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Exercice 1.
1) Soient 𝐾 ⊂ R𝑝 un ensemble compact et (𝑇𝑛)𝑛∈N ⊂ 𝐶0(𝐾, 𝐾) une suite de fonctions.

Supposons que, pour chaque 𝑛 ∈ N, 𝑇𝑛 admet au moins un point fixe ; i.e. il existe 𝒙𝑛 ∈ 𝐾
tel que 𝑇𝑛(𝒙𝑛) = 𝒙𝑛. Enfin, supposons que lim𝑛→+∞ 𝑇𝑛(𝒙) ≕ 𝑇 (𝒙) existe pour tout 𝒙 ∈ 𝐾,
avec convergence uniforme :

lim
𝑛→+∞

sup
𝒙∈𝐾

‖𝑇 (𝒙) − 𝑇𝑛(𝒙)‖ = 0.

Montrer que la fonction 𝑇 ∶ 𝐾 → 𝐾 ainsi définie admet au moins un point fixe 𝒙∗ ∈ 𝐾.
2) Définissons 𝐾 comme au point 1. Une application 𝑇 ∶ 𝐾 → 𝐾 est dite « bien approchée par

des contractions » s’il existe une suite de contractions (de 𝐾 dans lui-même) qui converge
uniformément vers 𝑇. Définissons maintenant 𝐾 ≔ {(𝑥, 𝑦) ∈ R2 ∶ 1 ⩽ 𝑥2 + 𝑦2 ⩽ 2} et, pour
tout (𝛼, 𝑥, 𝑦) ∈ ]0, 2𝜋[ × R × R,

𝑅𝛼(𝑥, 𝑦) ≔ (cos 𝛼 − sin 𝛼
sin 𝛼 cos 𝛼 )(𝑥

𝑦).

Montrer que 𝑅𝛼 n’est pas « bien approchée par des contractions ».

Solution
1) Puisque 𝑇 est limite uniforme sur 𝐾 de fonctions continues, elle est elle-même continue. En

effet, soit 𝒙0 ∈ 𝐾. Etant donné 𝜖 > 0, il existe un entier 𝑁 > 0 tel que, pour tout entier
𝑛 ⩾ 𝑁, supx∈𝐾 ‖𝑇 (x) − 𝑇𝑛(x)‖ ⩽ 𝜖/3. Comme 𝑇𝑁 est continue en 𝒙0, il existe 𝛿 > 0 tel que

∀𝒙 ∈ 𝐾 (‖𝒙 − 𝒙0‖ ⩽ 𝛿 ⇒ ‖𝑇𝑁(𝒙) − 𝑇𝑁(𝒙0)‖ ⩽ 𝜖/3).

D’où, pour tout 𝒙 ∈ 𝐾 tel que ‖𝒙 − 𝒙0‖ ⩽ 𝛿,

‖𝑇 (𝒙)−𝑇 (𝒙0)‖ ⩽ ‖𝑇 (𝒙)−𝑇𝑁(𝒙)‖+‖𝑇𝑁(𝒙)−𝑇𝑁(𝒙0)‖+‖𝑇𝑁(𝒙0)−𝑇 (𝒙0)‖ ⩽ 𝜖/3+𝜖/3+𝜖/3 = 𝜖.

Ainsi 𝑇 est continue en tout 𝒙0 ∈ 𝐾.
La suite des points fixes (𝒙𝑛)𝑛∈N est dans 𝐾, compact. Elle admet donc une sous-suite
(x𝑛𝑘

)𝑘∈N qui converge vers un certain x∗ ∈ 𝐾. On vérifie

‖𝑇 (x∗) − x∗‖ =‖ lim
𝑘→+∞

𝑇 (x𝑛𝑘
) − lim

𝑘→+∞
x𝑛𝑘

‖ = lim
𝑘→+∞

‖𝑇 (x𝑛𝑘
) − x𝑛𝑘

‖ = lim
𝑘→+∞

‖𝑇 (x𝑛𝑘
) − 𝑇𝑛𝑘

(x𝑛𝑘
)‖

⩽ lim
𝑘→+∞

max
x∈𝐾

‖𝑇 (x) − 𝑇𝑛𝑘
(x)‖ = 0.

