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2 CHAPITRE 0. PRÉLUDE

Chapitre 0: Prélude

0.1 Ensembles

Un ensemble est une collection d'objets (mathématiques). Exemples:
1) A = {1, 2, 3}. Ensemble contenant les nombres un, deux et trois.
2) N = {0, 1, 2, 3, . . . }. Ensemble des nombres naturels.
3) Z = {. . . ,−2,−1, 0, 1, 2, 3, . . . }. Ensemble des entiers relatifs.
4) Q,R,C. Ensembles des nombres rationnels, des nombres réels, et des nom-

bres complexes (revus plus tard).
5) Intervalles (revus plus tard) Ex: [2, 5] = {x ∈ R | 2 ≤ x ≤ 5} = nombres réels

compris entre 2 et 5 (inclus), ]2, 5[= {x ∈ R | 2 < x < 5}.
6) B = {2, 4, 6, . . . }. Ensembles des nombres pairs positifs.

Notations:
• x ∈ X signi�e x est élément de X. Ex: 2 ∈ A, −1 ∈ Z, −4 /∈ B.
• X ⊂ Y , ou X ⊆ Y , signi�e X est sous-ensemble de Y . Ex: A ⊆ N, N ̸⊆ B.
• X \ Y = {x ∈ X | x /∈ Y }, ou X − Y , signi�e X privé de Y . Ex: A \ {3, 4, 5} =
{1, 2}, Z \ N = {−1,−2,−3,−4, . . . }, N \ {0} = {1, 2, 3, . . . } = N∗.

• X × Y = {(x, y) | x ∈ X, y ∈ Y } est le produit cartésien de X et Y ; c'est
l'ensemble des paires/couples (x, y). Ex: Si C = {1, 2}, D = {3, 4}, on a C×D =
{(1, 3), (1, 4), (2, 3), (2, 4)}. (Attention: (x, y) ̸= (y, x). Donc (3, 1) /∈ C ×D).

0.2 Fonctions

Une fonction est une manière d'assigner des éléments y ∈ Y à des x ∈ X. Ex: X =
{1, 2, 3, 4}, Y = {1, 8, 12} et f assigne 2 7→ 1, 3 7→ 8, 4 7→ 8. Attention: Pas plus d'une
�èche partant du même x.
Si x 7→ y, on note y = f(x) (y est l'image de x via f). Le domaine D(f) ⊆ X est

D(f) = {x ∈ X | une �èche part de x} = {x ∈ X | f(x) est dé�ni}.
L'ensemble image Im(f) ⊆ Y est

Im(f) = {y ∈ Y | une �èche arrive vers y} = {f(x) | x ∈ D(f)}.
La notation f : A→ B

a 7→ f(a)
veut dire D(f) = A et Im(f) ⊆ B. f(x) = . . . (formule) . . .

sous-entend f : D → R
x 7→ f(x)

avec D = D(f) ⊆ R le plus grand possible.

Exemples:
(i) f(x) = x+ 1 veut dire f : R→ R

x 7→ x+ 1
.

(ii) g(x) = 1
x
veut dire f : R \ {0} → R

x 7→ 1
x

.
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(iii) Si g : {1, 2, 3} → {2, 3, 4} est tel que g(1) = 2, g(2) = 3, g(3) = 4, alors g est
comme f , mais avec des ensembles de départ et d'arrivée plus petits: g = f |{2,3,4}{1,2,3}
(restriction de f à {1, 2, 3} et corestriction de f à {2, 3, 4}).

0.3 Surjectivité et Injectivité

Dé�nition. Une fonction f : X → Y est
• surjective si Im(f) = Y (tout y ∈ Y est l'image d'au moins un x ∈ X),
• injective si f(x1) = f(x2) ⇒︸︷︷︸

implique

x1 = x2, i.e. dès que f(x1) = f(x2), on a

forcément x1 = x2 (tout y ∈ Y est l'image d'au plus un x ∈ X),
• bijective si inj. + surjective (tout y ∈ Y est l'image d'exactement un x ∈ X).

Si f : X → Y est bijective (et seulement dans ce cas !), on peut l'"inverser":

Dé�nition. Si f : X → Y est bijective, sa fonction réciproque est
f−1 : Y → X

y 7→ f−1(y) = unique x ∈ X tel que f(x) = y.

Exemples:
(i) Exemple visuel (vu en classe).
(ii) f : R→ R

x 7→ x+ 1
est bijective de réciproque f−1(x) = x− 1 (détails vus en classe).

(iii) f : R→ R
x 7→ x2

. Pas surjective: −3 /∈ R = Y , car un carré est toujours positif.

On la corestreint à R≥0 = {x ∈ R | x ≥ 0} = [0,+∞[: g =. La fonction
f |R≥0 = g : R→ R≥0

x 7→ x2

est surjective, mais pas injective: g(2) = 4 = g(−2), alors

que 2 ̸= −2. On la restreint à R≥0. La fonction g|R≥0
= f |R≥0

R≥0
= h : R≥0 → R≥0

x 7→ x2

est bijective, de réciproque h−1 : R≥0 → R≥0

x 7→
√
x

(détails et graphes vus en classe).

0.4 Autres exemples de fonctions

(i) Polynômes: f(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 ; les ai ∈ R sont les coe�-
cients, et n est le degré (si an ̸= 0). Ex: f(x) = x3 + 2x− 1, f(x) = x7, . . . .
Si n est impair, f(x) = xn est bijective, et si n est pair, on doit co/restreindre
à h = f |R≥0

R≥0
. Dans les deux cas la réciproque est notée n

√
x. Si x ≥ 0, on peut

utiliser la notation x1/n = n
√
x.
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(ii) Exponentielles: Pour chaque base a > 0,
on a l'exponentielle en base a, notée
f = expa : R→ R

x 7→ expa(x) = ax
. Si a ̸= 1, f |R>0 est

bijective ; sa réciproque est le logarithme en
base a, noté loga : R>0 → R

x 7→ loga(x)
. Si a = e =

2, 718... = nombre d'Euler, on note loge(x) =
ln(x) = log(x).

−4 −2 2 4 6 8 10

−4

−2

2

4

6

8
y = ex

y = log(x)

(iii) Fonctions trigonométriques: le sinus sin : R → R et
le cosinus cos : R → R sont dé�nis à l'aide de la
�ssure ci-contre. On a sin(0) = 0, sin(π

2
) = 1, . . . .

D(sin) = D(cos) = R, et Im(sin) = Im(cos) = [−1, 1].
La co/restriction sin|[−1,1]

[−π
2
,π
2
] est bijective, de réciproque

arcsin : [−1, 1] → [−π
2
, π
2
]. La co/restriction cos|[−1,1]

[0,π] est
bijective, de réciproque arccos : [−1, 1] → [0, π]. La tan-

gente est dé�nie comme tan(x) = sin(x)
cos(x)

. On a D(tan) =

{x ∈ R | cos(x) ̸= 0} = R \ {π
2
+ kπ | k ∈ Z} et

Im(tan) = R. La restriction tan |]−π
2
,π
2
[ est bijective, de

réciproque arctan: R →]− π
2
, π
2
[. Graphes:

−π −π
2

π
2

π 3π
2

2π

−1

1 y=sin(x)
y=cos(x)

x

y

t

cos(t)

sin(t)

−1 1

−1

1

−1 1

−π
2

π
2

π

y=arcsin(x)

y=arccos(x)

−π −π
2

π
2

π 3π
2

2π

−2

2

y=tan(x)

−4 −2 2 4

−π
2

π
2

y=arctan(x)

Dé�nition. La composée (ou composition) de deux fonctions f : A → B, g : B → C
est la fonction g ◦ f : A→ C

a 7→ g ◦ f(a) = g(f(a)).

Ex: sin(x2) = g ◦ f(x) = g(f(x)) avec f : R→ R
x 7→ x2

et g : R→ R
x 7→ sin(x).

On remarque que si f : A → B est bijective, alors g : B → A est sa réciproque si et
seulement si g ◦ f(x) = x et f ◦ g(x) = x.
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Chapitre 1: Nombres

1.1 Entiers et nombres rationnels

• N = {0, 1, 2, . . . } = nombres/entiers naturels. N∗ = N \ {0} = {1, 2, 3, . . . }.
• Z = {. . . ,−2,−1, 0, 1, 2, 3, . . . } = N ∪ −N = entiers relatifs.
• Q = {a

b
| a ∈ Z, b ∈ Z∗ = Z \ {0}} = nombres rationnels. (Peut être identi�é à

Z× Z∗ via "a
b
= (a, b)", mais où l'on déclare a

b
= c

d
si ad = bc)

Malgré la quantité impressionnante de nombres dans Q, on a malheureusement:

Proposition 1.1. L'équation x2 = 2 n'a pas de solution x ∈ Q.
Preuve. Par l'absurde. Supposons qu'il existe une solution x = a

b
. On peut supposer

que soit a, soit b est impair (sinon on peut simpli�er la fraction). Alors x2 = 2 ⇒ (a
b
)2 =

2 ⇒ a2 = 2b2 ⇒ a2 est pair. Si a était impair, on aurait a = 2k + 1 pour un k ∈ Z, et
donc a2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k︸ ︷︷ ︸

k′

) + 1 serait aussi impair. Donc a est

forcément pair ⇒ a = 2c. Il suit a2 = (2c)2 = 2b2 ⇒ 4c2 = 2b2 ⇒ 2c2 = b2 ⇒ b2 est pair
⇒ b est pair (cf même argument que pour a). Donc a et b sont tous les deux pairs: c'est
absurde ! (On avait supposé que l'un ou l'autre était impair). Il ne peut donc exister de
solution x ∈ Q.

Remarque 1.1. Cela dit, en observant le triangle ci-contre, on s'aperçoit
que le côté x est tel que x2 = 2 ! Il nous manque donc des nombres...

1
x

1

1.2 Construction des nombres réels

Idée (de génie): utiliser la relation d'ordre x ≤ y sur Q pour "ajouter" des nombres aux
bons endroits.

Dé�nition 1.1. Soit A ⊆ Q un ensemble non-vide (A ̸= ∅).

• Un
majorant
minorant

de l'ensemble A est un x ∈ Q tel que
x ≥ a
x ≤ a

pour tout a ∈ A.

• S'il existe un
majorant
minorant

x de A tel que x ∈ A, alors x est unique et s'appelle le

maximum
minimum

de A.

• L'ensemble A est
majoré
minoré
borné

s'il admet
un majorant
un minorant
les deux

.

Exemples:
• Si A = {x ∈ Q | 0 ≤ x ≤ 1}, alors A admet 1, 2, 3

2
, ... comme majorants et

0,−3,−1
2
comme minorants. Il est donc borné, et on a maxA = 1 et minA = 0.
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• B = {x ∈ Q | 0 < x < 1} admet les mêmes majorants et minorants que A,
et est donc borné. En revanche, maxB et minB n'existent pas (B n'a pas de
majorant/minorant dans B).

• C = N possède 0 comme minorant, mais pas de majorants. Il n'est donc pas
majoré (et pas borné). maxC n'existe pas, et minC = 0.

Moralement, B devrait avoir comme "maximum" 1 et "minimum" 0. Cela motive:

Dé�nition 1.2. Soit A ⊆ Q un ensemble non-vide.
• Le suprémum de A est supA = min({x ∈ Q | x est un majorant de A}).
C'est le plus petit des majorants.

• L'in�mum de A est inf A = max({x ∈ Q | x est un minorant de A}).
C'est le plus grand des minorants.

Remarque 1.2. Si A n'est pas
majoré
minoré

, alors on pose
supA = +∞
inf A = −∞ . (Attention: ce sont

des symboles ±∞, pas des nombres). De plus, si
maxA
minA

existe, alors
supA = maxA
inf A = minA

.

Reprenons les exemples précédents:
• supA = maxA = 1, et inf A = minA = 0.
• supB = 1 même si maxB n'existe pas, et inf B = 0 même si minB n'existe pas.
• inf C = minC = 0 et supC = +∞ (il n'y a pas de majorant).

Remarque 1.3. Pour un ensemble borné, si min, max peuvent ne pas exister, on s'attend
à ce que inf et sup existent toujours.

Contre-exemple fondamental: D = {x ∈ Q | x2 ≤ 2}. L'ensemble D est borné
(majoré par 3

2
, car x2 ≤ 2 ≤ 9

4
= (3

2
)2 ⇒ x ≤ 3

2
, et minoré par −3

2
). En revanche, on a:

Proposition 1.2. Si x = supD existe, alors x2 = 2.

Preuve. 1) Supposons par l'absurde que x2 < 2. On choisit un entier n ≥ 2x+1
2−x2 et on

pose d = x + 1
n
. Alors d ∈ D: en e�et, d ∈ Q et d2 = (x + 1

n
)2 = x2 + 2x

n
+ 1

n2 ≤
x2+ 2x

n
+ 1

n
= x2+ 2x+1

n
≤ 2 (puisque x2+ 2x+1

n
≤ 2 ⇔ 2x+1

n
≤ 2−x2 ⇔ n ≥ 2x+1

2−x2 ).
Donc d ∈ D et d = x+ 1

n
> x. C'est absurde, car x est un majorant de D.

2) Supposons par l'absurde que x2 > 2. Alors ... (exercice di�cile !) ... Absurde !
3) Comme on n'a ni x2 < 2, ni x2 > 2, on a x2 = 2.

Corollaire 1.3. supD n'existe pas dans Q.

Preuve. Il n'y a pas de x ∈ Q avec x2 = 2, cf Prop. 1.1.

Cette procédure nous indique où ajouter des nombres !
Construction des nombres réels : R s'obtient à partir de Q en ajoutant les sup et les inf
de tous les sous-ensembles bornés A ⊆ Q. (Voir règle de coupure de Dedekind).
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1.3 Propriétés des nombres réels

(i) R est un corps (on a 0, 1,+, ·, inverses, distributivité,...) muni d'un ordre total
(x ≤ y).

(ii) Les dé�nitions de majoré, minoré, max, min, suprémum, in�mum restent les
mêmes que pour Q (remplacer R par Q dans les dé�nitions).

(iii) La procédure de la construction de R a réussi. En e�et, on a:

Théorème 1.4. Pour A ⊆ R non vide et
majoré
minoré

,
supA
inf A

existe toujours ∈ R et
est unique.

En fait, si D = {x ∈ R | x2 ≤ 2}, alors supD et infD existent, et sont solutions
de x2 = 2. Donc supD =

√
2 et infD = −

√
2.

(iv) Pour A ⊆ R non-vide et borné,
maxA
minA

existe si et seulement si
supA ∈ A
inf A ∈ A

et dans

ce cas,
maxA = supA
minA = inf A

.

Exemples de calcul de de sup / inf:

1) A = {3 + 1
n
| n ∈ N∗}. A est majoré par 3 et minoré par 4, donc borné. Comme

4 ∈ A, on a supA = maxA = 4. On va montrer que inf A = 3. C'est bien un
minorant, mais est-ce le plus grand ? On va montrer qu'aucun x > 3 ne peut être
un minorant, en construisant un a ∈ A tel que a < x. Soit x > 3. On choisit
n ∈ N tel que n > 1

x−3
, et on pose a = 3 + 1

n
. Alors a ∈ A et a = 3 + 1

n
< x,

puisque 3 + 1
n
< x ⇔ 1

n
< x− 3 ⇔ n > 1

x−3
. Ainsi x n'est pas un minorant, et 3

est donc le plus petit ; c'est inf A. Comme 3 /∈ A, minA n'existe pas.
2) Intervalles:

[a, b] = {x ∈ R | a ≤ x ≤ b}
]a, b[ = < <
[a, b[ = ≤ <
]a, b] = < ≤
bornés, inf = a, sup = b

[a,+∞[ = {x ∈ R | a ≤ x} inf = a
]a,+∞[ = < sup = +∞
]−∞, b] = {x ∈ R | x ≤ b} inf = −∞
]−∞, b[ = < sup = b

non-bornés

1.4 Représentation décimale

Tout x ∈ R s'écrit
x = ± d1d2 . . . dn︸ ︷︷ ︸

décimales avant la virgule,
en nombre �ni

.︸︷︷︸
ou ,

dn+1dn+2 . . .︸ ︷︷ ︸
décimales après la virgule,
en nombre �ni ou in�ni

avec di ∈ {0, 1, . . . , 9}.

Exemple: Représentation �nie: 1 = 1.0 = 1.000 . . . , 3
2
= 1.5, 110

8
= 13.75. Représentation

périodique: 5
7
= 0.714285 = 0.7142857142857 . . . . Mais:

√
2 = 1.414213562373095 . . .

semble ne pas se répéter...

Théorème 1.5. Soit x ∈ R. Alors x ∈ Q ⇔ x a une représentation décimale �nie ou
périodique.
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Idée de preuve. ⇒ Vu en classe. ⇐ Exemple représentation �nie: x = 3.745 = 3745
1000

.
Ex. représ. périodique: x = 41.70102 ⇒ 102x = 4170.102 ⇒ 102103 · x = 4170102.102.
Donc 102103x− 102x = 4170102− 4170 = y ∈ Z, d'où x = y

102(103−1)
∈ Q.

Avec la même idée, on montre que 0.9 = 1. Conséquences du théorème:
• La représentation décimale de

√
2 est in�nie non-périodique.

• x = 0, 1 01 001 0001 00001 . . . /∈ Q.
• Densité de Q dans R : Pour tous x < y ∈ R, il existe a ∈ Q tel que x < a < y
(explications vues en classe).

• ∀x ∈ R, ∃a ∈ Q arbitrairement proche de x. Ex: x =
√
2 = 1.414235 . . . ⇒

1; 1.4; 1.41; 1.414; . . . sont ∈ Q et s'approchent de
√
2.

Autres propriétés des nombres (réels):
(i) Récapitulatif: N ⊊ Z ⊊ Q ⊊ R. Les nombres irrationnels sont: R \Q.
(ii) L'ensembleQ est dénombrable: on peut lister ses éléments. (Mathématiquement,

dénombrable veut dire qu'il existe une fonction bijective f : N → Q). Idée de
preuve vue en classe.

(iii) L'ensemble R est indénombrable (⇔ il n'existe pas de liste de R).
Preuve. Par l'absurde. Supposons que R est dénom-
brable. Alors ]0, 1[ l'est aussi ; il existe donc une liste
de tous ses éléments: voir ci-contre. On choisit b1 ̸= d1,
b2 ̸= d2, . . . , bn ̸= dn, . . . et on pose y = 0, b1b2 · · · bn · · · .
Alors y ∈ ]0, 1[, mais y n'est pas dans cette liste (pour
chaque n ∈ N∗, xn et yn di�èrent en leur n-ième déci-
male). Cette liste est donc incomplète ; absurde.

x1= 0,d1_____
x2= 0,_d2____
x3= 0,__d3___
...

. . .
xn= 0,_____dn_
...

(iv) La valeur absolue d'un nombre x ∈ R est

|x| =

{
x si x ≥ 0

−x si x ≤ 0
= distance entre 0 et x.

Propriétés: |x| = 0 ⇔ x = 0, | − x| = |x|, |x| ≥ 0, |xy| = |x||y|, |x| =
√
x2,

|x+ y| ≤ |x|+ |y| (inégalité triangulaire).

1.5 Nombres complexes

Il y a beaucoup de nombres dans R, on a par exemple une solution de x2 = a pour tout
a ≥ 0. Mais pas de solutions à x2 = −1 (Si x ∈ R, alors x2 est toujours positif). Faut-il
rajouter des nombres ? Débatable, mais en rétrospective: SUPER IDÉE !
Construction: On munit l'ensemble R2 = R× R = {(a, b) | a, b ∈ R}:

1) D'une addition: (a, b) + (c, d) = (a + c, b + d). Interprétation géométrique: c'est
l'addition des vecteurs de R2.

2) D'une multiplication: (a, b) ·(c, d) = (ac−bd, ad+bc). Interprétation géométrique:
plus tard ! Ex: (1, 2) · (3, 4) = (−5, 10).
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Fait important: Cela fait de R2 un corps (on a +, ·, 0 = (0, 0), 1 = (1, 0), des inverses,
la distributivité,...)
Notations:
(i) (a, 0)+(b, 0) = (a+ b, 0) et (a, 0) · (b, 0) = (ab, 0). Cela fait donc sens d'identi�er

{(x,0) | x ∈ R} avec R (via (x,0) ↔ x).
(ii) De plus (a, b) = (a, 0) + (0, b) = a + b · (0, 1). Le "nombre" (0, 1) est intéressant:

on a (0, 1) · (0, 1) = (−1, 0) = −1. On l'appelle l'unité imaginaire i = (0, 1).
Ainsi i est solution de x2 = −1, et on peut écrire (a, b) = a+ b(0, 1) = a+ bi.

Dé�nition 1.3. L'ensemble R2 muni de ces opérations+ et · est le corps des nombres
complexes, noté C.

Remarque 1.4. • Tout nombre complexe z ∈ C s'écrit z = a+bi avec a, b ∈ R. C'est
la forme cartésienne de z.

• On peut "oublier" la dé�nition compliquée de ·, et retenir seulement i2 = −1. En
e�et: (a+ bi)(c+ di) = ac+ adi+ bci+ bdi2 = ad− bc+ (ad+ bc)i ; on retrouve
la multiplication dé�nie plus haut.

Représentation graphique: Dans le plan R2, on renomme l'axe horizontal "axe réel R"
et l'axe vertical "axe imaginaire" iR. Les nombres complexes sont donc représentés
comme des points de R2 (détails vus en classe).

Dé�nition 1.4. Soit z = a+ bi ∈ C.
1) La partie réelle de z est Re(z) = a. La partie imaginaire de z est Im(z) = b.
2) Le module (ou valeur absolue) de z est |z| =

√
a2 + b2 ∈ [0,+∞[. C'est la

distance entre z et 0 (comme pour |x| dans R).
3) L'argument de z est arg(z) = angle entre z et l'axe réel, mesuré ∈ ]−π, π]. Pour

a, b > 0, on a arg(z) = arctan(b/a), et il existe des formules dans les autres cas.
4) Le conjugué complexe de z est z = a− bi,

1.6 Propriétés des nombres complexes

(i) Re(z) =
z + z

2
et Im(z) =

z − z

2i
. En e�et, si z = a + bi, alors z+z

2
= a+bi+a−bi

2
=

2a
2
= a, et de manière analogue z−z

2i
= b.

