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Exercice 1.
On consideére le probleme de Cauchy
u’(t) =f(t,u(t),w' (1), tel, u(ty) =ug, u'(to) = vo, (1.1)

ou I est un intervalle ouvert contenant t,, et f : I x R?> — R est une fonction continue et
globalement lipschitzienne par rapport au deuxiéme argument : il existe £ € C°(I, R, ) telle que

Vt € 1V (up,vy), (ug,v9) € R? [f(t,ug,v1) — f(E, ug,v9)| <L) (uy — ug, vy —v3)].

Montrer que (1.1) admet une solution globale unique u € C?(I). En déduire I'existence et 1'unicité
de la solution globale du probleme de Cauchy

u”(t) +alt)u (t) + bt u(t) =c(t), tel, ulty) =uy, u(ty)=uvy, a,b,cecCOI).

Solution

On transforme ’équation du second ordre en un systéme d’équations du premier ordre pour u
et v. Soit

u'(t) = v(t), _ _
{v’(t)f(t,u(t),v(t)), tel, u(ty) = ug, v(ty) = vo.

Alors u € C?(I) est solution globale du probléme de Cauchy pour I'EDO du deuxiéme ordre ssi
(u,v) := (u,u’) € CY(I) est solution globale du probléme de Cauchy pour 'EDO vectoriel du
premier ordre. On peut récrire le systéme du premier ordre comme

(vi0) = (e () e (se) = ()

avec F : I x R2 — R? donnée par

0)-Gek)- (522)

’ Yy f(t,l',y) F2(t7x7y)

Or F est continue sur I x R? en tant que composée de fonctions continues et F est globalement
lipschitzienne par rapport au deuxiéme argument. En effet la définition de “globalement lipschit-

zienne par rapport au second argument” appliquée & f signifie qu’il existe £ € C°(I,R,) telle
que

viel V(“lavl)’ (u2702) € R2 |f(t,u1,v1) - f(t7u271)2)| < g@)“(ul — U2,V — U2)H'



Dot

1/2
\V/t - IV(U17UI), (’LLQ,'UQ) e R2 HF(t7Ul,'l]l)—F(t7U2,’Ug>” < (|'U1 — U2|2 + |f(t,u1,vl) — f(t,UQ,U2)|2> /

1/2

< (Jvr =02 + L(1)% (Jug — ual? + |vg —0a]?)) 7 < A/1 4 £2(8) [ (ug — U, v1 — v3)].

Par le théoreme de Cauchy-Lipschitz, version globale, le probleme de Cauchy pour le systéme
du premier ordre admet une unique solution globale. Il en est donc de méme pour le probléme
scalaire du second ordre.

Pour le cas particulier, on a f(¢,u,v) = c(t) — a(t)v — b(t)u et, en choisissant
(1) = (Ja(t) 2 + b)) 2,

vtel v(ul,’U1>, ('LLQ,'UQ) c R2 ‘f(t,ul, 7}1) — f(t,UQ,U2)|
Cauchy-Schwarz
< la(®)] Jor — o + [b(0)] [ur — s < E()] (ug — ug, v1 —v3)],

ce qui permet d’appliquer le cas général.

Exercice 2.

Trouvez toutes les fonctions w : |0, +0o[ — R telles que
Vvt € 10,400, tw”(t)—w'(t)+ (1 —t)w(t) =0. (2.1)

Détaillez votre raisonnement.

Indication. La fonction exponentielle est une solution de (2.1).

Solution

(2.1) est une équation différentielle linéaire homogene du second ordre, scalaire ; ses solutions
dans C2(]0, +o0[) sont donc un sous-espace vectoriel de dimension 2 (il n’y a pas de condition de
Cauchy). Puisque nous connaissons une premiére solution (la fonction exponentielle), cherchons
une seconde solution linéairement indépendante. Ces deux solutions engendreront I’espace des
solutions de (2.1).

