2)" -1 ) 9 1 _33
® 4, = W,HGN = (an) = (_3717_71;1’_3_1’1’“.)'
2
Avec le théoréme: Si n; = 2k, alors a,, = % =1— 1= limsupa, =1, et si
n—oo
ni, = 2k + 1, alors a,, = _Q%iil__ll = —}jﬁﬁiﬁiﬂ — —1 = liminfa, = —1.

n—oo
Sans le théoréme: On a, suivant la parité de n:

{asn} ={L, 5=, L, =32, Lo You {520 1, - 24 1, -2 )

T on¥i_ 7> T onF3_71» on_1» onF+2_1> T on¥d_7 -
Donc sup{a>,} =1 — 1 = limsupa, = 1. Et pour inf{a>,}, on remarque que
n—oo
R n . , .
la suite b,, = —gﬂ est croissante (vérifier que b1 > b,). Donc
2ntlqg
. — 5T —1 ..
inf{as,} = et = liminfa, = —1.
- ou — =% —» —1 n—00

2n—1
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2.6 Critéres de convergence

Question: (a,) converge-t-elle ? (Pas: vers quoi?)
croissante (an.1 > ay,)

. et
décroissante (an+1 < a,)

Théoréme 2.10 (Croissante + majorée). Toute suite
magorée sup{a, | n € N})

707" converge | vers |
minorée 7 ( inf{a, | n € N}

Corollaire 2.11. Toute suite monotone et bornée converge.

Preuve du théoréme (cas croissante+ magorée). Posons A = {a, | n € N} et s = sup A,
et fixons ¢ > 0. Par définition du sup, il existe a € A tel que s — e < a < s. Comme
a € A,onaa=ay pour un N € N. Mais dés que n > N, on a a, > ay et donc

s—e<ay<a,<s=a,€[s—¢,8=|a,—s| <e. O

Exemples:
1) Si (ay,) est bornée, alors |a,| < M pour un M € R. La suite s,, = sup{a>,} est
donc minorée (par —M), et comme {a>,41} C {a>,}, on a
Sp4+1 = SUP{Gan} < sup{aZn} = S,.

La suite (s,) est donc décroissante et minorée = (s,) converge = lim s, =
n—oo
lim sup a,, existe. (Et similairement pour lim inf).
n—oo
1

2) On considére les suites a,, = (1 + —) (pour n € N*) et b, définie par by = 1 et
n

1 "1
bpy1 =0, + m Une récurrence montre que b,, = kZ:O o Quelques valeurs:
(an)n>1 = (2, 2.25, 2.370, ...)  (by)uso = (1, 2, 2.5, 2.6, 2.7083, ...).
Affirmation:

(i) a, < b, pour tous n > 1,

(ii) (bn) est majorée (donc (a,) aussi),
(ili) (a,) est croissante,
(iv) (b,) est croissante.

, 1\" < /n\1 "1 .
Preuve. (i) On a a, = (1+;> = Z <k>ﬁ < ;E = by, ou pour les =

k=0
on a utilisé, dans 'ordre, définition de a,,, la formule du binéme de Newton

(exercice 2(b), série 3) et la définition de b, et I'inégalité vient du fait que
(n)l_ln!/(n—k)!_l n n—1n-—2 n—k—|—1<1

= (an) et (b,) convergent !

k)nk Kl nk kln on n n =kl
N N e
<1 <1 <1 <1
1 1 1 1 1
(ii) Ona — = < =2—, dou

K k-(k—1)---3-2- 2.9...9.9  9k1 ok’

1
"1 "1\ 1= (1/2)" 1—

by=> — <2 (-) -9 (1/2) <2 0:4,
£\ 2 1—(1/2) 1/2
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ou I'égalité du milieu suit de la formule 2™ + 2" 1+ -+ 2+ 1= et g

1-z
x # 1, (cf exercice 1, série 3).
(iii) En utilisant le fait que § < %5 si 0 < a < b (exercice facile!), et en reprenant
largument du (i), on remarque que

(n)l 1n n—1 n—2 n—k+1

k)nk " kln n n n
<1n+1 n n—-1 n—-k+2 (n+1 1
“kln+1l n+1 n+1 n+l  \k J(n+1)
n n+1
) s o 1\" n 1 n+1 1 . 1 \n+l
doia, = (1+7) —Z(k>m < Z( k )m = 1+ 57
k=0 k=0
= Qp41- 1
(iv) On a simplement b, 11 = b, + m > b,. O
Par croissance majorée, (a,) et (b,) convergent toutes les deux! En fait, on a
lim a, = lim b, = e = 2.7182818 - - - = nombre d’Euler.
n—o0 n— o0

Théoréme 2.12 (Critére de D’Alembert pour les suites). Soit (a,) une suite telle que

existe € RU {+oo}. Alors a,, — 0 si p < 1 et (a,) diverge si p > 1.

. ‘ An41
p = lim

n

Remarque 2.5. e Attention: le critére ne se prononce pas si p = 1.

an+1 an41

e Plus généralement: a,, — 0 si lim sup < let (a,) diverge si hm mf > 1.

n—oo
Preuve. Sip < 1,alors || — p < 1, on trouve donc un r < 1 tel que ]%| § r pour

n assez grand, disons n > N. On montre par récurrence que |a,| < lay|r"™" = Ar" — 0

car c’est une suite géométrique avec |r| < 1 (ot A = r~N|ay|). Init: |ax| = |an|r®.
Pas de récurrence: Comme |“=1| <7, on a |ap4q| < |ay|r < Ar'r = Ar™t Etsip > 1,
n
on pose b, = -, et on a lim || = —1 =1 <1 Donc |b,|] — 0, et ainsi
an n—oo | 9n lim =27 | P
n o0

|a,| — 00 = (a,) diverge. O
E 1 140 O Ant1 (n+1)140/2n+1 ’I’L+1 140 1 D

xemple: an—2— na | == = S g = ( - ) — 3 L < 1. Donc a,, —> 0.

Convergence de suites définies par récurrence: On considére une suite (a,) définie par
ap = a, an+1 = g(a,) pour une fonction g: R — R.

Remarque importante: Si (a,) converge, disons a,, — ¢, alors
¢ = lim a,.; = lim g(a,) © g <lim an> =g(l) = [ estsolution de z = g(x),
n—00 n—00 n—o00

ou (x) est vraie si g est continue (cf chapitre 4). Exemples:

1) ag = 1,ap11 = 50, — 1 = g(z) avec g(z) = 3z — 1. Solution de z = g(z):
r=4{¢=-2.0na(a,) = (1, —%,—%,—1—;,...,—1.999...). En effet, (a,) semble

donc converger vers —2.



22 CHAPITRE 2. SUITES

2) ap = l,ap,41 = 3a, — 1. La solution de z = g(z) est { = % mais (a,) =
(1,2,5,14,...) semble diverger!
3) ap =3, ap41 = 3a, — 1. Ici (a,) = (3, 1. 1,...) — 1.

Théoréme 2.13 (Récurrences linéaires). Soit (a,,) une suite ot ag est fizé ot ap11 =
g(ayn) avec g(x) = qr +0b, ¢,b € R, et soit { la solution de v = g(x). Alors:

1) Siq#1, onaa,="0+q"(ag— ).

=a, —lsil|gl<1ousiag=1{ et(a,) diverge dans le cas contraire.
2) Siq=1, on aa, = ag+ nb.

= (ay,) est constante = ag sib=0, et (a,) diverge dans le cas contraire.

Preuve. Le cas ¢ = 1 et les conclusions de convergence sont laissées en exercice (fa-

cile). Pour ¢ # 1, on montre la formule par récurrence: Init: ag = ¢ + (a9 — /).
Pas de récurrence: a,4+1 = g(a,) = qa,+b © q(l+q"(ag—10))+b = gl + b+q" " (ag—1),
ot l'on a utilisé ’hypothése de récurrence en (x). (D)=t H

Exemple non linéaire: ag = 3, a,11 = % <an + &) = g(a,) avec g(x) = %(x =+ %)

1) Candidats pour {: Solutions de z = g(z) < 2z =2+ 3 & 2 =3 & 2 = +V/3.

2) Ezclure tous les cas sauf 1. On calcule quelque valeurs: (a,) = (3,2,1.75,...), ce
qui nous donne l'idée de montrer que a, > 0, par récurrence: Init: ayp = 3 > 0.
Pas de récurrence: a,41 = 1((>0) + (>—30)) > 0. Donc £ = —/3 est impossible, et le

candidat est £ = /3.
3) Montrer que a, — (.
Méthode 1: Montrer que |a,, — | — 0 directement. On calcule :
1 3 2 _2v3a, +3 n— V3)?
np1 —V3==a,+——2V3 = I Ve + :(a \/_)
2 an, 2a,, 2a,,

Comme cette derniére expression est > 0, cela montre que an1 — V3 > 0, et
comme ¢’est vrai aussi pour ap = 3, on trouve: a, > v/3 pour tout n € N. Ainsi:

1 a,—v3 _ 1
‘an-i-l - \/§| = Qp41 — \/§ = E(an - \/g) : CL—\/_ S §(an - \/g)
—

On montre alors par récurrence que |a, —v/3| < (3)"(3—v/3). Init: OK. Pas de réc:
|1 —V3] < Han—V3 < 3(3)"(3—V3) = (3)"*1(3—+/3). On trouve finalement:
4, — V3 < (2)"(3— V3) — 0.

Méthode 2: Montrer que (a,) converge, et vérifier que lim g(a,) = g(lim a,).
n—oo n—o0

Comme pour la méthode 1, on montre que a, > v/3: la suite est donc minorée,
et on calcule

3
an+1—an:—+——an§——\/§2:0 = apy1 < ap.

2v/3
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Ainsi elle est également décroissante, et converge donc par décroissance minorée.
Finalement on vérifie (grace aux résultats sur les quotients de limites) que:

. .1 3 1 . 3 _
lim g(a,) = lim = (a,+ — | == | lim a, + — =g ( lim an> )
n—o00 n—o0 2 Qn 2 \ n—oo lim a, n—00

n—0o0

Remarque 2.6. On peut aussi utiliser la continuité de la fonction ¢ dans cette
derniére étape (cf chapitre 4).

Critére de Cauchy:

Définition 2.10. Une suite (a,) est de Cauchy si Ve > 0,3N € N tel que Vm,n > N,
on a |a, —a,| <e.

Avec des mots: ses termes deviennent arbitrairement proches les uns des autres, lorsque
les indices sont assez grands.

Théoréme 2.14 (Convergente < de Cauchy). Une suite (a,) converge si et seulement
si elle est de Cauchy.

Ap+1 + Qp,
2

c—0b
alors € > 0, et soit N tel que 2V > ——. On remarque (image vue en cours) que dés
€

Exemple: Pour b < ¢, on définit la suite a,, par ag = b,a; = c et a, o = . Soit

. Ainsi

. . Cc—
que m,n > N, a,, et a, appartiennent au méme intervalle de longueur N
c—b
).
€

m ~— Un| = "oy = el
|t — a,] < oh <e (car 2™ >

Donc (ay,,) est de Cauchy = (a,) converge!
Pour démontrer le critére de Cauchy, on a besoin de:

Théoréme 2.15 (Bolzano-Weierstrass). Toute suite bornée posséde une sous-suite
convergente.

Rappel: Une sous-suite d’une suite (a,), est une suite de la forme (a,, ), ot (ng)x est
une suite d’entiers strictement croissante (ng1q > ng).

Exemple: a, = (—1)" est une suite bornée, mais divergente (elle ne converge pas).
En revanche les sous-suites aqr, = (—1)2’“ = 1 et agry1 = —1 sont constantes, donc
convergentes !

Preuve du théoréeme de Bolzano-Weierstrass. Comme (a,) est bornée, il existe M > 0
tel que |a,| < M < a, € [-M, M] pour tout n. On sépare [—M, M] en I, = [—-M, 0]
et J; = [0, M], et on remarque que soit I; soit J; contient a, pour une infinité de n;
disons J;. On choisit n; tel que a,, € J;. On sépare alors J; en deux intervalles Iy, Js,
et & nouveau, soit I, soit Jo contient a,, pour une infinité de n; disons J5. On choisit
alors ns tel que ny > ny et a,, € Jo. On continue ainsi et on trouve une suite d’indices
strictement croissante (ny) telle que a,,, se trouve dans un intervalle J; de taille de plus
en plus petite.
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Si on note Ji = [bg, ¢], on remarque alors que (by) est une suite croissante et majorée,
que (cx) est décroissante et minorée, et que (by) et (cx) convergent vers la méme limite
¢ par construction. Comme b, < a,, < ¢, on a a,, — ¢ par le théoréme des deux
gendarmes. O]

Preuve du critére de Cauchy. Pour =, soit (a,) une suite telle que a,, — a; on doit
montrer que (a,) est de Cauchy. Soit ¢ > 0, et N tel que pour tout n > N, on a
lan —al < 5. Alors, dés que m,n > N, on a

| — an| = |am —a+a—a,| < |y —al+la, —a] < =+ = <e.

