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Exercice 1.
Soit 𝐼 ⊂ R, 𝑡0 ∈ 𝐼 et 𝑝, 𝑞 ∶ 𝐼 → R continues. On considère deux solutions 𝑦1,𝑦2 de

𝑦″(𝑡) + 𝑝(𝑡)𝑦′(𝑡) + 𝑞(𝑡)𝑦(𝑡) = 0 ∀𝑡 ∈ 𝐼

1) Montrer que
𝑊[𝑦1, 𝑦2](𝑡) = 𝑊[𝑦1, 𝑦2](𝑡0)𝑒− ∫𝑡

𝑡0
𝑝(𝑠)d𝑠.

Cette relation est connue sous le nom d’identité d’Abel.
2) Montrer que le Wronskien de deux solutions 𝑦1, 𝑦2 vérifie soit 𝑊[𝑦1, 𝑦2](𝑡) > 0, soit

𝑊[𝑦1, 𝑦2](𝑡) < 0, soit 𝑊[𝑦1, 𝑦2](𝑡) = 0 pour tout 𝑡 ∈ 𝐼.

Solution
1) Posons 𝒚1(𝑡) = (𝑦1(𝑡), 𝑦′

1(𝑡)) et 𝒚2(𝑡) = (𝑦2(𝑡), 𝑦′
2(𝑡)).

𝑊[𝑦1, 𝑦2](𝑡) = det([𝑦1 𝑦2
𝑦′

1 𝑦′
2
]) = 𝑦1𝑦′

2 − 𝑦′
1𝑦2,

où on n’exprime plus explicitement la dépendance des fonctions en 𝑡. On dérive le Wronskien
pour obtenir

𝑊 ′ = 𝑦′
1𝑦′

2 + 𝑦1𝑦″
2 − 𝑦″

1 𝑦2 − 𝑦′
1𝑦′

2 = 𝑦1𝑦″
2 − 𝑦″

1 𝑦2

= 𝑦1(−𝑝𝑦′
2 − 𝑞𝑦2) + (𝑝𝑦′

1 + 𝑞𝑦1)𝑦2

= 𝑝(𝑦′
1𝑦2 − 𝑦1𝑦′

2)
= −𝑝𝑊.

En résolvant cette équation différentielle, on obtient immédiatement

𝑊[𝑦1, 𝑦2](𝑡) = 𝑊[𝑦1, 𝑦2](𝑡0)𝑒− ∫𝑡
𝑡0

𝑝(𝑠)d𝑠.

2) En utilisant l’identité d’Abel, il est clair que sign(𝑊[𝑦1, 𝑦2](𝑡)) = sign(𝑊[𝑦1, 𝑦2](𝑡0)) pour
tout 𝑡 ∈ 𝐼, comme 𝑒− ∫𝑡

𝑡0
𝑝(𝑠) > 0 pour tout 𝑡 ∈ 𝐼. Alternativement, on aurait aussi pu utiliser

le théorème 9.47 du polycopié : pour deux solutions 𝑦1, 𝑦2 linéairement indépendantes,
𝑊[𝑦1, 𝑦2](𝑡) ≠ 0 pour tout 𝑡 ∈ 𝐼. Comme le Wronskien est une fonction continue en 𝑡,
sign(𝑊[𝑦1, 𝑦2](𝑡)) = sign(𝑊[𝑦1, 𝑦2](0)). De plus, si deux solutions 𝑦1, 𝑦2 sont linéairement
dépendantes, alors 𝑊[𝑦1, 𝑦2](𝑡) = 0 pour tout 𝑡 ∈ 𝐼.

Exercice 2.
Résoudre les équations différentielles ci-dessous :
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1) 𝑦′(𝑥) + 𝑦(𝑥) = 𝑥3 avec 𝑦(0) = −2,
2) 𝑦″ − 4𝑦′ + 4𝑦 = 𝑥3𝑒2𝑥 .

