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Exercice 1.
Considérons la fonction 𝑢 solution de l’équation

{
𝑢′ = 𝑢, 𝑡 ∈ R,

𝑢(0) = 1.

Calculer explicitement la suite d’itérées définie par

𝑢0 = 1 sur R et ∀(𝑗, 𝑡) ∈ N∗ × R 𝑢𝑗(𝑡) ≔ 1 + ∫
𝑡

0
𝑢𝑗−1.

Solution
Posons 𝑓(𝑡, 𝑢) = 𝑢 pour 𝑡, 𝑢 ∈ R et observons les premiers termes de la suite :

𝑢0(𝑡) = 1,

𝑢1(𝑡) = 1 + ∫
𝑡

0
𝑓(𝑠, 𝑢0(𝑠)) d𝑠 = 1 + ∫

𝑡

0
𝑢0 = 1 + 𝑡,

𝑢2(𝑡) = 1 + ∫
𝑡

0
𝑓(𝑠, 𝑢1(𝑠)) d𝑠 = 1 + ∫

𝑡

0
𝑢1 = 1 + 𝑡 + 𝑡2

2! ,

𝑢3(𝑡) = 1 + ∫
𝑡

0
𝑓(𝑠, 𝑢2(𝑠)) d𝑠 = 1 + ∫

𝑡

0
𝑢2 = 1 + 𝑡 + 𝑡2

2! + 𝑡3

3! .

Montrons par récurrence que, pour tout 𝑖 ∈ N,

∀𝑡 ∈ R 𝑢𝑖(𝑡) =
𝑖

∑
𝑘=0

𝑡𝑘

𝑘! . (1.1)

Soit 𝑗 ∈ N ; supposons que (1.1) soit vrai pour 𝑗.

𝑢𝑗+1(𝑡) = 1 + ∫
𝑡

0
𝑢𝑗 = 1 + ∫

𝑡

0

𝑗

∑
𝑘=0

𝑠𝑘

𝑘! d𝑠 = 1 +
𝑗

∑
𝑘=0

𝑡𝑘+1

(𝑘 + 1)! =
𝑗+1

∑
𝑘=0

𝑡𝑘

𝑘! ,

ce qui prouve (1.1) pour 𝑗 + 1 et conclut la preuve.
Remarque. On reconnaît l’expansion de Taylor de la fonction exponentielle.

Exercice 2.
Soient 𝑡0, 𝑢0 ∈ R. Discuter l’existence et – le cas échéant – l’unicité d’une solution globale des

problèmes de Cauchy suivants.
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1)

∀𝑡 ∈ R, 𝑢′(𝑡) =
𝑡2𝑢(𝑡)3

1 + 𝑢(𝑡)2 , (2.1a)

𝑢(𝑡0) = 𝑢0. (2.1b)

2)

∀𝑡 ∈ R, 𝑢′(𝑡) = arctan(𝑡𝑢(𝑡)), (2.2a)
𝑢(𝑡0) = 𝑢0. (2.2b)

Solution
Chacun des deux problèmes admet une unique solution globale. Nous pouvons le prouver avec

le théorème de Cauchy–Lipschitz (version globale). Vérifions pour chaque problème l’hypothèse
de continuité lipschitzienne globale par rapport au second argument.

1) Notons 𝑓 la fonction associée au membre de droite de (2.1a) :

∀(𝑡, 𝑥) ∈ R × R, 𝑓(𝑡, 𝑥) ≔ 𝑡2𝑥3

1 + 𝑥2 . (2.3)

Soit (𝑡, 𝑥, 𝑦) ∈ R × R × R ; on obtient avec l’inégalité de Young :

|𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)| = 𝑡2∣ 𝑥3

1 + 𝑥2 − 𝑦3

1 + 𝑦2 ∣ = 𝑡2 ∣𝑥3 − 𝑦3 + 𝑥2𝑦2(𝑥 − 𝑦)∣
(1 + 𝑥2)(1 + 𝑦2) (2.4)