DO ™

Comme ¢ était arbitraire, cela montre que (a,) est de Cauchy.

Pour <, on commence par montrer que la suite est bornée. Soit € = 1 et N tel que pour
tous m,n > N, on a |a,, — a,| < e =1. Alors, a, € [ay — 1,ay + 1] dés que n > N, et
ainsi
la,| < M = max{|ag|, |ai|,- .., |lan-1|, |an|+ 1},
(a,) est donc bornée. Par le théoréme de Bolzano-Weierstrass, il existe une sous suite
an,, qui converge, disons vers a. Soit alors € > 0, N tel que Vm,n > N, on a |am, —a,| < §
et k tel que |a,, —a| < 5 et ny > N. Alors dés que n > N on a (en posant m = ny)
E €
lan, — a| = |an, — an, + an, —a| < lap, — ap| + |an, —a < 5—1—5 <e.
Comme ¢ était arbitraire, cela montre que a, — a. O
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Chapitre 3: Séries

3.1 Définition et exemples
Rappel de notation: Zak =ap+a,+as+ -+ ap,.

k=0
Définition 3.1. Soit (ax)rey une suite.

o n
P P def ;.
e La série de terme général (ay) est E ap = lim E ay.

k=0
n o
o 5, = Z ay est la n-iéme somme partielle. On a donc Z ap = lim S,.
n—oo
k=0 k=0
oo
e La série Zak converge si la suite (.5,),>0 converge < lim S, existe € R. Elle
om0 - n—oo
diverge si elle ne converge pas.
Exemples:
=1 1 "1
1) Z o Le terme général est a; = o et la n-iéme somme partielle est S,, = Z o
k=0 k=0

Cette série converge: En effet

ol HORIO RO

71_(%)7&1721 1yn+1 9
R N s
T2 —
—0
ot 'on a utilisé Iexercice 2 + 2" ' + - +x +1 = =2~ §i & # 1. Ainsi

o
. 1
nh_)rroloSn—Qetdonc g §—2.
k=0
{ converge et vaut 1= si [q <1 ( ice)
exercice).

2) Série géométrique: qu diverge si |q| > 1

k=0

3) La série Z 1, de terme ay = 1, et somme partielle S, = Z 1 =n+ 1, diverge:
k=0 k=0

On a lim S, = lim n+ 1 = 400 ¢ R. Méme chose pour la série Z(—l)k de

terme aj, = (—1)*: La suite des sommes partielles (S,,) diverge, donc la série aussi.

o

Proposition 3.1 (Série conv. = terme — 0). Si E ay converge, alors klim ap = 0.
—00
k=0
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Preuve. Zak converge < (S,,) converge < (.S,,) est de Cauchy. Donc
k=0 n n—1
]Sn—Sn_1|—>O == Zak—Zak :]an]—>() O
k=0 k=0

Attention: L’autre direction < n’est pas vraie en général!

(e}
. . 1 L 1
4) Série harmonique: ZE Le terme général est ap = T On a a — 0, et
k=1
pourtant cette série diverge!

Preuve informelle.

=1
P e R Rl Tt R R R & T Sk )
k=1 v ™

2% Z% 2% —400.
[
Preuve formelle. On a, pour tout m € N,
— 1 e 1 1 gm 1
— — m+1 m\ _ —
[Smt1 = Sy | = Z EE Z 2m+1_W(2 —2 )_2m+1(2_1)_§‘
k=2m41 " k=2m41
Donc (S,) n’est pas de Cauchy = (S,,) (et donc aussi la série) divergent. O

3.2 Critéres de convergence pour les séries

Suite des exemples:
5) Série harmonique alternée: i (=1
-k
chapitre 5). Pour cela on a besoin de:

. Cette série converge (vers — log(2), cf

Proposition 3.2 (Critére de Leibnitz pour les séries alternées). Si

1) |a <la
) akia] < lax] } (pour k assez grand)

2) signe(agy1) = —signe(ax) (les signes alternent ),
3) khm ag = 0,
—00

oo
alors E aj converge.

k=0
Idée de la preuve. Sim > n, a,y1 > 0 et m — n est pair, alors
<0 <0 <0 <0
Sm — Sy = Ani1 + an+%+gn+3 + Qptg Fpys + - F Q2 + A1 A
VvV Vv
—_——
>0 >0 >0

ol les > 0 et < 0 proviennent du fait que les termes sont de plus en plus petits en
valeur absolue, et que les signes alternent. Ainsi, 0 < S5, — S, < a,41, et en traitant
les autres cas (a,41 < 0, m —n impair), on trouve

0 < [Sm — Sul < lans1| — 0.
Il suit que (S,,) est de Cauchy, donc elle converge (et la série aussi). O
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Retour a I'exemple 5: La série Z ( k‘) est de terme général a;, = (=1) .On a

1) |apa| = 75 < 3 = laxl,
2) signe(agi1) = —s

igne(ay),
1
3) lim ]ak\ = lim — = 0. Donc la série converge.
kﬁ\oo k—o00
) La série —i— ! + ! + -+ converge. (Et vaut 7T2 )]
E = — — : verge. vaut ... —1).
k;2 9" 25 & 6

Preuve. En séparant les termes pairs et impairs, on trouve

S, < 8 1+1+1+1+1+ SR
s 32 52 (2n)?  (2n+1)?
1

: 2 1
=1 2 =14+ - —
+;(2/ 2k+1 =122 oy +4;k2

k=1

n

/\

1
<1+ 55’“.
Ainsi,ona S, <1+ %Sn = %Sn < 1= 5, <2 Lasuite (S,) est donc majorée
et croissante, donc elle converge (tout comme la série). [

Que dire alors des séries Z 5 Z ok

Proposition 3.3 (Critére de comparaison, terme > 0). Soient (
telles que 0 <ap <A (pour k assez grand). Alors

1) ZAk converge = Zak converge.

ag), (bx) deux suites

k=0 k=0
2) Zak diverge = ZA"" diverge.
k=0 k=0

Preuve. On pose S? = Zak et S4 = ZAk.
k=0

1) (S9) est croissante, et S¢ < S4 qui converge = bornée. Donc S? converge, par
croissance majorée.

2) (S%) est croissante et divergente, d’ott S¢ — +o0. Ainsi S4 — +oo par le
théoréme du gendarme seul.

m
, = 1 . 1 1
Conséquence: ZE converge par comparaison. En effet, 0 < yE; < w2 et la série
k=1

o o)

1 1
Z e converge. En fait pour p € R, la série Z ﬁ converge si p > 1 et diverge si
<1

(Exercice).
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o0 o0
Définition 3.2. Une série g ar est absolument convergente si la série E |ax|
k=0 k=0

converge.

Proposition 3.4. Toute série absolument convergente est convergente.

Preuve. Soit E aj une série absolument convergente. On note S,, ses sommes partielles,
oo

k=0
et S les sommes partielles de Z |ag|. Alors,

k=0
m m
S = Sal = | D ax| < Y lawl =15 = S| — 0
k=n+1 k=n+1
car (52%) converge, et est donc de Cauchy. Donc (S,) est aussi de Cauchy, et converge.
O
o0
Remarque 3.1. e Sia >0, alors Z ay est convergente < absolument convergente.
= (—1)F k=0 | (—1)* 1
° est convergente, mais pas absolument convergente: = -

diverge (série harmonique).

Deuz autres critéres:

Proposition 3.5 (Critére de d’Alembert pour les séries). Soit (ay) une suite telle que

. a . .
p = lim |——| existe dans R. Alors E a converge absolument (donc converge) si
k—oo | ag =0
p <1 et diverge si p > 1.
Remarque 3.2. e Attention: le critére ne se prononce pas si p = 1.
. L L, . — a .
e Version plus générale: La série converge absolument si lim sup ML < 1 et di-
e . Qpa1 k—o0 ay
verge si lim inf > 1
k—o0 ag

Proposition 3.6 (Critére de Cauchy / de la racine). Soit (a) une suite telle que

o = lim /|ay| existe dans R. Alors g ay converge absolument (donc converge) si
k—o0

k=0
o <1 et diverge si 0 > 1.
Remarque 3.3. e Attention: le critére ne se prononce pas si o = 1.
e Version plus générale: On remplace o par o = lim sup v/|ax|.
k—o0
X 9k 2k
Exemple: o On a a; = T et on utilise d’Alembert:
— k! !
. a,k-_l’_l 2k+1 k' . 2
lim |—| = lim ———— = lim —— =0.

Donc p =0 < 1 et la série converge absolument.
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3.3 Séries avec paramétre

Ce sont des séries ou le terme général a;, = fy(z) dépend d’un paramétre z € R. La
convergence dépend donc aussi de z € R!

Exemples:
— k? k?
1) ZE (pour z € R*). Le terme général est a, = ot On utilise le critére de

k=0
d’Alembert:

B L N o ) A £ S L
p= Jim |58 = lim S = Jim (S ) Jim s =
Donc la série converge absolument si p < 1 < |z| > 1 et diverge si p > 1 &
lz] < 1. Et si x| = 1 & x = £17 On vérifie les deux cas individuellement:
Siz =1, on a Zﬁ = Zsz diverge, car k* /— 0, et si x = —1, on a
k=0 k=0

o0 k2 oo

Z = Z(—l)ka diverge, car (—1)¥k? /— 0. En résumé, la série converge
= DY =

&z > 1.

Définition 3.3. Le domaine de convergence d’une série a parameétre x est
D = {x € R| la série converge}.
On a donc D Zﬁ ={reR||z|] >1}=]— 00, —1[U]L,+o0l.
k=0

k
2) Z T (pour z € R). Si z = 0, la série vaut 0° 4+ 0 = 1 (et converge donc). Si

k!
k=0
x # 0, on utilise d’Alembert:

et | i Eikan k_' — lim |z| _
La série converge donc absolument pour tout z € R, et donc D = R. On verra

x _k
x

plus tard que E i e’.
k=0

— |
p=jim

o0

Définition 3.4. Une série entiére est une série de la forme Z bi(x — a)*, pour z € R.

Le nombre a est le centre de la série. k=0
2 gk =1
. L Y - N N
Exemple: Z T Z o (x — 0)" est une série entiére de centre 0. De méme pour la
k=0 k=0
g2k > i 1
série = brx” avec b, = 0 si k est impair, et by = — si k est pair. Par

contre, g —- n’en est pas une.
x
k=0



30 CHAPITRE 3. SERIES

oo
Théoréme 3.7 (Convergence des séries entiéres). Soit g br(x —a)® une série entiére.
k=0
Alors il existe un unique nombre r € Rso U {+00} appelé rayon de convergence de
la série, tel que la série converge si |x — a| < r et diverge si |x —a| > r.

Idée de la preuve. Appliquer le critére de Cauchy (généralisé). O

Remarque 3.4. Les cas |x —a| = r <=2 = a £ r sont a traiter individuellement. Donc

D(Zbk(x—a)k =la—r,a+r[ouja—r,a+r|oufa—r,a+r[oula—ra+r].
k=0

 (z—3)F 1
Exemple: ; %—22 C’est, une série entiére avec by, = ok On applique le critére
de d’Alembert (attention: le terme vaut aj, = (?232]6)
. lagn _ k- 2% |z — 3|
P= s ag [z -3 v (k + 1)2k+1 2

Ainsi la série converge absolument si p < 1 & @ <1l<& |z—3| <2, et diverge si

p>1<%< |r—3| > 2. Le rayon de convergence vaut donc: r = 2.
On trouve donc D O |3 —2,3+2[ = ]1,5][, et il faut encore vérifier les cas x = 1 et

— (5-3)
x = 5. Pour x = 5, on trouve Z T
k=1

S (1-3)F O~ (—1)F
pouraczl,onaz(k—;): (k>

k=1 k=1

o
1
= Z z qui diverge (série harmonique), et
k=

qui converge (série harmonique alternée).

Donc D = [1,5].

Remarque 3.5. e Le cas r = +oo est aussi possible, lorsque la série converge pour
tout z € R = |—o00, 00].
e Formules pour le rayon de convergence:
by,
br41
lorsque ces limites existent. (C’est I'inverse (+) des critéres de Cauchy/de d’Alem-
bert, mais appliqué a by et non & ay).

r=lim |bp|"Y* et r= lim
k—o0 k—ro0
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Chapitre 4: Fonctions

4.1

Rappels

Fonction réelle = f: D — Rou D C R. D = D(f) = domaine = {z | f(x) est
défini}, Im(f) = image = f(D). Le graphe d’une fonction est {(z,y) € R?* | y = f(z)}.