Cherchons cette second solution sous la forme t 5 v(t)e! . Pour v € C2(]0, +oc[), t - v(t)e
est solution de (2.1) si et seulement si

t

to(t) + 2t (t) + tv” (t) —v(t) — V' (t) + v(t) — tu(t) = 0, (2.2)
c’est-a-dire
2t (t) + tv” (t) — v’ (t) = 0. (2.3)

Il est équivalent de chercher u € C1(]0, +00[) telle que
2tu(t) + tu' (t) —u(t) =0 : (2.4)

si u est solution de (2.4), toutes ses primitives sont solutions de (2.3). La fonction nulle est
solution de (2.4); elle correspond & une solution constante de (2.3) et donc & une solution
de (2.1) proportionnelle & ’exponentielle. Puisque nous cherchons une seconde solution de (2.1)
linéairement indépendante de I’exponentielle, cherchons une solution u de (2.4) qui ne soit pas



nulle partout : par continuité de u, il existe au moins un intervalle ouvert I non vide sur lequel u
est non nulle. Pour tout ¢ € I,

u'(t) 1
o) =7~ 2 (2.5)
donc dec € R tel que
In|u(t)| =Int —2t+c; (2.6)
finalement,
u € {tate :a e R\ {0}} Cc C'(I). (2.7)

Au vu des solutions trouvées, nous pouvons choisir I = ]0, +oo[ dans ce raisonnement.

Puisque ¢ — te 2! est solution de (2.4), sa primitive t - —(1 + 2t)e 2! /4 est une solution
de (2.3); cette primitive est facilement obtenue en intégrant par parties. Par conséquent ¢
—(142t)e /4 est une solution de (2.1). Cette derniére fonction est bien linéairement indépendante
de I'exponentielle, comme attendu. Ces deux solutions engendrent donc ’ensemble des solutions
de (2.1) :

{t = ae' + b(1+2t)e™t : a,b € R} C C%(]0, +o0]). (2.8)

Exercice 3.

Soit une fonction continue ¢ : R% — R, et une solution globale y de I’équation différentielle
y'() +q(x)y(x) =0, x>0

telle que y > 0 sur |0, +oo[. A I'aide du théoréme des accroissements finis, prouver que y’ > 0 sur
10, +o0[. Prouver ensuite que la fonction ¢ vérifie

+o00
/ q(t)dt < +o0.
1

Pour ceci, la fonction auxiliaire z = —y’/y et 'EDO qu’elle satisfait sont utiles.

Solution
On a

y"(z) = —q(z)y(z) <0, Vo >0

et donc la fonction y’ est décroissante sur |0, 0o[. Soit alors b > 0. On a par le théoréme des
accroissements finis, si x > b :

y() = y(b) +y'(by)(z = b) <y(b) +y'(b)(x —b)

o b, €]b,z[. Si y’'(b) < 0, on obtiendrait une contradiction avec y(x) > 0 pour tout z > 0. En
effet, dans ce cas on aurait y(b) +y'(b)(x —b) < 0 si x est assez éloigné de b. Ainsi y'(b) > 0 et
donc finalement y” > 0 sur |0, 00|



EAGI)

= < 0 définie sur ]0, oo[. Remarquant que
y(x

Considérons la fonction auxiliaire z(z) = —

D’ot, pour tout b > 1, flb q(t)dt < z(b) — 2(1) < —2(1) < +o0 et f;roo q(t)dt < +o0.

Exercice 4.

Soit I un intervalle ouvert contenant 0, p,q : I — R deux fonctions continues. Montrer que
I’équation différentielle

y"(t) +p)y' () +q(t)y(t) =0

n’admet jamais simultanément y; (t) = t et y,(t) = t? comme solutions.

Solution

Les fonctions y; (t) et y5(t) sont linéairement indépendantes, cependant le Wronskien

Wiy, yo](t) = det(ﬁ ;D

s’annule au point ¢t = 0, ce qui est une contradiction avec le Théoréme 9.47 du polycopié.
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