(ii) z1 + z2 = z1 + z2, z1 · z2 = z1 · z2, z1/z2 = z1/z2. (Preuve: Exercices).
(iii) |z|2 = zz. En e�et, zz = (a+bi)(a−bi) = a2−(bi)2 = a2+b2 = |z|2. Conséquence:

|z1z2| = |z1| · |z2|. En e�et, |z1z2|2 = z1z2z1z2 = z1z1z2z2 = |z1|2|z2|2, et on obtient
l'égalité voulue en prenant la racine.

(iv) Proposition 1.6 (Inversion). Soit z ∈ C∗ = C \ {0}. Alors 1

z
=

1

|z|2
z.

Preuve. Si z′ = 1
|z|2 z, alors zz

′ = zz
|z|2 = 1.

Remarque 1.5. Pour s'en rappeler, on peut "multiplier" par z en haut et en bas.
Exemple: 1

2+3i
= 1

2+3i
· 2−3i
2−3i

= 2−3i
22+33

= 2
13

− 3
13
i.

(v) Inégalité triangulaire: |z1 + z2| ≤ |z1|+ |z2|.
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Trois représentations des nombres complexes:

1) Tout z ∈ C s'écrit z = a+ bi, avec a, b ∈ R ; c'est la forme cartésienne.
2) Si r = |z|, et θ = arg(z), alors cos(θ) = a

r
et sin(θ) = b

r
. Donc tout z ∈ C s'écrit

z = a+ bi = r(cos(θ) + i sin(θ)) avec r ∈ R≥0 et θ ∈ R ; c'est la forme polaire.
3) Pour x ∈ R, on dé�nit: eix = cos(x) + i sin(x). (Justi�cation plus tard !) Avec

cette notation, tout z ∈ C s'écrit z = reiθ, avec r ∈ R≥0 et θ ∈ R ; c'est la forme
polaire-exponentielle.

Remarque 1.6. Attention: Si z = reiθ, alors r = |z| et θ = arg(z)± k2π, pour k ∈ Z.

Dé�nition 1.5 (Exponentielle complexe). Pour z = a+ bi ∈ C, on dé�nit
ez = eaeib = ea(cos(b) + i sin(b)).

Remarque 1.7. En forme cartésienne, les additions et soustractions sont faciles, mais les
multiplications et divisions sont plus compliquées. En forme polaire-exp, c'est l'inverse:
si z1 = reiθ et z2 = seiφ, alors z1z2 = (rs)ei(θ−φ) et z1/z2 = (r/s)ei(θ−φ).

Exemples: Si z = 1 + i, alors |z| =
√
2 et arg(z) = π

4
, donc z =

√
2eiπ/4. Si z = eiπ/3,

alors z = 1
2
+

√
3
2
i (détails vus en classe).

Conséquences de l'exponentielle complexe:
• Pour z ∈ C, on a ez = ez (preuve en exercice). Donc si z = reiθ, on a z = re−iθ.
• Interprétation géométrique de la multiplication complexe: Les modules se multi-
plient (⇒ agrandissement) et les arguments s'ajoutent (⇒ rotation). Ainsi i·z = z
tourné d'un angle de π/2 (détails vus en classe).

• Formule d'Euler: eiπ + 1 = 0. Donc eiπ = −1.
• Formule de Moivre: (cos θ + i sin θ)n = cos(nθ) + i sin(nθ) pour n ∈ N: Cela suit
du fait que (eiθ)n = einθ.

• Formules pour cos θ, sin θ:

cos(θ) =
eiθ + e−iθ

2
, sin(θ) =

eiθ − e−iθ

2i
.

En e�et, cos(θ) = Re(eiθ) et sin(θ) = Im(eiθ) ; ces formules suivent donc des
formules pour Re(z) et Im(z) vues plus haut.

Remarque 1.8. Pour résumer, si z = a+ bi = reiθ et ω = c+ di = seiφ, on a
z = ω ⇔ a = c et b = d ⇔ r = s et θ = φ+ k · 2π pour un k ∈ Z.

1.7 Calculs dans C

1) Calcul de (1−
√
3i)30. Très long si on doit développer ! Mieux: 1−

√
3i = 2e−iπ/3

(dessin vu en classe) et donc (1−
√
3i)30 = 230e−i10π = 230(−1)10 = 230.

2) Équation zn = 1. On pose z = r · eiθ pour trouver zn = 1 ⇔ rn · einθ = 1 · ei0.
Donc rn = 1 ⇒ r = 1 car r ∈ R≥0 et nθ = 0+ k2π ⇒ θ = k2π

n
pour un k ∈ Z. Les

solutions sont donc {1 · eik2π/n | k ∈ Z} = {(ζn)k | k ∈ Z} où ζn = ei2π/n. Comme
(ζn)

n = 1, il y a en fait n solutions distinctes:
{1, ζn, ζ2n, . . . , ζn−1

n } = {1, ei2π/n, ei4π/n, . . . , ei2π(n−1)/n}.
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Exemple:
• z2 = 1 ⇔ z ∈ {1, ei2π/2} = {1,−1}.
• z3 = 1 ⇔ z ∈ {1, ei 2π3 , ei 4π3 } = {1,−1

2
+

√
3
2
i,−1

2
−

√
3
2
i}. Ces solutions forment

un triangle équilatéral.
• z6 = 1 possède 6 solutions qui forment un hexagone régulier.

3) Équation zn = ω. Étape 1: Trouver une solution z0 (par exemple, si ω = seiφ,
z0 = n

√
seiφ/n). Étape 2: On a zn = ω = zn0 ⇔

(
z
z0

)n
= 1 ⇔ z

z0
∈ {1, ζn, . . . , ζn−1

n }.
On trouve donc à nouveau n solutions distinctes:

{z0, z0ei2π/n, z0ei4π/n, . . . , z0ei2π(n−1)/n}.
Exemple:

• z3 = i. Étape 1: z0 = −i (ou i = eiπ/2 ⇒ z0 = eiπ/6). Étape 2: Les solutions
sont−i·{solutions de z3 = 1} = {−i,

√
3
2
+ 1

2
i,

√
3
2
− 1

2
i} = {e−iπ/2, eiπ/6, ei5π/6}.

• z2 = 5 + 12i. Étape 1: On a 5 + 12i = 13ei arctan(12/5),
donc on peut prendre z0 =

√
5ei arctan(12/5)/2, ce qui est

di�cile à simpli�er. Mieux: en posant z0 = a+ bi ⇒ z2 =
a2 − b2 + 2abi = 5 + 12i. En combinant avec l'équation
|z0|2 = |5 + 12i| = 13, on trouve le système ci-contre:
En sommant l'équation 1 et 3, on a 2a2 = 18 ⇒ a = 3,
d'où b = 2 grâce à l'équation 2. Ainsi z0 = 3 + 2i, et les
solutions sont: {±(3 + 2i)}.


a2 − b2 = 5

2ab = 12
a2 + b2 = 13

4) Factorisation de polynômes:

Théorème 1.7 (Théorème fondamental de l'algèbre). Tout polynôme P (z) =
anz

n + an−1z
n−1 + · · ·+ a1z + a0 (avec ai ∈ C) se factorise en

P (z) = an(z − z1)(z − z2) · · · (z − zn) (les zi sont les racines de P.)

Corollaire 1.8. Toute équation polynômiale P (z) = 0 de degré n a n solutions
complexes (en comptant les multiplicités).

Exemple: Si P (z) = az2 + bz + c, alors les solutions de P (z) = 0 sont z =
−b±

√
b2−4ac
2a

, où l'on interprète ±
√
b2 − 4ac comme les deux solutions complexes de

l'équation u2 = b2 − 4ac. Donc si a, b, c ∈ R et b2 − 4ac ≥ 0, on a des solutions
réelles, et si b2 − 4ac < 0, on a u2 = b2 − 4ac = i2(4ac− b2) ⇒ u = ±i

√
4ac− b2.

Remarque 1.9. Si P (z) est à coe�cients réels (les ai ∈ R), alors les racines non-
réeles viennent par paires conjuguées (exercice !). En les groupant, on trouve donc
une factorisation réelle.

Exemple: P (z) = z4+1. On résout P (z) = 0 ⇔ z4 = −1 comme avant. On trouve
les 4 solutions {±1±i√

2
}. On a donc une factorisation complexe et réelle:

z4 + 1 = (z − 1+i√
2
)(z − 1−i√

2
)(z − −1+i√

2
)(z − −1+−i√

2
) = (z2 − 1√

2
z + 1)(z2 + 1√

2
z + 1).

Remarque 1.10. En développant, on trouve (si an = 1):
zn +an−1 z

n−1 + · · · + a0 = (z − z1) · · · · · (z − zn)
= zn −(z1 + · · ·+ zn) z

n−1 + · · · + (−1)nz1 · · · zn
Ainsi la somme des 4 racines ±1±i√

2
vaut 0 et leur produit vaut 1.
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Chapitre 2: Suites

2.1 Dé�nitions et exemples

Dé�nition 2.1. Une suite de nombres réels est une fonction a : N−→ R
n 7−→ a(n) = an.Notation (au lieu de la notation de fonctions):

(an)n∈N = (an)n≥0 = (an)n = (an) = (a0, a1, a2, . . . ).

Exemples:
1) an = 2n+ 1 (n ∈ N). Ce sont les nombres impairs:

(an)n∈N =
(
a0 = 1, a1 = 3, a2 = 5, a3 = 7, 9, 11, . . .

)
.

2) Suite harmonique: an =
1

n
(n ∈ N∗):

(an)n∈N∗ =
(
a1 = 1, a2 =

1

2
, a3 =

1

3
,
1

4
,
1

5
,
1

6
, . . .

)
.

3) Suite arithmétique: an = bn+ c (n ∈ N, b, c ∈ R):
(an)n∈N =

(
a0 = c, a1 = b+ c, a2 = 2b+ c, a3 = 3b+ c, 4b+ c, 5b+ c, . . .

)
.

Exemples: b = 2, c = 1 ⇒ an = 2n + 1 ; b = 1, c = 0 ⇒ an = n; b = 0 ⇒ (an) =
(c, c, c, c, c, c, . . . ) (suite constante).

4) Suite géométrique: an = arn (n ∈ N, a, r ∈ R ; le r est la raison de la suite):
(an)n∈N =

(
a0 = a, a1 = ar, a2 = ar2, a3 = ar3, ar4, ar5, . . .

)
.

Exemples: a = 1, r = 2 ⇒ an = 2n (a0 = 1, 2, 4, 8, 16, . . . ) ; a = 1, r = 1
2
⇒ an =

1
2n

(a0 = 1, 1
2
, 1
4
, 1
8
, . . . ) ; a = 1, r = −1 ⇒ an = (−1)n (a0 = 1,−1, 1,−1, 1, . . . ).

Dé�nition 2.2. Une suite (an)n∈N est
1) majorée (resp. minorée, bornée) si l'ensemble A = {an | n ∈ N} l'est.
2) croissante (resp. strictement croissante, décroissante, strictement décroissante)

si, pour tout n ∈ N, on a an+1 ≥ an (resp. an+1 > an, an+1 ≤ an, an+1 < an).
3) (strictement)monotone si (strictement) croissante ou (strictement) décroissante.

Proposition 2.1. Une suite (an) est bornée ⇔ il existe M ∈ R tel que |an| ≤ M pour
tout n ∈ N.

Preuve. Exercice.

Exemples:
1) an = 2n + 1 ⇒ A = {1, 3, 5, 7, . . . }. A est minoré par 1, mais pas majoré, donc

pas borné. C'est pareil pour la suite (an) (mais en accordant les adjectifs !). De
plus, an+1 = 2(n + 1) + 1 = 2n + 3 > 2n + 1 = an, donc la suite est strictement
croissante (et donc aussi strictement monotone).

2) Suite harmonique: an = 1
n

⇒ A = {1, 1
2
, 1
3
, 1
4
, . . . }. La suite est donc bornée

(majorée par 1, minorée par 0) et strictement décroissante (an+1 =
1

n+1
< 1

n
= an).



1. DÉFINITIONS ET EXEMPLES 13

3) Suite arithmétique: an = bn+ c. Si b > 0, (an) est strictement croissante, minorée
par c = a0 mais pas majorée: en e�et, si M ∈ R, alors an > M dès que n > M−c

b

(car bn+ c > M ⇔ n > M−c
b
).

4) Suite géométrique: an = arn. Si a > 0, la suite est strictement croissante pour
r > 1, strictement décroissante pour 0 < r < 1, bornée pour r ∈ [−1, 1], pas
majorée pour r > 1 (cf exercices).

Dé�nition 2.3 (Suites dé�nies par récurrence). a0 = valeur �xée, an+1 = g(an) pour
n ∈ N, où g : R → R est une fonction.

Ex: a0 = 0, g(x) = x+ 1. Donc a1 = g(a0) = 0 + 1 = 1, a2 = g(a1) = 1 + 1 = 2, a3 = 3,
a4 = 4... A�rmation: an = n pour tous n ∈ N.
Pour démontrer ce genre de résultat, on utilise la:

Dé�nition 2.4 (Preuve par récurrence). Si P (n) est une proposition qui dépend d'un
entier n, et si

1) Initialisation: P (n0) est vraie et
2) Pas de récurrence: P (n) ⇒ P (n+ 1) pour tous n ≥ n0,

alors P (n) est vraie pour tout n ≥ n0.

Preuve de l'a�rmation. On montre P (n) = "an = n" par récurrence sur n ≥ 0.
1) Initialisation: a0 = 0, donc P (0) est vraie.
2) Pas de récurrence: On a

an+1 = g(an) = an + 1 par dé�nition

= n+ 1 par l'hypothèse de récurrence P (n).

Donc P (n) ⇒ P (n+ 1).
On conclut donc que P (n) = "an = n" est vraie pour tout n ≥ 0.

Fausses preuves par récurrence:
1) Pour tout n ∈ N, on a n = n + 7. En e�et, si P (n) = "n = n + 7", alors on a

n+ 1
P (n)
= (n+ 7) + 1 = (n+ 1) + 7, et donc P (n) ⇒ P (n+ 1), et P (n) est vraie

pour tout n ≥ 0.
Faute: On a oublié l'initialisation: P (0) est fausse, car 0 ̸= 7.

2) Tous les chats sont de la même couleur. Traité en classe.

Dé�nition 2.5 (Preuve par récurrence forte). Si P (n) est une proposition qui dépend
d'un entier n, et si

1) Initialisation: P (n0) est vraie et
2) Pas de récurrence forte: {P (n0), P (n0 + 1), . . . , P (n)} ⇒ P (n + 1) pour tous

n ≥ n0,
alors P (n) est vraie pour tout n ≥ n0.

Retour aux exemples de suites dé�nies par récurrence:
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1) a0 = c, an+1 = an + b ⇒ an = bn+ c. (Exercice)
2) a0 = a, an+1 = an · r ⇒ an = arn. (Exercice)
3) a0 = 0, an+1 = an+2n+1. Attention: ce n'est techniquement pas une suite dé�nie

par récurrence au sens de la dé�nition précédente, car la fonction g(x) = x+2n+1
dépend de n. On a a0 = 0, a1 = a0 + 2 · 0 + 1 = 1, a2 = a1 + 2 · 1 + 1 = 1 + 3 =
4, a3 = 4 + 5 = 9.
A�rmation: an = n2.
Preuve. Par récurrence sur n ≥ 0.
1) Initialisation: a0 = 0 = 02.

2) Pas de récurrence: an+1 = an + 2n+ 1
P (n)
= n2 + 2n+ 1 = (n+ 1)2.

Donc an = n2 pour tout n ≥ 0.

4) Suite de Fibonacci: f0 = 0, f1 = 1, et fn+2 = fn+1 + fn. Attention: pas non plus
"dé�nie par récurrence", car fn+1 = g(fn+1, fn). On a f2 = 1, f3 = 2, f4 = 3, f5 =
5, f6 = 8, 13, 21, 34, . . . .

Prop: fn =
αn − βn

√
5

où α = 1+
√
5

2
est le nombre d'or et β = 1−

√
5

2
.

Preuve. 1) Initialisation: P (0) : α0−β0
√
5

= 1−1√
5
= 0 = f0.

P (1) : α1−β1
√
5

= 1/2+
√
5/2−1/2+

√
5/2√

5
= 1 = f1.

2) Pas de récurrence: On suppose que P (n) et P (n+1) sont vraies, et on montre
que P (n+ 2) est vraie (cf Exercices !)

Une meilleure preuve sera (peut-être) vue en algèbre linéaire.

2.2 Convergence et limites

Idée: On considère an = 1
n
(n ∈ N∗). Alors an s'approche de plus en plus de 0. Plus

précisément: an devient et reste arbitrairement proche de 0, pourvu qu'on prenne n
assez grand.

Dé�nition 2.6. Une suite (an)n∈N converge vers a ∈ R si pour tout ε > 0, il existe
N ∈ N tel que pour tout n ≥ N , on a |an − a| ≤ ε. Notation: an

n→∞−→ a, an −→ a,
lim
n→∞

an = a. Dans ce cas, a est la limite de la suite. Si (an) ne converge vers aucun

a ∈ R, on dit que la suite diverge.

Intuition: ε est la distance "visée", et N est le cran/l'indice à partir duquel la distance
|an − a| entre an et a est ≤ ε. Exemples:

1) Soit an = 1
n
(n ∈ N∗). Alors an −→ 0 ⇔ lim

n→∞
an = 0.

Preuve formelle. (Intuition de la preuve vue en cours.) Soit ε > 0 arbitraire. On
choisit N ∈ N tel que N ≥ 1

ε
. Alors dès que n ≥ N , on a∣∣∣∣ 1n − 0

∣∣∣∣ = 1

n
≤ 1

N
≤ ε, (car

1

N
≤ ε ⇔ N ≥ 1

ε
).

Comme ε était arbitraire, on a montré:
∀ε > 0 ∃N ∈ N tel que ∀n ≥ N, on a |an − 0| ≤ ε. D'où an −→ 0.
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2) Soit an = (−1)n (n ∈ N). Alors (an) diverge. Intuition de la preuve vue en cours.
Preuve formelle. Soit a ∈ R. On pose ε = 0.9. Alors pour tout N ∈ N, on a:

• Si a ≥ 0, on prend n ≥ N impair, de sorte que an = −1, et donc |an−a| ≥ 1,
et si a ≤ 0, on prend n ≥ N pair, de sorte que an = 1, et donc |an − a| ≥ 1.

3) Soit an = n (n ∈ N). Alors (an) diverge.
Preuve. Soit a ∈ R. On pose ε = 1. Alors pour tout N ∈ N, dès que n ≥
max(N, a+ 2), on a |an − a| = |n− a| ≥ 2 > 1 = ε, donc an reste loin de a.

4) Soit an = c (suite constante). Alors an −→ c.
Preuve. Soit ε > 0. On pose N = 0. Alors dès que n ≥ N , on a |an−c| = |c−c| =
0 ≤ ε.

Proposition 2.2 (Unicité de la limite). Si (an) converge, sa limite est unique.

Preuve. Supposons par l'absurde que an −→ a et an −→ b avec a ̸= b. On pose ε = |a−b|
10

.
Par dé�nition, il existe Na tel que |an − a| ≤ ε dès que n ≥ Na, et il existe Nb tel que
|an − b| ≤ ε dès que n ≥ Nb. Donc pour n ≥ Na, Nb, on a

|a− b| = |a− an + an − b| ≤ |an − a|+ |bn − b| ≤ ε+ ε = 2ε < |a− b|,
donc |a− b| < |a− b|, ce qui est absurde.

Proposition 2.3. Si (an) converge, alors (an) est bornée.

Idée de la preuve. Vue en classe. (Preuve formelle laissée en exercice)

Remarque 2.1. L'autre direction est fausse: an = (−1)n est bornée, mais diverge.

Proposition 2.4 (Caractérisation des sup/inf avec les suites). Soit A ⊆ R non-vide

borné. Alors
x = supA
x = inf A

⇔ x ≥ a
x ≤ a

∀a ∈ A et s'il existe une suite (an) ⊆ A telle que

an −→ x.

Preuve. Exercice.

2.3 Propriétés des limites

Proposition 2.5 (Propriétés algébriques des limites). Si (an) et (bn) sont deux suites
convergentes, alors:

1) lim
n→∞

(pan + qbn) = p lim
n→∞

an + q lim
n→∞

bn pour tous p, q ∈ R,

2) lim
n→∞

anbn =
(
lim
n→∞

an

)(
lim
n→∞

bn

)
,

3) lim
n→∞

an
bn

=
lim
n→∞

an

lim
n→∞

bn
si lim

n→∞
bn ̸= 0.

Preuve. Posons a = lim
n→∞

an, et b = lim
n→∞

bn. Soit ε > 0.
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1) On choisit N tel que pour n ≥ N , on a |an − a| ≤ ε
2|p| et |bn − b| ≤ ε

2|q| . Donc, dès
que n ≥ N , on a

|pan + qbn − (pa+ qb)| = |p(an − a) + q(bn − b)|

≤ |p| |an − a|︸ ︷︷ ︸
≤ε/2|p|

+|q| |bn − b|︸ ︷︷ ︸
≤ε/2|q|

. ≤ ε

2
+

ε

2
= ε.

2) On choisit N tel que pour n ≥ N , on a |an − a| ≤ ε
2(1+|b|) et |bn − b| ≤ ε

2|a| et ≤ 1.
Donc, dès que n ≥ N , on a
|anbn − ab| = |anbn − abn + abn − ab|

≤ |an − a| |bn|︸︷︷︸
=|bn−b+b|
≤|bn−b|+|b|

≤1+|b|

+|a| |bn − b|︸ ︷︷ ︸
≤ε/2|a|

≤ |an − a|︸ ︷︷ ︸
≤ ε

2(1+|b|)

(1 + |b|) + ε

2
≤ ε

2
+

ε

2
= ε

3) Exercice.
Comme ε > 0 était arbitraire, 1),2) et 3) en découlent.