Exemples:
8
y=a?
6
4
y=(v+b) y=(z-0)
2
—4 -2 2 4 —b b
<
) y=2sin(z)
y=sin(2z) 11 y=sin(z)
\

Propriétés: Soit f: D — R une fonction réelle.

1)

f est croissante (resp. strictement croissante, décroissante, strictement décrois-
sante) sur D si pour tous z1,xe € D tels que x7 < x5, on a f(z1) < f(z2) (resp.
f(z1) < f(z2), f(x1) > f(x2), f(x1) > f(x2)). f est monotone (resp. strictement
monotone) dur D si elle est croissante ou décroissante (resp. strictement croissante
ou strictement décroissante) sur D.

f est paire (resp. impaire) si D est symétrique en 0 (i.e. z € D = —x € D) et
f(=z) = f(z) (resp. f(—z) = — f(x)). Exemple: 2% est paire, 3 est impaire.

f est T-périodique pour un 7" > 0 si f(x +7T) = f(x) pour tout x € D. La
période fondamentale est le plus petit T" tel que f soit T-périodique (8’1l existe).
Exemple: sin(z) et tan(x) sont 27w-périodiques, mais tan(x) est aussi m-périodique.
Les périodes fondamentales sont 27 pour sin et 7 pour tan.

f est majorée (resp. minorée, bornée) sur A C D si I'ensemble f(A) = {f(z) |
r € A} C R est majoré (resp. minoré, borné). On a

Stelgf () =sup f(4),  inf f(z) = nf f(4)
et
max f(r) = mas f(4),  min () = min f(4)
lorsque ces quantités existent. Ex: f(z) = (zr — 1)>+2, A =] —1,4[. On a
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inf —2—mi —11 ‘existe pas.
;IGIAf(JZ) min f(z), ilelgf(x) , ax f(z) n’existe pas

5) On rappelle que f: X — Y est surjective (resp. injective, bijective) si tout y € Y’
a au moins (resp. au plus, exactement) une pré-image x € X tel que y = f(x).
Si f est bijective, sa réciproque est la fonction f~!: Y — X définie par f~'(y) =
unique z € X tel que f(z) = y. On a donc y = f(z) & = = f~(y); il suit que
son graphe s’obtient par symétrie de f(z) en la droite y = z. Exemple:

4.
y =
3| ,
2 1
; y=r
1 1
1 1 2 3 A
_1 1

6) La composée de deux fonctions f: X — Y et g: Y — Z est la fonction
1
gof: X —Z . Exemple: f(x):T
v go f(x) = g(f(2)) Vet
fao fyo fu(x) avec fi(z) =22, fs(z) =z + 1, fo(z) = ¥z, fi(z) = %
Remarque 4.1. g est la réciproque de f < fog(x) =z et go f(x) = x.

est la composée f; o

4.2 Limites de fonctions

sin(x)

Exemple: f(x) = .Ona D(f) =R*=R\ {0}. Que se passe-t-il en 07 Rien! En
effet: 0 ¢ D. Par contre on dirait que f(x) — 1 lorsque & — 0. Graphe:

ﬁ\wlgx)
— [

—_———— i _———————
—2m - ™ 2

Idée: Formaliser ¢ca. On aimerait dire lir% f(x) = . Ingrédients:
T

1) f(x) doit étre définie "un peu autour" de xg, et
2) f doit s’approcher de ¢ lorsque z s’approche de .

Définition 4.1. Une fonction f: D — R est définie au voisinage de xy € R si
lzo —d, zo] U Jzo, 20 +d[ € D(f) pourund > 0.

est définie au voisinage de 0 (on peut choisir n’importe quel d > 0),

Exemple:
x
méme si elle n’est pas définie en 0!



2. LIMITES DE FONCTIONS 33

Définition 4.2. Soit xg € R et f: D — R définie au voisinage de xy. Alors f admet
¢ € R pour limite lorsque r tend vers z(, noté

lim f(z)=¢ ou f(z) =2¢,
| <9

T—rTQ

si Ve > 036 > 0 tel que Vo € D\ {zo} on a |z — xg = |f(z) — ¢ <e.

Avec des mots: f(x) est arbitrairement proche de ¢ dés que x est assez proche de x
(mais # xo). Comparaison avec les suites: a, — a si a,, est arbitrairement proche de
¢ dés que n est assez grand (donc assez proche de l'infini).

sin(z) _

Remarque 4.2. e On va montrer plus tard que hIT(l]
T—>

e Pour lim f(z), on ne regarde jamais f(x(), mais seulement f(z) pour x proche
T—T0

de xy. Exemple:

sin(z) six 7é 0 . 240 - Sin(q})

malgré le fait que g(0) = 132 # 1.

e lim /x n’a pas de sens: \/7 n’est pas défini au voisinage de —1.
r——1

Exemple: Soit f(z) = bx — 1, et 9 = 2. Montrons "a la main" que lirr% f(z)=09.
T—

1) D(f) =R, donc f est bien définie au voisinage de 2.
2) Soit € > 0. On doit trouver 6 > 0 tel que, dés que |z — 2| < § (et x # 2), on a
|f(z) — 9] <e. On pose § = . Alors, pour x # 2 tel que |z —2| <4, on a
|f(z) — 9] = |5z — 10| = 5|z — 2| <56 < ¢ Car5:§.
Comme ¢ > 0 était arbitraire, on a montré que pour tout £ > 0, il existe un
d(=¢/b) tel quesiz #2et |x—2] <, onalf(xr)—9] <e. Donc 1ir%f(x) =09.
T—

Heureusement, les suites viennent en aide pour simplifier les calculs:

Théoréme 4.1 (Limites de fonctions et suites). Soit f: D — R définie au voisinage
de xyg € R. Alors lim f(z) ={¢ < lim f(a,) = ¢ pour toute suite (a,) C D(f)\ {zo}
T—T0 n—oo

telle que lim a, = xy.
n—oo

Idée: a,, — xy = maniére de s’approcher de zy. Donc f(x) — ¢ si f(a,) — ¢ pour

toute les fagons (a,) de s’approcher de x.

Exemple: Redémontrons que si f(x) = 5z — 1, alors lin% f(z) = 9. Si (a,) est une suite
T—

telle que a,, — 2, alors on a
lim f(a,) = hm 5an—1(—)5 lima,—1=5-2—1=9,
n—oo n—oo
ol en (%), on a utilisé les proprletes algébriques des limites (cf Chap 2.3). Comme c’est

vrai pour toutes les suites (a,,) qui convergent vers 2, on a bien montré que lin% f(z)=09.
T—

Attention: " Toute suite" est important !
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Corollaire 4.2. 5%

e J(a,) C D\ {xo} tel que a,, — xo mais lim f(a,) n'existe pas, ou

e J(ay), (b,) € D\{zo} tel que a,, — xy etTI;:OO—> Ty Mais nh_)rgo flan) # nh—>I£10 f(bn),
alors lim f(x) n'existe pas.

T—rT0

Exemple: f(z) = cos(2). On a D = R\ {0}, donc f est définie au voisinage de 0. On

pose a, = # et b, = m, de sorte que a, — 0 et b, — 0. Mais lim f(a,) =
n—o0

lim cos(2mn) =1 et lim f(b,) = lim cos(2rn+m) = —1. Donc lim f(z) n’existe pas.

n—oo n—oo n—oo T—T0

Remarque 4.3. On pourrait aussi prendre ¢, = % — 0. On a alors lim f(c,) =
n—oo

lim cos(mn) = lim (—1)" qui n’existe pas. Donc lim f(z) n’existe pas non plus.

n—oo n—00 T—x0

Propriétés des limites de fonctions. Soit xg € Ret f,g: D — R deux fonctions définies
au voisinage de zg et telles que lim f(z) et lim g(z) existent. Alors
Tr—xQ T—T0

1) Pour tous p,q € R, on a lim pf(z) + qg(z) = p lim f(z)+ ¢ lim g(x).
T—rITQ T—x0 T—TQ

2) Jim folato) = (Jim 7o) ) (Jim o(e) )
fla) _ 2357

3) Si li 0, alors i ==
)51, 00) 70, alors @) = T g()
T—T0

4) Si f(z) < g(x) au voisinage de xp, alors lim f(z) < lim g(x).
T—T0 T—T0
5) Sih: D — Rest tel que f(z) < h(z) < g(x) au voisinage de xq et que lim f(x) =

Tr—xTQ
lim g(z) = ¢, alors lim h(z) = (.
T—T0 T—x0
Preuve. Utiliser les suites (point 1) fait en cours). O

Remarque 4.4. En utilisant les suites, on peut également montrer que lim f(z) = ¢; et
T—TQ

lim f(x) = {y alors ¢, = {5 (unicité de la limite).

Tr—TQ

4.3 Calculs de limites

0) limec=r¢, limz = u.En effet, si f(z) = c et g(x) = z, alors pour toute suite
r—u r—u

a, — u, on a f(a,) = ¢ — cet g(a,) = a, —> u. Donc lim f(x) = c et
Tr—u

lim g(z) = u.

2
1) Polynomes: lim z* = (hm :zc> = 2 par le produit des limites. Par récurrence, on
Tr—ru Tr—u
trouve lim 2" = u", et en utilisant la linéarité, on voit que si P(x) = a,z" +---+
T—U

a1x + ag, alors lim P(z) = P(u).
r—u
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P
2) Fonctions rationnelles: f(x) = ngi avec P, des polynomes. Si Q(u) # 0, on a
x
lim Q(z) = Q(u) # 0, et on peut appliquer la propriété du quotient des limites
Tr—u
t lim f( —}“’E‘P(I)—P(“)E le: lim —— 1 — 1
pour trouver lim x) = im0~ Qu)’ xemple: lim o--—— = 2.
T—U
3) lim sin(z) = 1 et limcos(z) = 1. En calculant les aires des fi-
z—0 xT z—0
L sin(z) =z _ tan(x)
gures colorées ci-contre, on trouve que 5 < 5 < 5 En
. . 1
divisant par x/2, on trouve M <1< sin(z) . En mul-
x x  cos(x)

tipliant 'inégalité de droite par cos(z), on trouve cos(z) < Sinf).
Finalement, comme cos(z) € [0, 1], on a cos(r) < cos?(z) = 1 — sin®(z) < 1 — 22
On obtient alors la chaine d’inégalités suivantes (qui est vraie pour 0 < x < /2,

donc aussi pour —7/2 < x < 0 car ce sont des fonctions paires):

sin(x
1—x2§cos(x)§—()§ 1
N—— T S~~~
—1 —1
L . sin(x) o
Ainsi lim cos(xz) = 1 et lim = 1 par le théoréme des deux gendarmes.
x—0 x—0 €T

Proposition 4.3 (Limites de composées). Soient f: A — B et g: B — R telles que

1) glﬁljg f(z) =0, 2) ];%g(x) =cet 3) f(x) # b au voisinage de a.
Alors lim g(f(z)) = limg(y) = c.
T—a y—b

Preuve. On utilise la caractérisation avec les suites (Théoréme 4.1). Soit (x,,), C A\{a}
telle que z,, — a. On pose y, = f(x,). Alors y, — b par 1), et y, # b par 3). Donc

(Yn)n C BAAD}, dot g(f(2n)) = g(yn) — ¢ par 2). N
Exemples:
o lirnlcos(x12 —-1) = hmlg(f(x)) o g(x) = cos(x) et f(zr) = x> — 1. On a 1)
r—r T—
lim f(z) = lim(z'* — 1) = 0, 2) lim g(z) = limcos(z) = 1, et 3) z'2 — 1 # 0 dés
z—1 z—1 z—0 z—0
—pl2_
que x # *£1, donc z'? — 1 # 0 au voisinage de 1. Ainsi hnri cos(z!? — 1) V= '
Tr—r
lim cos(y) = 1.
y—0
sin(x) 2
. 1—rcos*(z) , sin?(z) /2 ( z ) .y 1
o lim —————— =lim ———— = 5 = lim -—— = —, ou
20322 4sin”(z)  2+=0 (32% +sin”(z)/2?) 4 n (sin(a:)) y=13+y 4

, 2
I'on a fait le changement de variables y = (#) ;onay— 1 lorsque x — 0.

