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Exercice 1.

1)

Soient K C RP un ensemble compact et (T},),cy C C°(K,K) une suite de fonctions.
Supposons que, pour chaque n € N, T, admet au moins un point fixe; i.e. il existe x,, € K
tel que T,,(x,,) = @,,. Enfin, supposons que lim,,_, . T, (x) =: T'(x) existe pour tout x € K,
avec convergence uniforme :

lim sup|T(x)—T,(x)|| = 0.

n—+00 pe K

Montrer que la fonction T : K — K ainsi définie admet au moins un point fixe x, € K.

2) Définissons K comme au point 1. Une application T': K — K est dite « bien approchée par
des contractions » s'il existe une suite de contractions (de K dans lui-méme) qui converge
uniformément vers 7. Définissons maintenant K := {(z,y) € R? : 1 < 2% + y? < 2} et, pour
tout (o, z,y) €10,27] x R x R,

cosa —sina) [z
Ral,y) = (sina cos o ) (y)
Montrer que R, n’est pas « bien approchée par des contractions ».
Solution

1)

Puisque T est limite uniforme sur K de fonctions continues, elle est elle-méme continue. En
effet, soit xy € K. Etant donné € > 0, il existe un entier N > 0 tel que, pour tout entier
n = N, sup, . |T(x) =T, (x)| < €/3. Comme Ty est continue en x, il existe § > 0 tel que

Vo € K (o — o] <8 = |Ty(@) — Tul(zo)| < ¢/3).
D’ot, pour tout € K tel que | — x| < 4,

IT () =T (o) < T(2)=Tn()|+[Tn(2)=Tn(@o) [+ Trv(2o ) =T (20) | < €/3+€/3+€/3 = €.

Ainsi T est continue en tout x, € K.

La suite des points fixes (x,,) ey est dans K, compact. Elle admet donc une sous-suite
(X, )gen qui converge vers un certain x, € K. On vérifie

”T(X*) - X*” :” kggloo T(Xnk) - kggloo xnk” = kginoo HT(Xnk) - Xnk” = kEIJPoo ”T(Xnk> - Tnk

< li T(x)—1T, =0.
Jim max [T(x) — T, (x)] =0

On a donc T'(x,) = x,.

()



2) Supposons, par 'absurde, que R, est bien approchée par des contractions et soit donc
(T},)nen une suite de contractions T,, : K — K, n € N, qui converge uniformément vers
T. Chaque contraction T;, est continue sur le compact K # @ et, d’apres le théoréme du
point fixe de Banach, admet un point fixe x,, (K,, étant un fermé non vide de R?). Par la
premiére partie, on a que R, a un point fixe. Or, clairement une rotation d’angle a différent
de 2k n’a pas de point fixe, hormis le centre de rotation qui, ici, n’appartient pas a K.
D’ou la contradiction.

Exercice 2.

Définissons la fonction f : R? — R pour tout (z,y) € R? par f(x,y) = 2% + 32 + zy. Trouver
les points stationnaires ainsi que les maximum et minimum globaux de la fonction f restreinte a

B((0,0),1).

Solution

(z,y) € R? est un point stationnaire de f (non restreinte a D := B((0,0), 1)) si et seulement si
20 +y =0,
2y+2=0
et donc (,y) = (0,0). Or on a (0,0) € D et de plus f(0,0) = 0. La matrice hessienne de f vaut

2 1

1 2)
et est donc définie positive (les valeurs propres étant 1 et 3, qui sont > 0), ce qui prouve que
(0,0) est un point de minimum local strict. De plus, ¥(x,y) € R?\{(0,0)},

1 1 1
@Y 20 < @+ +ay>20 < flz,y) > 52 +y%) > 0= £(0,0).

