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Exercice 1.
Soit un intervalle ouvert 𝐼, 𝑡0 ∈ 𝐼 et 𝑓 ∶ 𝐼 × R → R une fonction continue. Pour chaque 𝑡 ∈ 𝐼 fixé,
on suppose que la dérivée de 𝑓(𝑡, ⋅) par rapport à 𝑥 existe en tout point de R et est non positive :

∀𝑡 ∈ 𝐼 ∀𝑥 ∈ R ∂𝑓
∂𝑥(𝑡, 𝑥) ⩽ 0,

et que ∂𝑓
∂𝑥

est continue sur 𝐼 × R. Démontrer que le problème à valeur initiale : trouver 𝑢 ∈
𝐶1(𝐼 ∩ [𝑡0, ∞[) tel que

{𝑢′(𝑡) = 𝑓(𝑡, 𝑢(𝑡)), 𝑡 ∈ 𝐼 ∩ [𝑡0, ∞[,
𝑢(𝑡0) = 𝑢0,

où 𝑢0 ∈ R, a une solution globale unique.

Solution
Soit 𝑡 ∈ 𝐼, 𝑥, 𝑦 ∈ R avec 𝑥 < 𝑦. En appliquant le théorème des accroissements finis à la fonction
𝑓(𝑡, ⋅) sur l’intervalle [𝑥, 𝑦], on obtient l’existence de 𝑧 ∈]𝑥, 𝑦[ tel que

𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)
𝑥 − 𝑦 = ∂𝑓

∂𝑥(𝑡, 𝑧) ⩽ 0.

D’où
(𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦))(𝑥 − 𝑦) = ∂𝑓

∂𝑥(𝑡, 𝑧)(𝑥 − 𝑦)2 ⩽ 0

et donc
(𝑓(𝑡, 𝑦) − 𝑓(𝑡, 𝑥))(𝑦 − 𝑥) = ∂𝑓

∂𝑥(𝑡, 𝑧)(𝑦 − 𝑥)2 ⩽ 0.

Ainsi
∀𝑡 ∈ 𝐼 ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦))(𝑥 − 𝑦) ⩽ ℓ(𝑡)‖𝑥 − 𝑦‖2

avec ℓ = 0 sur 𝐼 (fonction continue). De plus 𝑓 est localement lipschitzienne par rapport au second
argument à cause de l’hypotèse d’existence et continuité sur 𝐼 × R de la dérivée partielle ∂𝑓

∂𝑥
.

Par le Théorème 9.43 du cours, on peut conclure que le problème à valeur initiale

{ 𝑢′(𝑡) = 𝑓(𝑡, 𝑢(𝑡)), 𝑡 ∈ 𝐼 ∩ [𝑡0, ∞[,
𝑢(𝑡0) = 𝑢0,

a une solution globale unique.

Exercice 2.
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Soient 𝑓 ∈ 𝐶0(R2) telle que

∀(𝑡, 𝑥) ∈ R2 𝑥𝑓(𝑡, 𝑥) ⩽ 𝑒sin 𝑡(1 + 𝑥2)

et 𝑢 ∈ C1(R) solution de

{
𝑢′(𝑡) = 𝑓(𝑡, 𝑢(𝑡)), ∀𝑡 ∈ R,
𝑢(0) = 1.

Montrer que ∀𝑡 ∈ R+ |𝑢(𝑡)| ⩽
√

2𝑒𝑒𝑡.

Solution
On a alors :

𝑢(𝑡) ⋅ 𝑢′(𝑡) ⩽ 𝑒sin 𝑡(1 + 𝑢(𝑡)2)

on encore

(ln(1 + 𝑢(𝑡)2))′ =
(𝑢2(𝑡))′

1 + 𝑢(𝑡)2 =
2𝑢(𝑡) ⋅ 𝑢′(𝑡)
1 + 𝑢(𝑡)2 ⩽ 2𝑒sin 𝑡 ⩽ 2𝑒.

En intégrant de 0 à 𝑡, on obtient, avec la condition initiale :

ln(1 + 𝑢(𝑡)2) − ln 2 ⩽ 2𝑒𝑡.

