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Analyse avancée II – Corrigé de la série 2B

Échauffement. (Linéarité)

i) Soit y = αy1 + βy2. Alors, par la linéarité de la dérivée on a y′ + p(x)y = (αy1 + βy2)
′ +

p(x) (αy1 + βy2) = (αy′1 + βy′2) + p(x) (αy1 + βy2) = α (y′1 + p(x)y1) + β (y′2 + p(x)y2) =
αq(x) + βq(x) = (α + β)q(x) = q(x).

ii) Soit y = y1 − y2. Alors, par la linéarité de la dérivée on a y′ + p(x)y = (y1 − y2)′ +
p(x) (y1 − y2) = (y′1 − y′2)+p(x) (y1 − y2) = (y′1 + p(x)y1)− (y′2 + p(x)y2) = q(x)− q(x) =
0.

Exercice 1. (Solution générale et problème de Cauchy)

i) Solution générale

Pour commencer on constate que y(x) = 0, x ∈ R, est une solution. On procède par
séparation des variables:

d

2y3 + 3xy2
dy

dx
= 0

y 6= 0
⇔

x 6= 0
3
dy

y
= −2

dx

x

et après intégration
3 ln (|y|) = −2 ln (|x|) + ln (C)

où C > 0. A noter que, la fonction ln : R+ → R étant bijective,
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toute constante dans R peut être représentée sous cette forme). c

On obtient donc

ln
(
|y(x)|3

)
= ln

(
C

|x|2

)
, x 6= 0, C > 0

=⇒ |y(x)|3 =
C

|x|2
, x 6= 0, C > 0,

=⇒ |y(x)| = C

|x|
2
3

, x 6= 0, C > 0,

=⇒ y(x) =
C

|x|
2
3

, x 6= 0, C ∈ R∗.

La solution générale est donc

{ y(x) = 0, x ∈ R;

∀C ∈ R∗, y(x) = C

x
2
3
, x ∈ R∗+;

∀C ∈ R∗, y(x) = C

(−x)
2
3
, x ∈ R∗− }

et graphiquement :

avec la solution y(x) = 0 (jaune), ainsi que les solutions ∀C > 0, y(x) = C
x2/3 (ligne noire),

ainsi que les solutions ∀C < 0, y(x) = C
x2/3 (ligne rouge), ainsi que les solutions ∀C > 0,

y(x) = C

(−x)2/3
(ligne verte), ainsi que les solutions ∀C < 0, y(x) = C

(−x)2/3
(ligne bleue).
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ii) Solutions des problèmes de Cauchy

(a) Cas y(1) = 2. On a x > 0 et C > 0. On a y(1) = C
12/3

= C
!

= 2, et donc C = 2.
Donc y(x) = 2

x2/3 , x ∈ ]0,∞[ (solution maximale).

(b) Cas y(1) = −2. On a x > 0 et C < 0. On a y(1) = C
12/3

= C
!

= −2, et donc C = −2.
Donc y(x) = −2

x2/3 , x ∈ ]0,∞[ (solution maximale).

(c) Cas y(−1) = 2. On a x < 0 et C > 0. On a y(−1) = C
12/3

= C
!

= 2, et donc C = 2.
Donc y(x) = 2

(−x)2/3
, x ∈ ]−∞, 0[ (solution maximale).

(d) Cas y(−1) = −2. On a x < 0 et C < 0. On a y(−1) = C
12/3

= C
!

= −2, et donc
C = −2. Donc y(x) = −2

(−x)2/3
, x ∈ ]−∞, 0[ (solution maximale).

(e) Cas y(0) = 0. La solution maximale est y(x) = 0, x ∈ R.

Exercice 2. (Familles de courbes orthogonales)

i) Il faut d’abord trouver l’équation différentielle de la famille de courbes données qui s’obtient
en dérivant l’équation xy = c des deux côtés par rapport à x (”dérivation implicite”, cf.
Analyse I). Ceci donne xy′ + y = 0 . L’équation différentielle des courbes orthogonales se
déduit en remplaçant y′ par −1/y′ (cf. cours):

− x
y′

+ y = 0 ⇒ yy′ − x = 0.

Par séparation des variables et par intégration, on obtient y2 − x2 = C pour C ∈ R qui
sont des équations d’hyperboles (voir Fig. 1).

ii) Par dérivation implicite de l’équation y3 = cx2, on obtient 3y2y′ = 2cx . Pour obtenir
l’équation différentielle de la famille donnée, il faut éliminer la constante c en la remplaçant
par son expression dans l’équation initiale, c.-à-d. par y3/x2 :

3xy′ = 2y .

