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Exercice 1.
Soit 𝑉 l’ensemble de toutes les suites réelles dont seulement un nombre fini d’éléments sont

non-nuls.
1) Montrer que 𝑉 est un espace vectoriel sur R.
2) Définissons l’application sur 𝑉

𝑁 ∶ 𝑣 ↦ √∑
𝑖∈N

𝑣2
𝑖 .

Prouver que 𝑁 est une norme sur 𝑉.
3) Le théorème de Bolzano–Weierstrass, tel que formulé sur R𝑛, est-il toujours vrai sur 𝑉

équipé de la norme 𝑁 ?

Solution
Rappel 1. Un ensemble 𝐸 est un espace vectoriel réel si les opérations de somme « + » et
proportion 1 « ⋅ » sont définies sur 𝐸 avec les propriétés suivantes.
Somme : 𝐸 × 𝐸 ∋ (𝑥, 𝑦) ↦ 𝑥 + 𝑦 ∈ 𝐸.

— ∀𝑥, 𝑦, 𝑧 ∈ 𝐸, (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧).
— ∀𝑥, 𝑦 ∈ 𝐸, 𝑥 + 𝑦 = 𝑦 + 𝑥.
— ∃𝑦 ∈ 𝐸, ∀𝑥 ∈ 𝐸, 𝑥 + 𝑦 = 𝑥 : ce « neutre additif » 𝑦 est généralement noté 0𝐸, ou

simplement 0.
— ∀𝑥 ∈ 𝐸, ∃𝑦 ∈ 𝐸, 𝑥+𝑦 = 0 : cet « inverse additif » (ou « opposé ») de 𝑥 est généralement

noté −𝑥.
Proportion : R × 𝐸 ∋ (𝜆, 𝑥) ↦ 𝜆 ⋅ 𝑥 ∈ 𝐸.

— ∀𝜆, 𝜇 ∈ R, ∀𝑥 ∈ 𝐸, 𝜆 ⋅ (𝜇 ⋅ 𝑥) = (𝜆 × 𝜇) ⋅ 𝑥.
— ∀𝑥 ∈ 𝐸, 1 ⋅ 𝑥 = 𝑥.
— ∀𝜆 ∈ R, ∀𝑥, 𝑦 ∈ 𝐸, 𝜆 ⋅ (𝑥 + 𝑦) = 𝜆 ⋅ 𝑥 + 𝜆 ⋅ 𝑦,
— ∀𝜆, 𝜇 ∈ R, ∀𝑥 ∈ 𝐸, (𝜆 + 𝜇) ⋅ 𝑥 = 𝜆 ⋅ 𝑥 + 𝜇 ⋅ 𝑥.

1) Soit (𝑢, 𝑣) ∈ 𝑉 2. La loi + sur 𝑉 est définie par rapport à la loi + sur R – notées aussi
respectivement +𝑉 et +R – avec 𝑢 +𝑉 𝑣 = (𝑢𝑖 +R 𝑣𝑖)𝑖∈N. (𝑉 , +) est un groupe abélien car +𝑉

— est interne à 𝑉 (car 𝑢 + 𝑣 ∈ 𝑉), et
— hérite naturellement des propriétés d’associativité, de commutativité, d’unitarité et

d’inversibilité de +R.

1. Multiplication par un scalaire (i.e. réel ici)
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Soit 𝑟 ∈ R. La loi ⋅ sur 𝑉 est définie par rapport à la loi × sur R, avec 𝑟 ⋅ 𝑢 = (𝑟 × 𝑢𝑖)𝑖∈N.
Quant à ses propriétés :

— elle est interne à 𝑉, car 𝑟 ⋅ 𝑢 ∈ 𝑉 ;
— elle est associative par rapport à × ;
— elle est unitaire, et son élément neutre est l’élément neutre de × ;
— elle est distributive par rapport à +𝑉 et à +R.