= 𝑡2 ∣(𝑥 − 𝑦)(𝑥2 + 𝑥𝑦 + 𝑦2) + 𝑥2𝑦2(𝑥 − 𝑦)∣
(1 + 𝑥2)(1 + 𝑦2) (2.5)

= 𝑡2 ∣𝑥2 + 𝑥𝑦 + 𝑦2 + 𝑥2𝑦2∣
(1 + 𝑥2)(1 + 𝑦2) |𝑥 − 𝑦| (2.6)

⩽ 𝑡2 𝑥2 + 𝑦2 + 𝑥2𝑦2 + |𝑥𝑦|
1 + 𝑥2 + 𝑦2 + 𝑥2𝑦2 |𝑥 − 𝑦| (2.7)

⩽ 𝑡2

3
2
𝑥2 + 3

2
𝑦2 + 𝑥2𝑦2

1 + 𝑥2 + 𝑦2 + 𝑥2𝑦2 |𝑥 − 𝑦| (2.8)

⩽ 3
2𝑡2 𝑥2 + 𝑦2 + 𝑥2𝑦2

1 + 𝑥2 + 𝑦2 + 𝑥2𝑦2 |𝑥 − 𝑦| (2.9)

⩽ 3
2𝑡2|𝑥 − 𝑦|. (2.10)

Ceci prouve que 𝑓 est globalement lipschitzienne par rapport à son second argument. En
conséquence du théorème de Cauchy–Lipschtiz, pour tout 𝑢0 ∈ R le problème (2.1) a une
solution globale unique dans C1(R).
Il est aussi possible d’utiliser le théorème des accroissements finis. On a

∣( 𝑥3

1 + 𝑥2 )
′

∣ = ∣3𝑥2(1 + 𝑥2) − 𝑥3 ⋅ 2𝑥
(1 + 𝑥2)2 ∣ = 𝑥4 + 3𝑥2

(1 + 𝑥2)2 ⩽ 𝑥2 + 3
1 + 𝑥2 ⩽ 3.

D’après le théorème des accroissements finis, pour tous 𝑥, 𝑦 ∈ R, il existe 𝜃𝑥,𝑦 ∈ ]0, 1[ tel que

∣ 𝑥3

1 + 𝑥2 − 𝑦3

1 + 𝑦2 ∣ = ∣( 𝑧3

1 + 𝑧2 )
′

∣
𝑧=(𝑦+𝜃𝑥,𝑦(𝑥−𝑦))

(𝑥 − 𝑦)∣ ⩽ 3|𝑥 − 𝑦|.
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Ainsi 𝑓 est globalement lipschitzienne par rapport au deuxième argument :

|𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)| ⩽ ℓ(𝑡)|𝑥 − 𝑦|

pour tous 𝑡, 𝑥, 𝑦 ∈ R avec ℓ(𝑡) = 𝑡2 (continue en 𝑡).
2) Notons 𝑔 la fonction associée au membre de droite de (2.2a) :

∀(𝑡, 𝑥) ∈ R × R, 𝑔(𝑡, 𝑥) ≔ arctan(𝑡𝑥). (2.11)

D’après le théorème des accroissements finis, pour tous 𝑥, 𝑦 ∈ R, il existe 𝜃𝑥,𝑦 ∈ ]0, 1[ tel
que

arctan(𝑥) − arctan(𝑦) = (𝑥 − 𝑦) arctan′(𝑦 + 𝜃𝑥,𝑦(𝑥 − 𝑦)) = 𝑥 − 𝑦
1 + (𝑦 + 𝜃𝑥,𝑦(𝑥 − 𝑦))2 , (2.12)

et donc
|arctan(𝑥) − arctan(𝑦)| ⩽ |𝑥 − 𝑦|. (2.13)

D’où
|𝑔(𝑡, 𝑥) − 𝑔(𝑡, 𝑦)| = |arctan(𝑡𝑥) − arctan(𝑡𝑦)| ⩽ |𝑡𝑥 − 𝑡𝑦| = |𝑡| × |𝑥 − 𝑦|. (2.14)

Ceci prouve que 𝑔 est lipschitzienne par rapport à son second argument. En conséquence du
théorème de Cauchy–Lipschtiz, pour tout 𝑢0 ∈ R le problème (2.2) a une solution globale
unique dans C1(R).

