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Exercice 1.
On considère le problème de Cauchy

𝑢″(𝑡) =𝑓(𝑡, 𝑢(𝑡), 𝑢′(𝑡)), 𝑡 ∈ 𝐼, 𝑢(𝑡0) =𝑢0, 𝑢′(𝑡0) = 𝑣0, (1.1)

où 𝐼 est un intervalle ouvert contenant 𝑡0, et 𝑓 ∶ 𝐼 × R2 → R est une fonction continue et
globalement lipschitzienne par rapport au deuxième argument : il existe ℓ ∈ C0(𝐼,R+) telle que

∀𝑡 ∈ 𝐼 ∀(𝑢1, 𝑣1), (𝑢2, 𝑣2) ∈ R2 |𝑓(𝑡, 𝑢1, 𝑣1) − 𝑓(𝑡, 𝑢2, 𝑣2)| ⩽ ℓ(𝑡)‖(𝑢1 − 𝑢2, 𝑣1 − 𝑣2)‖.

Montrer que (1.1) admet une solution globale unique 𝑢 ∈ C2(𝐼). En déduire l’existence et l’unicité
de la solution globale du problème de Cauchy

𝑢″(𝑡) + 𝑎(𝑡)𝑢′(𝑡) + 𝑏(𝑡)𝑢(𝑡) =𝑐(𝑡), 𝑡 ∈ 𝐼, 𝑢(𝑡0) =𝑢0, 𝑢′(𝑡0) = 𝑣0, 𝑎, 𝑏, 𝑐 ∈ C0(𝐼).

Solution
On transforme l’équation du second ordre en un système d’équations du premier ordre pour 𝑢

et 𝑣. Soit

{𝑢′(𝑡) = 𝑣(𝑡),
𝑣′(𝑡) = 𝑓(𝑡, 𝑢(𝑡), 𝑣(𝑡)),

𝑡 ∈ 𝐼, 𝑢(𝑡0) = 𝑢0, 𝑣(𝑡0) = 𝑣0.

Alors 𝑢 ∈ C2(𝐼) est solution globale du problème de Cauchy pour l’EDO du deuxième ordre ssi
(𝑢, 𝑣) ≔ (𝑢, 𝑢′) ∈ C1(𝐼) est solution globale du problème de Cauchy pour l’EDO vectoriel du
premier ordre. On peut récrire le système du premier ordre comme

(𝑢′(𝑡)
𝑣′(𝑡)) = 𝐹(𝑡, (𝑢(𝑡)

𝑣(𝑡))), 𝑡 ∈ 𝐼, (𝑢(𝑡0)
𝑣(𝑡0)) =(𝑢0

𝑣0
),

avec 𝐹 ∶ 𝐼 × R2 → R2 donnée par

𝐹(𝑡, (𝑥
𝑦)) =( 𝑦

𝑓(𝑡, 𝑥, 𝑦)) = (𝐹1(𝑡, 𝑥, 𝑦)
𝐹2(𝑡, 𝑥, 𝑦)).

Or 𝐹 est continue sur 𝐼 × R2 en tant que composée de fonctions continues et 𝐹 est globalement
lipschitzienne par rapport au deuxième argument. En effet la définition de “globalement lipschit-
zienne par rapport au second argument” appliquée à 𝑓 signifie qu’il existe ℓ ∈ C0(𝐼,R+) telle
que

∀𝑡 ∈ 𝐼 ∀(𝑢1, 𝑣1), (𝑢2, 𝑣2) ∈ R2 |𝑓(𝑡, 𝑢1, 𝑣1) − 𝑓(𝑡, 𝑢2, 𝑣2)| ⩽ ℓ(𝑡)‖(𝑢1 − 𝑢2, 𝑣1 − 𝑣2)‖.
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D’où,

∀𝑡 ∈ 𝐼 ∀(𝑢1, 𝑣1), (𝑢2, 𝑣2) ∈ R2 ‖𝐹(𝑡, 𝑢1, 𝑣1)−𝐹(𝑡, 𝑢2, 𝑣2)‖ ⩽ (|𝑣1 − 𝑣2|2 + |𝑓(𝑡, 𝑢1, 𝑣1) − 𝑓(𝑡, 𝑢2, 𝑣2)|2)1/2

⩽ (|𝑣1 − 𝑣2|2 + ℓ(𝑡)2(|𝑢1 − 𝑢2|2 + |𝑣1 − 𝑣2|2))1/2 ⩽ √1 + ℓ2(𝑡) ‖(𝑢1 − 𝑢2, 𝑣1 − 𝑣2)‖.