On a donc 𝑇 (x∗) = x∗.

1



2) Supposons, par l’absurde, que 𝑅𝛼 est bien approchée par des contractions et soit donc
(𝑇𝑛)𝑛∈N une suite de contractions 𝑇𝑛 ∶ 𝐾 → 𝐾, 𝑛 ∈ N, qui converge uniformément vers
𝑇. Chaque contraction 𝑇𝑛 est continue sur le compact 𝐾 ≠ ∅ et, d’après le théorème du
point fixe de Banach, admet un point fixe x𝑛 (𝐾𝑛 étant un fermé non vide de R2). Par la
première partie, on a que 𝑅𝛼 a un point fixe. Or, clairement une rotation d’angle 𝛼 différent
de 2𝑘𝜋 n’a pas de point fixe, hormis le centre de rotation qui, ici, n’appartient pas à 𝐾.
D’où la contradiction.

Exercice 2.
Définissons la fonction 𝑓 ∶ R2 → R pour tout (𝑥, 𝑦) ∈ R2 par 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 + 𝑥𝑦. Trouver

les points stationnaires ainsi que les maximum et minimum globaux de la fonction 𝑓 restreinte à
𝐵((0, 0), 1).

Solution
(𝑥, 𝑦) ∈ R2 est un point stationnaire de 𝑓 (non restreinte à 𝐷 ≔ 𝐵((0, 0), 1)) si et seulement si

{
2𝑥 + 𝑦 = 0,
2𝑦 + 𝑥 = 0

et donc (𝑥, 𝑦) = (0, 0). Or on a (0, 0) ∈ 𝐷̊ et de plus 𝑓(0, 0) = 0. La matrice hessienne de 𝑓 vaut

(2 1
1 2),

et est donc définie positive (les valeurs propres étant 1 et 3, qui sont > 0), ce qui prouve que
(0, 0) est un point de minimum local strict. De plus, ∀(𝑥, 𝑦) ∈ R2\{(0, 0)},

1
2(𝑥 + 𝑦)2 ⩾ 0 ⟺ 1

2(𝑥2 + 𝑦2) + 𝑥𝑦 ⩾ 0 ⟺ 𝑓(𝑥, 𝑦) ⩾ 1
2(𝑥2 + 𝑦2) > 0 = 𝑓(0, 0).

Ainsi le point (0, 0) est même un point de minimum global strict.
Puisque 𝐷 est un compact non-vide, le maximum de 𝑓|𝐷 est atteint. Comme le seul point

stationnaire de 𝑓 sur 𝐷̊ est un point de minimum strict, nous savons maintenant que le maximum
est atteint sur le bord. On peut le calculer par la méthode de Lagrange. Les points stationnaires
de la lagrangienne ℒ(𝑥, 𝑦, 𝜆) = 𝑥2 + 𝑦2 + 𝑥𝑦 − 𝜆(𝑥2 + 𝑦2 − 1) vérifient

2𝑥 + 𝑦 − 2𝜆𝑥 = 0, 2𝑦 + 𝑥 − 2𝜆𝑦 = 0, −(𝑥2 + 𝑦2 − 1) = 0.

Les deux premières équations donnent (2𝑥 + 𝑦)𝑦 = (2𝑦 + 𝑥)𝑥 et donc 𝑥2 = 𝑦2. On obtient

(𝑥, 𝑦) ∈ {(√1/2, √1/2), (−√1/2, −√1/2), (√1/2, −√1/2), (−√1/2, √1/2)}.

En évaluant 𝑓 en ces 4 points et en comparant les valeurs obtenues, nous trouvons que le maximum
de 𝑓 est 1.5 et est atteint en (2−0.5, 2−0.5) et (−2−0.5, −2−0.5).

Exercice 3.
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Soient 𝑓1 ∶ R2 → R et 𝑓2 ∶ R2 → R deux fonctions définies par

𝑓1(𝑥, 𝑦) = {
1 si 𝑦 = 𝑥2 et 𝑥 ≠ 0,
0 sinon ;

(3.1)

𝑓2(𝑥, 𝑦) =
⎧{
⎨{⎩

𝑥3

𝑥2 + 𝑦4 si (𝑥, 𝑦) ≠ (0, 0),

0 sinon.
(3.2)

Pour chaque fonction, étudiez :
1) sa continuité en (0, 0) ;
2) si ses dérivées partielles et directionnelles existent en (0, 0) ;
3) sa différentiabilité en (0, 0).