Exemples:

1) lim
n→∞

2n+ 3

3n− 5
= lim

n→∞

n(2 + 3/n)

n(3− 5/n)
=

lim
n→∞

2 + 3/n

lim
n→∞

3− 5/n
=

2 + 0

3− 0
=

2

3
. Attention:

lim
n→∞

2n+ 3

3n− 5
̸=

lim
n→∞

2n+ 3

lim
n→∞

3n− 5
car ces limites n'existent pas.

2) Fausse preuve que 1 = 2 (vu en classe).
3) Les suites arithmétiques an = bn+ c divergent si b ̸= 0.

Preuve. Sinon, on aurait lim
n→∞

an = a, et donc lim
n→∞

n = lim
n→∞

an − c

b
=

a− c

b
. Mais

on a vu que lim
n→∞

n n'existe pas !

Proposition 2.6. Si (an) et (bn) convergent et an ≤ bn pour n assez grand 1, alors
lim
n→∞

an ≤ lim
n→∞

bn.

Preuve. Soit ε > 0 arbitraire, et N ∈ N tel que pour tous n ≥ N , on a an ≤ bn,
|an − a| ≤ ε

2
et |bn − a| ≤ ε

2
. Alors a ≤ an +

ε
2
≤ bn +

ε
2
≤ b+ ε

2
+ ε

2
= b+ ε. On a donc

montré que a ≤ b+ ε, pour tout ε > 0. D'où a ≤ b.

Théorème 2.7 (Deux Gendarmes / Sandwich). Si an ≤ bn ≤ cn pour n assez grand,
et si an −→ ℓ et cn −→ ℓ, alors bn −→ ℓ.

Preuve. Soit ε > 0. On choisit N ∈ N tel que pour tout n ≥ N , on a an ≤ bn ≤ cn,
|an− ℓ| ≤ ε et |cn− ℓ| ≤ ε. Alors −ε ≤ an− ℓ ≤ bn− ℓ ≤ cn− ℓ ≤ ε, d'où −ε ≤ bn− ℓ ≤
ε ⇔ |bn − ℓ| ≤ ε.

1. c'est à dire s'il existe N ∈ N tel que an ≤ bn dès que n ≥ N



4. LIMITES INFINIES 17

Exemples plus compliqués:
1) Pour tout x > 0, on a lim

n→∞
n
√
x = 1. (Revu plus tard !)

Preuve. Si x ≥ 1, on a 0 ≤ n
√
x−1 ≤ x−1

n
. En e�et, comme 1 ≤ x, on a n

√
1 ≤ n

√
x,

et donc n
√
x− 1 ≥ 0. De l'autre côté, on a, par un exercice:

(y−1)(yn−1+yn−2+· · ·+y+1) = yn−1 ⇒ y−1 =
yn − 1

yn−1 + yn−2 + · · ·+ y + 1
.

On applique cela à y = n
√
x, pour trouver

0 ≤ n
√
x− 1 =

x− 1

x
n−1
n︸︷︷︸

≥1

+x
n−2
n︸︷︷︸

≥1

+ · · ·+ x
1
n︸︷︷︸

≥1

+1
≤ x− 1

n
−→ 0

Par le théorème des deux gendarmes, on a donc n
√
x− 1 −→ 0, d'où n

√
x −→ 1.

Et si x ≤ 1, on pose y = 1
x
≥ 1, et on utilise la partie précédente pour trouver

lim
n→∞

n
√
x = lim

n→∞

1
n
√
y
=

1

lim
n→∞

n
√
y
=

1

1
= 1.

2) Soit an = 5n

n!
. Alors lim

n→∞
an = 0 (traité en classe). De manière similaire,

xn

n!
−→ 0

pour tout x ∈ R.
3) Suites géométriques an = arn, pour a > 0 et r > 0. La suite converge vers 0 si

0 < r < 1, est constante = a si r = 1, et diverge si r > 1.
Preuve. Si r > 1, on montre par récurrence que an ≥ a(r−1)n (suite arithmétique
⇒ non-bornée). Init: a0 = a ≥ 0. Pas de récurrence:

an+1 = (an+1 − an) + an = rn︸︷︷︸
≥1

a(r − 1) + an︸︷︷︸
≥a(r−1)n

≥ a(r − 1)(n+ 1).

Si r < 1, soit ε > 0. On pose bn = 1
an

= 1
a
sn avec s = 1

r
> 1, et donc bn n'est pas

bornée (par la partie précédente). On trouve donc N tel que pour tout n ≥ N ,
on a bn ≥ 1

ε
. Alors, dès que n ≥ N , |an − 0| = an = 1

bn
≤ ε.

2.4 Limites in�nies

Dé�nition 2.7. Une suite (an) tend vers
+∞
−∞ si pour tout A ∈ R, il existe N ∈ N

tel que pour tout n ≥ N , on a
an ≥ A
an ≤ A

. Notation: lim
n→∞

an = ±∞, an −→ ±∞.

Avec des mots: an devient et reste arbitrairement
grand
petit

, pour n assez grand. Attention:

Si lim
n→∞

an = ±∞, la suite (an) n'est pas bornée, donc divergente ! Exemples:

• lim
n→∞

n = +∞. Soit A ∈ R. On choisit N ≥ A. Alors dès que n ≥ N , on a

an = n ≥ N ≥ A. Comme A était arbitraire, on a an −→ +∞.
• lim

n→∞
n7 = +∞, lim

n→∞
7
√
n = +∞: Vu en classe.
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Proposition 2.8 (Opérations algébriques sur les limites in�nies). Soient (an) et (bn)
deux suites.

1)
+∞+∞ = +∞
−∞−∞ = −∞ Si lim

n→∞
an =

+∞
−∞ et lim

n→∞
bn =

+∞
−∞ et p, q > 0, alors on a

lim
n→∞

(pan + qbn) =
+∞
−∞ . Attention: ∞−∞ et 0 · ∞ ne sont pas dé�nis.

2) ±∞+ c = ±∞ Si lim
n→∞

an = ±∞ et (bn) est bornée, alors lim
n→∞

(an + bn) = ±∞.

3) Théorème du gendarme seul / de la tartine Si lim
n→∞

an =
+∞
−∞ et

bn ≥ an
bn ≤ an

pour

n assez grand, alors lim
n→∞

bn =
+∞
−∞ .

4) (+∞) · (±∞) = ±∞ Si lim
n→∞

an = +∞, lim
n→∞

bn = ±∞, alors lim
n→∞

(anbn) = ±∞.

5) c
±∞ = 0 Si lim

n→∞
an = ±∞ et (bn) est bornée, alors lim

n→∞

bn
an

= 0. Attention: ∞
∞ et

0
0
ne sont pas dé�nis.

Preuve. 1)-4) exercice facile. Pour 5) soit ε > 0. Soit M tel que |bn| ≤ M et N ∈ N
tel que pour tous n ≥ N , on a |an| ≥ A = M

ε
(possible car an −→ ±∞). Alors, pour

n ≥ N , | bn
an

− 0| = |bn|
|an| ≤

M
|an| ≤ ε. Comme ε était arbitraire, on a bien bn

an
−→ 0.

Formes indéterminées:
1) ∞ − ∞. On considère les trois suites an = (n + 1)2 − n2, bn = (n + 1) − n, et

cn =
√
n+ 1−

√
n. En prenant la limite, les trois sont du type ∞−∞, mais on

a an −→ ∞, bn −→ 1, et cn −→ 0 (détails vus en classe).
2) ∞ · 0. On considère les suites an = n2 · 1

n
, bn = n · 1

n
, et cn =

√
n · 1

n
. En prenant

la limite, les trois sont du type ∞ · 0, mais on a an −→ ∞, bn −→ 1, et cn −→ 0.
3) ∞

∞ . On considère an = n2+1
nk+2

. Si k = 1, an −→ ∞, si k = 2, an −→ 1 et si k = 3,
an −→ 0.

4) 0
0
. Prendre l'inverse en haut et en bas dans l'exemple précédent.

2.5 Liminf et Limsup

Dé�nition 2.8. Soit (an) une suite. On note {a≥n} = {am | m ≥ n}, et on dé�nit:
lim sup
n→∞

an = lim
n→∞

sup{a≥n} et lim inf
n→∞

an = lim
n→∞

inf{a≥n}

Exemple: Considérons la suite an =
(
2 + (−1)n

n

)
(−1)n, pour n ≥ 1. Alors

(an) = (−1, 2.5,−1.6, 2.25,−1.8, 2.16, . . . ) −2 0 2
a1 a2a3

{a≥1} = {−1, 2.5,−1.6, 2.25,−1.8, 2.16, . . . }, et {a≥2} (resp. {a≥3}, ...) s'obtiennent en
enlevant le premier (resp. les deux premiers,...) éléments de cet ensemble. On a donc le
tableau suivant:

n 1 2 3 4 5 6 7 8 · · ·
sup{a≥n} a2 = 2.5 a2 = 2.5 a4 = 2.25 a4 = 2.25 a6 a6 a8 a8 · · ·
inf{a≥n} −2 −2 −2 −2 −2 −2 −2 −2 · · ·
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Ainsi
(inf{a≥n})n = (−2,−2,−2, . . . ) et (sup{a≥n})n = (a2, a2, a4, a4, a6, a6, . . . ),

d' où lim inf
n→∞

an = −2 et lim sup
n→∞

an = lim
k→∞

a2k = lim
k→∞

(
2 +

1

2k

)
= 2.

Remarque 2.2. En fait, on voit que lim
k→∞

a2k+1 = lim
k→∞

(
2− 1

2k + 1

)
· (−1) = −2.

Dé�nition 2.9. Pour une suite (an)n∈N et une suite d'entiers (nk)k∈N ⊆ N strictement
croissante (nk+1 > nk), la sous-suite correspondante est (ank

)k∈N.

Exemple: Si an = 1
n+4

et nk = 2k + 1, on a ank
= 1

(2k+1)+4
= 1

2k+5
. Attention: nk = 5 et

nk =
1
k
ne sont pas des indices valables.

Remarque 2.3. Si an
n→∞−→ a, alors ank

k→∞−→ a pour toute sous-suite (ank
) (Exercice.)

Théorème 2.9. Pour une suite bornée (an), on a

lim sup
n→∞

an = max

{
limites de sous-suites

convergentes

}
et lim inf

n→∞
an = min

{
limites de sous-suites

convergentes

}
.

Remarque 2.4. • Pour (an) générale, lim
n→∞

an n'existe pas forcément, mais lim inf
n→∞

an

et lim sup
n→∞

an existent toujours (dans R si la suite est bornée, et dans R ∪ {±∞}

si elle ne l'est pas). Cf section suivante !
• On a lim inf

n→∞
an ≤ lim sup

n→∞
an, avec égalité si et seulement si lim

n→∞
an existe ! Dans

ce cas, lim inf
n→∞

an = lim
n→∞

an = lim sup
n→∞

an.

Exemples:
• an = (−1)n. Avec le théorème: Si nk = 2k, alors ank

= (−1)2k = 1 −→ 1. Comme
an ≤ 1, il n'y a pas de sous-suite plus grande ! D'où lim sup

n→∞
an = 1. Similairement,

si nk = 2k + 1, alors ank
= (−1)2k+1 = −1 −→ −1 ⇒ lim inf

n→∞
an = −1.

Sans le théorème: (an) = (1,−1, 1,−1, 1, . . . ) ⇒ {a≥n} = {−1, 1} ∀n. D'où
sup{a≥n} = 1 → 1 ⇒ lim sup

n→∞
an = 1 et inf{a≥n} = −1 → −1 ⇒ lim inf

n→∞
an = −1.

• an =
(−2)n − 1

2n − 1
, n ∈ N∗ ⇒ (an) = (−3, 1,−9

7
, 1,−33

31
, 1, . . . ).

Avec le théorème: Si nk = 2k, alors ank
= 22k−1

22k−1
= 1 −→ 1 ⇒ lim sup

n→∞
an = 1, et si

nk = 2k + 1, alors ank
= −22k+1−1

22k+1−1
= −1+2−(2k+1)

1−2−(2k+1) −→ −1
1
⇒ lim inf

n→∞
an = −1.

Sans le théorème: On a, suivant la parité de n:
{a≥n} = {1,−2n+1+1

2n+1−1
, 1,−2n+3+1

2n+3−1
, 1, . . . } ou {−2n+1

2n−1
, 1,−2n+2+1

2n+2−1
, 1,−2n+4+1

2n+4−1
. . . }.

Donc sup{a≥n} = 1 → 1 ⇒ lim sup
n→∞

an = 1. Et pour inf{a≥n}, on remarque que

la suite bn = −2n+1
2n−1

est croissante (véri�er que bn+1 > bn). Donc

inf{a≥n} =

{
−2n+1+1

2n+1−1
−→ −1

ou − 2n+1
2n−1

−→ −1
⇒ lim inf

n→∞
an = −1.
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2.6 Critères de convergence

Question: (an) converge-t-elle ? (Pas: vers quoi ?)

Théorème 2.10 (Croissante + majorée). Toute suite
croissante (an+1 ≥ an)
décroissante (an+1 ≤ an)

et
majorée
minorée

converge
(
vers

sup{an | n ∈ N}
inf{an | n ∈ N}

)
.

Corollaire 2.11. Toute suite monotone et bornée converge.

Preuve du théorème (cas croissante+majorée). Posons A = {an | n ∈ N} et s = supA,
et �xons ε > 0. Par dé�nition du sup, il existe a ∈ A tel que s − ε ≤ a ≤ s. Comme
a ∈ A, on a a = aN pour un N ∈ N. Mais dès que n ≥ N , on a an ≥ aN et donc

s− ε ≤ aN ≤ an ≤ s ⇒ an ∈ [s− ε, s] ⇒ |an − s| ≤ ε.

Exemples:
1) Si (an) est bornée, alors |an| ≤ M pour un M ∈ R. La suite sn = sup{a≥n} est

donc minorée (par −M), et comme {a≥n+1} ⊆ {a≥n}, on a
sn+1 = sup{a≥n+1} ≤ sup{a≥n} = sn.

La suite (sn) est donc décroissante et minorée ⇒ (sn) converge ⇒ lim
n→∞

sn =

lim sup
n→∞

an existe. (Et similairement pour lim inf).

2) On considère les suites an =

(
1 +

1

n

)n

(pour n ∈ N∗) et bn dé�nie par b0 = 1 et

bn+1 = bn +
1

(n+ 1)!
. Une récurrence montre que bn =

n∑
k=0

1

k!
. Quelques valeurs:

(an)n≥1 = (2, 2.25, 2.370, . . . ) (bn)n≥0 = (1, 2, 2.5, 2.6, 2.7083, . . . ).

A�rmation:
(i) an ≤ bn pour tous n ≥ 1,
(ii) (bn) est majorée (donc (an) aussi),
(iii) (an) est croissante,
(iv) (bn) est croissante.

⇒ (an) et (bn) convergent !

Preuve. (i) On a an =

(
1 +

1

n

)n

=
n∑

k=0

(
n

k

)
1

nk
≤

n∑
k=0

1

k!
= bn, où pour les =

on a utilisé, dans l'ordre, dé�nition de an, la formule du binôme de Newton
(exercice 2(b), série 3) et la dé�nition de bn, et l'inégalité vient du fait que(

n

k

)
1

nk
=

1

k!

n!/(n− k)!

nk
=

1

k!

n

n︸︷︷︸
≤1

n− 1

n︸ ︷︷ ︸
≤1

n− 2

n︸ ︷︷ ︸
≤1

· · · n− k + 1

n︸ ︷︷ ︸
≤1

≤ 1

k!
.

(ii) On a
1

k!
=

1

k · (k − 1) · · · 3 · 2 · 1
≤ 1

2 · 2 · · · 2 · 2
=

1

2k−1
= 2

1

2k
, d'où

bn =
n∑

k=0

1

k!
≤ 2

n∑
k=0

(
1

2

)k

= 2
1− (1/2)n+1

1− (1/2)
≤ 2

1− 0

1/2
= 4,
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où l'égalité du milieu suit de la formule xn + xn−1 + · · · + x + 1 = 1−xn+1

1−x
si

x ̸= 1, (cf exercice 1, série 3).
(iii) En utilisant le fait que a

b
≤ a+1

b+1
si 0 < a ≤ b (exercice facile !), et en reprenant

l'argument du (i), on remarque que(
n

k

)
1

nk
=

1

k!

n

n
· n− 1

n
· n− 2

n
· · · n− k + 1

n

≤ 1

k!

n+ 1

n+ 1
· n

n+ 1
· n− 1

n+ 1
· · · n− k + 2

n+ 1
=

(
n+ 1

k

)
1

(n+ 1)k

d'où an =
(
1 + 1

n

)n
=

n∑
k=0

(
n

k

)
1

nk
≤

n+1∑
k=0

(
n+ 1

k

)
1

(n+ 1)k
=
(
1 + 1

n+1

)n+1

= an+1.

(iv) On a simplement bn+1 = bn +
1

(n+ 1)!
≥ bn.

Par croissance majorée, (an) et (bn) convergent toutes les deux ! En fait, on a
lim
n→∞

an = lim
n→∞

bn = e = 2.7182818 · · · = nombre d'Euler.

Théorème 2.12 (Critère de D'Alembert pour les suites). Soit (an) une suite telle que

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ existe ∈ R ∪ {+∞}. Alors an −→ 0 si ρ < 1 et (an) diverge si ρ > 1.

Remarque 2.5. • Attention: le critère ne se prononce pas si ρ = 1.

• Plus généralement: an → 0 si lim sup
n→∞

∣∣∣an+1

an

∣∣∣ < 1 et (an) diverge si lim inf
n→∞

∣∣∣an+1

an

∣∣∣ > 1.

Preuve. Si ρ < 1, alors |an+1

an
| −→ ρ < 1, on trouve donc un r < 1 tel que |an+1

an
| ≤ r pour

n assez grand, disons n ≥ N . On montre par récurrence que |an| ≤ |aN |rn−N = Arn → 0
car c'est une suite géométrique avec |r| < 1 (où A = r−N |aN |). Init: |aN | = |aN |r0.
Pas de récurrence: Comme |an+1

an
| ≤ r, on a |an+1| ≤ |an|r ≤ Arnr = Arn+1. Et si ρ > 1,

on pose bn = 1
an
, et on a lim

n→∞

∣∣∣an+1

an

∣∣∣ = 1

lim
n→∞

|an+1
an

|
= 1

ρ
< 1. Donc |bn| −→ 0, et ainsi

|an| −→ ∞ ⇒ (an) diverge.

Exemple: an =
n140

2n
. On a

∣∣∣an+1

an

∣∣∣ = (n+1)140/2n+1

n140/2n
=
(
n+1
n

)140 1
2
−→ 1

2
< 1. Donc an −→ 0.

Convergence de suites dé�nies par récurrence: On considère une suite (an) dé�nie par
a0 = a, an+1 = g(an) pour une fonction g : R → R.
Remarque importante: Si (an) converge, disons an −→ ℓ, alors

ℓ = lim
n→∞

an+1 = lim
n→∞

g(an)
(∗)
= g

(
lim
n→∞

an

)
= g(ℓ) ⇒ ℓ est solution de x = g(x),

où (∗) est vraie si g est continue (cf chapitre 4). Exemples:
1) a0 = 1, an+1 = 1

2
an − 1 = g(x) avec g(x) = 1

2
x − 1. Solution de x = g(x):

x = ℓ = −2. On a (an) = (1,−1
2
,−5

4
,−13

8
, . . . ,−1.999 . . . ). En e�et, (an) semble

donc converger vers −2.
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2) a0 = 1, an+1 = 3an − 1. La solution de x = g(x) est ℓ = 1
2
mais (an) =

(1, 2, 5, 14, . . . ) semble diverger !
3) a0 =

1
2
, an+1 = 3an − 1. Ici (an) = (1

2
, 1
2
, 1
2
, . . . ) −→ 1

2
.

Théorème 2.13 (Récurrences linéaires). Soit (an) une suite où a0 est �xé où an+1 =
g(an) avec g(x) = qx+ b, q, b ∈ R, et soit ℓ la solution de x = g(x). Alors:

1) Si q ̸= 1, on a an = ℓ+ qn(a0 − ℓ).

⇒ an −→ ℓ si |q| < 1 ou si a0 = ℓ, et (an) diverge dans le cas contraire.

2) Si q = 1, on a an = a0 + nb.

⇒ (an) est constante = a0 si b = 0, et (an) diverge dans le cas contraire.

Preuve. Le cas q = 1 et les conclusions de convergence sont laissées en exercice (fa-
cile). Pour q ̸= 1, on montre la formule par récurrence: Init: a0 = ℓ + (a0 − ℓ).

Pas de récurrence: an+1 = g(an) = qan+b
(∗)
= q(ℓ+qn(a0−ℓ))+b = qℓ+ b︸ ︷︷ ︸

=g(ℓ)=ℓ

+qn+1(a0−ℓ),
où l'on a utilisé l'hypothèse de récurrence en (∗).

Exemple non linéaire: a0 = 3, an+1 =
1
2

(
an +

3
an

)
= g(an) avec g(x) = 1

2
(x+ 3

x
).

1) Candidats pour ℓ: Solutions de x = g(x) ⇔ 2x = x+ 3
x
⇔ x2 = 3 ⇔ x = ±

√
3.

2) Exclure tous les cas sauf 1. On calcule quelque valeurs: (an) = (3, 2, 1.75, . . . ), ce
qui nous donne l'idée de montrer que an > 0, par récurrence: Init: a0 = 3 > 0.
Pas de récurrence: an+1 =

1
2
((>0) + 3

(>0)
) > 0. Donc ℓ = −

√
3 est impossible, et le

candidat est ℓ =
√
3.