0 six=3

e Attention: La condition 3) est importante: Si f(z) = 3 et g(z) = { 2 siz£3
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alors lim g(f(z)) = lim¢(3) = 0 # lim g(y) = 2. On ne peut donc pas faire le
z—0 x—0 y—3
changement de variables y = f(x).

Proposition 4.4 (Limites de réciproques). Soit f: [a,b] — R strictement monotone.
Soitu € [a,b] etv = f(u). Alors f: [a,b] — Im(f) est bijective, et si f~1: Im(f) — [a, b]
est définie au voisinage de v, on a lim f~(x) = f~1(v) = u.

T—v

Corollaire 4.5. Pour tout n €N, et v >0, on a lim ¥z = J/v.

T—v
Preuve. On considére f(x) = a™ qui est strictement croissante sur [0,a] pour tout
a € R. Ainsi, lim f~!(z) = f~'(v) = {/v pour tout v > 0. O
Tr—v

4.4 Limites a gauche/droite, limites (vers 1’)infini(es)

On généralise lim f(z) = ¢ en 1) lim et lim, 2) lim et 3) lim f(z) = £oo.
U zlu zTu T—300
a gauche

Définition 4.3. Soit f: D — R définie au voisinage .
a droite

de u € R (c’est & dire

— C
}Z u :l—’ Z{ c g pour un d > 0). Alors f admet ¢ € R pour limite

xr tend vers u, si

a gauche lorsque
a droite q
x € [u—d,uf

Ve > 0,30 > 0 tel que Vo € D\ {u}, on a x €lu,u + 6]

= |f(x) — ¢ <e.

Notation:
e Limite & gauche: li%n f(z) = lim f(z) ="

T—u-

e Limite a droite: lim f(z) = lim f(z) = /.
zlu z—ut

Version avec les suites: Pour toute suite (z,,) C D\ {u} telle que lim z,, = u et Tn < U
n—00 Ty > U,

on a lim f(x,) =",
n—oo

Exemple: Si f(z) = M7 alors f(z) = { 1 siz>0
T _

li =lim1=1.
et ;{I&f(x) it

Sz <0 . Donc 1;%1]((1‘) :11%1—1: -1

Proposition 4.6. Si [ est définie au voisinage de u, alors lim f(zx) = { < li%n flz)=1¢
T—U TrTu
et liin fx)="¢.

Preuve. Exercice. O

x
Remarque 4.5. Cela montre que hH(l)u n’existe pas (limites a gauche et a droite ne
r—r €T

sont pas égales).



4. LIMITES A GAUCHE/DROITE, LIMITES (VERS L’)INFINI(ES) 37

-
Définition 4.4. Soit f: D — R définie au voisinage de oo (c’est a dire Ja, +oo[ € D
—00 | —00,alC D

pour un a € R). Alors f admet ¢ € R comme limite lorsque = tend vers +§ si

>
Ve > 0,3C € R tel que Vz € D on a izg = |f(z)— (] <e.

Notation: hm f(x) = ¢, ou f(z) = Z58° ¢, Version avec les suites: Pour toute suite
r—to0

(xn) C D telle que lim z, = T ona lim flz,) =L

n—00 —0Q, n—00

1
Exemple: hr}rq — = 0. Soit £ > 0. Posons C'= 1. Alors dés que 2 > C, on a |2 — 0| =
r—+o0o I

1 1
:STSE

Remarque 4.6. On a lim f(x) = ¢ & f(z) posséde une asymptote horizontale

r—Fo00

d’équation y = /.

Définition 4.5. Soit f: D — R déf. au voisinage de u€R. Alors f(x) tend vers —l—oo

lorsque x tend vers u si

>
VAeR,30 >0tel que Ve € D\{u}ona|r—u| <j= flz) > A

flz) < A
Notation: lim f(z) = 400, ou f(x) *=% 4o00. Version avec les suites: Pour toute suite
T—U
. . +00
D tell 1 = 1 =
(x,) C D telle que lim 2, =wona lim f(zn) .

1

Exemple: hm |5 = +00. Soit A € R, et posons § = 1A. Alors, dés que |z — 0] <6, on
0x

at>% ZA car 35 > A& 6% > 4.

Remarque 4.7.

1
e On peut combiner 1), 2), 3): Par exemple, on a lim— = 400, lim— = —o0,
|0 T 10 T
lim 3x — 1= +o0.
T—>+00
e On a hm = +00 < f(z) admet une asymptote verticale d’équation = = u.

IE—)U
e Les propriétés algébriques, ainsi que le théoréme des deux gendarmes, des com-
posées et des réciproques restent valables pour ces limites généralisées.
e Finalement, les résultats valables pour les suites (+00 + 0o = 400, —00 — 00 =
—00,+00 + ¢ = Fo00, théoréme du gendarme seul, oo(ioo) = Foo0, % = 0)
restent valables pour les limites infinies. Attention: co—oo 0-00 sont toujours

des formes indéterminées !

700707
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4.5 Fonctions continues

Définition 4.6. Soit f: D — R déf. au voisinage de u € R. Alors f est continue en u
silim f(z) = f(u).

r—u
Remarque 4.8. Cela implique 3 choses: 1) u € D, 2) la limite existe et 3) elle vaut f(u).

Exemples: Polynomes, fonctions rationnelles, {/x, sin(z), cos(z), tan(x), arcsin(x),
arccos(z), arctan(z) e*,log(z), ... sont continues en tout point de leurs domaines (Exer-
cice).
Remarque 4.9. Si f est continue en u € R, et a,, — u, alors

lim f(a,) = f(lim an> = f(u).

n— o0 n—oo

Exemple: lim sin(2) = sin(0) = 0.
n—oo

Définition 4.7. Soit f définie au voisinage ngil(l)(i:tee de u € R. Alors f est continue
a gauche . 1;%{} f(@)

A

zlu

a droite

Remarque 4.10. f est continue en v < f est continue a gauche et & droite en w.

2cr+1 sizx >0

Exemple: f(z) = { sne) o = f continue en tout x # 0. En x = 0, on a

sin(x)

la%lf(m) = 13%1 =1let lﬁgf(:c) = 11%12x+1 = 1. Donc glglg(l)f(m) =1= f(0), et f

est continue en x = 0. f est donc continue sur R.
Opérations sur les fonctions continues: si f, g sont continues en wu, alors f + g, f - g,

af + By, S (si g(u) # 0) sont également continues en u. De plus, si f est continue en

u et g est continue en f(u), alors g o f est continue en u.

. _ sin(2? 48z + 1)
Exemple: f(z) = \/xQ + 5+ cos(z)

Définition 4.8 (Prolongements par continuité). Si f: D — R est définie au voisinage
de u € R, avec u ¢ D et est telle que lim f(z) = ¢, alors le prolongement par
r—u

est continue en tout u € D(f) = R.

continuité de f en u est
f:DU {u} — R

x'_>{f(m) s'ixED
14 six = u.

Remarque 4.11. f:DU{u} — R est 'unique fonction continue telle que f(x) = f(x)
si x # u, et f(u) =£. Donc f est continue en w.

: . sin(x) .
Exemple: Si f(x) = sm(x), avec D(f) = R*, alors f(z) = { z :fizég est le

prolongement par continuité de f. (Cette fonction s’appelle parfois sinc(z)).
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Contre-exemple: La fonction f(z) = cos(+) n’admet pas de prolongement par continuité
en 0 (car 1irr(1) cos(1) n’existe pas).
r—r

Fonctions continues sur un intervalle:

Définition 4.9. Une fonction f: [a,b] — R est continue (jusqu’au bord) si
1) lim f(x) = f(u) pour tout u € Ja,b[ (f continue en tout u € |a, b]),
r—u
2) lifn f(z) = f(a) (f est continue a droite en a),
3) lig)l f(z) = f(b) (f est continue a gauche en b).

De maniére analogue:
e f: [a,b] — R est continue si 1) et 2) sont vérifiées.
e f: ]a,b] — R est continue si 1) et 3) sont vérifiées.
e f: ]a,b] — R est continue si 1) est vérifiée.

Théoréme 4.7 (Théoréme de la valeur intermédiaire, TVI). Soit f: [a,b] — R continue
(jusqu’au bord). Alors

fab) = [ inf (o), sup f(x)].

z€la,b] z€[a,b]

Remarque 4.12. Cela veut dire que f atteint
e son inf, donc linf est un min: inf f(z) = mln f( JER (et # —00),

z€[a,b] z€la,b
e son sup, donc le sup est un max: sup f(z) = m[a)g f(x) eR (et # +00),
z€[a,b) z€

e toutes les valeurs entre les deux!
De plus, f([a,b]) est donc un intervalle fermé.

Exemple d’application: L’équation cos(x) = z a une solution x € ]0,5[. En effet, on
définit la fonction
f:00,3] — R
x+— f(x) = cos(x) — .
Cette fonction est continue (jusqu’au bord), et on remarque que f(0) = cos(0) — 0 =

1>0et f(5)=rcos(3) — 5 =—5 <0. Ainsi par le TVI, on a

f([07%]):[@,v]90:>3$06[0 2] tel que f(xg) = 0.
<0 >0

Comme f(0) # 0 # f(5), 20 €]0, %[, et comme f(zy) =0 < cos(xg) = 2o, on a trouvé
une solution de l’equamon

ldée de preuve du TVI. Vue en cours. O

Corollaire 4.8. Si f: [a,b] — R est continue et que f(a) < 0 et f(b) > 0 (o l'inverse!)
alors il existe u € la, b| tel que f(u) = 0.

Preuve. Voir exemple avec cos(z) — . O
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Corollaire 4.9. Si f: I — R est continue avec I = intervalle (= [a,b], ou |a,b] , ou
| — 00,0, ...) alors Im(f) = f(I) est un intervalle.

Corollaire 4.10. Soit f: [a,b] — R continue. Alors f est injective < f est strictement
monotone.

Preuve. Pour <, si 1 # xg9, on a soit x; < g, soit x; > o, doit f(z1) < f(x9)
ou f(z1) > f(x2), ce qui implique que f(z1) # f(z3). Pour =, supposons que f
n'est pas strictement monotone. Il existe donc u,v,w € [a,b] tels que u < v < w,
mais f(u) < f(v) > f(w) (ou la méme chose en échangeant < avec >). Soit alors
y € |max{f(u), f(w)}, f(v)[ . En appliquant le TVI & fl. et a f|pw), on trouve
deux éléments x; € Ju,v[ et x9 € Ju,w|[ tels que f(x1) =y = f(x2). Comme on a
nécessairement x; < xy, f n’est pas injective. ]
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Chapitre 5: Dérivées

5.1 Définition et exemples
Idée: Calculer la pente de la tangente au graphe d’une courbe.

Définition 5.1. Soit f: D — R définie au voisinage de z¢ € D. Alors f est dérivable
(ou différentiable) en x, si la limite

f(xo+ h) — f(xo) aef

lim . = f'(z9) existe €R.
Notations: p
o Fw0) = Liwg) = 0, f(w0) = Duflwo) = flae) = -+

dx

o f'(z9) est la dérivée de f en z.
e f est dérivable si elle est dérivable en tout zy € D.

Remarque 5.1. o f'(x¢) = pente de la tangente au graphe de f, au point (xg, f(xo)).
e En faisant la substitution z = xq + h, on trouve la définition équivalente

o) — tim 102 = F0)

T—T0 T — X
Définition 5.2. La fonction dérivée d’une fonction f: D — R est
f:D(f)—R
On a D(f") ={x € D | f est dérivable en x}.

Exemples:
. flwo+h) = flwzo) . (w0 +h)* =z
— 2 / _ — —
1)f(x)—a:,xOGR.Onaf(xo)—}lgr%) h —}lllir[l) n =
i 2hx0 + h? _o
fimy = = 2

2) f(x) =sin(x), o € R. On a
sin(xg + h) — sin(xg) Y sin(xg) cos(h) + cos(zg) sin(h) — sin(xg)

/ 1 o
Jiwo) = iy h e h
. . cos(h) —1 . sin(h)
= sin(zy) ]1112% — + cos(xp) }lllil[lj = cos(xy),
- e . sin(h) e )
ol l'on a utilisé que lllm% 7 =1 et les inégalités 1 — h* < cos(h) < 1= —h =
*)

_ . cos(h) —1

1-h?-1 < cos(h)—1 <0, d’ou lim —( )
h h h—0

On montre d’une maniére analogue que la dérivée de cos(z) est — sin(x).

= 0, cf Chapitre 4, section 3.