L’équation différentielle de la famille des courbes orthogonales est donc

−3x

y′
= 2y ⇒ 2yy′ + 3x = 0 .

De nouveau par séparation des variables et par intégration, on obtient

y2 = −3

2
x2 + C̃ ⇔ 3x2 + 2y2 = C pour C̃, C ∈ R ,

qui sont des équations d’ellipses (voir Fig. 2).

iii) Il faut de nouveau d’abord trouver l’équation différentielle de la famille de courbes données
qui s’obtient en dérivant l’équation x2+2y2 = c des deux côtés par rapport à x (”dérivation
implicite”, cf. Analyse I). Ceci donne 2x+ 4yy′ = 0 . L’équation différentielle des courbes
orthogonales se déduit en remplaçant y′ par −1/y′ (cf. cours):

2x+ 4yy′ = 0 ⇒ 2x+ 4y

(
−1

y′

)
= 0.
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Par séparation des variables et par intégration, on obtient y = Cx2 pour C ∈ R qui sont
des équations de paraboles (voir Fig. 3). Il manque la courbe x = 0 qui n’est pas le graphe
d’une fonction de x. Elle peut être obtenue de y = Cx2 après division par C dans la limite
C →∞ (voir plus loin dans le cours).

Exercice 3. (Équations linéaires)

i) L’équation est de la forme y′ + p(x)y = q(x) avec p(x) = 4 et q(x) = 3 sin(2x).

(a) La solution de l’équation homogène est y0(x) = e−4x, avec x ∈ R.

(b) Selon la méthode des coefficients indéterminés (voir le cours, méthode c) avec r =
λ = 0, α = 2, q(x) ∈ vect {sin(2x)} ⇒ yp(x) ∈ vect {sin(2x), cos(2x)} on pose :

yp(x) = C1 sin(2x) + C2 cos(2x).

On obtient (substitution dans l’équation)

C12 cos(2x)− C22 sin(2x) + 4C1 sin(2x) + 4C2 cos(2x) = 3 sin(2x) + 0 cos(2x)

et en comparant les coefficients on trouve les équations 2C1 + 4C2 = 0 et 4C1 −
2C2 = 3, avec la solution (voir algèbre linéaire) C1 =

3

5
et C2 = − 3

10
. On a donc

yp(x) =
3

5
sin(2x)− 3

10
cos(2x).

(c) La solution générale est : ∀C ∈ R, y(x) = yp(x) + Ce−4x, avec x ∈ R.

ii) L’équation est de la forme y′ + p(x)y = q(x) avec p(x) =
x

1 + x2
et q(x) =

4x√
1 + x2

.

(a) La solution de l’équation homogène est y0(x) =
1√

1 + x2
.

(b) On pose yp(x) = C(x)y0(x) et l’on obtient l’équation C ′(x) = 4x et donc C(x) = 2x2

et yp(x) =
2x2√
1 + x2

(c) La solution générale est ∀C ∈ R, y(x) =
2x2 + C√

1 + x2
, avec x ∈ R.

Exercice 4. (Équations de Bernoulli)

i) Tout d’abord on a la solution triviale y(x) = 0 pour x ∈ R. Pour trouver des solutions
non-triviales on procède comme au cours (§ 1.6.2). On pose u = y1−4 = y−3 , u′ = −3y−4y′

et on multiplie l’équation donnée par − 3
y4

:

y′ − y = x y4 ⇒ − 3

y4
y′ +

3

y3
= −3x ⇒ u′ + 3u = −3x .

Comme l’équation différentielle en u ainsi obtenue est linéaire, on peut la résoudre en trou-
vant une solution de l’équation homogène associée et une solution particulière de l’équation
complète par la méthode des coefficients indéterminés. On trouve

uhom(x) = Ce−3x, C ∈ R et upart(x) = Ax+B avec A = −1, B =
1

3
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si bien que la solution générale est{
∀C ∈ R, u(x) = uhom(x) + upart(x) = Ce−3x +

1

3
− x, x ∈ R

}
.

Les solutions y de l’équation initiale satisfont y3 = 1
u
, c’est-à-dire

y(x) =
1

3
√
u(x)

sur les intervalles ouverts sur lesquels u(x) > 0 ,

y(x) = − 1
3
√
−u(x)

sur les intervalles ouverts sur lesquels u(x) < 0 .