Solution
1) La solution générale de l’ED homogène associée est 𝑦hom(𝑥) = 𝐶𝑒−𝑥 avec 𝐶 ∈ R. Pour

trouver une solution particulière 𝑦part de l’ED non-homogène, on utilise la méthode des
coefficients indéterminés.
Ici 𝑦′ + 𝑦 = 𝑒0⋅𝑥𝑃3(𝑥), où 𝑃3(𝑥) = 𝑥3 (un polynôme de degré 3).
Comme 𝑒0⋅𝑥 = 1 n’est pas solution de l’équation homogène, on cherche 𝑦part sous la forme
𝑦part(𝑥) = 𝑒0⋅𝑥𝑇3(𝑥), où 𝑇3 est un polynôme de degré 3 : 𝑦part(𝑥) = 𝐴𝑥3 + 𝐵𝑥2 + 𝐷𝑥 + 𝐸.
On obtient

𝑦′
part + 𝑦part = 𝐴𝑥3 + (3𝐴 + 𝐵)𝑥2 + (2𝐵 + 𝐷)𝑥 + 𝐷 + 𝐸 = 𝑥3,

ce qui mène à

𝐴 = 1, 3𝐴+𝐵 = 0, 2𝐵+𝐷 = 0 et 𝐷+𝐸 = 0 ⇔ 𝐴 = 1, 𝐵 = −3, 𝐷 = 6 et 𝐸 = −6 .

Ainsi 𝑦part(𝑥) = 𝑥3 − 3𝑥2 + 6𝑥 − 6 et

𝑦 = 𝑦hom + 𝑦part = 𝐶𝑒−𝑥 + 𝑥3 − 3𝑥2 + 6𝑥 − 6, 𝑥 ∈ R.

Avec la condition 𝑦(0) = −2, on obtient 𝐶 = 4, si bien que la solution (globale) est

𝑦(𝑥) = 4𝑒−𝑥 + 𝑥3 − 3𝑥2 + 6𝑥 − 6, 𝑥 ∈ R.

2) L’équation caractéristique 𝜆2 − 4𝜆 + 4 = 0 admet la racine 𝜆 = 2 de multiplicité 2. La
solution générale de l’équation homogène associée est donc

𝑦hom(𝑥) = 𝐶1𝑒2𝑥 + 𝐶2𝑥𝑒2𝑥, 𝑥 ∈ R.

L’équation différentielle est de la forme 𝑦″ − 4𝑦′ + 4𝑦 = 𝑒2𝑥𝑃3(𝑥), où 𝑃3(𝑥) = 𝑥3 est
un polynôme de degré 3. De plus 𝑒2𝑥 et 𝑥𝑒2𝑥 sont solutions de l’équation homogène,
mais pas 𝑥2𝑒2𝑥. Cherchons une solution particulière de l’ED non-homogène sous la forme
𝑦part(𝑥) = 𝑥2𝑒2𝑥𝑇3(𝑥), où 𝑇3 est un polynôme de degré 3 à déterminer. Ici il est plus simple
de travailler avec 𝑇3 sans introduire une notation pour les coefficients de 𝑇3. En substituant,
on obtient

𝑥3𝑒2𝑥 = 𝑦″
part − 4𝑦′

part + 4𝑦part

= 𝑥2𝑇3(𝑥)((𝑒2𝑥)″ − 4(𝑒2𝑥)′ + 4𝑒2𝑥) + (𝑥2𝑇3(𝑥))′(2(𝑒2𝑥)′ − 4𝑒2𝑥) + (𝑥2𝑇3(𝑥))″𝑒2𝑥

= (𝑥2𝑇3(𝑥))″𝑒2𝑥

et donc (𝑥2𝑇3(𝑥))″ = 𝑥3. D’où 𝑥2𝑇3(𝑥) = 1
20

𝑥5 + 𝐴𝑥 + 𝐵 avec 𝐴 = 𝐵 = 0 (pour que 𝑇3 soit

bien un polynôme), et 𝑦part(𝑥) = 1
20

𝑥5𝑒2𝑥. La solution générale est donc

𝑦(𝑥) = 𝐶1𝑒2𝑥 + 𝐶2𝑥𝑒2𝑥 + 1
20𝑥5𝑒2𝑥, 𝑥 ∈ R.
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Exercice 3.
Soient 𝛼, 𝜔 ∈ R. Trouver la solution générale de l’équation différentielle du 2nd ordre suivante :