Solution
Fonction 𝑓1.

1) Observons que

lim
𝑡→0

𝑓1(𝑡, 𝑡2) = 1 ≠ 0 = 𝑓1(0, 0). (3.3)

La fonction 𝑓1 n’est donc pas continue en (0, 0).
2) Soit 𝒗 ∈ R2. Étudions les dérivées directionnelles de 𝑓1 dans la direction 𝒗 ≔ ( 𝑣1𝑣2 ) :

D𝒗 𝑓1(𝟎) = lim
𝑡→0

𝑓1(𝑡𝒗) − 𝑓1(𝟎)
𝑡 . (3.4)

Si 𝑣2 = 0, alors

D𝒗 𝑓1(𝟎) = ∂𝑓
∂𝑥 (𝟎) = 0. (3.5)

Considérons 𝑣2 ≠ 0. Soit ℎ ∈ R∗ : d’après la définition (3.1), 𝑓1(ℎ𝒗) ≠ 0 si et seulement
si ℎ𝑣2 = ℎ2𝑣2

1 et 𝑣1 ≠ 0, i.e. ℎ = 𝑣2𝑣−2
1 . Par conséquent, ∀𝑡 ∈ ]−|𝑣2𝑣−2

1 |, +|𝑣2𝑣−2
1 |[,

𝑓1(𝑡𝒗) = 0. Ainsi, le dérivées directionnelles dans la direction 𝒗 existent et sont égales
à zéro :

D𝒗 𝑓1(𝟎) = lim
𝑡→0

𝑓1(𝑡𝒗) − 𝑓1(𝟎)
𝑡 = lim

𝑡→0

0
𝑡 = 0. (3.6)

A fortiori, les dérivées partielles sont nulles :

∂𝑓1
∂𝑥 (0, 0) = D𝒆1

𝑓1(𝟎) = lim
𝑡→0

𝑓1(𝑡, 0) − 𝑓1(0, 0)
𝑡 = lim

𝑡→0

0
𝑡 = 0 ; (3.7)

∂𝑓1
∂𝑦 (0, 0) = D𝒆2

𝑓1(𝟎) = lim
𝑡→0

𝑓1(0, 𝑡) − 𝑓1(0, 0)
𝑡 = lim

𝑡→0

0
𝑡 = 0. (3.8)

3) Puisque 𝑓1 n’est pas continue en (0, 0), a fortiori elle n’est pas différentiable en (0, 0).
Fonction 𝑓2.

1) La fonction 𝑓2 est continue en (0, 0) puisque ∀(𝑥, 𝑦) ∈ R2 ∖ {(0, 0)}, on a

0 ⩽ ∣ 𝑥3

𝑥2 + 𝑦4 ∣ ⩽ |𝑥|. (3.9)

Donc lim(𝑥,𝑦)→(0,0) 𝑓2(𝑥, 𝑦) = 0 = 𝑓2(0, 0).
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2) On calcule la dérivée directionnelle dans une direction quelconque 𝒗 ≔ (𝑣1, 𝑣2) ∈ R2.

D𝒗 𝑓2(𝟎) = lim
𝑡→0

𝑓2(𝑡𝒗) − 𝑓2(𝟎)
𝑡 = lim

𝑡→0

𝑡3𝑣3
1

𝑡3𝑣2
1 + 𝑡5𝑣4

2
= 𝑣1. (3.10)

Par conséquent :

∂𝑓2
∂𝑥 (0, 0) = D𝒆1

𝑓2(𝟎) = lim
𝑡→0

𝑓2(𝑡, 0) − 𝑓2(0, 0)
𝑡 = lim

𝑡→0

𝑡 − 0
𝑡 = 1 ; (3.11)

∂𝑓2
∂𝑦 (0, 0) = D𝒆2

𝑓2(𝟎) = lim
𝑡→0

𝑓2(0, 𝑡) − 𝑓2(0, 0)
𝑡 = lim

𝑡→0

0
𝑡 = 0. (3.12)