3) Montrer que an → ℓ.
Méthode 1: Montrer que |an − ℓ| −→ 0 directement. On calcule :

an+1 −
√
3 =

1

2

(
an +

3

an
− 2

√
3

)
=

a2n − 2
√
3an + 3

2an
=

(an −
√
3)2

2an
.

Comme cette dernière expression est > 0, cela montre que an+1 −
√
3 > 0, et

comme c'est vrai aussi pour a0 = 3, on trouve: an >
√
3 pour tout n ∈ N. Ainsi:

|an+1 −
√
3| = an+1 −

√
3 =

1

2
(an −

√
3) · an −

√
3

an︸ ︷︷ ︸
≤1

≤ 1

2
(an −

√
3).

On montre alors par récurrence que |an−
√
3| ≤ (1

2
)n(3−

√
3). Init: OK. Pas de réc:

|an+1−
√
3| ≤ 1

2
|an−

√
3| ≤ 1

2
(1
2
)n(3−

√
3) = (1

2
)n+1(3−

√
3). On trouve �nalement:

|an −
√
3| ≤ (1

2
)n(3−

√
3) −→ 0.

Méthode 2: Montrer que (an) converge, et véri�er que lim
n→∞

g(an) = g( lim
n→∞

an).

Comme pour la méthode 1, on montre que an ≥
√
3 ; la suite est donc minorée,

et on calcule

an+1 − an =
an
2

+
3

2an
− an ≤ 3

2
√
3
−
√
32 = 0 ⇒ an+1 ≤ an.
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Ainsi elle est également décroissante, et converge donc par décroissance minorée.
Finalement on véri�e (grâce aux résultats sur les quotients de limites) que:

lim
n→∞

g(an) = lim
n→∞

1

2

(
an +

3

an

)
=

1

2

(
lim
n→∞

an +
3

lim
n→∞

an

)
= g

(
lim
n→∞

an

)
.

Remarque 2.6. On peut aussi utiliser la continuité de la fonction g dans cette
dernière étape (cf chapitre 4).

Critère de Cauchy:

Dé�nition 2.10. Une suite (an) est de Cauchy si ∀ε > 0,∃N ∈ N tel que ∀m,n ≥ N ,
on a |am − an| ≤ ε.

Avec des mots: ses termes deviennent arbitrairement proches les uns des autres, lorsque
les indices sont assez grands.

Théorème 2.14 (Convergente ⇔ de Cauchy). Une suite (an) converge si et seulement
si elle est de Cauchy.

Exemple: Pour b < c, on dé�nit la suite an par a0 = b, a1 = c et an+2 =
an+1 + an

2
. Soit

alors ε > 0, et soit N tel que 2N ≥ c− b

ε
. On remarque (image vue en cours) que dès

que m,n ≥ N , am et an appartiennent au même intervalle de longueur
c− b

2N
. Ainsi

|am − an| ≤
c− b

2N
≤ ε (car 2N ≥ c− b

ε
).

Donc (an) est de Cauchy ⇒ (an) converge !
Pour démontrer le critère de Cauchy, on a besoin de:

Théorème 2.15 (Bolzano-Weierstrass). Toute suite bornée possède une sous-suite
convergente.

Rappel: Une sous-suite d'une suite (an)n est une suite de la forme (ank
)k où (nk)k est

une suite d'entiers strictement croissante (nk+1 > nk).
Exemple: an = (−1)n est une suite bornée, mais divergente (elle ne converge pas).
En revanche les sous-suites a2k = (−1)2k = 1 et a2k+1 = −1 sont constantes, donc
convergentes !

Preuve du théorème de Bolzano-Weierstrass. Comme (an) est bornée, il existe M > 0
tel que |an| ≤ M ⇔ an ∈ [−M,M ] pour tout n. On sépare [−M,M ] en I1 = [−M, 0]
et J1 = [0,M ], et on remarque que soit I1 soit J1 contient an pour une in�nité de n ;
disons J1. On choisit n1 tel que an1 ∈ J1. On sépare alors J1 en deux intervalles I2, J2,
et à nouveau, soit I2, soit J2 contient an pour une in�nité de n ; disons J2. On choisit
alors n2 tel que n2 > n1 et an2 ∈ J2. On continue ainsi et on trouve une suite d'indices
strictement croissante (nk) telle que ank

se trouve dans un intervalle Jk de taille de plus
en plus petite.
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Si on note Jk = [bk, ck], on remarque alors que (bk) est une suite croissante et majorée,
que (ck) est décroissante et minorée, et que (bk) et (ck) convergent vers la même limite
ℓ par construction. Comme bk ≤ ank

≤ ck, on a ank
−→ ℓ par le théorème des deux

gendarmes.

Preuve du critère de Cauchy. Pour ⇒, soit (an) une suite telle que an −→ a ; on doit
montrer que (an) est de Cauchy. Soit ε > 0, et N tel que pour tout n ≥ N , on a
|an − a| ≤ ε

2
. Alors, dès que m,n ≥ N , on a

|am − an| = |am − a+ a− an| ≤ |am − a|+ |an − a| ≤ ε

2
+

ε

2
≤ ε.

Comme ε était arbitraire, cela montre que (an) est de Cauchy.
Pour ⇐, on commence par montrer que la suite est bornée. Soit ε = 1 et N tel que pour
tous m,n ≥ N , on a |am − an| ≤ ε = 1. Alors, an ∈ [aN − 1, aN + 1] dès que n ≥ N , et
ainsi

|an| ≤ M = max{|a0|, |a1|, . . . , |aN−1|, |aN |+ 1},
(an) est donc bornée. Par le théorème de Bolzano-Weierstrass, il existe une sous suite
ank

qui converge, disons vers a. Soit alors ε > 0, N tel que ∀m,n ≥ N , on a |am−an| ≤ ε
2

et k tel que |ank
− a| ≤ ε

2
et nk ≥ N . Alors dès que n ≥ N on a (en posant m = nk)

|an − a| = |an − ank
+ ank

− a| ≤ |an − am|+ |ank
− a| ≤ ε

2
+

ε

2
≤ ε.

Comme ε était arbitraire, cela montre que an −→ a.
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Chapitre 3: Séries

3.1 Dé�nition et exemples

Rappel de notation:
n∑

k=0

ak = a0 + a1 + a2 + · · ·+ an.

Dé�nition 3.1. Soit (ak)k∈N une suite.

• La série de terme général (ak) est
∞∑
k=0

ak
def
= lim

n→∞

n∑
k=0

ak.

• Sn =
n∑

k=0

ak est la n-ième somme partielle. On a donc
∞∑
k=0

ak = lim
n→∞

Sn.

• La série
∞∑
k=0

ak converge si la suite (Sn)n≥0 converge ⇔ lim
n→∞

Sn existe ∈ R. Elle

diverge si elle ne converge pas.

Exemples:

1)
∞∑
k=0

1

2k
. Le terme général est ak =

1

2k
, et la n-ième somme partielle est Sn =

n∑
k=0

1

2k
.

Cette série converge: En e�et

Sn =
n∑

k=0

(
1

2

)k

=

(
1

2

)n

+

(
1

2

)n−1

+ · · ·+
(
1

2

)
+ 1 =

=
1− (1

2
)n+1

1− 1
2

= 2(1− (1
2
)n+1︸ ︷︷ ︸

−→0

) −→ 2.

où l'on a utilisé l'exercice xn + xn−1 + · · · + x + 1 = 1−xn+1

1−x
si x ̸= 1. Ainsi

lim
n→∞

Sn = 2 et donc
∞∑
k=0

1

2k
= 2.

2) Série géométrique:
∞∑
k=0

qk
{

converge et vaut 1
1−q

si |q| < 1

diverge si |q| ≥ 1
(exercice).

3) La série
∞∑
k=0

1, de terme ak = 1, et somme partielle Sn =
n∑

k=0

1 = n + 1, diverge:

On a lim
n→∞

Sn = lim
n→∞

n + 1 = +∞ /∈ R. Même chose pour la série
∞∑
k=0

(−1)k de

terme ak = (−1)k: La suite des sommes partielles (Sn) diverge, donc la série aussi.

Proposition 3.1 (Série conv. ⇒ terme −→ 0). Si
∞∑
k=0

ak converge, alors lim
k→∞

ak = 0.
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Preuve.
∞∑
k=0

ak converge ⇔ (Sn) converge ⇔ (Sn) est de Cauchy. Donc

|Sn − Sn−1| −→ 0 ⇒

∣∣∣∣∣
n∑

k=0

ak −
n−1∑
k=0

ak

∣∣∣∣∣ = |an| −→ 0.

Attention: L'autre direction ⇐ n'est pas vraie en général !

4) Série harmonique:
∞∑
k=1

1

k
. Le terme général est ak =

1

k
. On a ak −→ 0, et

pourtant cette série diverge !

Preuve informelle.
∞∑
k=1

1

k
= 1 + 1

2
+ 1

3
+ 1

4︸ ︷︷ ︸
≥ 1

2

+ 1
5
+ 1

6
+ 1

7
+ 1

8︸ ︷︷ ︸
≥ 1

2

+ 1
9
+ · · ·+ 1

16︸ ︷︷ ︸
≥ 1

2

+ · · · ≥ 1 + 1
2
+ 1

2
+ 1

2
+ · · ·︸ ︷︷ ︸

→+∞.

Preuve formelle. On a, pour tout m ∈ N,

|S2m+1 − S2m | =
2m+1∑

k=2m+1

1

k
≥

2m+1∑
k=2m+1

1

2m+1
=

1

2m+1

(
2m+1 − 2m

)
=

2m

2m+1
(2−1) =

1

2
.

Donc (Sn) n'est pas de Cauchy ⇒ (Sn) (et donc aussi la série) divergent.

3.2 Critères de convergence pour les séries

Suite des exemples:

5) Série harmonique alternée:
∞∑
k=1

(−1)k

k
. Cette série converge (vers − log(2), cf

chapitre 5). Pour cela on a besoin de:

Proposition 3.2 (Critère de Leibnitz pour les séries alternées). Si
1) |ak+1| ≤ |ak|
2) signe(ak+1) = −signe(ak) (les signes alternent),
3) lim

k→∞
ak = 0,

}
(pour k assez grand)

alors
∞∑
k=0

ak converge.

Idée de la preuve. Si m > n, an+1 ≥ 0 et m− n est pair, alors

Sm − Sn =

≤0︷ ︸︸ ︷ ≤0︷ ︸︸ ︷ ≤0︷ ︸︸ ︷ ≤0︷︸︸︷
an+1 + an+2︸ ︷︷ ︸

≥0

+ an+3 + an+4︸ ︷︷ ︸
≥0

+an+5 + · · ·+ am−2 + am−1 + am︸ ︷︷ ︸
≥0

où les ≥ 0 et ≤ 0 proviennent du fait que les termes sont de plus en plus petits en
valeur absolue, et que les signes alternent. Ainsi, 0 ≤ Sm − Sn ≤ an+1, et en traitant
les autres cas (an+1 ≤ 0,m− n impair), on trouve

0 ≤ |Sm − Sn| ≤ |an+1| −→ 0.

Il suit que (Sn) est de Cauchy, donc elle converge (et la série aussi).
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Retour à l'exemple 5: La série
∞∑
k=1

(−1)k

k
est de terme général ak =

(−1)k

k
. On a

1) |ak+1| = 1
k+1

≤ 1
k
= |ak|,

2) signe(ak+1) = −signe(ak),

3) lim
k→∞

|ak| = lim
k→∞

1

k
= 0. Donc la série converge.

6) La série
∞∑
k=1

1

k2
= 1 +

1

4
+

1

9
+

1

25
+ · · · converge. (Et vaut . . . π

2

6
!).

Preuve. En séparant les termes pairs et impairs, on trouve

Sn ≤ S2n+1 = 1 +
1

22
+

1

32
+

1

42
+

1

52
+ · · ·+ 1

(2n)2
+

1

(2n+ 1)2

= 1 +
n∑

k=1

1

(2k)2
+

n∑
k=1

1

(2k + 1)2
≤ 1 + 2

n∑
k=1

1

(2k)2
= 1 +

2

4

n∑
k=1

1

k2

≤ 1 +
1

2
Sn.

Ainsi, on a Sn ≤ 1 + 1
2
Sn ⇒ 1

2
Sn ≤ 1 ⇒ Sn ≤ 2. La suite (Sn) est donc majorée

et croissante, donc elle converge (tout comme la série).

Que dire alors des séries
∞∑
k=1

1

k3
,

∞∑
k=1

1

k4
, . . . ?

Proposition 3.3 (Critère de comparaison, terme ≥ 0). Soient (ak), (bk) deux suites
telles que 0 ≤ ak ≤ Ak (pour k assez grand). Alors

1)
∞∑
k=0

Ak converge ⇒
∞∑
k=0

ak converge.

2)
∞∑
k=0

ak diverge ⇒
∞∑
k=0

Ak diverge.

Preuve. On pose Sa
n =

n∑
k=0

ak et SA
n =

n∑
k=0

Ak.

1) (Sa
n) est croissante, et Sa

n ≤ SA
n qui converge ⇒ bornée. Donc Sa

n converge, par
croissance majorée.

2) (Sa
n) est croissante et divergente, d'où Sa

n −→ +∞. Ainsi SA
n −→ +∞ par le

théorème du gendarme seul.

Conséquence:
∞∑
k=1

1

k3
converge par comparaison. En e�et, 0 ≤ 1

k3
≤ 1

k2
et la série

∞∑
k=1

1

k2
converge. En fait pour p ∈ R, la série

∞∑
k=1

1

kp
converge si p > 1 et diverge si

p ≤ 1 (Exercice).
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Dé�nition 3.2. Une série
∞∑
k=0

ak est absolument convergente si la série
∞∑
k=0

|ak|

converge.

Proposition 3.4. Toute série absolument convergente est convergente.

Preuve. Soit
∞∑
k=0

ak une série absolument convergente. On note Sn ses sommes partielles,

et Sabs
n les sommes partielles de

∞∑
k=0

|ak|. Alors,

|Sm − Sn| =

∣∣∣∣∣
m∑

k=n+1

ak

∣∣∣∣∣ ≤
m∑

k=n+1

|ak| = |Sabs
m − Sabs

n | −→ 0

car (Sabs
m ) converge, et est donc de Cauchy. Donc (Sn) est aussi de Cauchy, et converge.

Remarque 3.1. • Si ak ≥ 0, alors
∞∑
k=0

ak est convergente ⇔ absolument convergente.

•
∞∑
k=1

(−1)k

k
est convergente, mais pas absolument convergente:

∞∑
k=1

∣∣∣∣(−1)k

k

∣∣∣∣ = ∞∑
k=1

1

k

diverge (série harmonique).

Deux autres critères:

Proposition 3.5 (Critère de d'Alembert pour les séries). Soit (ak) une suite telle que

ρ = lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ existe dans R. Alors
∞∑
k=0

ak converge absolument (donc converge) si

ρ < 1 et diverge si ρ > 1.

Remarque 3.2. • Attention: le critère ne se prononce pas si ρ = 1.

• Version plus générale: La série converge absolument si lim sup
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ < 1 et di-

verge si lim inf
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ > 1

Proposition 3.6 (Critère de Cauchy / de la racine). Soit (ak) une suite telle que

σ = lim
k→∞

k
√

|ak| existe dans R. Alors
∞∑
k=0

ak converge absolument (donc converge) si

σ < 1 et diverge si σ > 1.

Remarque 3.3. • Attention: le critère ne se prononce pas si σ = 1.
• Version plus générale: On remplace σ par σ = lim sup

k→∞

k
√

|ak|.

Exemple:
∞∑
k=0

2k

k!
. On a ak =

2k

k!
, et on utilise d'Alembert:

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

2k+1

(k + 1)!

k!

2k
= lim

k→∞

2

k + 1
= 0.

Donc ρ = 0 < 1 et la série converge absolument.
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3.3 Séries avec paramètre

Ce sont des séries où le terme général ak = fk(x) dépend d'un paramètre x ∈ R. La
convergence dépend donc aussi de x ∈ R !
Exemples:

1)
∞∑
k=0

k2

xk
(pour x ∈ R∗). Le terme général est ak =

k2

xk
. On utilise le critère de

d'Alembert:

ρ = lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

(k + 1)2

|x|k+1

|x|k

k2
= lim

k→∞

(
k + 1

k

)2

lim
k→∞

|x|k

|x|k+1
=

1

|x|
.

Donc la série converge absolument si ρ < 1 ⇔ |x| > 1 et diverge si ρ > 1 ⇔
|x| < 1. Et si |x| = 1 ⇔ x = ±1 ? On véri�e les deux cas individuellement:

Si x = 1, on a
∞∑
k=0

k2

1k
=

∞∑
k=0

k2 diverge, car k2 ̸−→ 0, et si x = −1, on a

∞∑
k=0

k2

(−1)k
=

∞∑
k=0

(−1)kk2 diverge, car (−1)kk2 ̸−→ 0. En résumé, la série converge

⇔ |x| > 1.

Dé�nition 3.3. Le domaine de convergence d'une série à paramètre x est
D = {x ∈ R | la série converge}.

On a donc D

(
∞∑
k=0

k2

xk

)
= {x ∈ R | |x| > 1} = ]−∞,−1[ ∪ ]1,+∞[.

2)
∞∑
k=0

xk

k!
(pour x ∈ R). Si x = 0, la série vaut 00 + 0 = 1 (et converge donc). Si

x ̸= 0, on utilise d'Alembert:

ρ = lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

|x|k+1

(k + 1)!

k!

|x|k
= lim

k→∞

|x|
k + 1

= 0.

La série converge donc absolument pour tout x ∈ R, et donc D = R. On verra

plus tard que
∞∑
k=0

xk

k!
= ex.

Dé�nition 3.4. Une série entière est une série de la forme
∞∑
k=0

bk(x− a)k, pour x ∈ R.
Le nombre a est le centre de la série.

Exemple:
∞∑
k=0

xk

k!
=

∞∑
k=0

1

k!
(x − 0)k est une série entière de centre 0. De même pour la

série
∞∑
k=0

x2k

(2k)!
=

∞∑
k=0

bkx
k avec bk = 0 si k est impair, et bk =

1

k!
si k est pair. Par

contre,
∞∑
k=0

k2

xk
n'en est pas une.
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Théorème 3.7 (Convergence des séries entières). Soit
∞∑
k=0

bk(x−a)k une série entière.

Alors il existe un unique nombre r ∈ R≥0 ∪ {+∞} appelé rayon de convergence de
la série, tel que la série converge si |x− a| < r et diverge si |x− a| > r.

Idée de la preuve. Appliquer le critère de Cauchy (généralisé).

Remarque 3.4. Les cas |x− a| = r ⇔= x = a± r sont à traiter individuellement. Donc

D

(
∞∑
k=0

bk(x− a)k

)
= ]a− r, a+ r[ ou ]a− r, a+ r] ou [a− r, a+ r[ ou [a− r, a+ r].

Exemple:
∞∑
k=1

(x− 3)k

k · 2k
. C'est une série entière avec bk =

1

k · 2k
. On applique le critère

de d'Alembert (attention: le terme vaut ak =
(x−3)k

k·2k )

ρ = lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = |x− 3| · lim
k→∞

k · 2k

(k + 1)2k+1
=

|x− 3|
2

.

Ainsi la série converge absolument si ρ < 1 ⇔ |x−3|
2

< 1 ⇔ |x − 3| < 2, et diverge si
ρ > 1 ⇔ |x− 3| > 2. Le rayon de convergence vaut donc: r = 2.
On trouve donc D ⊇ ]3− 2, 3 + 2[ = ]1, 5[, et il faut encore véri�er les cas x = 1 et

x = 5. Pour x = 5, on trouve
∞∑
k=1

(5− 3)k

k · 2k
=

∞∑
k=1

1

k
qui diverge (série harmonique), et

pour x = 1, on a
∞∑
k=1

(1− 3)k

k · 2k
=

∞∑
k=1

(−1)k

k
qui converge (série harmonique alternée).

Donc D = [1, 5[.

Remarque 3.5. • Le cas r = +∞ est aussi possible, lorsque la série converge pour
tout x ∈ R = ]−∞,∞[.

• Formules pour le rayon de convergence:

r = lim
k→∞

|bk|−1/k et r = lim
k→∞

∣∣∣∣ bk
bk+1

∣∣∣∣
lorsque ces limites existent. (C'est l'inverse ( 1

...
) des critères de Cauchy/de d'Alem-

bert, mais appliqué à bk et non à ak).
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Chapitre 4: Fonctions

4.1 Rappels

Fonction réelle = f : D → R où D ⊆ R. D = D(f) = domaine = {x | f(x) est
dé�ni}, Im(f) = image = f(D). Le graphe d'une fonction est {(x, y) ∈ R2 | y = f(x)}.
Exemples:

−4 −2 2 4

2

4

6

8
y = x2 y = x2 + a

y = x2 − a
a

−a

y = x2 + a

−b b

y = (x+ b)2 y = (x− b)2

−π −π
2

π
2

π 3π
2

2π

−1

1
y=sin(2x)

y=2 sin(x)

y=sin(x)

Propriétés: Soit f : D → R une fonction réelle.
1) f est croissante (resp. strictement croissante, décroissante, strictement décrois-

sante) sur D si pour tous x1, x2 ∈ D tels que x1 < x2, on a f(x1) ≤ f(x2) (resp.
f(x1) < f(x2), f(x1) ≥ f(x2), f(x1) > f(x2)). f est monotone (resp. strictement
monotone) durD si elle est croissante ou décroissante (resp. strictement croissante
ou strictement décroissante) sur D.

2) f est paire (resp. impaire) si D est symétrique en 0 (i.e. x ∈ D ⇒ −x ∈ D) et
f(−x) = f(x) (resp. f(−x) = −f(x)). Exemple: x2 est paire, x3 est impaire.