Proposition 5.1. Soit f: D — R une fonction réelle.
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1) Si f est dérivable en x, alors f est continue en x.
2) f dérivable en xo < f(x) = f(xo) + f'(x0)(x — x0) + (x — zo)e(x), 0u € est une
fonction telle que lim e(z) = 0.
T—T0
Remarque 5.2. Avec des mots, 2) est: f(x) = droite + reste qui — 0 plus vite que
T — Xp-

Preyve. 1) lim f(z) = lim M(m —x0) + f(x0) = f(x0) - lim (z — x0) +

T—IT0 T—T0 T — :CO T—rxT0

f(xo) = f(x0)-

2) Esquisse vue en classe.
O

Remarque 5.3. f continue # f dérivable. Exemple: Si f(z) = |z|, alors f est continue
(partout, donc) en 0, mais on a

W JOFN=JO) bk (048~ £(0)
W R TITR TR T
FO+h) — £(O)

n’existe pas, et f n’est donc pas dérivable en 0.

Ainsi la limite lim

h—0 h

Proposition 5.2 (Opérations algébriques sur les dérivées). Soient f,g: D — R déri-
vables en xy.
1) (p-f+q-9)(x0) =pf(xo) + qg'(x0) pour tous p,q € R.
2) (ff' 9)'(z0) = (f g+}”g)($o)
! g g
9 (i) w0 = (7))

Preuve. Exercice. O

xo)

Dérivées de fonctions usuelles.
0) f(x) =ceR= f'(x) =0 (la pente est nulle!)
1) f(x) =2z" = f'(z) = nz""! pour tout n € N*.

B —
Preuve. Par récurrence. Init: (n = 1): f(z) = z, dou f'(z) = }lbir%w =
B
1. Pas de récurrence: Si f(z) = 2™ = zz", on trouve, en utilisant la régle du
produit: f'(z) = (zz") =1 2" + z(nz" ') = (n + 1)z". O
2) sin’(x) = cos(z) et cos’'(x) = —sin(z). Pour tan(x), on utilise la régle du quotient,
pour trouver: tan'(z) = <sin(x) )I = sinf () cos(x) — sin(x) cos'(x) =
cos(z) cos?(x)
cos?(x) + sin’(z) 1

o2 (2) co2(z)’ ou bien 1+ tan®(x)

3) f(z) =2 " pour n € N* et & # 0. On écrit 27" = = puis on utilise la régle du
quotient pour trouver f'(z) = (—n)x™""L

Proposition 5.3 (Dérivée de composée). Soient f: A — B et g: B — R, avec f
dérivable en o et g dérivable en f(xg). Alors (go f)(xo) = ¢'(f(x0)) - f'(z0).
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9(f(x)) —9(f(x0)) _ 9(f(x)) = g(f(x0)) [flx)— flzo)
xr — Xg f(z) — f(xo) T — X
9(y) — 9(wo)
Y=Y (
de variables y = f(x),yo = f(z0)) qui tend vers ¢'(yo) lorsque x — o =y — yo. O

Preuve. On écrit . Le second

quotient tend vers f’(zg) lorsque x — x, et le premier vaut changement

Proposition 5.4 (Dérivée des réciproques). Soit f: I — J bijective et dérivable sur

1
tout I = intervalle ouvert. Si f'(x) # 0 pour tout x € I, alors (f~1)(z) = )
x

pour tout x € J.

Preuve. On admet que f~! est dérivable sur tout B. On dérive I'équation z = f(f~1(x))

des deux cotés pour trouver 1= f'(f~(x))(f~) (z), dou (f)(z) = m -

Exemples:

. \"/E = f~!(x) ou {(x) = z". (On suppose x > 0). Donc (/z) = (f~!)(z) =
T A

= 125" = 12271 On montre de maniére analogue que
n n
(xa) = §x§* et on verra que (z%) = uz®"! pour tout u € R (et z > 0).

_
Cos(arcsin(:v))

a cos(a) > 0, donc cos(a) = /cos?(a) = /1 — sin? et ainsi cos(arcsin(z)) =
1 — sin?(arcsin 1 — 22. 11 suit: arcsin e
) < (@)=

flxo+h)— f(xo) . . & droite
h = dérivée 4 gauche de f en xg.

e arcsin’(x pour x 6} —1,1[ . Comme o = arcsin(z) € [-%, ], on

Définition 5.3. lim
R10
R10

Proposition 5.5. f est dérivable en xq < f est dérivable a gauche et a droite en xg,
et les valeurs sont égales.

Exemples:
e f(z) =|z|. En x = 0, la dérivée a droite vaut 1, et la dérivée a gauche vaut —1.
Donc f(0) n’existe pas.
e f(x) = /x. La dérivée n’existe pas en 0 (elle vaut +o0). Détails vus en classe.

Définition 5.4. La dérivée seconde de f est: f"(x) = f®(z) = (f’( ))'. La dérivée
d’ordre n est £ (x) = (f("~V(z))". Autre notation: f™(z) = —f

dz™

Définition 5.5. Soit I =|a, b[. Alors:
D"(I)={f: 1 — R | f est n fois dérivable sur I}, et

C(I)={f: I = R| f est n fois dérivable sur I et f™ est continue}.
On définit également C*(I) = {f: I — R | f™ existe pour tout n € N},
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Remarque 5.4. e On a C°(I) = {fonctions continues f: I — R}.
e Comme toute fonction dérivable est continue, on a
C'>p*oCctopP?D(C?*D---D2D"D(C"D---DC™.

Exemples:
e (C! 2 D?): La fonction f(x) = z|z| est dérivable, de dérivée f'(z) = 2|x| continue,
donc f € C!'(R). Mais [’ n’est pas dérivable en 0, d’ou f ¢ D?*(R) (méme si
f € C®(]—00,0]) et € C>(]0, +0o0])).

Remarque 5.5. De maniére analogue, f(z) = 2"|z| est dans C"(R), mais pas dans
DrH(R).

o (D' 2 C'). Soit f(x) = x?cos(+) si @ # 0, prolongée par continuité en 0 via:
f(0) =0. Alors f € C*(] — 00,0[) NC>=(]0, +0o0]) et on calcule:
f'(x) =2z cos(L) + 2*(—sin(z)) =3 = 2z cos(2) + sin(L) si z # 0.
Enxz=0,0ona ) )
i JOFM = SO) ) PoeosG)
h—0 h h—0 h

Donc f est dérivable en 0, et donc partout: f € D'(R). Sa dérivée est:
2z cos(L) +sint . #0
) = { (@) +sins

0 x = 0.
En revanche, lim f'(z) = lim sin(%) n’existe pas. Donc f’ n’est pas continue en 0.
z—0 z—0 z

Ainsi f ¢ C(R), méme si f € D'(R).

5.2 Dérivée et croissance

Théoréme 5.6 (Théoréme de Rolle). Soit f: [a,b] — R continue, et dérivable sur
la,b[. On suppose que f(a) =0 = f(b). Alors il existe u € |a,b] tel que f'(u) = 0.

Preuve. Par le TVI, f atteint M = m[a%}f(x), qu’on suppose > 0 (si M < 0, on
z€[a,

remplace par le min). Il existe donc u € Ja, b tel que f(u) = M. On a alors

— - M <0
zlu xrT—U zlu xrT—U zlu _O
— - M <0
f’(u) = limM = th =lim=— >0.
ztu Tr— U ztu Tr—Uu ztu SO
Donc f'(u) = 0. O
Théoréme 5.7 (Théoréme des accroissements finis). Soit f: [a,b] — R continue, et
b) —
dérivable sur |a,b[. Alors il existe u € |a,b[ tel que f'(u) = M.
—a
Preuve. Application directe du théoréme de Rolle, cf Exercices. O

Applications du Théoréme des Accroissements finis: Soit f: [a,b] — R continue (jus-
qu’au bord) et dérivable sur ]a, b[.
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1) f'(z) =0 < f(x) = constante. En effet, <= est claire, et pour =, si f # constante,
on trouve ¢ < d tel que f(c¢) # f(d). Le TAF donne alors u € ]c,d[ tel que

d) —
oy~ D=1
—c
2) Sig: [a,b] — R est continue et dérivable sur |a,b[, et si on a f'(z) = ¢'(x), alors
f(z) = g(x) + C. En effet, il suffit d’appliquer le 1) & f — g.
f(x)>0 croissante
fl(x) <0 Vrelab & fest décroissante
(Preuve de la premiére ligne vue en classe.)

, : :

4) f'(z) >0 vrelab] = fest strictement croissante

f(x) <0 strictement décroissante

Remarque 5.6. Attention, <= du 4) est faux en général. En effet, la fonction f(z) = 23
est strictement croissante, mais f'(z) = 3z? = f(0) = 0, donc f’ n’est pas > 0 sur R.

3) ur [a, b].

sur [a, b].

Définition de la fonction exponentielle (et logarithme):

Théoréme 5.8. Il existe une unique fonction f: R — R telle que f'(z) = f(z) Vx € R
et f(0)=1.
Preuve. Existence: plus tard! Unicité: 2 étapes:
1) La fonction f vérifie: f(x) # 0Vx € R. On pose h(z) = f(x)f(—xz). On calcule:
W (x) = f'(x)f(—x) + f(z)(—f'(—z)) = 0, donc h est constante. Comme h(0) =
1-1, on trouve h(x) = f(z)f(—x) =1, d’ou f(x) # 0.
2) Unicité. Si g: R — R est une (autre) fonction telle que ¢'(z) = g(z) et g(0) =

1, alors on pose h(z) = % (bien définie par I'étape 1). On calcule h'(z) =
gff—2fg = ng;fg = 0, donc h est constante. Comme h(0) = 1, on trouve
g(x)

—~ =1=g(x) = f(x). m
25 =15 gla) = 1@

Définition 5.6. Cette fonction s’appelle la fonction exponentielle, notée exp(z) (et
e plus tard).

Propriétés de exp(x):
1) exp’(x) = exp(z) et exp(0) = 1 (découle de la définition). Donc exp € C>®(R).
2) exp(x) # 0 pour tout = € R et exp(—z) = expl(x) (cf preuve!)
3) exp est strictement croissante sur R. En effet, exp est continue et # 0, donc > 0
ou < 0. Comme exp(0) = 1, on a exp/(x) = exp(z) > 0.
4) exp(z +y) = exp(x) exp(y) pour tous =,y € R. En effet, fixons y € R et posons

g(x) = —e);i(pm(;r)y). Alors ¢'(x) = —exfxr():fyj)y) = g(z) et g(0) = —Zggjg = 1. Par unicité, il

suit g(x) = exp(x) & % = exp(x) © exp(r + y) = exp(z) exp(y).
5) hlll exp(x) = +oo et lim exp(z) = 0. En effet, la seconde limite découlera
Tr—+00 Tr——00

de la premiére (changement de variable y = —z), et pour la premiére, on pose
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g(x) = exp(xz) — x. On a alors ¢'(z) = exp(z) — 1 > 0 si x > 0 car exp est
strictement croissante. Ainsi, dés que z > 0, g est strictement croissante et donc
exp(z) >z — 4o0.

6) exp(1) = lim (1+%) — ¢ =2,7182818 ... ; en fait, on a exp(z) = lim (1+§)
n—oo n—oo
(cf exercices).
1l suit que exp(2) = exp(1 + 1) = exp(1) - exp(1l) = e - ¢ = €%, et par récurrence
que exp(n) = €". En prenant les quotients, on montre que exp(—n) = e™", puis

. P b
les racines, que exp(a) = ¢4,

Définition 5.7. Pour z € R, on pose e? & exp(z).

Remarque 5.7. exp: R — |0, +00] est strictement croissante, donc injective. La propriété
5) montre qu’elle est surjective (sur |0, +oc[). Elle est donc bijective!

Définition 5.8. Le logarithme est la réciproque de exp:
log: ]0,4+00[ — R
x +—log(z) (= In(z), autre notation).

Propriétés de exp(x):
1) D(log) =0, +o0] et Im(log) = R. De plus, log(1) = 0, log € C*°(]0, +o0[) et on a
x = exp(log(z)) = 1 = exp/(log(x)) log'(x) = xlog'(z) = log'(x) = % si z > 0.
2) log(zy) = log(x) + log(y). (Prendre exp des deux cotés!)
3) log est strictement croissante sur |0, 400l

4) lirf log(z) = 400 et hﬁ)l log(z) = —o0. (Changement de variables x = eV.)
T—>+00 xX

Autres bases:
Définition 5.9. Pour a > 0, 'exponentielle en base a est
exp,: R — ]0, 00|
x +— a® = exp,(x) o exp(log(a) - ).
Pour a > 0,a # 1, le logarithme en base a est la réciproque de exp,:
log,: |0, 400 — R

1
xr — log,(x) = IOgE$§ (exercice facile).
og(a
Propriétés (cf exercices) :
e (a®) = log(a)a®, et log, (z) = m.

e a” est strictement croissante (décroissante) si a > 1 (a < 1).
e log,(b") = zlog,(b).

