Analyse avancée 11 Semaine du 2025-05-19 au 2025-05-23
Mathématiques 1% année
Prof. Fabio Nobile

Série 25 du lundi 19 mai 2025

Exercice 1.

Soit un intervalle ouvert I, ty € I et f: I x R — R une fonction continue. Pour chaque ¢ € I fixé,
on suppose que la dérivée de f(t,-) par rapport & x existe en tout point de R et est non positive :

of
— <
VieIVreR 8x(t’x) <0,

et que ? est continue sur I x R. Démontrer que le probleme a valeur initiale : trouver u €
xr
CHI N [ty,o0[) tel que

u/<t) = f(t7u<t)>7 teln [tO,OO[,
U‘(tO) = U,
ou uy € R, a une solution globale unique.

Solution

Soit t € I, x,y € R avec x < y. En appliquant le théoréme des accroissements finis a la fonction
f(t,-) sur lintervalle [z, y], on obtient 'existence de z €]x, y[ tel que

fes) = 1w) 3 o

r—y
D’ou
(F(t2) ~ Ft)e —9) = 2 (1. 5) (@ —y)2 <0
et donc
()~ Jt )y —2) = 2L (1. 2)(y — 2)2 <0
Ainsi

VteIVz eRVyeR (f(t,z)— f(t,y)(z —y) <L(t)]z —y|?

avec £ = 0 sur I (fonction continue). De plus f est localement lipschitzienne par rapport au second
argument a cause de I'hypotese d’existence et continuité sur I x R de la dérivée partielle ?.
x
Par le Théoréme 9.43 du cours, on peut conclure que le probléme & valeur initiale

{ () = fltu(), e 1N [t o0,

u(tO) = Up,

a une solution globale unique.

Exercice 2.



Soient f € C°(R?) telle que
V(t,x) € R? xf(t,z) < eSMi(1+ 2?)

et u € C1(R) solution de

Montrer que Vt € R, |u(t)| < v2e.

Solution

On a alors :
ult) o' (1) < (1 + u(t)?)
on encore

_ (@) 2u(t) (2 sint
_1+u(t)2_ T+ a2 < 2e < 2e.

(In(1 +u(t)?))’

En intégrant de 0 a ¢, on obtient, avec la condition initiale :
In(1+ u(t)?) — In2 < 2et.
Puisque ’exponentielle est croissante
u(t)? < 14 u(t)? < 2e%

et finalement

Exercice 3.

1) Soient I, E C R des intervalles ouverts, f € C°(I x E,R) localement lipschitzienne et
(tg,ug) € I x E. Considérons le probléeme de Cauchy suivant :

/
{u (t) = f(t,u(t), t1, 51)
u(ty) = uo.
Définition 1 (Barriere inférieure). Soient J C I un intervalle ouvert contenant t, et
¢ € CL(J,E). Le couple (J,¢) est appelé « barriére inférieure » de (3.1) si ¢(ty) = uq et,
vt e J, ¢ (t) < f(t,¢(t)). Cette barriere inférieure est dite « forte » si I'inégalité ci-dessus
est stricte.

~

Soient (J,¢) une barriére inférieure de (3.1) et (J,u) une solution maximale de (3.1).

Montrer que, ¥t € J N .J N [ty, 400, ¢(t) < u(t). Montrer également que cette derniére
inégalité est stricte si la barriére inférieure est forte.



Indication. Essayez d’argumenter par ’absurde.

Indication. 11 peut étre utile d’utiliser le lemme de Grénwall : Soit (a,b) € R? tel que a < b.
Soient u, 8 € C%([a, b]). Si u est différentiable sur Ja, b et V¢ € Ja,b] ' (t) < B(t)u(t), alors

vVt € [a,b] u(t) < ula) exp(fo B(s)ds).
2) Soit (tg,ug) € RL x R; considérons le probléeme de Cauchy suivant :