Par le théorème de Cauchy-Lipschitz, version globale, le problème de Cauchy pour le système
du premier ordre admet une unique solution globale. Il en est donc de même pour le problème
scalaire du second ordre.

Pour le cas particulier, on a 𝑓(𝑡, 𝑢, 𝑣) = 𝑐(𝑡) − 𝑎(𝑡)𝑣 − 𝑏(𝑡)𝑢 et, en choisissant
ℓ(𝑡) = (|𝑎(𝑡)|2 + |𝑏(𝑡)|2)1/2,

∀𝑡 ∈ 𝐼 ∀(𝑢1, 𝑣1), (𝑢2, 𝑣2) ∈ R2 |𝑓(𝑡, 𝑢1, 𝑣1) − 𝑓(𝑡, 𝑢2, 𝑣2)|

⩽ |𝑎(𝑡)| |𝑣1 − 𝑣2| + |𝑏(𝑡)| |𝑢1 − 𝑢2|
Cauchy-Schwarz

⩽ ℓ(𝑡)‖(𝑢1 − 𝑢2, 𝑣1 − 𝑣2)‖,

ce qui permet d’appliquer le cas général.

Exercice 2.
Trouvez toutes les fonctions 𝑤 ∶ ]0, +∞[ → R telles que

∀𝑡 ∈ ]0, +∞[, 𝑡𝑤″(𝑡) − 𝑤′(𝑡) + (1 − 𝑡)𝑤(𝑡) = 0. (2.1)

Détaillez votre raisonnement.
Indication. La fonction exponentielle est une solution de (2.1).

Solution
(2.1) est une équation différentielle linéaire homogène du second ordre, scalaire ; ses solutions

dans C2(]0, +∞[) sont donc un sous-espace vectoriel de dimension 2 (il n’y a pas de condition de
Cauchy). Puisque nous connaissons une première solution (la fonction exponentielle), cherchons
une seconde solution linéairement indépendante. Ces deux solutions engendreront l’espace des
solutions de (2.1).

Cherchons cette second solution sous la forme 𝑡 ↦ 𝑣(𝑡)𝑒𝑡 . Pour 𝑣 ∈ C2(]0, +∞[), 𝑡 ↦ 𝑣(𝑡)𝑒𝑡

est solution de (2.1) si et seulement si

𝑡𝑣(𝑡) + 2𝑡𝑣′(𝑡) + 𝑡𝑣″(𝑡) − 𝑣(𝑡) − 𝑣′(𝑡) + 𝑣(𝑡) − 𝑡𝑣(𝑡) = 0, (2.2)
c’est-à-dire

2𝑡𝑣′(𝑡) + 𝑡𝑣″(𝑡) − 𝑣′(𝑡) = 0. (2.3)

Il est équivalent de chercher 𝑢 ∈ C1(]0, +∞[) telle que

2𝑡𝑢(𝑡) + 𝑡𝑢′(𝑡) − 𝑢(𝑡) = 0 ∶ (2.4)

si 𝑢 est solution de (2.4), toutes ses primitives sont solutions de (2.3). La fonction nulle est
solution de (2.4) ; elle correspond à une solution constante de (2.3) et donc à une solution
de (2.1) proportionnelle à l’exponentielle. Puisque nous cherchons une seconde solution de (2.1)
linéairement indépendante de l’exponentielle, cherchons une solution 𝑢 de (2.4) qui ne soit pas

2



nulle partout : par continuité de 𝑢, il existe au moins un intervalle ouvert 𝐼 non vide sur lequel 𝑢
est non nulle. Pour tout 𝑡 ∈ 𝐼,

𝑢′(𝑡)
𝑢(𝑡) = 1

𝑡 − 2 (2.5)

donc ∃𝑐 ∈ R tel que
ln|𝑢(𝑡)| = ln 𝑡 − 2𝑡 + 𝑐 ; (2.6)

finalement,
𝑢 ∈ {𝑡 ↦ 𝑎𝑡e−2𝑡 ∶ 𝑎 ∈ R ∖ {0}} ⊂ C1(𝐼). (2.7)