Puisque l’exponentielle est croissante

𝑢(𝑡)2 < 1 + 𝑢(𝑡)2 ⩽ 2𝑒2𝑒𝑡

et finalement

|𝑢(𝑡)| ⩽
√

2𝑒𝑒𝑡.

Exercice 3.
1) Soient 𝐼, 𝐸 ⊂ R des intervalles ouverts, 𝑓 ∈ 𝐶0(𝐼 × 𝐸,R) localement lipschitzienne et

(𝑡0, 𝑢0) ∈ 𝐼 × 𝐸. Considérons le problème de Cauchy suivant :

{
𝑢′(𝑡) = 𝑓(𝑡, 𝑢(𝑡)), 𝑡 ∈ 𝐼,
𝑢(𝑡0) = 𝑢0.

(3.1)

Définition 1 (Barrière inférieure). Soient ̃𝐽 ⊂ 𝐼 un intervalle ouvert contenant 𝑡0 et
𝜑 ∈ 𝐶1( ̃𝐽 , 𝐸). Le couple ( ̃𝐽 , 𝜑) est appelé « barrière inférieure » de (3.1) si 𝜑(𝑡0) = 𝑢0 et,
∀𝑡 ∈ ̃𝐽, 𝜑′(𝑡) ⩽ 𝑓(𝑡, 𝜑(𝑡)). Cette barrière inférieure est dite « forte » si l’inégalité ci-dessus
est stricte.

Soient ( ̃𝐽 , 𝜑) une barrière inférieure de (3.1) et (𝐽, 𝑢) une solution maximale de (3.1).
Montrer que, ∀𝑡 ∈ 𝐽 ∩ ̃𝐽 ∩ [𝑡0, +∞[, 𝜑(𝑡) ⩽ 𝑢(𝑡). Montrer également que cette dernière
inégalité est stricte si la barrière inférieure est forte.
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Indication. Essayez d’argumenter par l’absurde.
Indication. Il peut être utile d’utiliser le lemme de Grönwall : Soit (𝑎, 𝑏) ∈ R2 tel que 𝑎 < 𝑏.
Soient 𝑢, 𝛽 ∈ C0([𝑎, 𝑏[). Si 𝑢 est différentiable sur ]𝑎, 𝑏[ et ∀𝑡 ∈ ]𝑎, 𝑏[ 𝑢′(𝑡) ⩽ 𝛽(𝑡)𝑢(𝑡), alors
∀𝑡 ∈ [𝑎, 𝑏[ 𝑢(𝑡) ⩽ 𝑢(𝑎) exp(∫𝑡

𝑎 𝛽(𝑠)𝑑𝑠).

2) Soit (𝑡0, 𝑢0) ∈ R∗
+ × R ; considérons le problème de Cauchy suivant :

{
𝑢′(𝑡) = 𝑡 + 𝑢(𝑡)2, 𝑡 ∈ R,
𝑢(𝑡0) = 𝑢0.

(3.2)

a) Montrer que, pour tout 𝛾 ∈ ]0, √𝑡0[, la solution 𝑢 de (3.2) satisfait

𝛾 tan(𝛾(𝑡 − 𝑡0) + arctan(𝑢0
𝛾 )) < 𝑢(𝑡), ∀𝑡 ∈ ]𝑡0, 𝑡0 + 𝜏(𝛾)[,

en notant pour un quelconque 𝑥 ∈ R∗ : 𝜏(𝑥) ≔ 𝑥−1( 𝜋
2

− arctan(𝑢0/𝑥)).

Indication. ∀(𝑡, 𝑦) ∈ ]𝛾2, +∞[ × R, 𝛾2 + 𝑦2 < 𝑓(𝑡, 𝑦).
b) En déduire que

lim
𝑡→𝑡0+𝜏(√𝑡0)

𝑢(𝑡) = +∞.

