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Exercice 1.
Soit I CR, ty € Iet p,g: I — R continues. On considére deux solutions y;,y, de

y' (&) +p)y () +qt)y(t) =0 vtel

1) Montrer que

2)

- (s)ds
Wiy, 36)(8) = Wigr, yal(t)e Fo?%.
Cette relation est connue sous le nom d’identité d’Abel.

Montrer que le Wronskien de deux solutions y;, y, vérifie soit Wlyy, yo](t) > 0, soit
Wlyr, y2](t) < 0, soit Wy, ys](t) = 0 pour tout ¢ € I.

Solution

1)

Posons y () = (y1(t), y1(t)) et yo(t) = (y2(t), y2(t))-

Wy, yo] (t) = det ( [y} yQD = 1195 — V1Y,
Y Yo

ol on n’exprime plus explicitement la dépendance des fonctions en ¢. On dérive le Wronskien
pour obtenir

W' = yiys + 1195 — Y1 Y2 — Y1¥5 = Y195 — Y1 Y2
= y1(—pys — qy2) + (PY1 + q¥1)Y2
= p(Y1Y2 — Y193)
= —pW.

En résolvant cette équation différentielle, on obtient immédiatement

W[i‘/lv 92](15) = VV[y17 yg}(to)ei'ffo P(S)ds.

En utilisant I'identité d’Abel, il est clair que sign(W |y, y»](t)) = sign(Wyy, y»](to)) pour

t
tout ¢ € I, comme e hoP(e) > 0 pour tout t € I. Alternativement, on aurait aussi pu utiliser
le théoreme 9.47 du polycopié : pour deux solutions y;, yo linéairement indépendantes,
Wiy, y2](t) # 0 pour tout ¢t € I. Comme le Wronskien est une fonction continue en ¢,
sign(Wyy, yo](t)) = sign(W{yy, y2](0)). De plus, si deux solutions ¥, y, sont linéairement
dépendantes, alors Wy, y,](t) = 0 pour tout ¢ € I.

Exercice 2.

Résoudre les équations différentielles ci-dessous :



1) y'(z) +y(x) = 2® avec y(0) = —2,
2) y// o 4y/ + 4y — x3€2x .

Solution

1) La solution générale de 'ED homogene associée est ynom(z) = Ce™® avec C' € R. Pour
trouver une solution particuliere y,,,y de 'ED non-homogene, on utilise la méthode des
coefficients indéterminés.

Iei y +y = e"®Py(z), oit Py(x) = 23 (un polynome de degré 3).

Comme e”® = 1 n’est pas solution de 1’équation homogene, on cherche Ypart SOUs la forme

Ypart(2) = €27 Ty(z), ot Ty est un polynome de degré 3 : y,.,i(2) = Az® + Ba? 4+ Dz + E.
On obtient

Yhart + Ypare = Az® + (3A+ B)a? + 2B+ D)z + D + E = 23,
ce qui mene a
A=1, 3A+B=0, 2B+D=0 et D+E=0 < A=1, B=-3, D=6 et E=-6.
Ainsi Yo (@) = 2° — 322 + 62 — 6 et
y:yh0m+ypart:C’e_”+x3—3m2—|—6x—6, z eR.
Avec la condition y(0) = —2, on obtient C = 4, si bien que la solution (globale) est
y(z) = 4e™ + 2% — 322 + 62 — 6, z €R.

2) L’équation caractéristique A\ — 4\ + 4 = 0 admet la racine A = 2 de multiplicité 2. La
solution générale de ’équation homogene associée est donc

yhom(x) = Cle2x + CQ.’L'@2I, z € R.

L’équation différentielle est de la forme y” — 4y’ + 4y = €2 Ps(x), o Ps3(x) = 22 est
un polynéme de degré 3. De plus e2* et ze?® sont solutions de I’équation homogene,
mais pas x2e?*. Cherchons une solution particuliére de ’'ED non-homogéne sous la forme
Ypart(2) = 22> Ty (x), ot T3 est un polyndme de degré 3 a déterminer. Ici il est plus simple

de travailler avec T3 sans introduire une notation pour les coefficients de T5. En substituant,

on obtient
x362x = ygart - 4y;)art + 4ypart
= 2?T3(2)((€**)" — 4(e**)’ + 4e?") + (2?T())" (2(e?") — 4€**) + (2°Ty(x))" e
= (22Ty(x))"c?

et donc (22T5(x))” = 3. D’on 22Ty(z) = %:ﬁ + Az + B avec A = B =0 (pour que Tj soit

2z

bien un polynéme), et y,..4(z) = %x% . La solution générale est donc

1
y(z) = C1e®* + Cyze®® + %x%%, r e R.



Exercice 3.

Soient «, w € R. Trouver la solution générale de I’équation différentielle du 2°¢ ordre suivante :

VteR, y”(t)+ 2y (¢) + ay(t) = cos(wt). (3.1)

Solution

L’équation homogene correspondant & (3.1) est donnée par,
VEER, y'(t)+ 2y (t) + ay(t) =0, (3.2)
donc I’équation caractéristique s’écrit :
r?+2r+a=0. (3.3)

Il faut donc considérer trois cas :
— a<l;
—a>1;
— a=1.

Cas oo < 1. Les racines de (3.3) sont —1 + V1 — a.. Deux solutions linéairement indépendantes
de I’équation homogene (3.2) sont donc

t s elTImViza)t et t s e(T1HVIZa)t (3.4)

Cherchons maintenant une solution particuliére de (3.1).