Exercice 3.
Soit 𝐼 ⊂ R ouvert avec 𝑡0 ∈ 𝐼, 𝒇 ∶ 𝐼 ×R𝑛 → R𝑛 continue, localement lipschitzienne par rapport

au second argument, et soit ℓ ∶ 𝐼 → R continue.
On suppose ℓ(𝑡) ⩾ 0 pour tout 𝑡 ∈ 𝐼, et

|𝒚 ⋅ 𝒇(𝑡, 𝒚)| ⩽ ℓ(𝑡)(1 + ‖𝒚‖2), ∀𝑡 ∈ 𝐼, ∀𝒚 ∈ R𝑛. (3.1)

Montrer que le problème de Cauchy

{
𝒖′(𝑡) = 𝒇(𝑡, 𝒖(𝑡)), 𝑡 ∈ 𝐼
𝒖(𝑡0) = 𝒖0

(3.2)

admet une solution globale unique 𝒖 ∈ 𝐶1(𝐼,R𝑛).

Indication 1 : Le problème de Cauchy (3.2) admet une solution maximale (𝐽max, 𝒖). Si la
solution maximale n’est pas globale (]𝛼, 𝛽[ = 𝐽max ⊊ 𝐼 avec 𝛼, 𝛽 ∈ [−∞, +∞]), alors on a que si
𝛼 ∈ ̊𝐼, alors lim

𝑡→𝛼+
‖𝒖(𝑡)‖ = +∞ et si 𝛽 ∈ ̊𝐼, alors lim

𝑡→𝛽−
‖𝒖(𝑡)‖ = +∞.

Indication 2 : Considérer la quantité 1
2

d
d𝑡 ‖𝒖(𝑡)‖2, et séparer les cas 𝑡 ∈ [𝑡0, 𝛽[ et 𝑡 ∈ ]𝛼, 𝑡0].

Solution
Existence. Supposons que ]𝛼, 𝛽[ = 𝐽max ⊊ 𝐼. On raisonne par l’absurde en montrant que 𝒖(𝑡)

est bornée sur [𝑡0, 𝛽[ si 𝛽 ∈ ̊𝐼, (resp. ]𝛼, 𝑡0] si 𝛼 ∈ ̊𝐼).
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Supposons 𝛽 ∈ ̊𝐼. Par l’hypothèse (3.1), on obtient

1
2

d
d𝑡 ‖𝒖(𝑡)‖2 = 𝒖(𝑡) ⋅ 𝒖′(𝑡) = 𝒖(𝑡) ⋅ 𝒇(𝑡, 𝒖(𝑡)) ⩽ ℓ(𝑡)(1 + ‖𝒖(𝑡)‖2).

Posons ℎ(𝑡) = ‖𝒖(𝑡)‖2. Alors,

ln( 1 + ℎ(𝑡)
1 + ℎ(𝑡0)) = ∫

𝑡

𝑡0

ℎ′(𝑠)
1 + ℎ(𝑠)d𝑠 ⩽ 2 ∫

𝑡

𝑡0

ℓ(𝑠)d𝑠.

Donc, on a que
‖𝒖(𝑡)‖2 ⩽ (1 + ‖𝒖(𝑡0)‖2)𝑒2 ∫𝑡

𝑡0
ℓ(𝑠)d𝑠 − 1.