Solution
1) a) Supposons que la barrière soit faible, donc 𝜑(𝑡0) = 𝑢(𝑡0) et 𝜑′(𝑡) ⩽ 𝑓(𝑡, 𝜑(𝑡)) pour

𝑡 ∈ [𝑡0, +∞[ ∩ 𝐽 ∩ ̃𝐽. Supposons par l’absurde qu’il existe 𝑡2 ∈ ]𝑡0, +∞[ ∩ 𝐽 ∩ ̃𝐽 tel
que 𝜑(𝑡2) > 𝑢(𝑡2) et posons 𝑡1 = sup{𝑡 ∈ [𝑡0, 𝑡2[ ∶ 𝜑(𝑡) ⩽ 𝑢(𝑡)}. Alors en 𝑡1 on a
𝜑(𝑡1) = 𝑢(𝑡1) et de plus 𝜑(𝑡) > 𝑢(𝑡) pour tout 𝑡 ∈ ]𝑡1, 𝑡2]. Comme 𝑓 est localement
Lipschitzienne il existe un voisinage 𝑈 de 𝑢(𝑡1) et 𝐶 > 0 telle que pour 𝑣, 𝑤 ∈ 𝑈 on a

|𝑓(𝑡, 𝑣) − 𝑓(𝑡, 𝑤)| ⩽ 𝐶|𝑣 − 𝑤|.

Soit 𝜀 > 0 tel que [𝑡1, 𝑡1 + 𝜀[ ⊂ [𝑡1, 𝑡2[ et 𝜑(𝑡), 𝑢(𝑡) ∈ 𝑈 si 𝑡 ∈ [𝑡1, 𝑡1 + 𝜀[. Alors nous
avons

𝜑′(𝑡) − 𝑢′(𝑡) ⩽ 𝑓(𝑡, 𝜑(𝑡)) − 𝑓(𝑡, 𝑢(𝑡)) ⩽ |𝑓(𝑡, 𝜑(𝑡)) − 𝑓(𝑡, 𝑢(𝑡))|
⩽ 𝐶|𝜑(𝑡) − 𝑢(𝑡)|
⩽ 𝐶𝜑(𝑡) − 𝑢(𝑡)

pour tout 𝑡 ∈ ]𝑡1, 𝑡1 + 𝜀[, puisque pour tout dans 𝑡 ∈ ]𝑡1, 𝑡1 + 𝜀[ on a 𝜑(𝑡) > 𝑢(𝑡).
En appliquant le lemme de Grönwall à ℎ(𝑡) = 𝜑(𝑡) − 𝑢(𝑡) on obtient

0 < ℎ(𝑡) ⩽ ℎ(𝑡1) exp(∫
𝑡

𝑡1

𝐶𝑑𝑠) = 0 ∀𝑡 ∈ ]𝑡1, 𝑡1 + 𝜀[,

où nous avons utilisé ℎ(𝑡1) = 0. C’est une contradiction.
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b) Supposons que la barrière soit stricte, donc 𝜑(𝑡0) = 𝑢(𝑡0) et 𝜑′(𝑡0) < 𝑓(𝑡0, 𝑢0) = 𝑢′(𝑡0)
alors il existe 𝜀0 > 0 tel que 𝜑(𝑡) < 𝑢(𝑡) pour 𝑡 ∈ ]𝑡0, 𝑡0 + 𝜀0[. Soit E = {𝑡 ∈
]𝑡0, +∞[ ∩ 𝐽 ∩ ̃𝐽 ∶ 𝜑(𝑡) ⩾ 𝑢(𝑡)} et supposons par l’absurde que E ≠ ∅, soit donc
𝑡1 = inf 𝐸. Alors 𝑡1 > 𝑡0 (car 𝜑(𝑡) < 𝑢(𝑡) dans un voisinage de 𝑡0) et pour tout
𝑡 ∈ ]𝑡0, 𝑡1[ on a 𝜑(𝑡) < 𝑢(𝑡). Par continuité de 𝜑, 𝑢 il s’ensuit que 𝜑(𝑡1) = 𝑢(𝑡1).
Par conséquent, la fonction ℎ(𝑡) = 𝜑(𝑡) − 𝑢(𝑡) vérifie ℎ(𝑡1) = 0 et ℎ(𝑡) < 0 pour
𝑡 ∈ ]𝑡0, 𝑡1[. Cela implique que ℎ′(𝑡1) ⩾ 0, c’est-à-dire 𝜑′(𝑡1) ⩾ 𝑢′(𝑡1). Mais nous
avons également 𝜑′(𝑡1) < 𝑓(𝑡1, 𝜑(𝑡1)) = 𝑓(𝑡1, 𝑢(𝑡1)) = 𝑢′(𝑡1), ce qui conduit à une
contradiction.