Ainsi le point (0,0) est méme un point de minimum global strict.
Puisque D est un compact non-vide, le maximum de f|p est atteint. Comme le seul point
stationnaire de f sur D est un point de minimum strict, nous savons maintenant que le maximum

est atteint sur le bord. On peut le calculer par la méthode de Lagrange. Les points stationnaires
de la lagrangienne £(z,y, \) = 22 + y? + 2y — A(x? + 3% — 1) vérifient

20 +y—2 =0, 2y+r—2\y=0, —(22+y>—1)=0.

Les deux premiéres équations donnent (2 + y)y = (2y + x)x et donc 2% = y2. On obtient

(z.9) € (172, \/172). (/172,172 (172, -\ 172), (=172, [172)).

En évaluant f en ces 4 points et en comparant les valeurs obtenues, nous trouvons que le maximum
de fest 1.5 et est atteint en (279%,270:5) et (—270-5, —270:5),

Exercice 3.



Soient f; : R2 = R et f5 : R? — R deux fonctions définies par

1 siy=a2eta+#0,
fiy) = {0 - (.1
sinon ;
23

st (z,y) # (0,0),

fola,y) = > +y* (3.2)
0 sinon.
Pour chaque fonction, étudiez :
1) sa continuité en (0,0);
2) si ses dérivées partielles et directionnelles existent en (0,0);
3) sa différentiabilité en (0,0).
Solution
Fonction f.
1) Observons que
lim [y (1, 12) = 14 0= £,(0,0). (33)
t—

La fonction f; n’est donc pas continue en (0,0).
2) Soit v € R?. Etudions les dérivées directionnelles de f; dans la direction v := (1) :

D, £1(0) = lim 2L 1O (3.4)
Si vy = 0, alors
D, 1(0) = 22 (0) = 0. (35)

Considérons v,y # 0. Soit h € R* : d’aprés la définition (3.1), fi(hv) # 0 si et seulement
si hvy = h%0% et vy # 0, i.e. h = vyv72. Par conséquent, Vt € |—|vyvr?|, +|vyvy?|],
f1(tv) = 0. Ainsi, le dérivées directionnelles dans la direction v existent et sont égales
a zéro :

Aty —f(0) 0
Dy f1(0) = lim == = lim 5 = 0. (3.6)

A fortiori, les dérivées partielles sont nulles :

0) — £,(0,0
O01(0,0) = Dg, £1(0) = i LEDZHOD i O o)
af . T f(07t)*f(030) T 0_
By (00 =D, /1(0) = lim Z==0 2= = lim 5 = 0. (38)

3) Puisque f; n’est pas continue en (0,0), a fortiori elle n’est pas différentiable en (0,0).
Fonction f,.

1) La fonction f, est continue en (0,0) puisque V(z,y) € R\ {(0,0)}, on a
23

S |\=7T| <zl .
| <ol (39)

Donc hm(m,y)—)(0,0) fa(m, y) = 0= £,(0,0).



2) On calcule la dérivée directionnelle dans une direction quelconque v := (vy,v,) € R2.

B —f(0)

Dy £2(0) = 1140 t 150 303 4 5l - (3.10)
Par conséquent :
0 fo _ . fot,0) = f5(0,0) . t—0
%(070) - Del f2(0> - 12}% n - tlir(%T =1; (311)
6f2 _ T f2(0’t) B f2(030> T 0 _
52(0,0) = D, f3(0) = lim t =lim 3 = 0. (3.12)

3) Pour vérifier que fy est différentiable, utilisons la définition. Soit g une fonction définie
pour tout v := (vq,v,) € R? par

B B B Cy _Ulv%
a(v) = f() = f(0) =V £(0) -w = . (3:13)
On vérifie que, ¥(x,y) € R?\ {(0,0)},
oyt (2?5 (3.14)

SP2rh T Zigd S a2yt 20

Puisque v = v3 € og(v = |[v]), alors g € og(v = |v]) et donc f, est différentiable.

Exercice 4.

1) Soit F : R? — R? définie pour tout (x,y) € R? par

Pl -
Pour pg := (4,1) et p; := (1,1), montrer qu’il existe &y, d; > 0 tels que
Vp € B(py,do) Ip € B(p1,61) F(p) =p.