Par conséquent, (𝑉 , +, ⋅) est un espace vectoriel de corps R.
2) 𝑁 est définie sur 𝑉, puisque tout élément de 𝑉 n’a qu’un nombre fini de termes non-nuls. 𝑁

est également positive puisque, pour tout 𝑣 ∈ 𝑉, il est évident que 𝑁(𝑣) ⩾ 0. Elle est même
définie positive car, si 𝑁(𝑣) = 0, alors ∀𝑖 ∈ N, 𝑣𝑖 = 0, i.e. 𝑣 = 0𝑉. De plus, 𝑁 est absolument
homogène car, ∀𝑟 ∈ R, 𝑁(𝑟 ⋅ 𝑣) = √𝑟2 ∑𝑖∈N 𝑣2

𝑖 = |𝑟|𝑁(𝑣). Enfin, pour tous 𝑣, 𝑤 ∈ 𝑉, il
existe 𝑛 ∈ N tel que 𝑣𝑖 = 𝑤𝑖 = 0 pour tout 𝑖 > 𝑛. En utilisant l’inégalité triangulaire pour
la norme euclidienne dans R𝑛, on obtient

𝑁(𝑣 + 𝑤) = √
𝑛

∑
𝑖=1

(𝑣𝑖 + 𝑤𝑖)
2 ⩽ √

𝑛

∑
𝑖=1

𝑣2
𝑖 + √

𝑛

∑
𝑖=1

𝑤2
𝑖 = 𝑁(𝑣) + 𝑁(𝑤). (1.1)

Par conséquent, 𝑁 vérifie l’inégalité triangulaire. 𝑁 est donc une norme.
3) Pour 𝑖 ∈ N, soit la suite 𝛿𝑖 ∈ 𝑉 dont tous les éléments sont nul, sauf le 𝑖 − 𝑚𝑒, qui vaut 1.

Par exemple

𝛿0 = (1, 0, 0, 0, …) ∈ 𝑉 , 𝛿1 = (0, 1, 0, 0, …) ∈ 𝑉 , 𝛿2 = (0, 0, 1, 0, 0, …) ∈ 𝑉 .

Observons que 𝑁(𝛿0 − 𝛿1) = 𝑁( (1, −1, 0, 0, …) ) =
√

2 ; plus généralement 𝑁(𝛿𝑘 − 𝛿ℓ) =
√

2
pour tous 𝑘 ≠ ℓ.
Considérons la suite (𝛿𝑖)𝑖∈N ⊂ 𝑉. N.B. 𝑁(𝛿𝑖) = 1 pour tout 𝑖. Aucune sous-suite (𝛿𝑖𝑘

)𝑘∈N

ne peux converger, car une telle sous-suite devrait satisfaire 𝑁(𝛿𝑖𝑘
− 𝛿𝑖ℓ

) <
√

2 pour tous
𝑘, ℓ suffisamment grands. Avec plus de détails, supposons par l’absurde qu’une sous-suite
(𝛿𝑖𝑘

)𝑘∈N converge vers un certain 𝑣 ∈ 𝑉, ce qui signifie lim𝑘→∞ 𝑁(𝛿𝑖𝑘
− 𝑣) = 0. On aurait

alors la contradiction

𝑁(𝛿𝑖𝑘
− 𝛿𝑖ℓ

) ⩽ 𝑁(𝛿𝑖𝑘
− 𝑣) + 𝑁(𝑣 − 𝛿𝑖ℓ

) <
√

2

pour tous 𝑘, ℓ suffisamment grands.

Exercice 2.
Considérons les sous-ensembles de R2 suivants :

𝛺1 ≔ {(𝑥1, 𝑥2) ∈ R2 ∶ 1 < 𝑥2
1 + 𝑥2

2 < 16}, (2.1)
𝛺2 ≔ {(𝑥1, 𝑥2) ∈ R2 ∶ 𝑥2

1 − 𝑥2
2 = 1}, (2.2)

𝛺3 ≔ {(𝑥1, 𝑥2) ∈ ]0, 1[ × R ∶ sin 1
𝑥1

< 𝑥2 < 2}, (2.3)

𝛺4 ≔ {(𝑥1, 𝑥2) ∈ ]0, 1[ × R ∶ 𝑥2 ∈ ]1, 5[ si 𝑥1 ∈ Q; 𝑥2 ∈ ]0, 5[ sinon}, (2.4)

𝛺5 ≔ {(𝑥1, 𝑥2) ∈ R2 ∶ 𝑥2
1 + 𝑥2

2 < 1} ∪ {(𝑥1, 𝑥2) ∈ R2 ∶ (1 − 𝑥1)2 + (1 − 𝑥2)2 ⩽ 1}. (2.5)
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Ces ensembles sont-ils ouverts ? Sont-ils fermés ? Sont-ils bornés ? Justifiez vos réponses. Quel est
leur bord ?

Solution
Remarque préliminaire : les seuls sous-ensembles de R𝑛 à la fois ouverts et fermés sont ∅ et

R𝑛.