Au vu des solutions trouvées, nous pouvons choisir 𝐼 = ]0, +∞[ dans ce raisonnement.
Puisque 𝑡 ↦ 𝑡e−2𝑡 est solution de (2.4), sa primitive 𝑡 ↦ −(1 + 2𝑡)e−2𝑡/4 est une solution

de (2.3) ; cette primitive est facilement obtenue en intégrant par parties. Par conséquent 𝑡 ↦
−(1+2𝑡)e−𝑡/4 est une solution de (2.1). Cette dernière fonction est bien linéairement indépendante
de l’exponentielle, comme attendu. Ces deux solutions engendrent donc l’ensemble des solutions
de (2.1) :

{𝑡 ↦ 𝑎e𝑡 + 𝑏(1 + 2𝑡)e−𝑡 ∶ 𝑎, 𝑏 ∈ R} ⊂ C2(]0, +∞[). (2.8)

Exercice 3.
Soit une fonction continue 𝑞 ∶ R∗

+ → R+ et une solution globale 𝑦 de l’équation différentielle

𝑦″(𝑥) + 𝑞(𝑥)𝑦(𝑥) = 0, 𝑥 > 0

telle que 𝑦 > 0 sur ]0, +∞[. A l’aide du théorème des accroissements finis, prouver que 𝑦′ ⩾ 0 sur
]0, +∞[. Prouver ensuite que la fonction 𝑞 vérifie

∫
+∞

1
𝑞(𝑡)𝑑𝑡 < +∞.

Pour ceci, la fonction auxiliaire 𝑧 = −𝑦′/𝑦 et l’EDO qu’elle satisfait sont utiles.

Solution
On a

𝑦″(𝑥) = −𝑞(𝑥)𝑦(𝑥) ⩽ 0, ∀𝑥 > 0

et donc la fonction 𝑦′ est décroissante sur ]0, ∞[. Soit alors 𝑏 > 0. On a par le théorème des
accroissements finis, si 𝑥 > 𝑏 :

𝑦(𝑥) = 𝑦(𝑏) + 𝑦′(𝑏𝑥)(𝑥 − 𝑏) ⩽ 𝑦(𝑏) + 𝑦′(𝑏)(𝑥 − 𝑏)

où 𝑏𝑥 ∈]𝑏, 𝑥[. Si 𝑦′(𝑏) < 0, on obtiendrait une contradiction avec 𝑦(𝑥) > 0 pour tout 𝑥 > 0. En
effet, dans ce cas on aurait 𝑦(𝑏) + 𝑦′(𝑏)(𝑥 − 𝑏) < 0 si 𝑥 est assez éloigné de 𝑏. Ainsi 𝑦′(𝑏) ⩾ 0 et
donc finalement 𝑦′ ⩾ 0 sur ]0, +∞[.
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Considérons la fonction auxiliaire 𝑧(𝑥) = − 𝑦′(𝑥)
𝑦(𝑥)

⩽ 0 définie sur ]0, ∞[. Remarquant que

𝑧′(𝑥) = −
𝑦″(𝑥)𝑦(𝑥) − 𝑦′(𝑥)2

𝑦(𝑥)2 = 𝑞(𝑥) + 𝑧2(𝑥) ⩾ 0, 𝑥 > 0,

on a pour tout 𝑏 > 1 que

𝑧(𝑏) = 𝑧(1) + ∫
𝑏

1
𝑧′(𝑡)𝑑𝑡 ⩾ 𝑧(1) + ∫

𝑏

1
𝑞(𝑡)𝑑𝑡.

D’où, pour tout 𝑏 > 1, ∫𝑏
1 𝑞(𝑡)𝑑𝑡 ⩽ 𝑧(𝑏) − 𝑧(1) ⩽ −𝑧(1) < +∞ et ∫+∞

1 𝑞(𝑡)𝑑𝑡 < +∞.

Exercice 4.
Soit 𝐼 un intervalle ouvert contenant 0, 𝑝, 𝑞 ∶ 𝐼 → R deux fonctions continues. Montrer que

l’équation différentielle
𝑦″(𝑡) + 𝑝(𝑡)𝑦′(𝑡) + 𝑞(𝑡)𝑦(𝑡) = 0

n’admet jamais simultanément 𝑦1(𝑡) = 𝑡 et 𝑦2(𝑡) = 𝑡2 comme solutions.

Solution
Les fonctions 𝑦1(𝑡) et 𝑦2(𝑡) sont linéairement indépendantes, cependant le Wronskien

𝑊[𝑦1, 𝑦2](𝑡) = det([𝑡 𝑡2

1 2𝑡])

s’annule au point 𝑡 = 0, ce qui est une contradiction avec le Théorème 9.47 du polycopié.
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