{u%ﬂt+u@2teR,

u(ty) = ug- (32)

a) Montrer que, pour tout v € ]07 \/%[, la solution u de (3.2) satisfait
’ytan('y(t —tg) + arctan(%)) <u(t), Vtelty,to+7(v)],

en notant pour un quelconque z € R, : 7(z) := 27! (g — arctan(uo/x)>.
Indication. V(t,y) € |v%, +oo[ x R, 4% + y* < f(t,y).
b) En déduire que

lim  w(t) = +oo.
t—to+7(y/to)

Solution

1) a) Supposons que la barriere soit faible, donc ¢(ty) = u(ty) et ¢’'(t) < f(t,p(t)) pour
t € [ty,+oo[NJ N J. Supposons par l'absurde qu’il existe ty € Jtg, +oo[NJ N J tel
que p(ty) > u(ty) et posons t; = sup{t € [tg,t2] : ¢(t) < u(t)}. Alors en ¢; on a
o(t1) = u(ty) et de plus p(t) > u(t) pour tout t € Jt;,t5]. Comme f est localement
Lipschitzienne il existe un voisinage U de u(t;) et C' > 0 telle que pour v,w € U on a

[f(t,0) = ft,w)] < Clo—wl.

Soit € > 0 tel que [t,t; + [ C [t1, 6] et p(t),u(t) € Usit € [ty,#; + €[. Alors nous

@'(t) —u'(t) < ft, o) — f(t,ut) < [f(t (b)) — f(t,u(t))]
< Olp(t) —u(t)]
< Co(t) —u(l)

pour tout ¢ € Jt1,t; + €[, puisque pour tout dans t € Jt;,t; + [ on a @(t) > u(t).
En appliquant le lemme de Gronwall & h(t) = ¢(t) — u(t) on obtient

¢
0 < h(t) < h(t;)exp (/ C’ds) =0 Vt € Jty,t + €],
t

1

ou nous avons utilisé h(t;) = 0. C’est une contradiction.



b) Supposons que la barriére soit stricte, donc ¢(ty) = u(ty) et ¢’'(tg) < f(to, ug) = u’(ty)

alors il existe g5 > 0 tel que p(t) < u(t) pour t € Jtg,tg + o[- Soit E = {t €
Jto, +00[NJ NJ ¢ @(t) > u(t)} et supposons par I'absurde que E # @, soit donc
t; = inf E. Alors ¢; > ty (car ¢(t) < u(t) dans un voisinage de t;) et pour tout
t € Jtg,ti[ on a p(t) < u(t). Par continuité de ¢, u il s’ensuit que ¢(t;) = u(ty).
Par conséquent, la fonction h(t) = ¢(t) — u(t) vérifie h(t;) = 0 et h(t) < 0 pour
t € Jtg,t1[. Cela implique que h'(t;) > 0, c’est-a-dire ¢’(t;) > u’(t;). Mais nous
avons également ¢’(ty) < f(ty,¢(t1)) = f(t1,u(ty)) = uv'(t;), ce qui conduit & une
contradiction.

2) a) Soit v €10, /%[, alors v + u(t)? < to +u(t)? < f(t, u(t)). Soit (J,,¢,) la solution
maximale de

90’/‘/(75) :72 + @'\/(t)Za te }t07 +OO[7 @W(tO) = Ugp-
Ainsi ¢, est une barriere inférieure stricte et donc . (t) < u(t) pour t € J, \ {{y}. On
calcule ¢, par séparation de variables et on trouve
@, (t) =vtan(y(t — to) + arctan(ug/v)),
son domaine de définition est J, = [ty,to + 7(7)[.
b) On a Jy = [tg,to + T(\/%)[ C J,, donc
oot < ult), te T\ {to}

et par continuité

¢O(t) = 72%@7(0 < u(t)v teJy \ {tO}'

Comme lim,_, . ) ©o(t) = 400 ; le résultat s’ensuit.

Exercice 4.

Soit uy € R. Considérons le probléme a la valeur initiale

W’ (4.1)
u(0) = ug
Discuter I'existence et I'unicité de solutions locales, maximales et globales — sans les calculer
explicitement — pour ¢ > 0, selon les trois cas suivants :
1) ug < 0;
2) ug €]0,1[;
3) ug > 1.

Aidez vous avec un dessin.