3) f est T -périodique pour un T > 0 si f(x + T ) = f(x) pour tout x ∈ D. La
période fondamentale est le plus petit T tel que f soit T -périodique (s'il existe).
Exemple: sin(x) et tan(x) sont 2π-périodiques, mais tan(x) est aussi π-périodique.
Les périodes fondamentales sont 2π pour sin et π pour tan.

4) f est majorée (resp. minorée, bornée) sur A ⊆ D si l'ensemble f(A) = {f(x) |
x ∈ A} ⊆ R est majoré (resp. minoré, borné). On a

sup
x∈A

f(x) = sup f(A), inf
x∈A

f(x) = inf f(A)

et
max
x∈A

f(x) = max f(A), min
x∈A

f(x) = min f(A)

lorsque ces quantités existent. Ex: f(x) = (x − 1)2 + 2, A = ] − 1, 4[. On a
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inf
x∈A

f(x) = 2 = min
x∈A

f(x), sup
x∈A

f(x) = 11,max
x∈A

f(x) n'existe pas.

5) On rappelle que f : X → Y est surjective (resp. injective, bijective) si tout y ∈ Y
a au moins (resp. au plus, exactement) une pré-image x ∈ X tel que y = f(x).
Si f est bijective, sa réciproque est la fonction f−1 : Y → X dé�nie par f−1(y) =
unique x ∈ X tel que f(x) = y. On a donc y = f(x) ⇔ x = f−1(y) ; il suit que
son graphe s'obtient par symétrie de f(x) en la droite y = x. Exemple:

−1 1 2 3 4

−1

1

2

3

4

y = x2

y =
√
x

6) La composée de deux fonctions f : X → Y et g : Y → Z est la fonction

g ◦ f : X → Z
x 7→ g ◦ f(x) = g(f(x))

. Exemple: f(x) =
1

3
√
x2 + 1

est la composée f1 ◦

f2 ◦ f3 ◦ f4(x) avec f4(x) = x2, f3(x) = x+ 1, f2(x) = 3
√
x, f1(x) =

1
x
.

Remarque 4.1. g est la réciproque de f ⇔ f ◦ g(x) = x et g ◦ f(x) = x.

4.2 Limites de fonctions

Exemple: f(x) =
sin(x)

x
. On a D(f) = R∗ = R \ {0}. Que se passe-t-il en 0 ? Rien ! En

e�et: 0 /∈ D. Par contre on dirait que f(x) −→ 1 lorsque x → 0. Graphe:

−2π −π π 2π

1 y=
sin(x)

x

Idée: Formaliser ça. On aimerait dire lim
x→0

f(x) = ℓ. Ingrédients:

1) f(x) doit être dé�nie "un peu autour" de x0, et
2) f doit s'approcher de ℓ lorsque x s'approche de x0.

Dé�nition 4.1. Une fonction f : D → R est dé�nie au voisinage de x0 ∈ R si
]x0 − d, x0[ ∪ ]x0, x0 + d[ ⊆ D(f) pour un d > 0.

Exemple:
sin(x)

x
est dé�nie au voisinage de 0 (on peut choisir n'importe quel d > 0),

même si elle n'est pas dé�nie en 0 !
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Dé�nition 4.2. Soit x0 ∈ R et f : D → R dé�nie au voisinage de x0. Alors f admet
ℓ ∈ R pour limite lorsque x tend vers x0, noté

lim
x→x0

f(x) = ℓ ou f(x)
x→x0−→ ℓ,

si ∀ε > 0∃δ > 0 tel que ∀x ∈ D \ {x0} on a |x− x0| ≤ δ ⇒ |f(x)− ℓ| ≤ ε.

Avec des mots: f(x) est arbitrairement proche de ℓ dès que x est assez proche de x0

(mais ̸= x0). Comparaison avec les suites: an −→ a si an est arbitrairement proche de
ℓ dès que n est assez grand (donc assez proche de l'in�ni).

Remarque 4.2. • On va montrer plus tard que lim
x→0

sin(x)

x
= 1.

• Pour lim
x→x0

f(x), on ne regarde jamais f(x0), mais seulement f(x) pour x proche

de x0. Exemple:

g(x) =

{
sin(x)

x
si x ̸= 0

132 si x = 0
⇒ lim

x→0
g(x)

x ̸=0
= lim

x→0

sin(x)

x
= 1,

malgré le fait que g(0) = 132 ̸= 1.
• lim

x→−1

√
x n'a pas de sens:

√
x n'est pas dé�ni au voisinage de −1.

Exemple: Soit f(x) = 5x− 1, et x0 = 2. Montrons "à la main" que lim
x→2

f(x) = 9.

1) D(f) = R, donc f est bien dé�nie au voisinage de 2.
2) Soit ε > 0. On doit trouver δ > 0 tel que, dès que |x − 2| ≤ δ (et x ̸= 2), on a

|f(x)− 9| ≤ ε. On pose δ = ε
5
. Alors, pour x ̸= 2 tel que |x− 2| ≤ δ, on a

|f(x)− 9| = |5x− 10| = 5|x− 2| ≤ 5δ ≤ ε car δ =
ε

5
.

Comme ε > 0 était arbitraire, on a montré que pour tout ε > 0, il existe un
δ(= ε/5) tel que si x ̸= 2 et |x− 2| ≤ δ, on a |f(x)− 9| ≤ ε. Donc lim

x→2
f(x) = 9.

Heureusement, les suites viennent en aide pour simpli�er les calculs:

Théorème 4.1 (Limites de fonctions et suites). Soit f : D → R dé�nie au voisinage
de x0 ∈ R. Alors lim

x→x0

f(x) = ℓ ⇔ lim
n→∞

f(an) = ℓ pour toute suite (an) ⊆ D(f) \ {x0}
telle que lim

n→∞
an = x0.

Idée: an −→ x0 = manière de s'approcher de x0. Donc f(x) −→ ℓ si f(an) −→ ℓ pour
toute les façons (an) de s'approcher de x0.
Exemple: Redémontrons que si f(x) = 5x− 1, alors lim

x→2
f(x) = 9. Si (an) est une suite

telle que an −→ 2, alors on a

lim
n→∞

f(an) = lim
n→∞

5an − 1
(∗)
= 5 · lim

n→∞
an − 1 = 5 · 2− 1 = 9,

où en (∗), on a utilisé les propriétés algébriques des limites (cf Chap 2.3). Comme c'est
vrai pour toutes les suites (an) qui convergent vers 2, on a bien montré que lim

x→2
f(x) = 9.

Attention: "Toute suite" est important !
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Corollaire 4.2. Si

• ∃(an) ⊆ D \ {x0} tel que an −→ x0 mais lim
n→∞

f(an) n'existe pas, ou

• ∃(an), (bn) ⊆ D\{x0} tel que an −→ x0 et bn −→ x0 mais lim
n→∞

f(an) ̸= lim
n→∞

f(bn),

alors lim
x→x0

f(x) n'existe pas.

Exemple: f(x) = cos( 1
x
). On a D = R \ {0}, donc f est dé�nie au voisinage de 0. On

pose an = 1
2nπ

et bn = 1
(2n+1)π

, de sorte que an −→ 0 et bn −→ 0. Mais lim
n→∞

f(an) =

lim
n→∞

cos(2πn) = 1 et lim
n→∞

f(bn) = lim
n→∞

cos(2πn+π) = −1. Donc lim
x→x0

f(x) n'existe pas.

Remarque 4.3. On pourrait aussi prendre cn = 1
πn

−→ 0. On a alors lim
n→∞

f(cn) =

lim
n→∞

cos(πn) = lim
n→∞

(−1)n qui n'existe pas. Donc lim
x→x0

f(x) n'existe pas non plus.

Propriétés des limites de fonctions. Soit x0 ∈ R et f, g : D → R deux fonctions dé�nies
au voisinage de x0 et telles que lim

x→x0

f(x) et lim
x→x0

g(x) existent. Alors

1) Pour tous p, q ∈ R, on a lim
x→x0

pf(x) + qg(x) = p lim
x→x0

f(x) + q lim
x→x0

g(x).

2) lim
x→x0

f(x)g(x) =

(
lim
x→x0

f(x)

)(
lim
x→x0

g(x)

)
.

3) Si lim
x→x0

g(x) ̸= 0, alors lim
x→x0

f(x)

g(x)
=

lim
x→x0

f(x)

lim
x→x0

g(x)
.

4) Si f(x) ≤ g(x) au voisinage de x0, alors lim
x→x0

f(x) ≤ lim
x→x0

g(x).

5) Si h : D → R est tel que f(x) ≤ h(x) ≤ g(x) au voisinage de x0 et que lim
x→x0

f(x) =

lim
x→x0

g(x) = ℓ, alors lim
x→x0

h(x) = ℓ.

Preuve. Utiliser les suites (point 1) fait en cours).

Remarque 4.4. En utilisant les suites, on peut également montrer que lim
x→x0

f(x) = ℓ1 et

lim
x→x0

f(x) = ℓ2 alors ℓ1 = ℓ2 (unicité de la limite).

4.3 Calculs de limites

0) lim
x→u

c = c, lim
x→u

x = u. En e�et, si f(x) = c et g(x) = x, alors pour toute suite

an −→ u, on a f(an) = c −→ c et g(an) = an −→ u. Donc lim
x→u

f(x) = c et

lim
x→u

g(x) = u.

1) Polynômes: lim
x→u

x2 =
(
lim
x→u

x
)2

= u2 par le produit des limites. Par récurrence, on

trouve lim
x→u

xn = un, et en utilisant la linéarité, on voit que si P (x) = anx
n+ · · ·+

a1x+ a0, alors lim
x→u

P (x) = P (u).
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2) Fonctions rationnelles: f(x) =
P (x)

Q(x)
avec P,Q des polynômes. Si Q(u) ̸= 0, on a

lim
x→u

Q(x) = Q(u) ̸= 0, et on peut appliquer la propriété du quotient des limites

pour trouver lim
x→u

f(x) =
lim
x→u

P (x)

lim
x→u

Q(x)
=

P (u)

Q(u)
. Exemple: lim

x→2

x− 1

3x2 + 4
=

1

16
.

3) lim
x→0

sin(x)

x
= 1 et lim

x→0
cos(x) = 1. En calculant les aires des �-

gures colorées ci-contre, on trouve que
sin(x)

2
≤ x

2
≤ tan(x)

2
. En

divisant par x/2, on trouve
sin(x)

x
≤ 1 ≤ sin(x)

x

1

cos(x)
. En mul-

tipliant l'inégalité de droite par cos(x), on trouve cos(x) ≤ sin(x)
x

.

x

Finalement, comme cos(x) ∈ [0, 1], on a cos(x) ≤ cos2(x) = 1− sin2(x) ≤ 1− x2.
On obtient alors la chaine d'inégalités suivantes (qui est vraie pour 0 < x < π/2,
donc aussi pour −π/2 < x < 0 car ce sont des fonctions paires):

1− x2︸ ︷︷ ︸
−→1

≤ cos(x) ≤ sin(x)

x
≤ 1︸︷︷︸

−→1

Ainsi lim
x→0

cos(x) = 1 et lim
x→0

sin(x)

x
= 1 par le théorème des deux gendarmes.

Proposition 4.3 (Limites de composées). Soient f : A → B et g : B → R telles que

1) lim
x→a

f(x) = b, 2) lim
x→b

g(x) = c et 3) f(x) ̸= b au voisinage de a.

Alors lim
x→a

g(f(x)) = lim
y→b

g(y) = c.

Preuve. On utilise la caractérisation avec les suites (Théorème 4.1). Soit (xn)n ⊂ A\{a}
telle que xn → a. On pose yn = f(xn). Alors yn −→ b par 1), et yn ̸= b par 3). Donc
(yn)n ⊂ B \ {b}, d'où g(f(xn)) = g(yn) −→ c par 2).

Exemples:
• lim

x→1
cos(x12 − 1) = lim

x→1
g(f(x)) où g(x) = cos(x) et f(x) = x12 − 1. On a 1)

lim
x→1

f(x) = lim
x→1

(x12 − 1) = 0, 2) lim
x→0

g(x) = lim
x→0

cos(x) = 1, et 3) x12 − 1 ̸= 0 dès

que x ̸= ±1, donc x12 − 1 ̸= 0 au voisinage de 1. Ainsi lim
x→1

cos(x12 − 1)
y=x12−1

=

lim
y→0

cos(y) = 1.

• lim
x→0

1− cos2(x)

3x2 + sin2(x)
= lim

x→0

sin2(x)/x2

(3x2 + sin2(x)/x2)
=

(
sin(x)

x

)2
3 +

(
sin(x)

x

)2 = lim
y→1

y

3 + y
=

1

4
, où

l'on a fait le changement de variables y =
(

sin(x)
x

)2
; on a y → 1 lorsque x → 0.

• Attention: La condition 3) est importante: Si f(x) = 3 et g(x) =

{
0 si x = 3
2 si x ̸= 3,
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alors lim
x→0

g(f(x)) = lim
x→0

g(3) = 0 ̸= lim
y→3

g(y) = 2. On ne peut donc pas faire le

changement de variables y = f(x).

Proposition 4.4 (Limites de réciproques). Soit f : [a, b] → R strictement monotone.
Soit u ∈ [a, b] et v = f(u). Alors f : [a, b] → Im(f) est bijective, et si f−1 : Im(f) → [a, b]
est dé�nie au voisinage de v, on a lim

x→v
f−1(x) = f−1(v) = u.

Corollaire 4.5. Pour tout n ∈ N, et v ≥ 0, on a lim
x→v

n
√
x = n

√
v.

Preuve. On considère f(x) = xn qui est strictement croissante sur [0, a] pour tout
a ∈ R. Ainsi, lim

x→v
f−1(x) = f−1(v) = n

√
v pour tout v ≥ 0.

4.4 Limites à gauche/droite, limites (vers l')in�ni(es)

On généralise lim
x→u

f(x) = ℓ en 1) lim
x↓u

et lim
x↑u

, 2) lim
x→±∞

et 3) lim f(x) = ±∞.

Dé�nition 4.3. Soit f : D → R dé�nie au voisinage
à gauche
à droite

de u ∈ R (c'est à dire

]u− d, u[ ⊆ D
]u, u+ d[ ⊆ D

pour un d > 0). Alors f admet ℓ ∈ R pour limite
à gauche
à droite

lorsque

x tend vers u, si

∀ε > 0,∃δ > 0 tel que ∀x ∈ D \ {u}, on a
x ∈ [u− δ, u[
x ∈]u, u+ δ]

⇒ |f(x)− ℓ| ≤ ε.

Notation:
• Limite à gauche: lim

x↑u
f(x) = lim

x→u−
f(x) = ℓ.

• Limite à droite: lim
x↓u

f(x) = lim
x→u+

f(x) = ℓ.

Version avec les suites: Pour toute suite (xn) ⊂ D\{u} telle que lim
n→∞

xn = u et
xn < u
xn > u,

on a lim
n→∞

f(xn) = ℓ.

Exemple: Si f(x) =
|x|
x
, alors f(x) =

{
1 si x > 0

−1 si x < 0
. Donc lim

x↑0
f(x) = lim

x↑0
−1 = −1

et lim
x↓0

f(x) = lim
x↓0

1 = 1.

Proposition 4.6. Si f est dé�nie au voisinage de u, alors lim
x→u

f(x) = ℓ ⇔ lim
x↑u

f(x) = ℓ

et lim
x↓u

f(x) = ℓ.

Preuve. Exercice.

Remarque 4.5. Cela montre que lim
x→0

|x|
x

n'existe pas (limites à gauche et à droite ne

sont pas égales).
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Dé�nition 4.4. Soit f : D → R dé�nie au voisinage de
+∞
−∞ (c'est à dire

]a,+∞[ ⊆ D
]−∞, a[⊆ D

pour un a ∈ R). Alors f admet ℓ ∈ R comme limite lorsque x tend vers
+∞
−∞ si

∀ε > 0,∃C ∈ R tel que ∀x ∈ D on a
x ≥ C
x ≤ C

⇒ |f(x)− ℓ| ≤ ε.

Notation: lim
x→±∞

f(x) = ℓ, ou f(x)
x→±∞−→ ℓ. Version avec les suites: Pour toute suite

(xn) ⊂ D telle que lim
n→∞

xn =
+∞
−∞,

on a lim
n→∞

f(xn) = ℓ.

Exemple: lim
x→+∞

1

x
= 0. Soit ε > 0. Posons C = 1

ε
. Alors dès que x ≥ C, on a | 1

x
− 0| =

1
x
≤ 1

C
≤ ε.

Remarque 4.6. On a lim
x→±∞

f(x) = ℓ ⇔ f(x) possède une asymptote horizontale

d'équation y = ℓ.

Dé�nition 4.5. Soit f : D → R déf. au voisinage de u∈R. Alors f(x) tend vers
+∞
−∞

lorsque x tend vers u si

∀A ∈ R,∃δ > 0 tel que ∀x ∈ D \ {u} on a |x− u| ≤ δ ⇒ f(x) ≥ A
f(x) ≤ A.

Notation: lim
x→u

f(x) = ±∞, ou f(x)
x→u−→ ±∞. Version avec les suites: Pour toute suite

(xn) ⊂ D telle que lim
n→∞

xn = u on a lim
n→∞

f(xn) =
+∞
−∞.

Exemple: lim
x→0

1

x2
= +∞. Soit A ∈ R, et posons δ = 1√

A
. Alors, dès que |x− 0| ≤ δ, on

a 1
x2 ≥ 1

δ2
≥ A, car 1

δ2
≥ A ⇔ δ2 ≥ 1

A
.

Remarque 4.7.

• On peut combiner 1), 2), 3): Par exemple, on a lim
x↓0

1

x
= +∞, lim

x↑0

1

x
= −∞,

lim
x→+∞

3x− 1 = +∞.

• On a lim
x→u±

= ±∞ ⇔ f(x) admet une asymptote verticale d'équation x = u.

• Les propriétés algébriques, ainsi que le théorème des deux gendarmes, des com-
posées et des réciproques restent valables pour ces limites généralisées.

• Finalement, les résultats valables pour les suites (+∞ + ∞ = +∞,−∞ − ∞ =
−∞,±∞ + c = ±∞, théorème du gendarme seul, ∞(±∞) = ±∞, c

±∞ = 0)
restent valables pour les limites in�nies. Attention:∞−∞, ∞∞ , 0

0
, 0·∞ sont toujours

des formes indéterminées !
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4.5 Fonctions continues

Dé�nition 4.6. Soit f : D → R déf. au voisinage de u ∈ R. Alors f est continue en u
si lim

x→u
f(x) = f(u).

Remarque 4.8. Cela implique 3 choses: 1) u ∈ D, 2) la limite existe et 3) elle vaut f(u).

Exemples: Polynômes, fonctions rationnelles, n
√
x, sin(x), cos(x), tan(x), arcsin(x),

arccos(x), arctan(x) ex, log(x), . . . sont continues en tout point de leurs domaines (Exer-
cice).

Remarque 4.9. Si f est continue en u ∈ R, et an −→ u, alors

lim
n→∞

f(an) = f
(
lim
n→∞

an

)
= f(u).

Exemple: lim
n→∞

sin( 1
n
) = sin(0) = 0.

Dé�nition 4.7. Soit f dé�nie au voisinage
à gauche
à droite

de u ∈ R. Alors f est continue

à gauche
à droite

en u si
lim
x↑u

f(x)

lim
x↓u

f(x)
= f(u).

Remarque 4.10. f est continue en u ⇔ f est continue à gauche et à droite en u.

Exemple: f(x) =

{
2x+ 1 si x ≥ 0
sin(x)

x
si x < 0.

⇒ f continue en tout x ̸= 0. En x = 0, on a

lim
x↑0

f(x) = lim
x↑0

sin(x)

x
= 1 et lim

x↓0
f(x) = lim

x↓0
2x+ 1 = 1. Donc lim

x→0
f(x) = 1 = f(0), et f

est continue en x = 0. f est donc continue sur R.
Opérations sur les fonctions continues: si f, g sont continues en u, alors f + g, f · g,

αf + βg,
f

g
(si g(u) ̸= 0) sont également continues en u. De plus, si f est continue en

u et g est continue en f(u), alors g ◦ f est continue en u.

Exemple: f(x) =
sin(x2 + 8x+ 1)√
x2 + 5 + cos(x)

est continue en tout u ∈ D(f) = R.

Dé�nition 4.8 (Prolongements par continuité). Si f : D → R est dé�nie au voisinage
de u ∈ R, avec u /∈ D et est telle que lim

x→u
f(x) = ℓ, alors le prolongement par

continuité de f en u est
f̂ : D ∪ {u} −→ R

x 7−→
{

f(x) si x ∈ D
ℓ si x = u.

Remarque 4.11. f̂ : D ∪ {u} → R est l'unique fonction continue telle que f̂(x) = f(x)
si x ̸= u, et f̂(u) = ℓ. Donc f̂ est continue en u.

Exemple: Si f(x) =
sin(x)

x
, avec D(f) = R∗, alors f̂(x) =

{
sin(x)

x
si x ̸= 0

1 si x = 0.
est le

prolongement par continuité de f . (Cette fonction s'appelle parfois sinc(x)).
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Contre-exemple: La fonction f(x) = cos( 1
x
) n'admet pas de prolongement par continuité

en 0 (car lim
x→0

cos( 1
x
) n'existe pas).

Fonctions continues sur un intervalle:

Dé�nition 4.9. Une fonction f : [a, b] → R est continue (jusqu'au bord) si
1) lim

x→u
f(x) = f(u) pour tout u ∈ ]a, b[ (f continue en tout u ∈ ]a, b[),

2) lim
x↓a

f(x) = f(a) (f est continue à droite en a),

3) lim
x↑b

f(x) = f(b) (f est continue à gauche en b).

De manière analogue:
• f : [a, b[ → R est continue si 1) et 2) sont véri�ées.
• f : ]a, b] → R est continue si 1) et 3) sont véri�ées.
• f : ]a, b[ → R est continue si 1) est véri�ée.