Puisque ni ¢ — cos(wt) ni t — sin(wt) ne sont solutions de 1’équation homogene (3.2),
cherchons une solution particuliére dans 'espace qu’elles engendrent. Cherchons (7, v,) € R?
tels que ¢ = v, cos(wt) 4 v, sin(wt) soit solution de (3.1). Nous obtenons

cos(wt) = —w?y, cos(wt) — Yow? sin(wt) — 2y, wsin(wt) (3.5)
+ 275w cos(wt) + ary; cos(wt) + aryy sin(wt)
= cos(wt)(—w?yy + 27w + ayy) + sin(wt) (—wy, — 27w+ avy).  (3.6)

Ainsi

—Yow?® — 27w + ay, = 0, PN 2wy, = (@ —w?)7s,
—w2; + 2w+ ayy = 1. 207 =1—(a—w)y.
d’ou

Ay = (@ —w)2wy = (@ —w) (1= (a—w’)y) = (a —w?) — (@ —w?)?y.  (3.8)

En supposant («,w) # (0,0) :

Oé—OJ2

T 4?2+ (a—w?)?’
B 2w
4w 4 (a0 —w?)?’

Y1

V2



Finalement, une solution particuliere de (3.1) est

(o — w?) cos(wt) + 2w sin(wt)
4w? + (o — w?)?

(3.10)

L’ensemble des solutions de (3.1) si (o, w) # (0,0) et & < 1 est donc

1-Vita s (o — w?) cos(wt) + 2wsin(wt)
{tl—)cle( I=Vi=—a)t 4 epe(=1Hvi—ajt 4 PR —y tep,09 ER G (3.11)

Considérons maintenant le cas («,w) = (0,0). L’équation (3.1) devient
VEER, y’(t)+2y(t) = 1. (3.12)

Il est équivalent de résoudre
VieR, 2/(t)+2z(t) =1. (3.13)

Une fonction y € C2(R) est solution de (3.12) si et seulement si 3 est solution de (3.13). Si
z € CY(R) est solution de (3.13), la méthode du facteur intégrant donne

d(e?z(t
vier, L) _ o (3.14)
dt
Ainsi les solutions de (3.13) sont
{t > % +ce?:ce R} ; (3.15)
donc les solutions de (3.12) sont
{t e 2t ey + % 1¢qp,Co € R}. (3.16)

Cas o > 1. Cette fois-ci deux solutions linéairement indépendantes de ’équation homogeéne (3.2)
sont

trret cos(t\/a — 1) et Lt et Sin(t\/a — 1). (3.17)

La solution particuliere (3.10) est également valide pour le cas présent. Par conséquent,
Pensemble des solutions de (3.1) si o > 1 est

—w? t) + 2wsin(wt
{t > ciet cos<t\/a — 1> +coet sin(t\/a - 1) + (@ =) cos(wt) + Jwsin(wt)

4w? + (o0 — w2)2
1C,C € R} (318)
Cas a = 1. Cette fois-ci deux solutions linéairement indépendantes de ’équation homogene (3.2)
sont
tet et tite (3.19)

La fonction (3.10) est toujours une solution particuliere de (3.1) dans le cas présent. Par

conséquent, I’ensemble des solutions de (3.1) si a > 1 est

(a — w?) cos(wt) + 2wsin(wt)
dw? + (o — w?)?

{t > cret + cotet + ¢, Co € R}. (3.20)



Exercice 4.
Soit f: R — R la fonction définie par

1) Vérifier, Vz € R, f"(x) + f'(x) + f(zx) = €”.

2) En déduire la somme de la série

Solution

1) Commengons par appliquer le critére de D’Alembert sur les séries numériques. Pour z € R*,

N € | N E
lim X = lim =0.
notoo (3(n+ 1)1 |z*"  notoe (B3n+3)(3n+2)(3n+1)

3n
. . Jo . . o N +oo T , .
Ainsi, le rayon de convergence de la série est infini. La série entiére » n=0 gy définit donc

(3n
une fonction f € C*°(R) et on peut écrire

9 3n / 2 3,801 , <= 3n(3n — 1)z 2
f@=> gor F@= g o F@=X =g —

Les séries dérivées héritent du rayon de convergence infini. On obtient ainsi

= 3n—1 3n—2

I@=Y g ¢ PO gy

n=1 n=1
Il s’ensuit donc que Vx € R, chacune des trois séries entiéres converge absolument et on a :

+o0

J(@)+ (@) + @) =3

n=0

n
" _ e

n!

2) On a f(0) =1 et f/(0) = 0. Ainsi f est 'unique solution du probléme de Cauchy

uw’(t) +u/(t) + u(t) = e
u(0) = 1 (4.1)
u'(0)=0

Calculons la solution générale de ’équation sans second membre u”(t) + u’(t) + u(t) = 0
d’équation caractéristique r? 4+ r 4+ 1 = 0. Puisque le discriminant de cette équation vaut

—3, on obtient :
3 3
u(t) = cre 2 cos (%_t) + coe 2 sin (%_t) :



On vérifie immédiatement que ;et est une solution particuliére de (4.1), ce qui implique
que la solution générale du probléme non-homogene est donnée par

u(t) = cre 2 cos (?t) + cye /2 sin (?t) n %et.

En imposant u(0) =1 et v/ (0) = 0, on obtient ¢; = % et ¢y = 0. Ainsi, la solution de (4.1)
qui vérifie ces conditions initiales est

Finalement,
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