Solution
La fonction f(t,u) = tu®/(u — 1) est définie sur R x R\ {1} et est continue avec dérivée

partielle % continue sur son domaine de définition. Elle est donc localement Lipschitzienne par
u



rapport & sa deuxiéme variable et, par le théoreme de Cauchy-Lipschitz, on a existence et unicité
de solutions maximales pour tout uy € R\ {1}. On remarque de plus que lorsque uy =0, on a
l'unique solution globale constante u(t) = 0.

Etudions séparément les trois cas ug > 0, ug €10, 1] et ug > 0.

)

Cas uy > 1. Soit (J,,q2, %) la solution (unique) maximale. Dans ce cas, on a u(t) = u, pour
tout t € J,q. N R, (donc en particulier u(t) > 1). Si ceci n’était pas le cas, il existerait
t; = 0 tel que 1 < u(ty) < uyg, et donc pour un certain 0 < ¢ty < ¢; on aurait v'(t5) < 0. Or
u(to)?
> 0.
u(tg)—1
On montre de méme que u(t) est strictement croissante par un raisonnement par l’absurde.
Supposons qu’il existe t; >ty > 0 tel que 1 < u(t;) < u(ty). Alors il existe ¢y < s < ¢, tel

3
que v’ (s) < 0, ce qui contredit a nouveau u’'(s) = s% >0
uls)—

On montre maintenant que u(t) diverge en temps fini en utilisant le principe de comparaison,

ceci contredit le fait que u’(ty) = ¢

3
ce qui empéche l'existence d’'une solution globale. Pour v > 1, on a u—l > 2, donc on
—
considere le probleme de Cauchy

{v’(t) = to(t)?,
v(0) = ug.

En le résolvant explicitement par séparation de variables, on obtient la solution

1

vt =TT
Ug 2

et on observe que v(t) — +oo lorsque t —  / 2 Parle principe de comparaison (un résultat
Uog
d’un exercice précédent), on a u(t) > v(t), ce qui implique que u(t) doit aussi diverger en
un temps fini 7' < i.
Ug
Cas0 < ug < 1. Soit (J,,44, w) la solution maximale. Pour tout ¢ € J,,,,R_,si0 < u(t) < 1,
u(t)?
u(t)—1
décroissante et, en particulier, elle ne peut pas approcher la valeur 1.

onau'(t)=t < 0, donc par un raisonnement similaire au point précédent, u(t) est

On montre & présent que la solution maximale u(t) est définie pour tout ¢ > 0 (elle est donc
une solution globale), et qu’elle tend vers 0 lorsque ¢ — +00. La solution maximale doit
étre définie globalement car elle ne peut pas franchir la droite u = 0 (si ¢’était le cas, il y
aurait un premier instant t, tel que u(ty) = 0, ce qui violerait I'unicité de la solution locale
autour de ty, puisque u = 0 est aussi une solution). Comme u(t) est positive et décroissante,
elle converge vers une limite ¢ € [0, 1] quand ¢ — +o00. Si £ > 0, on aurait

L, . (t)°
lim «/(¢) = lim ¢ = —00,
t—+o0 t——+o00 u(t) — 1

ce qui contredit le fait que u posséde une asymptote horizontale. Ainsi, on a prouvé par
I’absurde que ¢ = 0.

Cas uy < 0. Soit (J,,44, ®) la solution maximale. Pour tout ¢t € J,,,,, NR,, si u(t) <0, on

u(t)? . N P .
au'(t) = t% > 0, et de nouveau on montre par un raisonnement similaire au point
w(t)—



précédent que u(t) est croissante. Comme u(t) ne peut pas franchir la droite u = 0 en vertu
de l'unicité locale, on en conclut que la solution maximale est définie pour tout ¢t > 0 et
donc est une solution globale. Etant croissante, u(¢) admet une limite ¢ < 0 pour ¢t — +oc.
Si ¢ < 0, on aurait
u(t)?
lim /() = lim tL = +00,
t—too t—+o00 u(t) —1

ce qui contredit le fait que u(t) a une limite finie £. On a donc montré par ’absurde que
£=0.
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