1) L’ensemble 𝛺1 est une couronne centrée à l’origine. 𝛺1 est borné car ∀𝒙 ∈ 𝛺1, ‖𝒙‖2 < 4.
Montrons qu’il est ouvert : considérons 𝒙 ≔ (𝑥1, 𝑥2) ∈ 𝛺1 et

𝛿 ≔ min{√𝑥2
1 + 𝑥2

2 − 1, 4 − √𝑥2
1 + 𝑥2

2}. (2.6)

Alors
𝐵‖⋅‖2

(𝒙, 𝛿) ⊂ 𝛺1 (2.7)

(faire un dessin). Prouvons (2.7) en étudiant un quelconque 𝒚 ∈ 𝐵‖⋅‖2
(𝒙, 𝛿). Par définition

de 𝛿, on a

‖𝒙 − 𝒚‖2 < ‖𝒙‖2 − 1 et ‖𝒙 − 𝒚‖2 < 4 − ‖𝒙‖2. (2.8)

Cela conduit à

‖𝒚‖2 ⩽ ‖𝒙 − 𝒚‖2 + ‖𝒙‖2 < 4 − ‖𝒙‖2 + ‖𝒙‖2 = 4 (2.9)

et

‖𝒚‖2 ⩾ ‖𝒙‖2 − ‖𝒙 − 𝒚‖2 > ‖𝒙‖2 − (‖𝒙‖2 − 1) = 1. (2.10)

On a donc 𝒚 ∈ 𝛺1, ce qui prouve (2.7).
𝛺1 étant ouvert, mais différent de ∅ et R2, il ne peut pas être fermé.
Son bord est

∂𝛺1 = {(𝑥1, 𝑥2) ∈ R2 ∶ 𝑥2
1 + 𝑥2

2 = 1} ∪ {(𝑥1, 𝑥2) ∈ R2 ∶ 𝑥2
1 + 𝑥2

2 = 16}. (2.11)

Pour le prouver : si 𝑥2
1 + 𝑥2

2 = 1 et si 𝛿 > 0, on vérifie que 𝐵‖⋅‖2
(𝒙, 𝛿) ∩ 𝛺1 ≠ ∅ et

𝐵‖⋅‖2
(𝒙, 𝛿)∩𝛺𝑐

1 ≠ ∅ ; de même si 𝑥2
1 +𝑥2

2 = 16. Vérifier encore qu’il n’y a pas d’autres points
possibles dans le bord.

2) Soit (𝑥1, 𝑥2) ∈ 𝛺2. On a

1 = 𝑥2
1 − 𝑥2

2 = (𝑥1 − 𝑥2)(𝑥1 + 𝑥2) = 𝑦1𝑦2 (2.12)
avec

𝑦1 ≔ 𝑥1 − 𝑥2, 𝑦2 ≔ 𝑥1 + 𝑥2. (2.13)

Or l’équation « 𝑦1𝑦2 = 1 » décrit une hyperbole dans le système d’axe 𝑂𝑦1𝑦2.
Il s’agit d’un ensemble fermé. Pour le prouver, montrons que son complémentaire dans R2,
i.e. 𝛺𝑐

2 ≔ {(𝑥1, 𝑥2) ∈ R2 ∶ 𝑥2
1 − 𝑥2

2 ≠ 1}, est ouvert. Considérons un point 𝒛 ≔ (𝑧1, 𝑧2) ∈ 𝛺𝑐
2

et montrons qu’il existe 𝛿 > 0 tel que 𝐵‖⋅‖1
(𝒛, 𝛿) ⊂ 𝛺𝑐

2 (notez la norme utilisée). Sans
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restriction de généralité 2 supposons qu’il existe 𝜀 > 0 tel que 𝑧2
1 − 𝑧2

2 − 1 = 𝜀. Soient
𝛿 ∈ ]0, +∞[, et 𝒘 ≔ (𝑤1, 𝑤2) ∈ B‖⋅‖1

(𝒛, 𝛿). Alors 𝒘 s’écrit

{
𝑤1 = 𝑧1 + 𝛿1,
𝑤2 = 𝑧2 + 𝛿2,

avec |𝛿1| + |𝛿2| < 𝛿, (2.14)

et vérifie

𝑤2
1 − 𝑤2

2 − 1 = 𝑧2
1 − 𝑧2

2 − 1 + 2𝛿1𝑧1 − 2𝛿2𝑧2 + 𝛿2
1 − 𝛿2

2 (2.15)
> 𝜀 − (2𝛿 (|𝑧1| + |𝑧2|) + 2𝛿2) > 𝜀/2 (2.16)

si 𝛿 > 0 est choisi tel que 2𝛿 (|𝑧1| + |𝑧2|) < 𝜀/4 et 2𝛿2 < 𝜀/4. Pour un tel choix de 𝛿 > 0, on
a 𝒘 ∈ 𝛺𝑐

2. On en conclut que 𝐵‖⋅‖1
(𝒛, 𝛿) ⊂ 𝛺𝑐

2 et 𝛺𝑐
2 est ouvert.