∀𝑡 ∈ R, 𝑦″(𝑡) + 2𝑦′(𝑡) + 𝛼𝑦(𝑡) = cos(𝜔𝑡). (3.1)

Solution
L’équation homogène correspondant à (3.1) est donnée par,

∀𝑡 ∈ R, 𝑦″(𝑡) + 2𝑦′(𝑡) + 𝛼𝑦(𝑡) = 0, (3.2)

donc l’équation caractéristique s’écrit :

𝑟2 + 2𝑟 + 𝛼 = 0. (3.3)

Il faut donc considérer trois cas :
— 𝛼 < 1 ;
— 𝛼 > 1 ;
— 𝛼 = 1.

Cas 𝛼 < 1. Les racines de (3.3) sont −1 ±
√

1 − 𝛼. Deux solutions linéairement indépendantes
de l’équation homogène (3.2) sont donc

𝑡 ↦ e(−1−
√

1−𝛼)𝑡 et 𝑡 ↦ e(−1+
√

1−𝛼)𝑡. (3.4)

Cherchons maintenant une solution particulière de (3.1).
Puisque ni 𝑡 ↦ cos(𝜔𝑡) ni 𝑡 ↦ sin(𝜔𝑡) ne sont solutions de l’équation homogène (3.2),
cherchons une solution particulière dans l’espace qu’elles engendrent. Cherchons (𝛾1, 𝛾2) ∈ R2

tels que 𝑡 ↦ 𝛾1 cos(𝜔𝑡) + 𝛾2 sin(𝜔𝑡) soit solution de (3.1). Nous obtenons

cos(𝜔𝑡) = −𝜔2𝛾1 cos(𝜔𝑡) − 𝛾2𝜔2 sin(𝜔𝑡) − 2𝛾1𝜔 sin(𝜔𝑡)
+ 2𝛾2𝜔 cos(𝜔𝑡) + 𝛼𝛾1 cos(𝜔𝑡) + 𝛼𝛾2 sin(𝜔𝑡)

(3.5)

= cos(𝜔𝑡)(−𝜔2𝛾1 + 2𝛾2𝜔 + 𝛼𝛾1) + sin(𝜔𝑡)(−𝜔2𝛾2 − 2𝛾1𝜔 + 𝛼𝛾2). (3.6)

Ainsi

{
−𝛾2𝜔2 − 2𝛾1𝜔 + 𝛼𝛾2 = 0,
−𝜔2𝛾1 + 2𝛾2𝜔 + 𝛼𝛾1 = 1.

⟺ {
2𝜔𝛾1 = (𝛼 − 𝜔2)𝛾2,
2𝜔𝛾2 = 1 − (𝛼 − 𝜔2)𝛾1.

(3.7)

d’où
4𝜔2𝛾1 = (𝛼 − 𝜔2)2𝜔𝛾2 = (𝛼 − 𝜔2)(1 − (𝛼 − 𝜔2)𝛾1) = (𝛼 − 𝜔2) − (𝛼 − 𝜔2)2𝛾1. (3.8)

En supposant (𝛼, 𝜔) ≠ (0, 0) :

⎧{{
⎨{{⎩

𝛾1 = 𝛼 − 𝜔2

4𝜔2 + (𝛼 − 𝜔2)2 ,

𝛾2 = 2𝜔
4𝜔2 + (𝛼 − 𝜔2)2 .