3) Pour vérifier que 𝑓2 est différentiable, utilisons la définition. Soit 𝑔 une fonction définie
pour tout 𝒗 ≔ (𝑣1, 𝑣2) ∈ R2 par

𝑔(𝒗) = 𝑓(𝒗) − 𝑓(𝟎) − ∇ 𝑓(𝟎) ⋅ 𝒗 = −𝑣1𝑣4
2

𝑣2
1 + 𝑣4

2
. (3.13)

On vérifie que, ∀(𝑥, 𝑦) ∈ R2 ∖ {(0, 0)},

0 ⩽
|𝑥|𝑦4

𝑥2 + 𝑦4 =
(|𝑥|𝑦2)𝑦2

𝑥2 + 𝑦4 ⩽
𝑥2+𝑦4

2
𝑦2

𝑥2 + 𝑦4 = 𝑦2

2 . (3.14)

Puisque 𝒗 ↦ 𝑣2
2 ∈ 𝑜𝟎(𝒗 ↦ ‖𝒗‖), alors 𝑔 ∈ 𝑜𝟎(𝒗 ↦ ‖𝒗‖) et donc 𝑓2 est différentiable.

Exercice 4.
1) Soit 𝑭 ∶ R2 → R2 définie pour tout (𝑥, 𝑦) ∈ R2 par

𝑭 (𝑥, 𝑦) = (𝑥 + 2𝑦 + 𝑥2

𝑦 − 𝑥3 + 𝑦2).

Pour 𝒑0 ≔ (4, 1) et 𝒑1 ≔ (1, 1), montrer qu’il existe 𝛿0, 𝛿1 > 0 tels que

∀𝒑 ∈ 𝐵(𝒑0, 𝛿0) ∃𝒑̃ ∈ 𝐵(𝒑1, 𝛿1) 𝑭 (𝒑̃) = 𝒑.

2) Soit 𝑭 ∈ 𝐶0(R𝑛,R𝑛) telle que 𝑭 ∘ 𝑭 = I. Montrer que l’image par 𝑭 de tout sous-ensemble
ouvert de R𝑛 est ouverte.

Solution
1) Pour commencer, notez que 𝑭 (𝒑1) = 𝒑0. Calculons la matrice jacobienne de 𝑭 au point 𝒑1.

On a

𝐷𝑭 (𝑥, 𝑦) = (1 + 2𝑥 2
−3𝑥2 1 + 2𝑦), 𝐷𝑭 (1, 1) = ( 3 2

−3 3).

La matrice 𝐷𝑭 (1, 1) est bien inversible, son déterminant valant 15 ≠ 0. On peut donc
appliquer le théorème d’inversion locale : il existe un ouvert 𝑈 contenant 𝒑1 tel que 𝑭 soit
une bijection entre 𝑈 et 𝑭 (𝑈), qui est lui un ouvert contenant 𝒑0 ; de plus l’inverse de cette
bijection est de classe 𝐶1 (même 𝐶∞ ici).
Soit 𝛿1 > 0 tel que 𝐵(𝒑1, 𝛿1) ⊂ 𝑈 (possible car 𝑈 est ouvert). Comme 𝑮 ≔ (𝑭 |𝑈)−1 ∶ 𝑭 (𝑈) →
𝑈 est continue, 𝑮−1(𝐵(𝒑1, 𝛿1)) est ouvert (voir la série 6) et cet ouvert contient 𝒑0. Il existe
donc 𝛿0 > 0 tel que 𝐵(𝒑0, 𝛿0) ⊂ 𝑮−1(𝐵(𝒑1, 𝛿1)), autrement dit, 𝐵(𝒑0, 𝛿0) ⊂ 𝑭 (𝐵(𝒑1, 𝛿1)).
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2) De la propriété 𝑭 ∘ 𝑭 (𝒙) = 𝒙 on tire que 𝑭 est bijective et que son inverse est elle-même,
donc 𝑭 = 𝑭 −1. On a donc

𝑭 (𝑈) = {𝑭 (𝒙) ∶ 𝒙 ∈ 𝑈} = {𝑭 −1(𝒙) ∶ 𝒙 ∈ 𝑈} = 𝑭 −1(𝑈).