𝛺2 n’est pas borné car il contient (√1 + 𝑥2
2 , 𝑥2) avec |𝑥2| pouvant être choisi arbitrairement

grand. On vérifie que le bord de 𝛺2 est 𝛺2 lui-même.
3) 𝛺3 est un ensemble ouvert. Soit 𝒙 ≔ (𝑥1, 𝑥2) ∈ 𝛺3. Cherchons 𝛿1 > 0 et 𝛿2 > 0 de sorte

que ]𝑥1 − 𝛿1, 𝑥1 + 𝛿1[ × ]𝑥2 − 𝛿2, 𝑥2 + 𝛿2[ ⊂ 𝛺3. En imposant 𝛿1 ⩽ min{𝑥1, 1 − 𝑥1}, on
s’assure déjà que ]𝑥1 − 𝛿1, 𝑥1 + 𝛿1[ ⊂]0, 1[. En imposant 𝛿2 ⩽ 2 − 𝑥2, on s’assure aussi que
]𝑥2 − 𝛿2, 𝑥2 + 𝛿2[ ⊂] − ∞, 2[.
Comme 𝑥2 − sin(𝑥−1

1 ) > 0, on peut choisir 𝛿2 ∈]0, 2 − 𝑥2] vérifiant 2𝛿2 ⩽ 𝑥2 − sin(𝑥−1
1 ).

Puisque la fonction 𝑥 ↦ sin(𝑥−1) est continue en 𝑥1, on a l’existence de

𝛿1 ∈]0, min{𝑥1, 1 − 𝑥1}]

tel que, pour tout 𝑥1 > 0 vérifiant |𝑥1 − 𝑥1| < 𝛿1,

∣sin( 1
𝑥1

) − sin( 1
𝑥1

)∣ < 𝛿2. (2.17)

Finalement si (𝑥1, 𝑥2) ∈ ]𝑥1 − 𝛿1, 𝑥1 + 𝛿1[ × ]𝑥2 − 𝛿2, 𝑥2 + 𝛿2[ alors

sin( 1
𝑥1

) < sin( 1
𝑥1

) + 𝛿2 = sin( 1
𝑥1

) + 2𝛿2 − 𝛿2

⩽ sin( 1
𝑥1

) + (𝑥2 − sin(𝑥−1
1 )) − 𝛿2 = 𝑥2 − 𝛿2 < 𝑥2.

Comme on avait déjà ]𝑥1−𝛿1, 𝑥1+𝛿1[ ⊂ ]0, 1[ et 𝑥2+𝛿2 < 2, cela montre que 𝐵‖⋅‖∞
(𝒙, min(𝛿1, 𝛿2)) ⊂

𝛺3. Il est vivement conseillé d’agrémenter cette preuve d’un dessin.
L’ensemble 𝛺3 est borné car, ∀𝒙 ∈ 𝛺3, ‖𝒙‖∞ ⩽ 3. Le bord de 𝛺3 est donné par

∂𝛺3 ≔ {(𝑥1, sin(𝑥−1
1 )) ∶ 𝑥1 ∈ ]0, 1]}

∪ ({0} × [−1, 2]) ∪ ([0, 1] × {2}) ∪ ({1} × [sin 1, 2]). (2.18)

Montrons seulement que {0} × [−1, 1] ⊂ ∂𝛺3. En effet, soit (𝑥1, 𝑥2) ∈ {0} × [−1, 1] et
𝛿 ∈ ]0, +∞[. Alors ∃𝜀 ∈ ]0, min{𝛿, 1}[ tel que sin(𝜀−1) = −1.
Dans le cas 𝑥2 ∈ ]−1, 1], on a (𝜀, 𝑥2) ∈ 𝛺3 et (𝜀, 𝑥2) ∈ 𝐵‖⋅‖∞

(𝒙, 𝛿).
Dans le cas 𝑥2 = −1, on a (𝜀, 𝑥2 + 𝜀) ∈ 𝛺3 et (𝜀, 𝑥2 + 𝜀) ∈ 𝐵‖⋅‖∞

(𝒙, 𝛿).
D’autre part 𝒙 ∈ 𝐵‖⋅‖∞

(𝒙, 𝛿) ∩ 𝛺𝑐
3 ≠ ∅.