(3.9)
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Finalement, une solution particulière de (3.1) est

𝑡 ↦
(𝛼 − 𝜔2) cos(𝜔𝑡) + 2𝜔 sin(𝜔𝑡)

4𝜔2 + (𝛼 − 𝜔2)2 . (3.10)

L’ensemble des solutions de (3.1) si (𝛼, 𝜔) ≠ (0, 0) et 𝛼 < 1 est donc

{𝑡 ↦ 𝑐1e(−1−
√

1−𝛼)𝑡 + 𝑐2e(−1+
√

1−𝛼)𝑡 +
(𝛼 − 𝜔2) cos(𝜔𝑡) + 2𝜔 sin(𝜔𝑡)

4𝜔2 + (𝛼 − 𝜔2)2 ∶ 𝑐1, 𝑐2 ∈ R}. (3.11)

Considérons maintenant le cas (𝛼, 𝜔) = (0, 0). L’équation (3.1) devient

∀𝑡 ∈ R, 𝑦″(𝑡) + 2𝑦′(𝑡) = 1. (3.12)
Il est équivalent de résoudre

∀𝑡 ∈ R, 𝑧′(𝑡) + 2𝑧(𝑡) = 1. (3.13)

Une fonction 𝑦 ∈ C2(R) est solution de (3.12) si et seulement si 𝑦′ est solution de (3.13). Si
𝑧 ∈ C1(R) est solution de (3.13), la méthode du facteur intégrant donne

∀𝑡 ∈ R,
d(e2𝑡𝑧(𝑡))

d𝑡 = e2𝑡. (3.14)

Ainsi les solutions de (3.13) sont

{𝑡 ↦ 1
2 + 𝑐e−2𝑡 ∶ 𝑐 ∈ R} ; (3.15)

donc les solutions de (3.12) sont

{𝑡 ↦ 𝑐1e−2𝑡 + 𝑐2 + 𝑡
2 ∶ 𝑐1, 𝑐2 ∈ R}. (3.16)

Cas 𝛼 > 1. Cette fois-ci deux solutions linéairement indépendantes de l’équation homogène (3.2)
sont

𝑡 ↦ e−𝑡 cos(𝑡
√

𝛼 − 1) et 𝑡 ↦ e−𝑡 sin(𝑡
√

𝛼 − 1). (3.17)

La solution particulière (3.10) est également valide pour le cas présent. Par conséquent,
l’ensemble des solutions de (3.1) si 𝛼 > 1 est

{𝑡 ↦ 𝑐1e−𝑡 cos(𝑡
√

𝛼 − 1) + 𝑐2e−𝑡 sin(𝑡
√

𝛼 − 1) +
(𝛼 − 𝜔2) cos(𝜔𝑡) + 2𝜔 sin(𝜔𝑡)

4𝜔2 + (𝛼 − 𝜔2)2

∶ 𝑐1, 𝑐2 ∈ R}. (3.18)

Cas 𝛼 = 1. Cette fois-ci deux solutions linéairement indépendantes de l’équation homogène (3.2)
sont

𝑡 ↦ e−𝑡 et 𝑡 ↦ 𝑡e−𝑡. (3.19)

La fonction (3.10) est toujours une solution particulière de (3.1) dans le cas présent. Par
conséquent, l’ensemble des solutions de (3.1) si 𝛼 > 1 est

{𝑡 ↦ 𝑐1e−𝑡 + 𝑐2𝑡e−𝑡 +
(𝛼 − 𝜔2) cos(𝜔𝑡) + 2𝜔 sin(𝜔𝑡)

4𝜔2 + (𝛼 − 𝜔2)2 ∶ 𝑐1, 𝑐2 ∈ R}. (3.20)
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Exercice 4.
Soit 𝑓 ∶ R → R la fonction définie par

∀𝑥 ∈ R, 𝑓(𝑥) =
+∞

∑
𝑛=0

𝑥3𝑛

(3𝑛)! .