Théorème 4.7 (Théorème de la valeur intermédiaire, TVI). Soit f : [a, b] → R continue
(jusqu'au bord). Alors

f([a, b]) =
[

inf
x∈[a,b]

f(x), sup
x∈[a,b]

f(x)
]
.

Remarque 4.12. Cela veut dire que f atteint
• son inf, donc l'inf est un min: inf

x∈[a,b]
f(x) = min

x∈[a,b]
f(x) ∈ R (et ̸= −∞),

• son sup, donc le sup est un max: sup
x∈[a,b]

f(x) = max
x∈[a,b]

f(x) ∈ R (et ̸= +∞),

• toutes les valeurs entre les deux !
De plus, f([a, b]) est donc un intervalle fermé.

Exemple d'application: L'équation cos(x) = x a une solution x ∈ ]0, π
2
[. En e�et, on

dé�nit la fonction
f : [0, π

2
] −→ R
x 7−→ f(x) = cos(x)− x.

Cette fonction est continue (jusqu'au bord), et on remarque que f(0) = cos(0) − 0 =
1 > 0 et f(π

2
) = cos(π

2
)− π

2
= −π

2
< 0. Ainsi par le TVI, on a

f([0, π
2
]) = [ min︸︷︷︸

<0

,max︸︷︷︸
>0

] ∋ 0 ⇒ ∃x0 ∈ [0, π
2
] tel que f(x0) = 0.

Comme f(0) ̸= 0 ̸= f(π
2
), x0 ∈ ]0, π

2
[ , et comme f(x0) = 0 ⇔ cos(x0) = x0, on a trouvé

une solution de l'équation.

Idée de preuve du TVI. Vue en cours.

Corollaire 4.8. Si f : [a, b] → R est continue et que f(a) < 0 et f(b) > 0 (où l'inverse !)
alors il existe u ∈ ]a, b[ tel que f(u) = 0.

Preuve. Voir exemple avec cos(x)− x.
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Corollaire 4.9. Si f : I → R est continue avec I = intervalle (= [a, b], ou [a, b[ , ou
]−∞, b], ...) alors Im(f) = f(I) est un intervalle.

Corollaire 4.10. Soit f : [a, b] → R continue. Alors f est injective ⇔ f est strictement
monotone.

Preuve. Pour ⇐, si x1 ̸= x2, on a soit x1 < x2, soit x1 > x2, d'où f(x1) < f(x2)
ou f(x1) > f(x2), ce qui implique que f(x1) ̸= f(x2). Pour ⇒, supposons que f
n'est pas strictement monotone. Il existe donc u, v, w ∈ [a, b] tels que u < v < w,
mais f(u) < f(v) > f(w) (ou la même chose en échangeant < avec >). Soit alors
y ∈ ] max{f(u), f(w)}, f(v)[ . En appliquant le TVI à f |[u,v] et a f |[v,w], on trouve
deux éléments x1 ∈ ]u, v[ et x2 ∈ ]v, w[ tels que f(x1) = y = f(x2). Comme on a
nécessairement x1 < x2, f n'est pas injective.
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Chapitre 5: Dérivées

5.1 Dé�nition et exemples

Idée: Calculer la pente de la tangente au graphe d'une courbe.

Dé�nition 5.1. Soit f : D → R dé�nie au voisinage de x0 ∈ D. Alors f est dérivable
(ou di�érentiable) en x0 si la limite

lim
h→0

f(x0 + h)− f(x0)

h
def
= f ′(x0) existe ∈ R.

Notations:

• f ′(x0) =
df

dx
(x0) = ∂xf(x0) = Dxf(x0) = ḟ(x0) = · · ·

• f ′(x0) est la dérivée de f en x0.
• f est dérivable si elle est dérivable en tout x0 ∈ D.

Remarque 5.1. • f ′(x0) = pente de la tangente au graphe de f , au point (x0, f(x0)).
• En faisant la substitution x = x0 + h, on trouve la dé�nition équivalente

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

.

Dé�nition 5.2. La fonction dérivée d'une fonction f : D → R est
f : D(f ′) −→ R

x 7−→ f ′(x).

On a D(f ′) = {x ∈ D | f est dérivable en x}.

Exemples:

1) f(x) = x2, x0 ∈ R. On a f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
= lim

h→0

(x0 + h)2 − x0

h
=

lim
h→0

2hx0 + h2

h
= 2x0.

2) f(x) = sin(x), x0 ∈ R. On a

f ′(x0) = lim
h→0

sin(x0 + h)− sin(x0)

h
= lim

h→0

sin(x0) cos(h) + cos(x0) sin(h)− sin(x0)

h

= sin(x0) lim
h→0

cos(h)− 1

h
+ cos(x0) lim

h→0

sin(h)

h
= cos(x0),

où l'on a utilisé que lim
h→0

sin(h)

h
= 1 et les inégalités 1− h2 ≤ cos(h) ≤ 1 ⇒ −h =

1−h2−1
h

≤ cos(h)−1
h

≤ 0, d'où lim
h→0

cos(h)− 1

h
= 0, cf Chapitre 4, section 3.

On montre d'une manière analogue que la dérivée de cos(x) est − sin(x).

Proposition 5.1. Soit f : D → R une fonction réelle.
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1) Si f est dérivable en x0, alors f est continue en x0.
2) f dérivable en x0 ⇔ f(x) = f(x0) + f ′(x0)(x − x0) + (x − x0)ε(x), où ε est une

fonction telle que lim
x→x0

ε(x) = 0.

Remarque 5.2. Avec des mots, 2) est: f(x) = droite + reste qui −→ 0 plus vite que
x− x0.

Preuve. 1) lim
x→x0

f(x) = lim
x→x0

f(x)− f(x0)

x− x0

(x− x0) + f(x0) = f ′(x0) · lim
x→x0

(x− x0) +

f(x0) = f(x0).
2) Esquisse vue en classe.

Remarque 5.3. f continue ̸⇒ f dérivable. Exemple: Si f(x) = |x|, alors f est continue
(partout, donc) en 0, mais on a

lim
h↓0

f(0 + h)− f(0)

h
= lim

h↓0

h

h
= 1 ̸= −1 = lim

h↑0

−h

h
= lim

h↑0

f(0 + h)− f(0)

h
.

Ainsi la limite lim
h→0

f(0 + h)− f(0)

h
n'existe pas, et f n'est donc pas dérivable en 0.

Proposition 5.2 (Opérations algébriques sur les dérivées). Soient f, g : D → R déri-
vables en x0.

1) (p · f + q · g)′(x0) = pf ′(x0) + qg′(x0) pour tous p, q ∈ R.
2) (f · g)′(x0) = (f ′g + fg′)(x0)

3)
(f
g

)′
(x0) =

(f ′g − fg′

g2

)
(x0).

Preuve. Exercice.

Dérivées de fonctions usuelles.

0) f(x) = c ∈ R ⇒ f ′(x) = 0 (la pente est nulle !)
1) f(x) = xn ⇒ f ′(x) = nxn−1 pour tout n ∈ N∗.

Preuve. Par récurrence. Init: (n = 1): f(x) = x, d'où f ′(x) = lim
h→0

(x+ h)− x

h
=

1. Pas de récurrence: Si f(x) = xn+1 = xxn, on trouve, en utilisant la règle du
produit: f ′(x) = (xxn)′ = 1 · xn + x(nxn−1) = (n+ 1)xn.

2) sin′(x) = cos(x) et cos′(x) = − sin(x). Pour tan(x), on utilise la règle du quotient

pour trouver: tan′(x)′ =
( sin(x)
cos(x)

)′
=

sin′(x) cos(x)− sin(x) cos′(x)

cos2(x)
=

=
cos2(x) + sin2(x)

cos2(x)
=

1

cos2(x)
, ou bien 1 + tan2(x).

3) f(x) = x−n pour n ∈ N∗ et x ̸= 0. On écrit x−n = 1
xn puis on utilise la règle du

quotient pour trouver f ′(x) = (−n)x−n−1.

Proposition 5.3 (Dérivée de composée). Soient f : A → B et g : B → R, avec f
dérivable en x0 et g dérivable en f(x0). Alors (g ◦ f)′(x0) = g′(f(x0)) · f ′(x0).
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Preuve. On écrit
g(f(x))− g(f(x0))

x− x0

=
g(f(x))− g(f(x0))

f(x)− f(x0)
· f(x)− f(x0)

x− x0

. Le second

quotient tend vers f ′(x0) lorsque x → x0, et le premier vaut
g(y)− g(y0)

y − y0
(changement

de variables y = f(x), y0 = f(x0)) qui tend vers g′(y0) lorsque x → x0 ⇒ y → y0.

Proposition 5.4 (Dérivée des réciproques). Soit f : I → J bijective et dérivable sur

tout I = intervalle ouvert. Si f ′(x) ̸= 0 pour tout x ∈ I, alors (f−1)′(x) =
1

f ′(f−1(x))
pour tout x ∈ J .

Preuve. On admet que f−1 est dérivable sur tout B. On dérive l'équation x = f(f−1(x))

des deux côtés pour trouver 1 = f ′(f−1(x))(f−1)′(x), d'où (f−1)′(x) =
1

f ′(f−1(x))
.

Exemples:
• n

√
x = f−1(x) où f(x) = xn. (On suppose x > 0). Donc ( n

√
x)′ = (f−1)′(x) =

1

f ′(f−1(x))
=

1

n( n
√
x)n−1

= 1
n
x

1−n
n = 1

n
x

1
n
−1. On montre de manière analogue que

(x
p
q )′ = p

q
x

p
q
−1, et on verra que (xu)′ = uxu−1 pour tout u ∈ R (et x > 0).

• arcsin′(x) =
1

cos(arcsin(x))
pour x ∈]−1, 1[ . Comme α = arcsin(x) ∈ [−π

2
, π
2
], on

a cos(α) ≥ 0, donc cos(α) =
√
cos2(α) =

√
1− sin2(α) et ainsi cos(arcsin(x)) =√

1− sin2(arcsin(x)) =
√
1− x2. Il suit: arcsin′(x) =

1√
1− x2

.

Dé�nition 5.3. lim
h↓0
h↑0

f(x0 + h)− f(x0)

h
= dérivée

à droite
à gauche

de f en x0.

Proposition 5.5. f est dérivable en x0 ⇔ f est dérivable à gauche et à droite en x0,
et les valeurs sont égales.

Exemples:
• f(x) = |x|. En x = 0, la dérivée à droite vaut 1, et la dérivée à gauche vaut −1.
Donc f ′(0) n'existe pas.

• f(x) = 3
√
x. La dérivée n'existe pas en 0 (elle vaut +∞). Détails vus en classe.

Dé�nition 5.4. La dérivée seconde de f est: f ′′(x) = f (2)(x) = (f ′(x))′. La dérivée

d'ordre n est f (n)(x) = (f (n−1)(x))′. Autre notation: f (n)(x) =
dn

dxn
f .

Dé�nition 5.5. Soit I =]a, b[. Alors:
Dn(I) = {f : I → R | f est n fois dérivable sur I}, et

Cn(I) = {f : I → R | f est n fois dérivable sur I et f (n) est continue}.
On dé�nit également C∞(I) = {f : I → R | f (n) existe pour tout n ∈ N}.
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Remarque 5.4. • On a C0(I) = {fonctions continues f : I → R}.
• Comme toute fonction dérivable est continue, on a

C0 ⊇ D1 ⊇ C1 ⊇ D2 ⊇ C2 ⊇ · · · ⊇ Dn ⊇ Cn ⊇ · · · ⊇ C∞.

Exemples:
• (C1 ⊋ D2): La fonction f(x) = x|x| est dérivable, de dérivée f ′(x) = 2|x| continue,
donc f ∈ C1(R). Mais f ′ n'est pas dérivable en 0, d'où f /∈ D2(R) (même si
f ∈ C∞(]−∞, 0[) et ∈ C∞(]0,+∞[)).

Remarque 5.5. De manière analogue, f(x) = xn|x| est dans Cn(R), mais pas dans
Dn+1(R).

• (D1 ⊋ C1). Soit f(x) = x2 cos( 1
x
) si x ̸= 0, prolongée par continuité en 0 via:

f(0) = 0. Alors f ∈ C∞(]−∞, 0[) ∩ C∞(]0,+∞[) et on calcule:
f ′(x) = 2x cos( 1

x
) + x2(− sin(x))−1

x2 = 2x cos( 1
x
) + sin( 1

x
) si x ̸= 0.

En x = 0, on a

lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

h2 cos( 1
h
)

h
= 0.

Donc f est dérivable en 0, et donc partout: f ∈ D1(R). Sa dérivée est:

f ′(x) =

{
2x cos( 1

x
) + sin 1

x
x ̸= 0

0 x = 0.

En revanche, lim
x→0

f ′(x) = lim
x→0

sin( 1
x
) n'existe pas. Donc f ′ n'est pas continue en 0.

Ainsi f /∈ C1(R), même si f ∈ D1(R).

5.2 Dérivée et croissance

Théorème 5.6 (Théorème de Rolle). Soit f : [a, b] → R continue, et dérivable sur
]a, b[. On suppose que f(a) = 0 = f(b). Alors il existe u ∈ ]a, b[ tel que f ′(u) = 0.

Preuve. Par le TVI, f atteint M = max
x∈[a,b]

f(x), qu'on suppose > 0 (si M ≤ 0, on

remplace par le min). Il existe donc u ∈ ]a, b[ tel que f(u) = M . On a alors

f ′(u) = lim
x↓u

f(x)− f(u)

x− u
= lim

x↓u

f(x)−M

x− u
= lim

x↓u

≤ 0

≥ 0
≤ 0 et

f ′(u) = lim
x↑u

f(x)− f(u)

x− u
= lim

x↑u

f(x)−M

x− u
= lim

x↑u

≤ 0

≤ 0
≥ 0.

Donc f ′(u) = 0.

Théorème 5.7 (Théorème des accroissements �nis). Soit f : [a, b] → R continue, et

dérivable sur ]a, b[. Alors il existe u ∈ ]a, b[ tel que f ′(u) =
f(b)− f(a)

b− a
.

Preuve. Application directe du théorème de Rolle, cf Exercices.

Applications du Théorème des Accroissements �nis: Soit f : [a, b] → R continue (jus-
qu'au bord) et dérivable sur ]a, b[.
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1) f ′(x) = 0 ⇔ f(x) = constante. En e�et,⇐ est claire, et pour⇒, si f ̸= constante,
on trouve c < d tel que f(c) ̸= f(d). Le TAF donne alors u ∈ ]c, d[ tel que

f ′(u) =
f(d)− f(c)

d− c
̸= 0.

2) Si g : [a, b] → R est continue et dérivable sur ]a, b[, et si on a f ′(x) = g′(x), alors
f(x) = g(x) + C. En e�et, il su�t d'appliquer le 1) à f − g.

3)
f ′(x) ≥ 0
f ′(x) ≤ 0

∀x ∈ ]a, b[ ⇔ f est
croissante
décroissante

sur [a, b].

(Preuve de la première ligne vue en classe.)

4)
f ′(x) > 0
f ′(x) < 0

∀x ∈ ]a, b[ ⇒ f est
strictement croissante
strictement décroissante

sur [a, b].

Remarque 5.6. Attention, ⇐ du 4) est faux en général. En e�et, la fonction f(x) = x3

est strictement croissante, mais f ′(x) = 3x2 ⇒ f ′(0) = 0, donc f ′ n'est pas > 0 sur R.

Dé�nition de la fonction exponentielle (et logarithme):

Théorème 5.8. Il existe une unique fonction f : R → R telle que f ′(x) = f(x) ∀x ∈ R
et f(0) = 1.

Preuve. Existence: plus tard ! Unicité: 2 étapes:
1) La fonction f véri�e: f(x) ̸= 0 ∀x ∈ R. On pose h(x) = f(x)f(−x). On calcule:

h′(x) = f ′(x)f(−x) + f(x)(−f ′(−x)) = 0, donc h est constante. Comme h(0) =
1 · 1, on trouve h(x) = f(x)f(−x) = 1, d'où f(x) ̸= 0.

2) Unicité. Si g : R → R est une (autre) fonction telle que g′(x) = g(x) et g(0) =

1, alors on pose h(x) =
g(x)

f(x)
(bien dé�nie par l'étape 1). On calcule h′(x) =

g′f − f ′g

f 2
=

gf − fg

f 2
= 0, donc h est constante. Comme h(0) = 1

1
, on trouve

g(x)

f(x)
= 1 ⇒ g(x) = f(x).

Dé�nition 5.6. Cette fonction s'appelle la fonction exponentielle, notée exp(x) (et
ex plus tard).

Propriétés de exp(x):

1) exp′(x) = exp(x) et exp(0) = 1 (découle de la dé�nition). Donc exp ∈ C∞(R).
2) exp(x) ̸= 0 pour tout x ∈ R et exp(−x) = 1

exp(x)
(cf preuve !)

3) exp est strictement croissante sur R. En e�et, exp est continue et ̸= 0, donc > 0
ou < 0. Comme exp(0) = 1, on a exp′(x) = exp(x) > 0.

4) exp(x + y) = exp(x) exp(y) pour tous x, y ∈ R. En e�et, �xons y ∈ R et posons
g(x) = exp(x+y)

exp(y)
. Alors g′(x) = exp′(x+y)

exp(y)
= g(x) et g(0) = exp(y)

exp(y)
= 1. Par unicité, il

suit g(x) = exp(x) ⇔ exp(x+y)
exp(y)

= exp(x) ⇔ exp(x+ y) = exp(x) exp(y).
5) lim

x→+∞
exp(x) = +∞ et lim

x→−∞
exp(x) = 0. En e�et, la seconde limite découlera

de la première (changement de variable y = −x), et pour la première, on pose



46 CHAPITRE 5. DÉRIVÉES

g(x) = exp(x) − x. On a alors g′(x) = exp(x) − 1 > 0 si x > 0 car exp est
strictement croissante. Ainsi, dès que x > 0, g est strictement croissante et donc
exp(x) > x −→ +∞.

6) exp(1) = lim
n→∞

(
1+ 1

n

)n
= e = 2, 7182818 . . . ; en fait, on a exp(x) = lim

n→∞

(
1+ x

n

)n
(cf exercices).
Il suit que exp(2) = exp(1 + 1) = exp(1) · exp(1) = e · e = e2, et par récurrence
que exp(n) = en. En prenant les quotients, on montre que exp(−n) = e−n, puis
les racines, que exp(p

q
) = e

p
q .

Dé�nition 5.7. Pour x ∈ R, on pose ex
def
= exp(x).

Remarque 5.7. exp: R → ]0,+∞[ est strictement croissante, donc injective. La propriété
5) montre qu'elle est surjective (sur ]0,+∞[). Elle est donc bijective !

Dé�nition 5.8. Le logarithme est la réciproque de exp:
log : ]0,+∞[ −→ R

x 7−→ log(x) (= ln(x), autre notation).

Propriétés de exp(x):

1) D(log) = ]0,+∞[ et Im(log) = R. De plus, log(1) = 0, log ∈ C∞(]0,+∞[) et on a
x = exp(log(x)) ⇒ 1 = exp′(log(x)) log′(x) = x log′(x) ⇒ log′(x) = 1

x
si x > 0.

2) log(xy) = log(x) + log(y). (Prendre exp des deux côtés !)
3) log est strictement croissante sur ]0,+∞[.
4) lim

x→+∞
log(x) = +∞ et lim

x↓0
log(x) = −∞. (Changement de variables x = ey.)

Autres bases:

Dé�nition 5.9. Pour a > 0, l'exponentielle en base a est
expa : R −→ ]0,+∞[

x 7−→ ax = expa(x)
def
= exp(log(a) · x).

Pour a > 0,a ̸= 1, le logarithme en base a est la réciproque de expa:
loga : ]0,+∞[ −→ R

x 7−→ loga(x) =
log(x)

log(a)
(exercice facile).

Propriétés (cf exercices) :

• (ax)′ = log(a)ax, et log′a(x) =
1

loga(x)x
.

• ax est strictement croissante (décroissante) si a > 1 (a < 1).
• loga(b

x) = x loga(b).

• Changement de base: logb(x) =
loga(x)

loga(b)
.

Remarque 5.8. Pour u ∈ R et x > 0, on a donc xu = exp(log(x)u), et donc (xu)′ =
exp(log(x)u)u

x
= uxu−1.
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Dé�nition 5.10 (Fonctions trigo hyperboliques).

sinh(x) =
ex − e−x

2
, cosh(x) =

ex + e−x

2
, tanh(x) =

sinh(x)

cosh(x)
.

Remarque 5.9. Comme pour les dé�nitions de sin et cos, mais sans i.

Propriétés (cf exercices) :

• cosh2(x)− sinh2(x) = 1.
• sinh′(x) = cosh(x) et cosh′(x) = sinh(x).
• sinh: R → R est bijective, de réciproque arcsinh(x) = log(x+

√
x2 + 1).

• cosh: [0,+∞[ → [1,+∞[ est bij., de réciproque arccosh(x) = log(x+
√
x2 − 1).

Théorème 5.9 (Règle de Bernoulli-L'Hospital (BH)). Soit x0 ∈ R et A =
]x0 − d, x0[ ∪ ]x0, x0 + d[ un voisinage de x0. Soient f, g : D → R avec A ⊆ D. Si

1) f, g sont dérivables sur A et g′(x) ̸= 0 pour x ∈ A.

2) �

lim
x→x0

f(x)

lim
x→x0

g(x)
=

0

0
ou

∞
∞

� ,

3) lim
x→x0

f ′(x)

g′(x)
= ℓ ∈ R = R ∪ {±∞}.

Alors lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)
= ℓ.

Preuve. Utilise le Théorème des accroissements �nis généralisé (Exercice).

Remarque 5.10. Marche aussi avec lim
x↓x0

, lim
x↑x0

, lim
x→±∞

.

Exemples:

• lim
x→0

sin(x)

x
BH
= lim

x→0

cos(x)

1
= cos(0) = 1.

• lim
x→+∞

xp

log(x)
BH
= lim

x→+∞

pxp−1

1/x
= lim

x→+∞
pxp = +∞ si p > 0, et = 0 si p ≤ 0. Cela

montre que log(x) croît moins vite que tout polynôme.