2. La démarche est identique si on suppose 𝜀 < 0.
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4) 𝛺4 n’est ni ouvert, ni fermé ; considérons en effet deux cas particuliers.
a) Soit 𝒙 ≔ (𝑥1, 𝑥2) ∈ (]0, 1[ ∖Q) × ]0, 1[. Alors 𝒙 ∈ 𝛺4, mais 𝐵(𝒙, 𝛿) ⊄ 𝛺4 pour tout

𝛿 > 0, ce qui montre que 𝛺4 n’est pas ouvert.
b) Soit 𝒙 ≔ (𝑥1, 𝑥2) ∈ (]0, 1[ ∩ Q) × ]0, 1[ : alors 𝒙 ∉ 𝛺4 et 𝐵(𝒙, 𝛿) ∩ 𝛺4 ≠ ∅ pour tout

𝛿 > 0. Cela prouve que 𝛺𝑐
4 n’est pas ouvert, donc 𝛺4 n’est pas fermé.

𝛺4 est borné car, ∀𝒙 ∈ 𝛺4, ‖𝒙‖∞ ⩽ 5. Enfin,

∂𝛺4 = ({0, 1} × [0, 5]) ∪ ([0, 1] × [0, 1]) ∪ ([0, 1] × {5}) (2.19)

Vérifions par exemple que [0, 1] × [0, 1] ⊂ ∂𝛺4. Soient 𝒙 ∈ [0, 1] × [0, 1] et 𝛿 > 0 : le disque
𝐵(𝒙, 𝛿) contient des points de 𝛺4 et des points de 𝛺𝑐

4, ce qui prouve l’inclusion.
5) 𝛺5 = 𝐶1 ∪ 𝐶2 avec

— 𝐶1 le disque ouvert centré en (0, 0), de rayon 1, et
— 𝐶2 le disque fermé centré en (1, 1) de rayon 1.

Il n’est pas ouvert car

(1 + 1
√

2
, 1 + 1

√
2

) ∈ 𝛺5 ∖
∘
𝛺5.

Il n’est pas fermé car R2 ∖ 𝛺5 n’est pas ouvert :

(− 1
√

2
, − 1

√
2

) ∈ (R2 ∖ 𝛺5) ∖ (R2 ∖ 𝛺5)∘.

𝛺5 est borné, car ‖𝒙‖2 ⩽ 1 +
√

2 pour tout 𝒙 ∈ 𝛺5.
Enfin, en observant que

{(𝑥1, 𝑥2) ∈ R2 ∶ 𝑥2
1 + 𝑥2

2 = 1}∩{(𝑥1, 𝑥2) ∈ R2 ∶ (1 − 𝑥1)2 + (1 − 𝑥2)2 = 1} = {(1, 0) , (0, 1)},

on obtient

∂𝛺5 = {(𝑥1, 𝑥2) ∈ R2 ∶ 𝑥2
1 + 𝑥2

2 = 1, 𝑥1 + 𝑥2 ⩽ 1}

∪ {(𝑥1, 𝑥2) ∈ R2 ∶ (1 − 𝑥1)2 + (1 − 𝑥2)2 = 1, 𝑥1 + 𝑥2 ⩾ 1}. (2.20)

Exercice 3.
Montrer que l’adhérence 𝐸 d’un ensemble arbitraire 𝐸 ⊂ R𝑛 est l’ensemble fermé minimal

contenant 𝐸.

Solution
Soit 𝒙 ∈ R𝑛. Par définition, 𝒙 ∈ 𝐸 si ∀𝛿 ∈ ]0, +∞[, 𝐵(𝒙, 𝛿) ∩ 𝐸 ≠ ∅. Il en résulte que 𝐸 ⊂ 𝐸.