1
e Changement de base: log,(z) = IZZ((;)
Remarque 5.8. Pour u € R et x > 0, on a donc z* = exp(log(z)u), et donc (") =

u u—1

exp(log(z)u)% = ux



2. DERIVEE ET CROISSANCE 47

Définition 5.10 (Fonctions trigo hyperboliques).

_ et —e™” e’ +e " sinh(x)
sinh(x) = — cosh(z) = — tanh(z) = Coshix)'

Remarque 5.9. Comme pour les définitions de sin et cos, mais sans i.

Propriétés (cf exercices) :
e cosh’(z) —sinh?(z) = 1.
e sinh’(z) = cosh(z) et cosh’(x) = sinh(z).
e sinh: R — R est bijective, de réciproque arcsinh(z) = log(z 4+ V22 + 1).
e cosh: [0, +oo[ — [1, +00] est bij., de réciproque arccosh(x) = log(z + V22 — 1).

Théoréme 5.9 (Reégle de Bernoulli-L'Hospital (BH)). Soit zp € R et A =
lzo — d, xo[ U |2, o + d[ un voisinage de xy. Soient f,g: D — R avec A C D. Si
1) f,qg sont dérivables sur A et ¢'(x) # 0 pour x € A.

2) « g}ljﬁof( z) 0 oo
Tlim g(z) —0 M
$~>x0
['(z)
lim —/(ecR=RU{+
3) xlmcog(x) € U {£oo}.

!/
Alors lim M = lim J'@) = /.
e gla) v g (@)
Preuve. Utilise le Théoréme des accroissements finis généralisé (Exercice). []

Remarque 5.10. Marche aussi avec lim, lim, lim .
mixo :):Tzo r—+o00

Exemples:
e lim sin(z) B i cos(z) = cos(0) = 1.
x—0 €x x—0
. @ gy . paPT? ) . .
e lim —— = lim —— = lim pa¥ = 4oosip >0, et =0sip <0. Cela
x—r—+00 log(x) Tr——+00 1/:1;‘ T——+00

montre que log(x) croit moins vite que tout polynome.

, 8ja? _ 1. 3\ _ . 3log(cos(2x))
. glcli% cos(2x) ilg(l) exp <log(cos(2x))x2) exp (ilil(l) — 2 ) par
continuité de exp. En appliquant Bernoulli-L’Hospital a la limite intérieure, on
31 2 -2 in(2
trouve lim og(cos(257)) =3 lim ——— - lim sin(2z) = —6, donc la limite
20 x2 @—0 cos(2z) =—0 2z
initiale vaut e~%
/
x
Remarque 5.11. Attention: si lim f/E § n’existe pas, alors BH ne marche pas. Par
T—T0 g X
exemple, lirr(l]xsin(%) = 0 (en utilisant les deux gendarmes) mais hr%msin(%) =
T— z—
. x%sin(2) BE - 2wsin(l) — cos(L) -
lim —=%= # lim : £~ n’existe pas.
z—0 T =0 1

Exemples (déssinables et non-déssinables) de fonctions vus en cours.
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Proposition 5.10. Soit f: D — R une fonction continue en xo € D, et dérivable au
voisinage de xo (mais pas nécessairement en xo). Si lim f'(z) = £ € R (limite existe
T—T0

dans R), alors f est dérivable en xq et f'(xy) = L.
Preuve. Utiliser Bernoulli-I.’Hospital !

Remarque 5.12.

]

e [’autre direction de la proposition est fausse: la fonction f(z) =

2? cos(1) (prolongée par continuité en 0) est dérivable en 0 (on a f/(0) = 0, voir
exemple a la fin de la section 5.1) bien que liII(l) f'(z) n’existe pas.
T—>

e La proposition reste vraie en remplagant li
x

—T0

par "dérivable a droite (resp. a gauche)".

5.3 Etudes de fonctions

m par lifn (resp. lim) et "dérivable"
zlTo

zTxg

Toute cette section est résumée dans le tableau "Relation entre fonction et dérivées"

disponible sur moodle.
f: I =R I=]ab|

[ existe sur I (f € D'(I))

f" existe sur [

(f € D*(1))

f croissante sur I:
Vr; < x5 0n a

f(z1) < f(zo)

fle)>0Vzel

f est convexe sur [:
YV, < x9 le graphe de f
est en dessous du segment

(21, f(21)), (w2, f(2))]

f’ est croissante sur [

Définition 5.11. Soit f: D — R. Alors

maximum . f(z
e fadmetun . . local en zy € D si (o)
minimum f(zo)
nage de z.
maximum f(xo

o fadmetun _ . .
minimum

e un extremum de f est

f: I =R I=]ab|

global en zy € D si

un min ou un max de f.

f! existe sur I et continue
en Iy

pour x dans un voisi-

= max f(z)

= min f(z)

f" existe sur I et continue
en Ty

f a un max local en z

f'(z) =0 et f’ passe de +
a —en xg < [ décroit
autour de zg

f"(z) <0 autour
de z¢ < f”(l’o) < 0.

f a un min local en x

f'(x) =0 et f passe de —
a+en xy < [ croit
autour de zg

f"(x) > 0 autour
de zg < f"(x9) > 0.

f a un point d’inflexion
en ro < f change de
convexité /concavité en

f" a un max local ou min
local en z,

f"(x9) =0 et f” change
de signe en x.
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Définition 5.12. Soit f: D — R. Alors f admet un point stationnaire en z; si

f'(xg) = 0.

Recherche d’extrema globauz: Soir f: [a,b] — R continue. Alors les extrema (globaux)
de f sont éléments de

(i) {zo € ]a,b]| f'(xo) = 0} (points stationnaires)

(ii) {zo € ]a,b]| f'(zo) n’existe pas}

(iii) {a,b} les bords.

5.4 Développements limités

Idée: Approximations de fonctions par des polyndomes (ex: sin(x) ~ z et cos(z) ~ 1
pour = proche de 0) mais en gardant le controle sur l’erreur!

Définition 5.13 (DL en 0). Soit f: D — R avec [ = | —d,d[ C D (f est définie au
voisinage I de 0, et en 0). Alors f admet un développement limité d’ordre n € N
en 0 s’il existe ag,ay,...,a, € Ret e: I — R tels que Vxr € I, on a

f(x) = ag+ a1w + apx® + - - + a,2" + 2"e(x) et liir(l) e(x) =¢(0) = 0.

Donc autour de 0, f = polynéme de degré < n + reste qui — 0 plus vite que z".

Remarque 5.13. Condition équivalente: ag = f(0) et
f(z) — (ap + a1z + -+ - + zp2™)
e(z) = on
0 siz=0.

— 0 siz#0

Exemple: f(z) = sin(z) admet un DL; en 0. En effet, on pose ay = 0 = sin(0) et a; = 1,

et on a

i {®) (w0t az) _ sin@) -z sin@@) g
z—0 ],'l x—0 X x—0 X

Donc sin(z) = z + z'e(x).

On verra que sin(z) admet un DL3 en 0 donné par sin(z) = z — %3 + x%e(x) ce qui est

in(z) —x

S
trés utile pour calculer la limite lim (détails vus en classe).

z—0 1;3

Définition 5.14. Soit xp € Ret f: D — Ravec I = |Jzg—d,zo+d] C D (f est définie
au voisinage I de xq, et en x). Alors f admet un développement limité d’ordre
n € N en/autour de z si f(x + zy) admet un DL d’ordre n en 0 < f(x + x9) =
ap + a1z + asx? + -+ - + a,z" + 2" e(x) avec a; € R &

—0
x—0

f(l‘) = ag + CLl(l‘ — SL’()) + CLQ(.T — xO)Q 4+ .4 an<x _ xo)n + (x . l’o)né(x)
ou £: I — R est telle que e(xy) =0 = lim e(x).

Tr—T0

Proposition 5.11. Soit f: D — R une fonction.

1) Si f admet un DL en xq, alors , alors il est unique.
2) f admet un DLy en xo < [ est continue en x.
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3) f admet un DL, en xo < f est dérivable en x.

Preuve. Vue en classe. ]

Exemple: f(x) = |z|.

(i) f(x) = |x| admet un DL en 0, car |z| est continue en 0.

(i) f(x) = |z| n’admet par de DL, en 0, car |z| n’est pas dérivable en 0.

(iii) f(x) = |z| n’admet par de DL,, en 0, pour tout n > 1. Sinon, on aurait

2] = ag + a1 + ax® + - + a, 2" + 2"e(x)
=ap+az 4z (aex + -+ a, 2" + 2" e(x))
= agp + a1z + 1'e(w)
pour un autre () — 0. La fonction aurait donc un DL, contresisant (ii).

Théoréme 5.12 (Formule de Taylor). Soit f € C"(I) avec I = intervalle ouvert > x.
Alors f admet un DL d’ordre n en xo donné par

" fk)
_ Z f kk(‘x(J) (.ZU . l’())k + " é(l’) ]
k=0 ’

— 0
T—x(Q

Les ay, sont donc donnés par
"(x B (g (k) (
oo = flaw) oy = o) ay = T = S = F)]

Preuve. Technique! O

Remarque 5.14 (Formule pour &(z) utile plus tard)). Si f € D" (), alors &(x) =
F ) (v)(z — a) pour un v entre x et a.

(n+1)!
Développements limités a connaitre (tous en xo =0):

e f(z) =sin(x) est dans C*(R). Il existe donc un DL de n’importe quel ordre, au-
tour de n’importe quel 2o € R! Pour le DL en 0, on calcule: f*)(0) =0,1,0,—1,0,
1,0,—1,..., et donc f®™(0) =0 et f?F) = (—1)". Ainsi:

: _ 1 3 1 5 1 7 (_1)71 2n+1 Zn+1
sm(x)—x—éx +ax—ﬁx +”'+(2n—+1)!$ 8_)(33())
z—0
(DL2n+1 en 0)

1 1 1 —-1" ,

e cos(x)=1-— ix + Zfl — axﬁ +- 4 ((271;! " 4 " fim()) (DLs,, en 0).
z—0

r? " "
ec'=14+0+—+5+-+—+z2"<(x) (DL, en0).

2 3! n! —0

10g<1+$):$—11‘2—|—1x3i...+(_ )n—l
S " (s

1 ,
=l4+z+a2’+2° 4+ +2"+2"¢(z) (DL, en 0).
l—x —0
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1
o =l-a4+2 -2+ -+ (=1)"2"+2"¢(x) (DL, en 0).
1+ 0
Application: Calculs de limites!
__osin(z) -2 1
. }:11)1(1) — 5 =g (Vu en classe).
2242 22421 % 42 4 ale
o lim & + cos(x):hmx +2( ot (x)):——i—limg(x):
z—0 4 z—0 x4 4! z=0
E.
log(1+ 3 3x + 3ze(3
o lim(1 + 32)/" = exp (lim M) = exp (lim x—i—_xa(w)) =
z—0 z—0 xT z—0 xT

= exp <3 + lim 5(3x)> = e’
z—0
Calculs de DL:
e Formule de Taylor: Marche toujours mais parfois un peu long.

e Somme/produit de DL: OK (mais vérifier que l'erreur est de la forme x"¢(x)).
Exemple: DL de e* + sin(z) cos(x) = (DL de €*) + (DL de sin(x))(DL de cos(z)).
e Composition de DL: OK mais:
DL de go fen zqg= (DL degen f(zq))o(DLde fen z).
De plus, 'ordre obtenu est toujours (au moins) aussi grand que I'ordre des DL de
fetg.
Exemples:
e DL, en 0 de f(x) = @, On utilise les DL; en 0 de e® et de sin(z):
@) — e — 1 4 (2 4 2e(x)) + (x + 2e(x))ex(x + ze(2)).
=1+z+a(e(z) + (1 +e(@))ex(x +e(2))).