1) Vérifier, ∀𝑥 ∈ R, 𝑓″(𝑥) + 𝑓 ′(𝑥) + 𝑓(𝑥) = 𝑒𝑥.
2) En déduire la somme de la série

+∞

∑
𝑛=0

1
(3𝑛)! .

Solution
1) Commençons par appliquer le critère de D’Alembert sur les séries numériques. Pour 𝑥 ∈ R∗,

lim
𝑛→+∞

|𝑥|3(𝑛+1)

(3(𝑛 + 1))! ×
(3𝑛)!
|𝑥|3𝑛 = lim

𝑛→+∞

|𝑥|3

(3𝑛 + 3)(3𝑛 + 2)(3𝑛 + 1) = 0.

Ainsi, le rayon de convergence de la série est infini. La série entière ∑+∞
𝑛=0

𝑥3𝑛

(3𝑛)!
définit donc

une fonction 𝑓 ∈ 𝐶∞(R) et on peut écrire

𝑓(𝑥) =
+∞

∑
𝑛=0

𝑥3𝑛

(3𝑛)! , 𝑓 ′(𝑥) =
+∞

∑
𝑛=1

3𝑛𝑥3𝑛−1

(3𝑛)! et 𝑓″(𝑥) =
+∞

∑
𝑛=1

3𝑛(3𝑛 − 1)𝑥3𝑛−2

(3𝑛)! .

Les séries dérivées héritent du rayon de convergence infini. On obtient ainsi

𝑓 ′(𝑥) =
+∞

∑
𝑛=1

𝑥3𝑛−1

(3𝑛 − 1)! et 𝑓″(𝑥) =
+∞

∑
𝑛=1

𝑥3𝑛−2

(3𝑛 − 2)! .

Il s’ensuit donc que ∀𝑥 ∈ R, chacune des trois séries entières converge absolument et on a :

𝑓″(𝑥) + 𝑓 ′(𝑥) + 𝑓(𝑥) =
+∞

∑
𝑛=0

𝑥𝑛

𝑛! = 𝑒𝑥.

2) On a 𝑓(0) = 1 et 𝑓 ′(0) = 0. Ainsi 𝑓 est l’unique solution du problème de Cauchy

⎧{
⎨{⎩

𝑢″(𝑡) + 𝑢′(𝑡) + 𝑢(𝑡) = 𝑒𝑡

𝑢(0) = 1
𝑢′(0) = 0

(4.1)

Calculons la solution générale de l’équation sans second membre 𝑢″(𝑡) + 𝑢′(𝑡) + 𝑢(𝑡) = 0
d’équation caractéristique 𝑟2 + 𝑟 + 1 = 0. Puisque le discriminant de cette équation vaut
−3, on obtient :

𝑢(𝑡) = 𝑐1𝑒−𝑡/2 cos(
√

3
2 𝑡) + 𝑐2𝑒−𝑡/2 sin(

√
3

2 𝑡).
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On vérifie immédiatement que 1
3
𝑒𝑡 est une solution particulière de (4.1), ce qui implique

que la solution générale du problème non-homogène est donnée par

𝑢(𝑡) = 𝑐1𝑒−𝑡/2 cos(
√

3
2 𝑡) + 𝑐2𝑒−𝑡/2 sin(

√
3

2 𝑡) + 1
3𝑒𝑡.

En imposant 𝑢(0) = 1 et 𝑢′(0) = 0, on obtient 𝑐1 = 2
3

et 𝑐2 = 0. Ainsi, la solution de (4.1)
qui vérifie ces conditions initiales est

𝑢(𝑡) = 2
3𝑒−𝑡/2 cos(

√
3

2 𝑡) + 1
3𝑒𝑡.

Finalement,

+∞

∑
𝑛=0

1
(3𝑛)! = 𝑓(1) = 𝑢(1) = 2

3𝑒−1/2 cos(
√

3
2 ) + 1

3𝑒
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