Or, on sait que 𝑭 est continue si et seulement si la pré-image par 𝑭 d’un ouvert est ouvert
(série 6). Comme 𝑈 est ouvert, alors 𝑭 (𝑈) = 𝑭 −1(𝑈) est ouvert.

Exercice 5.
Evaluer les intégrales suivantes et esquisser leur domaine d’intégration :

𝑖) ∫
1

0
(∫

1

𝑦
𝑒(𝑥2) 𝑑𝑥)𝑑𝑦 𝑖𝑖) ∫

1

0
(∫

1

3√𝑦

√1 + 𝑥4 𝑑𝑥)𝑑𝑦

Solution

(i) Considérons l’intégrale double ∫𝐸 𝑒(𝑥2)𝑑𝑥 𝑑𝑦 sur 𝐸 = {(𝑥, 𝑦) ∈ R2 ∶ 0 ⩽ 𝑦 ⩽ 1, 𝑦 ⩽ 𝑥 ⩽ 1}. Le
“domaine d’intégration” 𝐸 ⊂ R2 est un domaine simple, que l’on considère les variables dans
l’ordre 𝑦 et 𝑥 (comme dans l’énoncé), ou dans l’ordre 𝑥 et 𝑦 :

𝐸 = {(𝑥, 𝑦) ∈ R2 ∶ 0 ⩽ 𝑦 ⩽ 1, 𝑦 ⩽ 𝑥 ⩽ 1} = {(𝑥, 𝑦) ∈ R2 ∶ 0 ⩽ 𝑦 ⩽ 𝑥 ⩽ 1}
= {(𝑥, 𝑦) ∈ R2 ∶ 0 ⩽ 𝑥 ⩽ 1, 0 ⩽ 𝑦 ⩽ 𝑥}.

Il y a donc deux manières d’appliquer le théorème de Fubini. Néanmoins, en respectant l’ordre
d’intégration donné, on doit trouver une primitive de la fonction 𝑒(𝑥2) par rapport à 𝑥, ce
qui est impossible. Il faut donc inverser l’ordre d’intégration. Le domaine d’intégration 𝐸 est
représenté à la Fig. 1 ci-dessous.
Dans l’ordre donné, on parcourt 𝐸 du bas en haut selon des lignes horizontales. Inverser
l’ordre d’intégration revient à parcourir 𝐸 de gauche à droite en selon des lignes verticales.
Ainsi 𝑥 varie entre 0 et 1 et 𝑦 varie entre 0 et 𝑥. On a

∫
1

0
(∫

1

𝑦
𝑒(𝑥2) 𝑑𝑥)𝑑𝑦 = ∫

1

0
(∫

𝑥

0
𝑒(𝑥2) 𝑑𝑦)𝑑𝑥 = ∫

1

0
[𝑦𝑒(𝑥2)]

𝑦=𝑥

𝑦=0
𝑑𝑥 = ∫

1

0
𝑥𝑒(𝑥2) 𝑑𝑥

= [1
2𝑒(𝑥2)]

1

0
= 𝑒 − 1

2 .

(ii) On doit de nouveau inverser l’ordre d’intégration pour pouvoir calculer cette intégrale. Il faut
donc parcourir le domaine d’intégration 𝐸 (cf. Fig. 2) de gauche à droite selon des lignes
verticales, c’est-à-dire laisser varier 𝑥 entre 0 et 1 et 𝑦 entre 0 et 𝑥3.

∫
1

0
(∫

1

3√𝑦

√1 + 𝑥4 𝑑𝑥)𝑑𝑦 = ∫
1

0
(∫

𝑥3

0

√1 + 𝑥4 𝑑𝑦)𝑑𝑥 = ∫
1

0
[𝑦√1 + 𝑥4]

𝑦=𝑥3

𝑦=0
𝑑𝑥

= ∫
1

0
𝑥3√1 + 𝑥4 𝑑𝑥 = ∫

1

0

1
4 4𝑥3(1 + 𝑥4)1/2 𝑑𝑥 = [1

6(1 + 𝑥4)3/2]
1

0
= 1

6(2
√

2 − 1)
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