TV
—0

=1+x+a'e(z).
e DLy en 0 de f(z) = cos(log(1l + z)). On utilise le DLy en 0 de cos(x), puis on
tente notre chance avec le DL, de log(1 + z):

cos(log(l +x)) =1 — %(10g(1 +2))* + (log(1 + x))%e(log(1 + z))

=1- 1(1‘ + ze1(7))? + (v + 261 (7)) 2e(x + 261 (7))

2
=1- %xQ + xQ(:el(x) — %8?(35) + (1 +e(2))e(r + ze1(x)))

1
=1- §x2 + 2%e(z).
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e DL, en 0 de f(z) = es@) ERREUR: on prend les DL, en 0 de e et de cos(x):
cos(@) — el+2=(®) = 1 4 (1 + ze(x)) + (1 4 ze(x))ex(1 + ze()).
= 2 + eo(1+e(z))+---
(# f(0) = e«*© = ¢) + (pas de la forme ze(x))

e

Solution:
(i) Prendre le DL; en cos(0) =1 de e” et le DL; en 0 de cos(z): On a
e"=e+e(r—1)+ (xr—1)&(x) (Formule de Taylor)

—0
rz—1

D’omu:
3@ = plteel®) — ¢ 4 e(1+xe(x) = 1)+ (1 4+ ze(z) — D)E(L + xe(x)).
e(x)é(1 + ze(x)))

VvV
—0

=e+a'e(z).
(ii) Réécrire I'expression pour avoir quelque chose qui — 0:
6cos(:v) _ el—l—:vs(w) —c- 6:1;5(;1;)

—e- (1 + xe(z) + J?E(I)*EQ(ZFE(I)))
— e+ x(ge(:ﬂ) + 5($)€2($5($)D

0
=e+a'e(z).
Ici cela a fonctionné car ze(x) — 0, donc lerreur est de la forme voulue.
1 1 1 1
DL, = 0 de ———: Idée: = = ,ouy =
Pl ol fo ¢ cos(x) o cos(x) 1+ (cos(z) — 1) 1+y oy
cos(z) — 1 223 0. On va combiner un DL de 715 avec un DL de cos(z) — 1. On a
1 1
Ty =1l-y+y*+y’e(y) et y=cos(z)—1= —5952 + 2%eq(7)
= —19(;2 + ix‘* + atey ().
2 24
Donc
1 1 1 1
_ :1_<__2 LAy )
cos(z) 14y 2" * 21" atea(a)

1 2 1 2
+ ( — §x2 + IQEQ(I)> + ( — §x2 + 1‘252(17>) - e(y).
En développant, on s’apercoit que tous les termes touchant un terme rouge sont
de la forme z* £(z). Ainsi

—0
z—0

1 1 1 1 1 5
=14 -2 — —z*+ 2t %) =1+ =2+ —2* 1z(2).
cos(x) 2" T Ty +a'é(z) —1—21’ —1—2495 +aé(x)
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5.5 Séries de Taylor

Rappel: Si f € C"(I) avec I = intervalle ouvert > a, on a

rn(x)

() = sz,%—a)m @)

o0

Dong, si f € C>(I), a-t-on f(z Z

(z —a)®? 11 faut que 1) la série converge,

n

et 2) le reste r,(z) =3 0.
Définition 5.15. Pour f € C*>(I) et I = intervalle ouvert > a, la série de Taylor de

N (k)( ) k
f centrée en a est la série Z (x —a)”.
k=0
Remarque 5.15. e C’est une série entiére! (centre = a. Rayon de convergence = 7).

e Sia =0, on 'appelle aussi Série de MacLaurin.

Exemples:

1) f(g;):%ecm(]—m[) a = 0. On sait que ( —Zx +z" 5_(3)5 , (ii)

les DL sont uniques = a;, = % = la série de Taylor de f est Z 2*, (iii) cette

k=0
série converge pour tout x € |—1,1[ et vaut — (Série geometrlque) En somme:
1 1
tout z € |— 1,1 = Taylor [ —— = k,
pour tout z € |— 1, [,onal_x ayor(l_m)azo kz_oaz
2) f(x) =e* € C®R),a=0.0nace" = ZF + 2" e(z) (DL en 0). La série de
k=0 =00

ok
Taylor est donc Z %, qui converge pour tout x € R (cf Chapitre 3). 1l reste

a voir que r,(x) =3 0. Par la formule du reste (remarque aprés la formule de

1
Taylor), on a e(z) = nt 1)|f("+1)(v) -z pour un v entre 0 et x. Donc r,(x) =
n !
1 V| |0+l n+1 oo
1"e(z) = relx™ et ainsi 0 < |rn(:l:)| _ e < e‘“"'L 200.
(n+1)! (n+1)! (n+1)!
On a donc e* = Taylor(e”),—¢ Z 1 pour tout x € R.
k=0

Proposition 5.13 (Dérivée de séries entiéres). Si f(x Z bi(x — a)* avec rayon de

i k=0
convergence r > 0, alors f'(x) Zbk+1 (k+1)(z — a)lC avec méme rayon de conver-

gence 1. k=0
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Conséquences:
o
e On peut définir e* = exp(x :e Z o pour tout x € R. Alors exp(0) = 0 et

o)

(k 1
exp/(z) = Z i Z i = exp(z). C'est donc (I'unique) solution de
=17 (0)
e Sif Zbk z—a)*, alors f(a) = by, f'(a) = by, f"(a) = 2bs, ..., f¥)(a) = klby.
Donc by, = <k,;( ), et cette série est déja la série de Taylor de f.

Retour aux exemples

3) log(1 Z ~—2 2% 4 2"¢(z) (DL en 0). La série de Taylor est donc
k= 30
— (=D, . .
Z 7 z", de rayon de convergence r = 1. A l'aide de la proposition, on
k=1
calcule

— (-1 k—1
_kz_;( k> k
_ Z(_x k_

k=1

= (—1
Donc log(1 + x) — Z (=1) z¥ = C, et en remplacant = = 0, on trouve C' = 0.
k=

2* pour tout x € ]— 1, 1], et donc aussi pour tout

Ainsi, log(1 + z) Z
xr €]—1,1] par prolongement par continuité.

: . (_1)k 2k+1 . (_1)k 2k :
4) sin(z) = Z —— "t cos(z) = Z =" pour tout x € R (exercice).
—~ (2k +1)! — (2k)!

Remarque 5.16. Cela donne une raison pour la formule e = cos(z) +isin(x). En

effet, on a:
N ()0 o () G ()
=2 Z (2k)! +Z(2k+1)!
k=0 k=0
term;srpalrs terme;mpairs
R G VA (=D i
_kzo hl = 41 ; k1) " = cos(x) + isin(x).

- 1 2k+1
5) sinh(x) = ; mx M1 cosh(z) = 2 oF)

2k pour tout x € R.
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6) Contre-exemple a f = Taylor(f): On considére f(z) = e~Y* prolongée en z = 0

par f(0) = 0. Alors f'(z) = %6_1/552 si x # 0, et on calcule liH[l) f'(z) =0, ce
T—

qui implique f’(0) = 0 (cf Prop. 5.10). De maniére analogue, on montre alors

par récurrence que f(z) = e /%" . p(1/x) si x # 0, ol p est un polynome,

et que f™(0) = 0. Ainsi, f € C®(R) et f™(0) = 0 pour tout n € N, d’ou

Taylor(f)a—o = —zF = 0. Mais f(z) = e /%" # Taylor(f)e—o si  # 0. La
k=0

raison est que le DL est f(z) = 0+ r,(z), avec reste r,(z) = e~*/**, qui ne tend

pas vers 0 lorsque n — oc.

1/x

Remarque 5.17. Donc sin(z) et sin(x) + e */** ont la méme série de Taylor!
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Chapitre 6: Intégrales

6.1 Primitives et intégrales

Définition 6.1. Soit f: I — R (continue) ot I = intervalle. Une primitive de f est
une fonction dérivable F': I — R telle que F'(z) = f(x) pour tout z € I.

Remarque 6.1. Si F,G sont deux primitives de f, alors (F — G)' = f — f =0, et donc
F(z)=G(z)+ C.

Notation: /f(a:) dr = {primitives de f} = {F(z)+C | C € R}, ot F est une primitive
de f.

Abus de notation: /f(x) dr = F(z)+ C.

@ | [ (@) 1@

r 37+ C 1 + tan?(z) = i tan(z) + C
o (r#=1) | gzt 4+ C 1 cos?(z)
1 log |z| + C 22 arctan(z) + C
e e +C 1 .
—_— arcsin(x) + C
sin(x) —cos(z) + C V19— a?
cos(x) sin(z) + C = arccos(z) + C

Remarque 6.2. L’intégrale /f(x) dx s’appelle 'intégrale indéfinie de f.

Changeons d’angle de vue: Si f: [a,b] — R, quelle est I'aire sous la courbe du graphe
de f 7 Pour approximer l'aire, on commence par choisira = xp < x1 <19 < --- < x, =0

(c’est une partition de [a,b]). On obtient:

e Approx. 1 (Inférieure): Aire = aire des rectangles sous la courbe:

Approx. 1 = Z ( inf
i=1

T€[Ti_1,2;)

f(m)) (@i — i)

e Approx. 2 (Supérieure): Aire ~ aire des rectangles sur la courbe:

Approx. 2 =

Remarque 6.3. On a: Approx. 1 < Aire < Approx. 2.

Définition 6.2. Une fonction f: [a,b] — R est intégrable (au sens de Riemann) si

Z (xe[asﬁupa:] f(x)> ' (xz - Ii_l)

i=1

sup{Approx. 1} = inf{Approx. 2} = A € R.

b
Dans ce cas, on écrit / f(z)dx = A, c’est 'intégrale définie de f sur [a,d].
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a a b
Convention: / f(x)dr =0 et / f(x)de = —/ f(z)dx
a b a

Remarque 6.4. / f(z) dx = aire signée sous la courbe.

Théoréme 6.1. Si f: [a,b] — R est continue, ou monotone (ou continue partout sauf
en un ensemble fini de points), alors f est intégrable (au sens de Riemann,).

Preuve. Technique! (Monotone: exercice.) O

Proposition 6.2 (Premiéres propriétés). Soient f,g: [a,b] — R intégrables. Alors

1)/ (af(x) + Bg(x dx—a/f d:lH—B/ x)dx pour a, B € R.

2) Sza<u<b/f dx_/f dg;+/f
3) Si f(z) < glx alors/f d:p</ o(z) da.

Preuve. Technique! (Idée vue en classe). O

Remarque 6.5. e (Cela définit 'intégrale de Riemann. Il en existe d’autres: Inté-
grale de Lebesgue, intégrale d’Tto, ...

/f M—/f @—/f

e Comme —|f(z)| < f(z) < |f )|, le point 3) de la proposition implique

/u )| d.

Théoréme 6.3 (Théoréme de la moyenne). Soit f: [a,b] — R continue. Alors il existe

u € Ja,b] tel que/ f(z)dz = f(u)(b— a).

x)dz

b
Preuve. Soit m = min f(z) et M = max f(x). Alors m < f(x) < M:>/ mdx <

z€|a,b| xz€|a,b|

/ flz)dx < / M dz. Comme / mdx = m(b—a), en divisant par (b—a), on obtient

b
/ f(z)dx. Par le TVI, f atteint y: il existe donc u € ]a, b|
tel que f(u) =y. O

1
Remarque 6.6. Donc f(u) = 5 x) dz = valeur moyenne de f sur [a, b].

b
Lien entre/et/:
a
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Théoréme 6.4 (Théoréme fondamental du calcul intégral). Soit f: [a,b] — R une
fonction continue.

1) La fonction G: a,b] — R

r+— G(x / f(t)
est une primitive de f sur [a,b].

b
2) Si F est une primitive de f sur [a,b], alors / f(z)dx = F(b) — F(a).

Preuve. 1) On a

&) = tim Gz + h})l— Glz) _ %% (/a”hf(t) g /axf(t) dt)

r+h

—tim [ () dt=lim 5 ()b =T f(u) = f(2),

h—0
x
ou l'on a utilisé le théoréme de la moyenne pour trouver u € |z, z + h[; donc
u — x lorsque h — 0.

2) Ona F(z) = G(z)+C et donc F(b)—F(a) = G(b)—G(a)+C—-C = /bf(t) dt—0.

[
b b b
Notation: [F(:v)} = F(b) — F(a). Donc / f(x)dr = [/f(:v) dx] .
6.2 Calcul d’intégrales
Exemples faciles:
7r - 2
1) / sin(x) dr = [— cos(x)}o = —cos(m) — —cos(0) = 2. Mais / sin(x) dr =
0
[ cos(x ] = — cos(27r) ——cos(0) = 0 (I’aire négative compense 'aire positive).
/3x+ 1)dz :—x +z+C.
(a)z 1 log(a)ac C = a” C
foras / Tlg@" T T loglw)
/f(x) f'(z) dx ( )2+ C. Ex: /sin(:c) cos(z) dx = %sinQ(:c)—l—C
/ ‘]}l((j) dr = log|f( )|+C. Ex: /tan(x) dr = —/_CZISI(IS = —log| cos(z)|+C.