• lim
x→0

cos(2x)3/x
2

= lim
x→0

exp

(
log(cos(2x))

3

x2

)
= exp

(
lim
x→0

3 log(cos(2x))

x2

)
par

continuité de exp. En appliquant Bernoulli-L'Hospital à la limite intérieure, on

trouve lim
x→0

3 log(cos(2sx))

x2
= 3 · lim

x→0

−2

cos(2x)
· lim
x→0

sin(2x)

2x
= −6, donc la limite

initiale vaut e−6.

Remarque 5.11. Attention: si lim
x→x0

f ′(x)

g′(x)
n'existe pas, alors BH ne marche pas. Par

exemple, lim
x→0

x sin( 1
x
) = 0 (en utilisant les deux gendarmes) mais lim

x→0
x sin( 1

x
) =

lim
x→0

x2 sin( 1
x
)

x

BH

̸= lim
x→0

2x sin( 1
x
)− cos( 1

x
)

1
n'existe pas.

Exemples (déssinables et non-déssinables) de fonctions vus en cours.
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Proposition 5.10. Soit f : D → R une fonction continue en x0 ∈ D, et dérivable au
voisinage de x0 (mais pas nécessairement en x0). Si lim

x→x0

f ′(x) = ℓ ∈ R (limite existe

dans R), alors f est dérivable en x0 et f ′(x0) = ℓ.
Preuve. Utiliser Bernoulli-L'Hospital !

Remarque 5.12. • L'autre direction de la proposition est fausse: la fonction f(x) =
x2 cos( 1

x
) (prolongée par continuité en 0) est dérivable en 0 (on a f ′(0) = 0, voir

exemple à la �n de la section 5.1) bien que lim
x→0

f ′(x) n'existe pas.

• La proposition reste vraie en remplaçant lim
x→x0

par lim
x↓x0

(resp. lim
x↑x0

) et "dérivable"

par "dérivable à droite (resp. à gauche)".

5.3 Études de fonctions

Toute cette section est résumée dans le tableau "Relation entre fonction et dérivées"
disponible sur moodle.

f : I → R, I = ]a, b[ f ′ existe sur I (f ∈ D1(I))
f ′′ existe sur I
(f ∈ D2(I))

f croissante sur I:
∀x1 < x2 on a
f(x1) ≤ f(x2)

f ′(x) ≥ 0 ∀x ∈ I �

f est convexe sur I:
∀x1 < x2 le graphe de f
est en dessous du segment
[(x1, f(x1)), (x2, f(x2))]

f ′ est croissante sur I f ′′(x) ≥ 0 ∀x ∈ I.

Dé�nition 5.11. Soit f : D → R. Alors

• f admet un
maximum
minimum

local en x0 ∈ D si
f(x0) ≥ f(x)
f(x0) ≤ f(x)

pour x dans un voisi-

nage de x0.

• f admet un
maximum
minimum

global en x0 ∈ D si
f(x0) = max

x∈D
f(x)

f(x0) = min
x∈D

f(x)
.

• un extremum de f est un min ou un max de f .

f : I → R, I = ]a, b[
f ′ existe sur I et continue

en x0

f ′′ existe sur I et continue
en x0

f a un max local en x0

f ′(x) = 0 et f ′ passe de +
à − en x0 ⇔ f ′ décroît

autour de x0

f ′′(x) ≤ 0 autour
de x0 ⇐ f ′′(x0) < 0.

f a un min local en x0

f ′(x) = 0 et f ′ passe de −
à + en x0 ⇔ f ′ croît

autour de x0

f ′′(x) ≥ 0 autour
de x0 ⇐ f ′′(x0) > 0.

f a un point d'in�exion
en x0 ⇔ f change de

convexité/concavité en x0

f ′ a un max local ou min
local en x0

f ′′(x0) = 0 et f ′′ change
de signe en x0.
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Dé�nition 5.12. Soit f : D → R. Alors f admet un point stationnaire en x0 si
f ′(x0) = 0.

Recherche d'extrema globaux: Soir f : [a, b] → R continue. Alors les extrema (globaux)
de f sont éléments de
(i) {x0 ∈ ]a, b[| f ′(x0) = 0} (points stationnaires)
(ii) {x0 ∈ ]a, b[| f ′(x0) n'existe pas}
(iii) {a, b} les bords.

5.4 Développements limités

Idée: Approximations de fonctions par des polynômes (ex: sin(x) ≈ x et cos(x) ≈ 1
pour x proche de 0) mais en gardant le contrôle sur l'erreur !

Dé�nition 5.13 (DL en 0). Soit f : D → R avec I = ] − d, d[ ⊆ D (f est dé�nie au
voisinage I de 0, et en 0). Alors f admet un développement limité d'ordre n ∈ N
en 0 s'il existe a0, a1, . . . , an ∈ R et ε : I → R tels que ∀x ∈ I, on a

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n + xnε(x) et lim
x→0

ε(x) = ε(0) = 0.

Donc autour de 0, f = polynôme de degré ≤ n + reste qui −→ 0 plus vite que xn.

Remarque 5.13. Condition équivalente: a0 = f(0) et

ε(x) =


f(x)− (a0 + a1x+ · · ·+ xnx

n)

xn
−→ 0 si x ̸= 0

0 si x = 0.

Exemple: f(x) = sin(x) admet un DL1 en 0. En e�et, on pose a0 = 0 = sin(0) et a1 = 1,
et on a

lim
x→0

f(x)− (a0 + a1x)

x1
= lim

x→0

sin(x)− x

x
= lim

x→0

sin(x)

x
− 1 = 0.

Donc sin(x) = x+ x1ε(x).
On verra que sin(x) admet un DL3 en 0 donné par sin(x) = x− x3

6
+ x3ε(x) ce qui est

très utile pour calculer la limite lim
x→0

sin(x)− x

x3
(détails vus en classe).

Dé�nition 5.14. Soit x0 ∈ R et f : D → R avec I = ]x0− d, x0+ d[ ⊆ D (f est dé�nie
au voisinage I de x0, et en x0). Alors f admet un développement limité d'ordre
n ∈ N en/autour de x0 si f(x + x0) admet un DL d'ordre n en 0 ⇔ f(x + x0) =
a0 + a1x+ a2x

2 + · · ·+ anx
n + xn ε(x)

−→
x→0

0

avec ai ∈ R ⇔

f(x) = a0 + a1(x− x0) + a2(x− x0)
2 + · · ·+ an(x− x0)

n + (x− x0)
nε̃(x)

où ε̃ : I → R est telle que ε(x0) = 0 = lim
x→x0

ε(x).

Proposition 5.11. Soit f : D → R une fonction.

1) Si f admet un DL en x0, alors , alors il est unique.
2) f admet un DL0 en x0 ⇔ f est continue en x0.
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3) f admet un DL1 en x0 ⇔ f est dérivable en x0.

Preuve. Vue en classe.

Exemple: f(x) = |x|.
(i) f(x) = |x| admet un DL0 en 0, car |x| est continue en 0.
(ii) f(x) = |x| n'admet par de DL1 en 0, car |x| n'est pas dérivable en 0.
(iii) f(x) = |x| n'admet par de DLn en 0, pour tout n ≥ 1. Sinon, on aurait

|x| = a0 + a1x+ a2x
2 + · · ·+ anx

n + xnε(x)

= a0 + a1x+ x1
(
a2x+ · · ·+ anx

n−1 + xn−1ε(x)
)
.

= a0 + a1x+ x1ε(x)

pour un autre ε(x) −→ 0. La fonction aurait donc un DL1, contresisant (ii).

Théorème 5.12 (Formule de Taylor). Soit f ∈ Cn(I) avec I = intervalle ouvert ∋ x0.
Alors f admet un DL d'ordre n en x0 donné par

f(x) =
n∑

k=0

f (k)(x0)

k!
(x− x0)

k + xn ε̃(x)
−→

x→x0
0

.

Les ak sont donc donnés par

a0 = f(x0), a1 = f ′(x0), a2 =
f ′′(x0)

2
, a3 =

f (3)(x0)

3!
, . . . , ak =

f (k)(x0)

k!
.

Preuve. Technique !

Remarque 5.14 (Formule pour ε̃(x) utile plus tard)). Si f ∈ Dn+1(I), alors ε̃(x) =
1

(n+1)!
f (n+1)(v)(x− a) pour un v entre x et a.

Développements limités à connaitre (tous en x0 = 0):

• f(x) = sin(x) est dans C∞(R). Il existe donc un DL de n'importe quel ordre, au-
tour de n'importe quel x0 ∈ R ! Pour le DL en 0, on calcule: f (k)(0) = 0, 1, 0,−1, 0,
1, 0,−1, . . . , et donc f (2n)(0) = 0 et f (2n+1) = (−1)n. Ainsi:

sin(x) = x− 1

6
x3 +

1

5!
x5 − 1

x7
x7 + · · ·+ (−1)n

(2n+ 1)!
x2n+1 + x2n+1 ε(x)

−→
x→0

0

(DL2n+1 en 0).

• cos(x) = 1− 1

2
x2 +

1

4!
x4 − 1

6!
x6 + · · ·+ (−1)n

(2n)!
x2n + x2n ε(x)

−→
x→0

0

(DL2n en 0).

• ex = 1 + x+
x2

2
+

x3

3!
+ · · ·+ xn

n!
+ xn ε(x)

−→
x→0

0

(DLn en 0).

• log(1 + x) = x− 1

2
x2 +

1

3
x3 ± · · ·+ (−1)n−1

n
xn + xn ε(x)

−→
x→0

0

(DLn en 0).

• 1

1− x
= 1 + x+ x2 + x3 + · · ·+ xn + xn ε(x)

−→
x→0

0

(DLn en 0).
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• 1

1 + x
= 1− x+ x2 − x3 ± · · ·+ (−1)nxn + xn ε(x)

−→
x→0

0

(DLn en 0).

Application: Calculs de limites !

• lim
x→0

sin(x)− x

x3
= −1

6
(Vu en classe).

• lim
x→0

x2 − 2 + 2 cos(x)

x4
= lim

x→0

x2 − 2 + 2(1− x2

2
+ x4

4!
+ x4ε(x))

x4
=

2

4!
+ lim

x→0
ε(x) =

1

12
.

• lim
x→0

(1 + 3x)1/x = exp

(
lim
x→0

log(1 + 3x)

x

)
= exp

(
lim
x→0

3x+ 3xε(3x)

x

)
=

= exp
(
3 + lim

x→0
ε(3x)

)
= e3.

Calculs de DL:

• Formule de Taylor: Marche toujours mais parfois un peu long.
• Somme/produit de DL: OK (mais véri�er que l'erreur est de la forme xnε(x)).
Exemple: DL de ex + sin(x) cos(x) = (DL de ex) + (DL de sin(x))(DL de cos(x)).

• Composition de DL: OK mais:
DL de g ◦ f en x0 = (DL de g en f(x0)) ◦ (DL de f en x0).

De plus, l'ordre obtenu est toujours (au moins) aussi grand que l'ordre des DL de
f et g.

Exemples:
• DL1 en 0 de f(x) = esin(x). On utilise les DL1 en 0 de ex et de sin(x):

esin(x) = ex+xε(x) = 1 + (x+ xε(x)) + (x+ xε(x))ε2(x+ xε(x)).

= 1 + x+ x(ε(x) + (1 + ε(x))ε2(x+ ε(x))︸ ︷︷ ︸
→0

).

= 1 + x+ x1ε(x).

• DL2 en 0 de f(x) = cos(log(1 + x)). On utilise le DL2 en 0 de cos(x), puis on
tente notre chance avec le DL1 de log(1 + x):

cos(log(1 + x)) = 1− 1

2
(log(1 + x))2 + (log(1 + x))2ε(log(1 + x))

= 1− 1

2
(x+ xε1(x))

2 + (x+ xε1(x))
2ε(x+ xε1(x))

= 1− 1

2
x2 + x2(−ε1(x)− 1

2
ε21(x) + (1 + ε1(x))ε(x+ xε1(x))︸ ︷︷ ︸

→0

)

= 1− 1

2
x2 + x2ε(x).
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• DL1 en 0 de f(x) = ecos(x). ERREUR: on prend les DL1 en 0 de ex et de cos(x):
ecos(x) = e1+xε(x) = 1 + (1 + xε(x)) + (1 + xε(x))ε2(1 + xε(x)).

= 2 + ε2(1 + ε(x)) + · · ·
( ̸= f(0) = ecos(0) = e) + (pas de la forme xε(x))

Solution:
(i) Prendre le DL1 en cos(0) = 1 de ex et le DL1 en 0 de cos(x): On a

ex = e+ e(x− 1) + (x− 1) ε̃(x)
−→
x→1

0

(Formule de Taylor)

D'où:
ecos(x) = e1+xε(x) = e+ e(1 + xε(x)− 1) + (1 + xε(x)− 1)ε̃(1 + xε(x)).

= e+ x(eε(x) + ε(x)ε̃(1 + xε(x))︸ ︷︷ ︸
→0

)

= e+ x1ε(x).

(ii) Réécrire l'expression pour avoir quelque chose qui → 0:
ecos(x) = e1+xε(x) = e · exε(x)

= e ·
(
1 + xε(x) + xε(x)ε2(xε(x))

)
= e+ x(eε(x) + ε(x)ε2(xε(x))︸ ︷︷ ︸

→0

)

= e+ x1ε(x).

Ici cela a fonctionné car xε(x) → 0, donc l'erreur est de la forme voulue.

• DL4 en x0 = 0 de
1

cos(x)
: Idée:

1

cos(x)
=

1

1 + (cos(x)− 1)
=

1

1 + y
, où y =

cos(x)− 1
x→0−→ 0. On va combiner un DL de 1

1+x
avec un DL de cos(x)− 1. On a

1

1 + y
= 1− y + y2 + y2ε(y) et y = cos(x)− 1 = −1

2
x2 + x2ε2(x)

= −1

2
x2 +

1

24
x4 + x4ε4(x).

Donc
1

cos(x)
=

1

1 + y
= 1−

(
− 1

2
x2 +

1

24
x4 + x4ε4(x)

)
+
(
− 1

2
x2 + x2ε2(x)

)2
+
(
− 1

2
x2 + x2ε2(x)

)2
· ε(y).

En développant, on s'aperçoit que tous les termes touchant un terme rouge sont
de la forme x4 ε̃(x)

−→
x→0

0

. Ainsi

1

cos(x)
= 1 +

1

2
x2 − 1

24
x4 +

1

4
x4 + x4ε̃(x) = 1 +

1

2
x2 +

5

24
x4 + x4ε̃(x).
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5.5 Séries de Taylor

Rappel: Si f ∈ Cn(I) avec I = intervalle ouvert ∋ a, on a

f(x) =
n∑

k=0

f (k)(a)

k!
(x− a)k +

rn(x)︷ ︸︸ ︷
(x− a)n ε(x)

−→
x→0

0

Donc, si f ∈ C∞(I), a-t-on f(x) =
∞∑
k=0

f (k)(a)

k!
(x− a)k ? Il faut que 1) la série converge,

et 2) le reste rn(x)
n→∞−→ 0.

Dé�nition 5.15. Pour f ∈ C∞(I) et I = intervalle ouvert ∋ a, la série de Taylor de

f centrée en a est la série
∞∑
k=0

f (k)(a)

k!
(x− a)k.

Remarque 5.15. • C'est une série entière ! (centre = a. Rayon de convergence = ?).
• Si a = 0, on l'appelle aussi Série de MacLaurin.

Exemples:

1) f(x) =
1

1− x
∈ C∞(]− 1, 1[), a = 0. On sait que (i)

1

1− x
=

n∑
k=0

xk + xn ε(x)
−→
x→0

0

, (ii)

les DL sont uniques ⇒ ak =
f (k)(0)

k!
⇒ la série de Taylor de f est

∞∑
k=0

xk, (iii) cette

série converge pour tout x ∈ ]− 1, 1[ et vaut 1
1−x

(Série géométrique). En somme:

pour tout x ∈ ]− 1, 1[, on a
1

1− x
= Taylor

(
1

1− x

)
a=0

=
∞∑
k=0

xk.

2) f(x) = ex ∈ C∞(R), a = 0. On a ex =
n∑

k=0

xk

k!
+ xn ε(x)

−→
x→0

0

(DL en 0). La série de

Taylor est donc
∞∑
k=0

xk

k!
, qui converge pour tout x ∈ R (cf Chapitre 3). Il reste

à voir que rn(x)
n→∞−→ 0. Par la formule du reste (remarque après la formule de

Taylor), on a ε(x) =
1

(n+ 1)!
f (n+1)(v) · x pour un v entre 0 et x. Donc rn(x) =

xnε(x) =
1

(n+ 1)!
evxn+1, et ainsi 0 ≤ |rn(x)| =

ev|x|n+1

(n+ 1)!
≤ e|x|

|x|n+1

(n+ 1)!

n→∞−→ 0.

On a donc ex = Taylor(ex)a=0 =
∞∑
k=0

xk

k!
pour tout x ∈ R.

Proposition 5.13 (Dérivée de séries entières). Si f(x) =
∞∑
k=0

bk(x− a)k avec rayon de

convergence r > 0, alors f ′(x) =
∞∑
k=0

bk+1(k + 1)(x− a)k avec même rayon de conver-
gence r.
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Conséquences:

• On peut dé�nir ex = exp(x)
def
=

∞∑
k=0

xk

k!
pour tout x ∈ R. Alors exp(0) = 0 et

exp′(x) =
∞∑
k=0

(k + 1)xk

(k + 1)!
=

∞∑
k=0

xk

k!
= exp(x). C'est donc (l'unique) solution de

f ′ = f, f(0) = 1.

• Si f(x) =
∞∑
k=0

bk(x−a)k, alors f(a) = b0, f ′(a) = b1, f ′′(a) = 2b2, ..., f (k)(a) = k!bk.

Donc bk =
f (k)(a)

k!
, et cette série est déjà la série de Taylor de f .

Retour aux exemples:

3) log(1 + x) =
n∑

k=1

(−1)k−1

k
xk + xn ε(x)

−→
x→0

0

(DL en 0). La série de Taylor est donc

∞∑
k=1

(−1)k−1

k
xk, de rayon de convergence r = 1. A l'aide de la proposition, on

calcule (
log(1 + x)−

∞∑
k=1

(−1)k−1

k
xk

)′

=
1

1 + x
−

∞∑
k=1

(−1)k−1

k
kxk−1

=
1

1− (−x)
−

∞∑
k=1

(−x)k = 0.

Donc log(1 + x)−
∞∑
k=1

(−1)k−1

k
xk = C, et en remplaçant x = 0, on trouve C = 0.

Ainsi, log(1 + x) =
∞∑
k=1

(−1)k−1

k
xk pour tout x ∈ ]− 1, 1[, et donc aussi pour tout

x ∈ ]− 1, 1] par prolongement par continuité.

4) sin(x) =
∞∑
k=0

(−1)k

(2k + 1)!
x2k+1, cos(x) =

∞∑
k=0

(−1)k

(2k)!
x2k pour tout x ∈ R (exercice).

Remarque 5.16. Cela donne une raison pour la formule eix = cos(x)+ i sin(x). En
e�et, on a:

eix =
∞∑
k=0

(ix)k

k!
=

∞∑
k=0

(ix)2k

(2k)!︸ ︷︷ ︸
termes pairs

+
∞∑
k=0

(ix)2k+1

(2k + 1)!︸ ︷︷ ︸
termes impairs

=
∞∑
k=0

(−1)k

(2k)!
x2k + i

∞∑
k=0

(−1)k

(2k + 1)!
x2k+1 = cos(x) + i sin(x).

5) sinh(x) =
∞∑
k=0

1

(2k + 1)!
x2k+1, cosh(x) =

∞∑
k=0

(2k)!
x2k pour tout x ∈ R.
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6) Contre-exemple à f = Taylor(f): On considère f(x) = e−1/x2
prolongée en x = 0

par f(0) = 0. Alors f ′(x) = 2
x3 e

−1/x2
si x ̸= 0, et on calcule lim

x→0
f ′(x) = 0, ce

qui implique f ′(0) = 0 (cf Prop. 5.10). De manière analogue, on montre alors
par récurrence que f (n)(x) = e−1/x2 · p(1/x) si x ̸= 0, où p est un polynôme,
et que f (n)(0) = 0. Ainsi, f ∈ C∞(R) et f (n)(0) = 0 pour tout n ∈ N, d'où

Taylor(f)a=0 =
∞∑
k=0

0

k!
xk = 0. Mais f(x) = e−1/x2 ̸= Taylor(f)a=0 si x ̸= 0. La

raison est que le DL est f(x) = 0 + rn(x), avec reste rn(x) = e−1/x2
, qui ne tend

pas vers 0 lorsque n → ∞.

Remarque 5.17. Donc sin(x) et sin(x) + e−1/x2
ont la même série de Taylor !
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Chapitre 6: Intégrales

6.1 Primitives et intégrales

Dé�nition 6.1. Soit f : I → R (continue) où I = intervalle. Une primitive de f est
une fonction dérivable F : I → R telle que F ′(x) = f(x) pour tout x ∈ I.

Remarque 6.1. Si F,G sont deux primitives de f , alors (F −G)′ = f − f = 0, et donc
F (x) = G(x) + C.

Notation:
∫
f(x) dx = {primitives de f} = {F (x)+C | C ∈ R}, où F est une primitive

de f .

Abus de notation:
∫
f(x) dx = F (x) + C.

f(x)

∫
f(x) dx

x 1
2
x2 + C

xr(r ̸= −1) 1
r+1

xr+1 + C
1
x

log |x|+ C

ex ex + C

sin(x) − cos(x) + C

cos(x) sin(x) + C

f(x)

∫
f(x) dx

1 + tan2(x) =
1

cos2(x)
tan(x) + C

1

1 + x2
arctan(x) + C

1√
1− x2

arcsin(x) + C

= arccos(x) + C

Remarque 6.2. L'intégrale
∫
f(x) dx s'appelle l'intégrale indé�nie de f .