2) a) Soit 𝛾 ∈ ]0, √𝑡0[, alors 𝛾2 + 𝑢(𝑡)2 ⩽ 𝑡0 + 𝑢(𝑡)2 ⩽ 𝑓(𝑡, 𝑢(𝑡)). Soit (𝐽𝛾, 𝜑𝛾) la solution
maximale de

𝜑′
𝛾(𝑡) =𝛾2 + 𝜑𝛾(𝑡)2, 𝑡 ∈ ]𝑡0, +∞[, 𝜑𝛾(𝑡0) = 𝑢0.

Ainsi 𝜑𝛾 est une barrière inférieure stricte et donc 𝜑𝛾(𝑡) < 𝑢(𝑡) pour 𝑡 ∈ 𝐽𝛾 ∖ {𝑡0}. On
calcule 𝜑𝛾 par séparation de variables et on trouve

𝜑𝛾(𝑡) =𝛾 tan(𝛾(𝑡 − 𝑡0) + arctan(𝑢0/𝛾)),

son domaine de définition est 𝐽𝛾 = [𝑡0, 𝑡0 + 𝜏(𝛾)[.
b) On a 𝐽0 = [𝑡0, 𝑡0 + 𝜏(√𝑡0)[ ⊂ 𝐽𝛾, donc

𝜑𝛾(𝑡) < 𝑢(𝑡), 𝑡 ∈ 𝐽0 ∖ {𝑡0}

et par continuité

𝜑0(𝑡) = lim
𝛾→√𝑡0

𝜑𝛾(𝑡) ⩽ 𝑢(𝑡), 𝑡 ∈ 𝐽0 ∖ {𝑡0}.

Comme lim𝑡→𝑡0+𝜏(√𝑡0) 𝜑0(𝑡) = +∞ ; le résultat s’ensuit.

Exercice 4.
Soit 𝑢0 ∈ R. Considérons le problème à la valeur initiale

⎧{
⎨{⎩

𝑢′(𝑡) = 𝑡
𝑢(𝑡)3

𝑢(𝑡) − 1, 𝑡 > 0

𝑢(0) = 𝑢0

(4.1)

Discuter l’existence et l’unicité de solutions locales, maximales et globales — sans les calculer
explicitement — pour 𝑡 ⩾ 0, selon les trois cas suivants :

1) 𝑢0 < 0 ;
2) 𝑢0 ∈ ]0, 1[ ;
3) 𝑢0 > 1.

Aidez vous avec un dessin.

Solution
La fonction 𝑓(𝑡, 𝑢) = 𝑡𝑢3/(𝑢 − 1) est définie sur R × R ∖ {1} et est continue avec dérivée

partielle ∂𝑓
∂𝑢

continue sur son domaine de définition. Elle est donc localement Lipschitzienne par
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rapport à sa deuxième variable et, par le théorème de Cauchy-Lipschitz, on a existence et unicité
de solutions maximales pour tout 𝑢0 ∈ R ∖ {1}. On remarque de plus que lorsque 𝑢0 = 0, on a
l’unique solution globale constante 𝑢(𝑡) = 0.

Étudions séparément les trois cas 𝑢0 > 0, 𝑢0 ∈]0, 1[ et 𝑢0 > 0.

1) Cas 𝑢0 > 1. Soit (𝐽𝑚𝑎𝑥, 𝑢) la solution (unique) maximale. Dans ce cas, on a 𝑢(𝑡) ⩾ 𝑢0 pour
tout 𝑡 ∈ 𝐽𝑚𝑎𝑥 ∩ R+ (donc en particulier 𝑢(𝑡) > 1). Si ceci n’était pas le cas, il existerait
𝑡1 ⩾ 0 tel que 1 < 𝑢(𝑡1) < 𝑢0, et donc pour un certain 0 < 𝑡0 < 𝑡1 on aurait 𝑢′(𝑡0) < 0. Or
ceci contredit le fait que 𝑢′(𝑡0) = 𝑡0

𝑢(𝑡0)3

𝑢(𝑡0)−1
> 0.