Pour trouver les intervalles de définition il faut donc, pour chaque valeur de C, subdiviser
le domaine de u en des intervalles ouverts sur lesquelles la fonction u correspondante ne
s’annule pas. Pour illustrer ces domaines de définition de y(x), on considère les trois valeurs
de C pour lesquelles la fonction u(x) est représentée à la Fig. 1.

En notant les solutions avec C = c par yc et uc, on a

y2(x) =
1

3
√
u2(x)

, x ∈ ]−∞, b[

y2(x) = − 1
3
√
−u2(x)

, x ∈ ]b,∞[

y−0.2(x) = − 1
3
√
−u−0.2(x)

, x ∈ ]−∞, a1[

y−0.2(x) =
1

3
√
u−0.2(x)

, x ∈ ]a1, a2[

y−0.2(x) = − 1
3
√
−u−0.2(x)

, x ∈ ]a2,∞[

y1(x) = − 1
3
√
−u1(x)

, x ∈ ]−∞,∞[

-1 a1 a2 b 1
x

-2

-1

1

2

3

uHxL

Figure 4: : Fonctions u(x) de l’Ex. 2i pour C = 2, C = −0.2 et C = −1 (du haut en bas).

ii) Comme pour toute équation différentielle de Bernoulli on a la solution triviale y(x) = 0
pour x ∈ R. Pour trouver les solutions non triviales, on fait la substitution u = y1−3 =
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y−2 , u′ = −2y−3y′ et on multiplie l’équation donnée par − 2
y3

pour obtenir une équation
différentielle linéaire en u :

y′+ 4y = 2(x+ 1)y3 ⇔ −2y′

y3
− 8

y2
= −4(x+ 1) ⇔ u′− 8u = −4(x+ 1) .

On trouve sa solution générale comme au point i) :

uhom(x) = Ce8x, C ∈ R et upart(x) = Ax+B avec A =
1

2
, B =

9

16

et donc la solution générale{
∀C ∈ R, u(x) = uhom(x) + upart(x) = Ce8x +

8x+ 9

16
, x ∈ R

}
.

Cette fois pour remonter de u à y il faut restreindre le domaine de u à des intervalles
ouverts où u > 0, car les solutions y de l’équation initiale satisfont 1

y2
= u, c’est-à-dire,

donné C ∈ R,

y(x) =
1√
u(x)

=
1√

Ce8x + 8x+9
16

, x ∈ ]a, b[ ,

où a, b ∈ R ∪ {±∞} sont tels que u(x) > 0 pour tout x ∈ ]a, b[ .

iii) De nouveau faut effectuer le changement de variable u = 1/y2, u′ = − 2
y3
y′ afin d’obtenir

une équation linéaire :

y′ +
y

x
= x2y3 ⇔ − 2

y3
y′ +− 2

y3
y

x
= − 2

y3
x2y3 ⇔ u′ − 2u

x
= −2x2 .

On a

uhom(x) = C exp(−
∫
−2

x
dx) = C exp(2 ln |x|) = Cx2, C ∈ R

et on pose (variation de la constante) upart(x) = C(x)x2 comme solution particulière. Ainsi

C ′(x)x2 = −2x2 ⇐ C ′(x) = −2

dont une solution est C(x) = −2x. On obtient donc comme solution particulière

upart(x) = −2x3

et donc la solution générale{
∀C ∈ R, u(x) = Cx2 − 2x3, x ∈ R

}
.

De nouveau il faut maintenant, donné C ∈ R, retreindre u à des intervalles sur lesquelles
u(x) > 0. Sur ces intervalles-là on peut alors écrire y = 1/

√
u. La solution générale pour

y est :

{
∀C ≤ 0, y(x) =

1√
Cx2 − 2x3

, x ∈ ]−∞,C
2
[ ,

∀C > 0, y(x) =
1√

Cx2 − 2x3
, x ∈ ]−∞, 0[ ,

∀C > 0, y(x) =
1√

Cx2 − 2x3
, x ∈ ]0,C

2
[
}
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Figure 1: Des courbes xy = c (en pointillé)
et leurs courbes orthogonales.
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Figure 2: Des courbes y3 = cx2 (en pointillé)
et leurs courbes orthogonales.

Figure 3: Des courbes x2 + 2y2 = c et leurs courbes orthogonales.
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