2) Soit F € C°(R"™,R") telle que F o F = I. Montrer que I'image par F de tout sous-ensemble
ouvert de R” est ouverte.

:17—|—2y—|—x2>
3.2
y—r+ty

Solution

1) Pour commencer, notez que F(p;) = py. Calculons la matrice jacobienne de F au point p.

On a

142z 2 3 2
orey - (5% 2, pran-(4 %)

La matrice DF'(1,1) est bien inversible, son déterminant valant 15 # 0. On peut donc
appliquer le théoreme d’inversion locale : il existe un ouvert U contenant p; tel que F soit
une bijection entre U et F(U), qui est lui un ouvert contenant p; ; de plus I'inverse de cette
bijection est de classe C! (méme C* ici).

Soit §; > 0 tel que B(py,d;) C U (possible car U est ouvert). Comme G := (F|y)~! : F(U) —
U est continue, G~1(B(p;,d,)) est ouvert (voir la série 6) et cet ouvert contient py. Il existe
donc &y > 0 tel que B(py,dy) C G~1(B(py,d,)), autrement dit, B(py, ) C F(B(p1,61)).



2) De la propriété F' o F(x) = x on tire que F est bijective et que son inverse est elle-méme,
donc F = F~!'. On a donc

FU)={F(z): zc€U}={F(z): z €U} =F V).

Or, on sait que F est continue si et seulement si la pré-image par F' d’un ouvert est ouvert
(série 6). Comme U est ouvert, alors F(U) = F~1(U) est ouvert.

Exercice 5.

Evaluer les intégrales suivantes et esquisser leur domaine d’intégration :
1 1 1 1
i) / (/ (@) dm) dy i7) / (/ V1424 daj) dy
0 Y 0 v

Solution

(i) Considérons I'intégrale double fE e @dxdysur E = {(z,y) eR?: 0<y<1, y<ax<1}. Le
“domaine d’intégration” E C R? est un domaine simple, que ’on considére les variables dans
Pordre y et z (comme dans ’énoncé), ou dans l'ordre x et y :

E={(x,y) eR?: 0<y<,y<z<1}={(r,y) eR?: 0<y< o<1}
={(r,y) €ER?: 0< o<1, 0<y<a}.

Il y a donc deux manieres d’appliquer le théoréme de Fubini. Néanmoins, en respectant ’ordre
d’intégration donné, on doit trouver une primitive de la fonction e(@®) par rapport a x, ce
qui est impossible. 11 faut donc inverser 'ordre d’intégration. Le domaine d’intégration F est
représenté a la Fig. 1 ci-dessous.

Dans l'ordre donné, on parcourt E du bas en haut selon des lignes horizontales. Inverser
I’ordre d’intégration revient a parcourir E de gauche a droite en selon des lignes verticales.
Ainsi z varie entre 0 et 1 et y varie entre 0 et . On a

1 Lo 1 e 1 b Y=T 1 .
o 'y 0 \Jo 0 y=0 0

1
_ |:le($2):| _ e—1 )
2¢ |, T T2

(ii) On doit de nouveau inverser l'ordre d’intégration pour pouvoir calculer cette intégrale. Il faut
donc parcourir le domaine d’intégration E (cf. Fig. 2) de gauche & droite selon des lignes
verticales, c’est-a-dire laisser varier = entre 0 et 1 et y entre 0 et 22

1 1 1 3 1 3
/ (/ \/1—|—x4dx>dy=/ (/ \/1—|—x4dy>dx=/ [y 1+x4}y dx
0 \“%y 0\ 0 y=0

1 1 1
:/ x3\/1+x4dx:/ %4m3(1+x4)1/2dm: [é(l—l—x‘l):‘/ﬂ = é(Zﬁ—l)
0 0 0



FIGURE 1

FIGURE 2
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