/2 w/2 . w/2
/ cos?(z) di = / 1 + cos(2z) dr— | % sin(2x) _T
; ; 2 2 4
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Proposition 6.5 (Changement de variable / Substitution) Soit f: [a,b] — R continue

et o: [u,v] = [a,b], avec p € C([u,v]) et p(u) = a,p(v) =v. Alors

[ - / 1
Preuve. Soit F une primitive de f et G(¢ (p(t)). Alors G'(t) = f(e(t))¢'(t), d’ou
/a f(x)de = F(b) — F(a) = F(p(v)) - F(SO(U)) = G) = G(u) = uv Fle()#'(t) dt.

]

Remarque 6.7. Si ¢ est bijective alors F(x) = F(p(p ' (z))) = G(p~(z)) et donc
/f Ydx = /f t)dt évalué en t = o~ (z).

Exemples:
/ V1 —22dz. On considére ¢: [0, 51 — [0,1};0(t) = sin(t). On a (0) =
0,0(3) =acet ¢(t) = cos( ). Eerit plus rapldement r = sin(t) = € = cos(t) =
dx = cos(t)dt. AIHSI/ /1 — sin(t)2 cos(t) dt = / cos?(t) dtz%
o /de On pose ¢: [=7, 5] — [=1,1];o(t) = sin(t). Alors ¢ est bijective,
et donc /mdaz—/mms t)dt = /cos (t)dt = %t—l—isin(%)—i—
C = —t + —sin(t)y/1 —sin(t)? évalué en t = arcsin(x). Donc l'intégrale vaut

2 2
s arcsin(z) + s2v1 — 22,

Remarque 6.8. On peut aussi exprimer ¢ en fonction de x. Exemple: /e“”Q:c dz. On
substitue t = 22 = dt = 2z dx = v dx = % pour trouver /et% dt = %et—l—C’ = %em2+C.

Comment choisir e bonne substitution ? Difficile en général. Exemples

o /e’”Qx dz, /sin(x2)x dr: t = 2% = "ce qu’il y a dedans".

° /1 fx2 dzx, /Uf:—o(j()x))g dx: t = "ce qu’il y a dessous, ou dedans dessous".
o /\/1 — x%dx, /\/1 + 22dwz: t = sin(z) ou sinh(z) = "ce qui forme un cos? +

. 2 .12
sin? = 1 ou cosh? — sinh? = 1",

1 1
e Fonctions rationnelles en sin, cos: /— dx, /T dx. Ici, on substitue t =
sin(z) sin®(x)

tan(z) "si les racines disparaissent” (et donc dz = 1iig,sin(x) = \/77, cos(x) =
\/11+—) et t = tan(%) sinon (et donc dz = % sin(x) = 24, cos(z) = }Jrg)
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Exemples:
1 1+ ¢ 2 1
o /m On pose t = tan(3) pour trouver / —2: : mdt = /; dt =
log |t| + C = log|tan(5)| + C.
1 1+ t2)? 1
o /T. On substitue ¢ = tan(z) pour trouver /( ) dt =
sin®(x) t 1+t
R 1 1
4t dt=—+—+C=— — C
/ * 3t 3tan®(x)  tan(z) *

Proposition 6.6 (Intégration par parties). Soit f € C%([a,b]), g € C'([a,b)] et F une
primitive de f. Alors
b

[t = [rowe] - [ re@a
T 4

b b
Prewve. On a (Fg) = Flg+ Fg = fg+ F¢ et donc / fgdx = /(Fg)’dﬂi—
/Fg'dx—[Fg]Z—/Fg'dx. O]

Remarque 6.9. Cela montre au passage que /f(x)g(a:) dr = F(a:)g(x)—/F(x)g'(x) dx.

Exemples:
1)/6 x dx:ex—/e de =e"(x —1)+C.
T 1 )
2) /log(x) dx = /log(x) 1  dr =log(z)r — /— ~xdr = zlog(z) —x + C.
\\,_./\T/" x
!

3) /COS(:L’)2 dx :/cos(a:) cos(x) dx = sin(z) Cos(x)—l—/siHQ(:v) dx = sin(z) cos(z)+
S—— N——
T I =1—cos?(x)

T — /cos(yc)2 dx. Ainsi, si [ = /cos.(yc)2 dx, on a I = sin(z)cos(z) +z — I, d’ou

I = 3(sin(z) cos(z) + z)) + C.
4) (Intégration par récurrence)

w/2 w/2
A, :/ cos®(z) dx :/ cos(z) cos® () dx
0 0 S~

i
= [sin(:c) 6082"71(3;)] 2/2 - /077/2 sin(z)(2n — 1) cos®™ ?(z)(— sin(z)) dz

w/2
=0+ (2n— 1)/ sin(z) cos® %(z) dx
0 N——

=1—cos?(x)



2. CALCUL D’INTEGRALES 61

/2 /2
=(2n — 1)/ cos’ ™V (z) dx — (2n — 1)/ cos®™(z) dx
0 0

— (2n—1)4, 1 — (20— 1A,

Ainsi 2nA,, = (2n — 1)A,,_1, dou A, = 22;1An_1 et Ag = 5. Cela permet de
calculer tous les A,, récursivement. (Autre formule vue en classe).

p(x)

Intégration de fonctions rationnelles: —=, ou p(x), ¢(x) = polynomes.

q(z)

Building Blocks:

1 1 1 1
i dr =1 d . D de = = dr =
m/m—i—d T og |z + d| + C. Donc, Ona/am+d x a/x—i—d/a x

1
—log|z +d/a| + C.
a

iy 1 PR
(11)/mdx:/(x+d) dx_k:—l(x+a)’f—1+c'

|
(iii) /x2+1dx:arctan(x)+0. Donc, en substituant u = z/d, ona/mdx:
/ L 4.4 l/ld L arctan(%) + €. De plus, si le polynd
—— = a4 - au = — —— aQu = — arctan(— . € us, S1 le polynome
P + & d] @1 d d PAIS, BLIE POLY

22 + br + ¢ a un discriminant A = b?> — 4c < 0, on peut écrire 2° + bx + ¢ =

x+b/2
d

—-A
(z+2)2+ - ¢ donc, en substituant u =

—~—
=d2

1 1 1
= == = —— 4.4
/x2+bx+c ’ /(x+%)2+d2 ! /d2u2+d2 !

1 2
= — arctan (x—i—b/ ) + C.

, on trouve

d d
2¢ +b
2r +b . ) —k
(v) mdaz: on substitue u = z* + bx + ¢, pour trouver [u "du =
x T +c
1
P (a2 1—k
T 1~|—C’ 1_k({B +br+c) "+ C.
(vi) / Erbrrof dr = ... Formule par récurrence (cf exercices).
x T +c

A T’aide de (i) - (vi), on peut intégrer tout f(z) = % a 'aide de la décomposition en
éléments simples. Méthode:
1) Si deg(p) > deg(q), division polynomiale! Exemple: / 32" +6 de =
- ’ ' ) ot =t -1
32t — 2P —a+1) 32° + 3z + 3 32° + 3z + 3
/ + 1 dx = 3x + /

d—ad—x+1 xd— a3 —x+ A —ad—x+1

dz.
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2) Factoriser ¢(x) et décomposer:

plz) A Ay Ay Ay
q(z) T—u r—u (r—u)? (x —u)k
pour chaque facteur r—u (x —u)k
Ax+ B Aix + B N Apx + By,
ar’+br+c |ax?+br+c (ax? 4+ bx 4+ ¢)¥
pour chaque facteur || (az? + bx + ¢) (az® + bx + c)k

Exemple: () = 2 — 23+ —-1=23(z-1)—(z—1) = (z - 1)(z* - 1) =
(xr —1)%(2? +  + 1). On décompose:
323 +3v+ 3 A n Ay Asr + Bs
r—d—z+1 z-1 (x—-12 224z+1
(A1 + Ag)a® 4 (Ay — 243 + Bs)a® + (Ag + As — 2Bs)z + (— Ay + Ay + By)

t—axd—x+1
En comparant les coefficients, on trouve A; =1, Ay = 3, A3 = 2, B3 = 1. Donc

48043 13 2w+l
-3 —24+1 -1 (z—-12 22+24+1

1
3) Intégrer les éléments simples! Exemple: / 1dx = loglz — 1] + C,
x_

3 -3 2z + 1 .
/(x—l)de:;13_1+C’/x2+x+1dI:10g|$2+I+1|+C’.A1ns1:

3zt + 6 -3 )
/x4_$3_x+1da::3x+log|x—1|+m+log(x +x+1)+C.

6.3 Intégrales généralisées / impropres

b
Onavuquesi f: [a,b] — Rest continue, I'intégrale [ f(x)dz représente 'aire (signée)

sous la courbe. On aimerait généraliser cela a f: ]aa,b[ — Ret f: |-00,00] = R.
1 400

Exemples: / log(x) dx =7, / e dr =7
0 0

Probléme: L’Approx. 1 ou ’Approx. 2 est toujours foo. Solution: Limites!

Définition 6.3. Soit f: I — R continue, ou I = intervalle.

1) SiI=[a,b] (avec b € RU{+o0}), alors/f d$:hm/ f(x

) Sl]—] ,b] (avec a € RU {—o00}), alors/ dw—hm/ f(z
) Sil= [ (avec a € RU {—o0}, bERU{+oo}) alors

/f def/f da:+/ f()dx_hmuf +hm/f

ol w € |a, b| est arbitraire.
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Remarque 6.10. e Ce sont des intégrales généralisées/impropres.
e L’intégrale converge si la (les!) limite existe € R, et elle diverge sinon.
e Pour 3), on peut montrer que le résultat est indépendant du w choisi.

+oo™ —+o0
Notation: / / / / . Exemples:
oot
1

1) /0+ log(z) dx = hm/ log(x) dz = lim [mlog( )— x} = lim (—l—ulog(u)—u> =

ul0 u ul0
log(1 1
L) S T T O L i S}
N v—+0o0 v v—+00 v
2) / e ¥dr= lim e “dr= lim [— e_x] = lim (1—-¢e™)=1.
0 u——+00 0 u—~+00 0 u——+00
1 1 :
1 — <1
3) Pour r >0, on a —dr =1 S? "= (Vu en classe.)
o+ X" +o00 sir>1
T ir<l1
Exercice: / —dr = —i—loo S? "=
.z — sir>1
r = x ——dx
feo 1A Lo L4 22 o 1+a?
0 v
= lim [arctan(m)} + lim [arctan(x)}
U——00 m v—=400 0
: . Toow
=0— lim arctan(u)+ lim arctan(v) —0=—— -+ = =m.
U——00 v—+0o0 2 2
+o00
Remarque 6.11. Si f(x )da; converge (i.e. si les deux limites existent € R) alors
cette intégrale vaut hm f(z)dz (c’est la valeur principale de Cauchy de l'in-
tégrale). —u

Mais attention:
oo et [° +oo 2 02
5) / xdx:/ a:dx—i—/ rdr = lim —— + lim — = —00 + oo, donc

lmtegrale dlverge En revanche, sa valeur principale de Cauchy existe et vaut
u (L’Q 2 2

lim rdr = lim [—r — lim = — % — 0. Ce n’est donc pas la

u——+00 —u u——+00 u——+00 2 2

valeur de l'intégrale.

Proposition 6.7 (Comparaison d’intégrales). Soient f,g: [a,b]— R continues telles
que 0 < f( ) < g(x) pour tout x € [a,b[. Alors

1) / x)dx converge :>/ f(z)dx converge

&
2) / f(z)dx diverge :>/ x) dz diverge.

Preuve. Théoréme du gendarme seul ! m
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-
Remarque 6.12. Marche aussi avec / et / .
+ +

-
1
Exemple: / dt converge par comparaison. En effet, pour t € [0,1], on a
ple | == ge p P 1 1p [0,1]
B<t=1-<1l-t=V/1-8>/1-t= < et en substituant

VI8 7 J1-t

dx qui converge.

1

[ a=n- L

Proposition 6.8 (Comparaison intégrale/série). Soit f: [ng, +oo[— R une fonction po-

x=1—1, on trouve

sitwe (f(x) > 0), continue et décroissante (pour x assez grand). Alors la série Z f(n)

n=ng
+00
et lintégrale f(z)dx convergent/divergent en méme temps.
no
Preuve visuelle. Vue en classe. O]
Exemples:
=1 teo ]
° Z — converge < — dx converge < p > 1.
“— np
o i converge @/ - dx. En substituant u = log(x), cette
v . = ,
—~n log & x(log(z))P 8
+o0 oo q
intégrale vaut / " edu = / — dx qui converge < p > 1. Ainsi la
log(2) €~ UP log(2) WP

série ————— converge si et seulement si p > 1.
Z log p g p

1

Fg() converge '

En particulier, la série Z diverge, mais Z

nlog( )?