Dans le cours, nous avons vu que 𝐸 est fermé.
Soit 𝐹 ⊂ R𝑛, fermé, tel que 𝐹 ⊃ 𝐸. Prouvons que 𝐸 ⊂ 𝐹, i.e. que R𝑛 ∖ 𝐹 ⊂ R𝑛 ∖ 𝐸. Soit

𝒙 ∈ R𝑛 ∖ 𝐹. Puisque R𝑛 ∖ 𝐹 est ouvert, il existe 𝛿 ∈ ]0, +∞[ tel que 𝐵(𝒙, 𝛿) ⊂ R𝑛 ∖ 𝐹 ; puisque
𝐸 ⊂ 𝐹, 𝐵(𝒙, 𝛿) ⊂ R𝑛 ∖ 𝐸. D’où 𝐵(𝒙, 𝛿) ∩ 𝐸 = ∅ et 𝒙 ∈ R𝑛 ∖ 𝐸.

Exercice 4.
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Rappel 2. Soit 𝐸 ⊂ R𝑛, non-vide.
— Le complémentaire de 𝐸 est 𝐸∁ ≔ R𝑛 ∖ 𝐸 ≔ {𝒙 ∈ R𝑛 ∶ 𝒙 ∉ 𝐸}.
— 𝐸 est ouvert si, ∀𝒙 ∈ 𝐸, ∃𝛿 ∈ ]0, +∞[, tel que B(𝒙, 𝛿) ⊂ 𝐸.
— 𝐸 est fermé si son complémentaire est ouvert.

En utilisant les définitions ci-dessus, montrer les propriétés suivantes :
1) 𝐸 est ouvert si et seulement si 𝐸 = ̊𝐸 ;

2) ̊(𝐸∁) = (𝐸)
∁

; 3

3) ( ̊𝐸)
∁

= 𝐸∁ ;
4) E est fermé si et seulement si 𝐸 = 𝐸.

Solution
1) On rappelle que

̊𝐸 ≔ {𝒙 ∈ 𝐸 ∶ ∃𝛿 ∈ ]0, +∞[, B(𝒙, 𝛿) ⊂ 𝐸}, (4.1)

donc ̊𝐸 ⊂ 𝐸. Si 𝐸 est ouvert, alors ∀𝒙 ∈ 𝐸, ∃𝛿 ∈ ]0, +∞[, B(𝒙, 𝛿) ⊂ 𝐸, donc 𝒙 ∈ ̊𝐸 et
𝐸 ⊂ ̊𝐸. On en conclut que 𝐸 = ̊𝐸 si 𝐸 et ouvert.
Pour l’implication réciproque, supposons 𝐸 = ̊𝐸. Alors pour tout 𝒙 ∈ 𝐸, on a 𝒙 ∈ ̊𝐸 et
∃𝛿 ∈ ]0, +∞[ tel que B(𝒙, 𝛿) ⊂ 𝐸. Par conséquent, 𝐸 est ouvert.

2) Par définition,

𝐸 = {𝒙 ∈ R𝑛 ∶ ∀𝛿 ∈ ]0, +∞[, B(𝒙, 𝛿) ∩ 𝐸 ≠ ∅}, (4.2)

donc

(𝐸)
∁

= R𝑛 ∖ 𝐸 = {𝒙 ∈ R𝑛 ∶ ∃𝛿 ∈ ]0, +∞[, B(𝒙, 𝛿) ∩ 𝐸 = ∅} (4.3)
= {𝒙 ∈ R𝑛 ∶ ∃𝛿 ∈ ]0, +∞[, B(𝒙, 𝛿) ⊂ 𝐸∁} (4.4)

= ̊(𝐸∁). (4.5)

3) Par (4.1),

( ̊𝐸)
∁

= {𝒙 ∈ R𝑛 ∶ ∀𝛿 ∈ ]0, +∞[, B(𝒙, 𝛿) ⊄ 𝐸} (4.6)
= {𝒙 ∈ R𝑛 ∶ ∀𝛿 ∈ ]0, +∞[, B(𝒙, 𝛿) ∩ (𝐸∁) ≠ ∅} (4.7)

= 𝐸∁. (4.8)

4) 𝐸 fermé ⟺ 𝐸∁ ouvert ⟺ 𝐸∁ = ̊(𝐸∁) ⟺ 𝐸∁ = (𝐸)
∁

⟺ 𝐸 = 𝐸
Autre solution. D’apès un exercice précédent, 𝐸 est le fermé minimal contenant 𝐸. Si 𝐸
est fermé, alors ce fermé minimal est 𝐸 lui-même : 𝐸 = 𝐸. Réciproquement, si 𝐸 = 𝐸, alors
𝐸 est fermé puisque 𝐸 l’est.

3. N.B. ̊(𝐸∁) est l’intérieur de 𝐸∁.
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