On montre de même que 𝑢(𝑡) est strictement croissante par un raisonnement par l’absurde.
Supposons qu’il existe 𝑡1 > 𝑡0 ⩾ 0 tel que 1 < 𝑢(𝑡1) < 𝑢(𝑡0). Alors il existe 𝑡0 < 𝑠 < 𝑡1 tel
que 𝑢′(𝑠) < 0, ce qui contredit à nouveau 𝑢′(𝑠) = 𝑠 𝑢(𝑠)3

𝑢(𝑠)−1
> 0.

On montre maintenant que 𝑢(𝑡) diverge en temps fini en utilisant le principe de comparaison,
ce qui empêche l’existence d’une solution globale. Pour 𝑢 > 1, on a 𝑢3

𝑢−1
⩾ 𝑢2, donc on

considère le problème de Cauchy

{𝑣′(𝑡) = 𝑡 𝑣(𝑡)2,
𝑣(0) = 𝑢0.

En le résolvant explicitement par séparation de variables, on obtient la solution

𝑣(𝑡) = 1
1

𝑢0
− 1

2
𝑡2

,

et on observe que 𝑣(𝑡) → +∞ lorsque 𝑡 → √ 2
𝑢0

. Par le principe de comparaison (un résultat

d’un exercice précédent), on a 𝑢(𝑡) ⩾ 𝑣(𝑡), ce qui implique que 𝑢(𝑡) doit aussi diverger en

un temps fini 𝑇 ⩽ √ 2
𝑢0

.

2) Cas 0 < 𝑢0 < 1. Soit (𝐽𝑚𝑎𝑥, 𝑢) la solution maximale. Pour tout 𝑡 ∈ 𝐽𝑚𝑎𝑥∩R+, si 0 < 𝑢(𝑡) < 1,
on a 𝑢′(𝑡) = 𝑡 𝑢(𝑡)3

𝑢(𝑡)−1
⩽ 0, donc par un raisonnement similaire au point précédent, 𝑢(𝑡) est

décroissante et, en particulier, elle ne peut pas approcher la valeur 1.
On montre à présent que la solution maximale 𝑢(𝑡) est définie pour tout 𝑡 > 0 (elle est donc
une solution globale), et qu’elle tend vers 0 lorsque 𝑡 → +∞. La solution maximale doit
être définie globalement car elle ne peut pas franchir la droite 𝑢 = 0 (si c’était le cas, il y
aurait un premier instant 𝑡0 tel que 𝑢(𝑡0) = 0, ce qui violerait l’unicité de la solution locale
autour de 𝑡0, puisque 𝑢 = 0 est aussi une solution). Comme 𝑢(𝑡) est positive et décroissante,
elle converge vers une limite ℓ ∈ [0, 1[ quand 𝑡 → +∞. Si ℓ > 0, on aurait

lim
𝑡→+∞

𝑢′(𝑡) = lim
𝑡→+∞

𝑡
𝑢(𝑡)3

𝑢(𝑡) − 1 = −∞,

ce qui contredit le fait que 𝑢 possède une asymptote horizontale. Ainsi, on a prouvé par
l’absurde que ℓ = 0.

3) Cas 𝑢0 < 0. Soit (𝐽𝑚𝑎𝑥, 𝑢) la solution maximale. Pour tout 𝑡 ∈ 𝐽𝑚𝑎𝑥 ∩ R+, si 𝑢(𝑡) < 0, on
a 𝑢′(𝑡) = 𝑡 𝑢(𝑡)3

𝑢(𝑡)−1
⩾ 0, et de nouveau on montre par un raisonnement similaire au point
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précédent que 𝑢(𝑡) est croissante. Comme 𝑢(𝑡) ne peut pas franchir la droite 𝑢 = 0 en vertu
de l’unicité locale, on en conclut que la solution maximale est définie pour tout 𝑡 ⩾ 0 et
donc est une solution globale. Étant croissante, 𝑢(𝑡) admet une limite ℓ ⩽ 0 pour 𝑡 → +∞.
Si ℓ < 0, on aurait

lim
𝑡→+∞

𝑢′(𝑡) = lim
𝑡→+∞

𝑡
𝑢(𝑡)3

𝑢(𝑡) − 1 = +∞,

ce qui contredit le fait que 𝑢(𝑡) a une limite finie ℓ. On a donc montré par l’absurde que
ℓ = 0.
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