Changeons d'angle de vue: Si f : [a, b] → R, quelle est l'aire sous la courbe du graphe
de f ? Pour approximer l'aire, on commence par choisir a = x0 < x1 < x2 < · · · < xn = b
(c'est une partition de [a, b]). On obtient:

• Approx. 1 (Inférieure): Aire ≈ aire des rectangles sous la courbe:

Approx. 1 =
n∑

i=1

(
inf

x∈[xi−1,xi]
f(x)

)
· (xi − xi−1)

• Approx. 2 (Supérieure): Aire ≈ aire des rectangles sur la courbe:

Approx. 2 =
n∑

i=1

(
sup

x∈[xi−1,xi]

f(x)

)
· (xi − xi−1)

Remarque 6.3. On a: Approx. 1 ≤ Aire ≤ Approx. 2.

Dé�nition 6.2. Une fonction f : [a, b] → R est intégrable (au sens de Riemann) si
sup{Approx. 1} = inf{Approx. 2} = A ∈ R.

Dans ce cas, on écrit
∫ b

a

f(x) dx = A, c'est l'intégrale dé�nie de f sur [a, b].
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Convention:
∫ a

a

f(x) dx = 0 et
∫ a

b

f(x) dx = −
∫ b

a

f(x) dx.

Remarque 6.4.
∫ b

a

f(x) dx = aire signée sous la courbe.

Théorème 6.1. Si f : [a, b] → R est continue, ou monotone (ou continue partout sauf
en un ensemble �ni de points), alors f est intégrable (au sens de Riemann).

Preuve. Technique ! (Monotone: exercice.)

Proposition 6.2 (Premières propriétés). Soient f, g : [a, b] → R intégrables. Alors

1)

∫ b

a

(αf(x) + βg(x)) dx = α

∫ b

a

f(x) dx+ β

∫ b

a

g(x) dx pour α, β ∈ R.

2) Si a < u < b,

∫ b

a

f(x) dx =

∫ u

a

f(x) dx+

∫ b

u

f(x) dx.

3) Si f(x) ≤ g(x) alors

∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

Preuve. Technique ! (Idée vue en classe).

Remarque 6.5. • Cela dé�nit l'intégrale de Riemann. Il en existe d'autres: Inté-
grale de Lebesgue, intégrale d'Itô, ...

•
∫ b

a

f(x) dx =

∫ b

a

f(y) dy =

∫ b

a

f(ξ) dξ.

• Comme −|f(x)| ≤ f(x) ≤ |f(x)|, le point 3) de la proposition implique∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)| dx.

Théorème 6.3 (Théorème de la moyenne). Soit f : [a, b] → R continue. Alors il existe

u ∈ ]a, b[ tel que

∫ b

a

f(x) dx = f(u)(b− a).

Preuve. Soit m = min
x∈[a,b]

f(x) et M = max
x∈[a,b]

f(x). Alors m ≤ f(x) ≤ M ⇒
∫ b

a

mdx ≤∫ b

a

f(x) dx ≤
∫ b

a

M dx. Comme
∫ b

a

mdx = m(b−a), en divisant par (b−a), on obtient

m ≤ y ≤ M , où y =
1

b− a

∫ b

a

f(x) dx. Par le TVI, f atteint y: il existe donc u ∈ ]a, b[

tel que f(u) = y.

Remarque 6.6. Donc f(u) =
1

b− a

∫ b

a

f(x) dx = valeur moyenne de f sur [a, b].

Lien entre
∫

et
∫ b

a

:
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Théorème 6.4 (Théorème fondamental du calcul intégral). Soit f : [a, b] → R une
fonction continue.

1) La fonction
G : [a, b] −→ R

x 7−→ G(x) =

∫ x

a

f(t) dt

est une primitive de f sur [a, b].

2) Si F est une primitive de f sur [a, b], alors

∫ b

a

f(x) dx = F (b)− F (a).

Preuve. 1) On a

G′(x) = lim
h→0

G(x+ h)−G(x)

h
= lim

h→0

1

h

(∫ x+h

a

f(t) dt−
∫ x

a

f(t) dt

)
= lim

h→0

1

h

∫ x+h

x

f(t) dt = lim
h→0

1

h
f(u) · h = lim

u→x
f(u) = f(x),

où l'on a utilisé le théorème de la moyenne pour trouver u ∈ ]x, x + h[ ; donc
u → x lorsque h → 0.

2) On a F (x) = G(x)+C et donc F (b)−F (a) = G(b)−G(a)+C−C =

∫ b

a

f(t) dt−0.

Notation:
[
F (x)

]b
a
= F (b)− F (a). Donc

∫ b

a

f(x) dx =

[∫
f(x) dx

]b
a

.

6.2 Calcul d'intégrales

Exemples faciles:

1)
∫ π

0

sin(x) dx =
[
− cos(x)

]π
0
= − cos(π) − − cos(0) = 2. Mais

∫ 2π

0

sin(x) dx =[
−cos(x)

]2π
0

= − cos(2π)−− cos(0) = 0 (l'aire négative compense l'aire positive).

2)
∫

(3x+ 1) dx =
3

2
x2 + x+ C.∫

ax dx =

∫
elog(a)x dx =

1

log(a)
elog(a)x + C =

ax

log(a)
+ C.

3)
∫

f(x)f ′(x) dx =
1

2
f(x)2 + C. Ex:

∫
sin(x) cos(x) dx =

1

2
sin2(x) + C

4)
∫

f ′(x)

f(x)
dx = log |f(x)|+C. Ex:

∫
tan(x) dx = −

∫
− sin(x)

cos(x)
= − log | cos(x)|+C.

5)
∫ π/2

0

cos2(x) dx =

∫ π/2

0

1 + cos(2x)

2
dx =

[
x

2
+

sin(2x)

4

]π/2
0

=
π

4
.
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Proposition 6.5 (Changement de variable / Substitution). Soit f : [a, b] → R continue
et φ : [u, v] → [a, b], avec φ ∈ C1([u, v]) et φ(u) = a, φ(v) = v. Alors∫ b

a

f(x) dx =

∫ v

u

f(φ(t))φ′(t) dt.

Preuve. Soit F une primitive de f et G(t) = F (φ(t)). Alors G′(t) = f(φ(t))φ′(t), d'où∫ b

a

f(x) dx = F (b) − F (a) = F (φ(v)) − F (φ(u)) = G(v) − G(u) =

∫ v

u

f(φ(t))φ′(t) dt.

Remarque 6.7. Si φ est bijective, alors F (x) = F (φ(φ−1(x))) = G(φ−1(x)) et donc∫
f(x) dx =

∫
f(φ(t))φ′(t) dt évalué en t = φ−1(x).

Exemples:

•
∫ 1

0

√
1− x2 dx. On considère φ : [0, π

2
] → [0, 1];φ(t) = sin(t). On a φ(0) =

0, φ(π
2
) = a et φ′(t) = cos(t). Écrit plus rapidement: x = sin(t) ⇒ dx

dt
= cos(t) ⇒

dx = cos(t)dt. Ainsi
∫ π

2

0

√
1− sin(t)2 cos(t) dt =

∫ π
2

0

cos2(t) dt =
π

4

•
∫ √

1− x2 dx. On pose φ : [−π
2
, π
2
] → [−1, 1];φ(t) = sin(t). Alors φ est bijective,

et donc
∫ √

1− x2 dx =

∫ √
1− sin(t)2 cos(t) dt =

∫
cos2(t) dt =

1

2
t+

1

4
sin(2t)+

C =
1

2
t +

1

2
sin(t)

√
1− sin(t)2 évalué en t = arcsin(x). Donc l'intégrale vaut

1
2
arcsin(x) + 1

2
x
√
1− x2.

Remarque 6.8. On peut aussi exprimer t en fonction de x. Exemple:
∫
ex

2

x dx. On

substitue t = x2 ⇒ dt = 2x dx ⇒ x dx = dt
2
pour trouver

∫
et 1

2
dt = 1

2
et+C = 1

2
ex

2

+C.

Comment choisir la bonne substitution ? Di�cile en général. Exemples

•
∫

ex
2

x dx,

∫
sin(x2)x dx: t = x2 = "ce qu'il y a dedans".

•
∫

x

1 + x2
dx,

∫
sin(x)

(1 + cos(x))3
dx: t = "ce qu'il y a dessous, ou dedans dessous".

•
∫ √

1− x2 dx,

∫ √
1 + x2 dx: t = sin(x) ou sinh(x) = "ce qui forme un cos2+

sin2 = 1 ou cosh2− sinh2 = 1".

• Fonctions rationnelles en sin, cos:
∫

1

sin(x)
dx,

∫
1

sin4(x)
dx. Ici, on substitue t =

tan(x) "si les racines disparaissent" (et donc dx = dt
1+t2

, sin(x) = t√
1+t2

, cos(x) =
1√
1+t2

) et t = tan(x
2
) sinon (et donc dx = 2dt

1+t2
, sin(x) = 2t

1+t2
, cos(x) = 1−t2

1+t2
).
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Exemples:

•
∫

1

sin(x)
. On pose t = tan(x

2
) pour trouver

∫
1 + t2

2t
· 2

1 + t2
dt =

∫
1

t
dt =

log |t|+ C = log |tan(x
2
)|+ C.

•
∫

1

sin4(x)
. On substitue t = tan(x) pour trouver

∫
(1 + t2)2

t4
· 1

1 + t2
dt =∫

t−4 + t−2 dt =
t−3

−3
+

t−1

−1
+ C = − 1

3 tan3(x)
− 1

tan(x)
+ C

Proposition 6.6 (Intégration par parties). Soit f ∈ C0([a, b]), g ∈ C1([a, b)] et F une
primitive de f . Alors∫ b

a

f(x)︸︷︷︸
↑

g(x)︸︷︷︸
↓

dx =
[
F (x)g(x)

]b
a
−
∫ b

a

F (x)g′(x) dx.

Preuve. On a (Fg)′ = F ′g + Fg′ = fg + Fg′ et donc
∫ b

a

fg dx =

∫ b

a

(Fg)′ dx −∫
Fg′ dx =

[
Fg
]b
a
−
∫

Fg′ dx.

Remarque 6.9. Cela montre au passage que
∫
f(x)g(x) dx = F (x)g(x)−

∫
F (x)g′(x) dx.

Exemples:

1)
∫

ex︸︷︷︸
↑

x︸︷︷︸
↓

dx = exx−
∫

ex dx = ex(x− 1) + C.

2)
∫

log(x) dx =

∫
log(x)︸ ︷︷ ︸

↓

1︸︷︷︸
↑

dx = log(x)x−
∫

1

x
· x dx = x log(x)− x+ C.

3)
∫

cos(x)2 dx =

∫
cos(x)︸ ︷︷ ︸

↑

cos(x)︸ ︷︷ ︸
↓

dx = sin(x) cos(x)+

∫
sin2(x)︸ ︷︷ ︸

=1−cos2(x)

dx = sin(x) cos(x)+

x−
∫

cos(x)2 dx. Ainsi, si I =

∫
cos(x)2 dx, on a I = sin(x) cos(x) + x− I, d'où

I = 1
2
(sin(x) cos(x) + x)) + C.

4) (Intégration par récurrence)

An =

∫ π/2

0

cos2n(x) dx =

∫ π/2

0

cos(x)︸ ︷︷ ︸
↑

cos2n−1(x)︸ ︷︷ ︸
↓

dx

=
[
sin(x) cos2n−1(x)

]π/2
0

−
∫ π/2

0

sin(x)(2n− 1) cos2n−2(x)(− sin(x)) dx

= 0 + (2n− 1)

∫ π/2

0

sin(x)︸ ︷︷ ︸
=1−cos2(x)

cos2n−2(x) dx
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= (2n− 1)

∫ π/2

0

cos2(n−1)(x) dx− (2n− 1)

∫ π/2

0

cos2n(x) dx

= (2n− 1)An−1 − (2n− 1)An.

Ainsi 2nAn = (2n − 1)An−1, d'où An = 2n−1
2n

An−1 et A0 = π
2
. Cela permet de

calculer tous les An récursivement. (Autre formule vue en classe).

Intégration de fonctions rationnelles:
p(x)

q(x)
, où p(x), q(x) = polynômes.

Building Blocks :

(i)
∫

1

x+ d
dx = log |x + d| + C. Donc, on a

∫
1

ax+ d
dx =

1

a

∫
1

x+ d/a
dx =

1

a
log |x+ d/a|+ C.

(ii)
∫

1

(x+ a)k
dx =

∫
(x+ d)−k dx =

−1

k − 1

1

(x+ a)k−1
+ C.

(iii)
∫

1

x2 + 1
dx = arctan(x)+C. Donc, en substituant u = x/d, on a

∫
1

x2 + d2
dx =∫

1

d2u2 + d2
· d · du =

1

d

∫
1

u2 + 1
du =

1

d
arctan(

x

d
) +C. De plus, si le polynôme

x2 + bx + c a un discriminant ∆ = b2 − 4c < 0, on peut écrire x2 + bx + c =

(x+ b
2
)2 +

−∆

4︸︷︷︸
=d2

et donc, en substituant u = x+b/2
d

, on trouve

∫
1

x2 + bx+ c
dx =

∫
1

(x+ b
2
)2 + d2

dx =

∫
1

d2u2 + d2
· d · du

=
1

d
arctan

(
x+ b/2

d

)
+ C.

(iv)
∫

2x+ b

x2 + bx+ c
dx = log |x2 + bx+ c|+ C.

(v)
∫

2x+ b

(x2 + bx+ c)k
dx: on substitue u = x2 + bx + c, pour trouver

∫
u−k du =

1

1− k
u1−k + C =

1

1− k
(x2 + bx+ c)1−k + C.

(vi)
∫

1

(x2 + bx+ c)k
dx = . . . Formule par récurrence (cf exercices).

A l'aide de (i) - (vi), on peut intégrer tout f(x) = p(x)
q(x)

à l'aide de la décomposition en
éléments simples. Méthode:

1) Si deg(p) ≥ deg(q), division polynomiale ! Exemple:
∫

3x4 + 6

x4 − x3 − x+ 1
dx =∫

3(x4 − x3 − x+ 1)

x4 − x3 − x+ 1
+

3x3 + 3x+ 3

x4 − x3 − x+ 1
dx = 3x+

∫
3x3 + 3x+ 3

x4 − x3 − x+ 1
dx.
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2) Factoriser q(x) et décomposer:
p(x)

q(x)
=

A

x− u

A1

x− u
+

A2

(x− u)2
+ · · ·+ Ak

(x− u)k

pour chaque facteur x− u (x− u)k

Ax+B

ax2 + bx+ c

A1x+B1

ax2 + bx+ c
+ · · ·+ Akx+Bk

(ax2 + bx+ c)k

pour chaque facteur (ax2 + bx+ c) (ax2 + bx+ c)k

Exemple: q(x) = x4 − x3 + x − 1 = x3(x − 1) − (x − 1) = (x − 1)(x3 − 1) =
(x− 1)2(x2 + x+ 1). On décompose:

3x3 + 3x+ 3

x4 − x3 − x+ 1
=

A1

x− 1
+

A2

(x− 1)2
+

A3x+B3

x2 + x+ 1

=
(A1 + A3)x

3 + (A2 − 2A3 +B3)x
2 + (A2 + A3 − 2B3)x+ (−A1 + A2 +B3)

x4 − x3 − x+ 1
.

En comparant les coe�cients, on trouve A1 = 1, A2 = 3, A3 = 2, B3 = 1. Donc
3x3 + 3x+ 3

x4 − x3 − x+ 1
=

1

x− 1
+

3

(x− 1)2
+

2x+ 1

x2 + x+ 1
.

3) Intégrer les éléments simples ! Exemple:
∫

1

x− 1
dx = log |x − 1| + C,∫

3

(x− 1)2
dx =

−3

x− 1
+ C,

∫
2x+ 1

x2 + x+ 1
dx = log |x2 + x+ 1|+ C. Ainsi:∫

3x4 + 6

x4 − x3 − x+ 1
dx = 3x+ log |x− 1|+ −3

x− 1
+ log(x2 + x+ 1) + C.

6.3 Intégrales généralisées / impropres

On a vu que si f : [a, b] → R est continue, l'intégrale
∫ b

a

f(x) dx représente l'aire (signée)

sous la courbe. On aimerait généraliser cela à f : ]a, b[ → R et f : ]−∞,∞[ → R.

Exemples:
∫ 1

0

log(x) dx =?,
∫ +∞

0

e−x dx =?

Problème: L'Approx. 1 ou l'Approx. 2 est toujours ±∞. Solution: Limites !

Dé�nition 6.3. Soit f : I → R continue, où I = intervalle.

1) Si I = [a, b[ (avec b ∈ R ∪ {+∞}), alors
∫ b−

a

f(x) dx
def
= lim

u↑b

∫ u

a

f(x) dx.

2) Si I = ]a, b] (avec a ∈ R ∪ {−∞}), alors
∫ b

a+
f(x) dx

def
= lim

u↓a

∫ b

u

f(x) dx.

3) Si I = ]a, b[ (avec a ∈ R ∪ {−∞}, b ∈ R ∪ {+∞}), alors∫ b−

a+
f(x) dx

def
=

∫ w

a+
f(x) dx+

∫ b−

w

f(x) dx = lim
u↓a

∫ w

u

f(x) + lim
v↑b

∫ v

w

f(x) dx,

où w ∈ ]a, b[ est arbitraire.
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Remarque 6.10. • Ce sont des intégrales généralisées/impropres.
• L'intégrale converge si la (les ! ) limite existe ∈ R, et elle diverge sinon.
• Pour 3), on peut montrer que le résultat est indépendant du w choisi.

Notation:
∫ +∞−

a

=

∫ +∞

a

,

∫ b

−∞+

=

∫ b

−∞
. Exemples:

1)
∫ 1

0+
log(x) dx = lim

u↓0

∫ 1

u

log(x) dx = lim
u↓0

[
x log(x)−x

]1
u
= lim

u↓0

(
−1−u log(u)−u

)
=

−1− lim
v→+∞

log(1/v)

v
= −1 + lim

v→+∞

log(v)

v
BH
= −1 + 0 = −1.

2)
∫ +∞

0

e−x dx = lim
u→+∞

∫ u

0

e−x dx = lim
u→+∞

[
− e−x

]u
0
= lim

u→+∞
(1− e−u) = 1.

3) Pour r > 0, on a
∫ 1

0+

1

xr
dx =

{
1

1−r
si r ≤ 1

+∞ si r > 1.
(Vu en classe.)

Exercice:
∫ +∞

1

1

xr
dx =

{
+∞ si r ≤ 1
1

r−1
si r > 1.

4) ∫ +∞

−∞

1

1 + x2
dx =

∫ 0

−∞

1

1 + x2
dx+

∫ +∞

0

1

1 + x2
dx

= lim
u→−∞

[
arctan(x)

]0
u
+ lim

v→+∞

[
arctan(x)

]v
0

= 0− lim
u→−∞

arctan(u) + lim
v→+∞

arctan(v)− 0 = −− π

2
+

π

2
= π.

Remarque 6.11. Si
∫ +∞

−∞
f(x) dx converge (i.e. si les deux limites existent ∈ R) alors

cette intégrale vaut lim
u→+∞

∫ u

−u

f(x) dx (c'est la valeur principale de Cauchy de l'in-
tégrale).

Mais attention:

5)
∫ +∞

−∞
x dx

def
=

∫ 0

−∞
x dx +

∫ +∞

0

x dx = lim
u→−∞

−u2

2
+ lim

v→+∞

v2

2
= −∞ + ∞, donc

l'intégrale diverge. En revanche, sa valeur principale de Cauchy existe et vaut

lim
u→+∞

∫ u

−u

x dx = lim
u→+∞

[x2

2

]u
−u

= lim
u→+∞

u2

2
− u2

2
= 0. Ce n'est donc pas la

valeur de l'intégrale.

Proposition 6.7 (Comparaison d'intégrales). Soient f, g : [a, b[→ R continues telles
que 0 ≤ f(x) ≤ g(x) pour tout x ∈ [a, b[. Alors

1)

∫ b−

a

g(x) dx converge ⇒
∫ b−

a

f(x) dx converge

2)

∫ b−

a

f(x) dx diverge ⇒
∫ b−

a

g(x) dx diverge.

Preuve. Théorème du gendarme seul !
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Remarque 6.12. Marche aussi avec
∫ b

a+
et
∫ b−

a+
.

Exemple:
∫ 1−

0

1√
1− t3

dt converge par comparaison. En e�et, pour t ∈ [0, 1[, on a

t3 ≤ t ⇒ 1 − t3 ≤ 1 − t ⇒
√
1− t3 ≥

√
1− t ⇒ 1√

1− t3
≤ 1√

1− t
et en substituant

x = 1− t, on trouve
∫ 1−

0

1√
1− t

dt =

∫ 1

0+

1√
x
dx qui converge.

Proposition 6.8 (Comparaison intégrale/série). Soit f : [n0,+∞[→ R une fonction po-

sitive (f(x) ≥ 0), continue et décroissante (pour x assez grand). Alors la série
∞∑

n=n0

f(n)

et l'intégrale

∫ +∞

n0

f(x) dx convergent/divergent en même temps.

Preuve visuelle. Vue en classe.

Exemples:

•
∞∑
n=1

1

np
converge ⇔

∫ +∞

1

1

xp
dx converge ⇔ p > 1.

•
∞∑
n=2

1

n(log(n))p
converge ⇔

∫ +∞

2

1

x(log(x))p
dx. En substituant u = log(x), cette

intégrale vaut
∫ +∞

log(2)

1

eu · up
eudu =

∫ +∞

log(2)

1

up
dx qui converge ⇔ p > 1. Ainsi la

série
∞∑
n=2

1

n(log(n))p
converge si et seulement si p > 1.

En particulier, la série
∞∑
n=2

1

n log(n)
diverge, mais

∞∑
n=2

1

n log(n)2
converge !