Comme ℓ ∈ 𝐶0(𝐼,R), on a |ℓ(𝑡)| ⩽ 𝐿 sur [𝑡0, 𝛽] ⊂ 𝐼 pour un 𝐿 ∈ R+, et donc pour 𝑀 ≔
√1 + ‖𝒖0‖2𝑒(𝛽−𝑡0)𝐿,

‖𝒖(𝑡)‖ ⩽ 𝑀 ∀𝑡 ∈ [𝑡0, 𝛽[.

Ceci est une contradiction avec le fait que lim
𝑡→𝛽−

‖𝒖(𝑡)‖ = +∞, et donc 𝐽max n’est pas de la forme

]𝛼, 𝛽[ avec 𝛽 ∈ ̊𝐼.
Supposons que 𝛼 ∈ ̊𝐼. En procédant de façon similaire, on obtient que

1
2

d
d𝑡 ‖𝒖(𝑡)‖2 = 𝒖(𝑡) ⋅ 𝒖′(𝑡) = 𝒖(𝑡) ⋅ 𝒇(𝑡, 𝒖(𝑡)) ⩾ −ℓ(𝑡)(1 + ‖𝒖(𝑡)‖2),

d’où on obtient que pour 𝑡 ∈ 𝐽max ∩ ]−∞, 𝑡0],

ln(1 + ℎ(𝑡0)
1 + ℎ(𝑡) ) = ∫

𝑡0

𝑡

ℎ′(𝑠)
1 + ℎ(𝑠)d𝑠 ⩾ −2 ∫

𝑡0

𝑡
ℓ(𝑠)d𝑠.

Ceci permet de conclure

‖𝒖(𝑡)‖2 ⩽ (1 + ‖𝒖(𝑡0)‖2)𝑒2 ∫𝑡0
𝑡 ℓ(𝑠)d𝑠 − 1,

et donc pour 𝑡 ∈ ]𝛼, 𝑡0], ‖𝒖(𝑡)‖ ⩽ 𝑀 ′. Ceci est une contradiction avec le fait que lim
𝑡→𝛼+

‖𝒖(𝑡)‖ = +∞,

et donc 𝐽max n’est pas de la forme ]𝛼, 𝛽[ avec 𝛼 ∈ ̊𝐼. Ceci implique que 𝐽max = 𝐼.
Unicité. Par le Théorème 9.32 du polycopié, il existe une unique solution maximale (𝐽max, 𝒖)

du problème du Cauchy ; par le point précédent, 𝐽max = 𝐼, et donc la solution globale est unique.

Exercice 4.
Soit 𝑏 ∈ R ; notons 𝐼 ≔ ]𝑏, +∞[. Soient (𝑡0, 𝑢0) ∈ 𝐼 × ]0, +∞[ et 𝑓 ∈ C0(𝐼 × R,R) localement

lipschitzienne par rapport à son deuxième argument. Supposons les existences de 𝑎 ∈ ]0, +∞[ et
𝑙 ∈ C0(𝐼, [𝑎, +∞[) tels que ∀(𝑡, 𝑥) ∈ 𝐼 × ]0, +∞[, 𝑥𝑓(𝑡, 𝑥) ⩾ 𝑙(𝑡)(1 + 𝑥4). Considérons le problème
à valeur initiale suivant.

∀𝑡 ∈ ]𝑡0, +∞[, 𝑢′(𝑡) = 𝑓(𝑡, 𝑢(𝑡)), (4.1a)
𝑢(𝑡0) = 𝑢0. (4.1b)

1) Justifier l’existence d’une solution locale à (4.1).
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2) Prouver qu’aucune solution globale n’existe.

Solution
1) Considérons le problème de Cauchy suivant :

∀𝑡 ∈ 𝐼, 𝑢′(𝑡) = 𝑓(𝑡, 𝑢(𝑡)), (4.2a)
𝑢(𝑡0) = 𝑢0. (4.2b)

Puisque 𝑓 est localement lipschitzienne par rapport à son deuxième argument, le théorème de
Cauchy–Lipschitz garantit l’existence d’un intervalle 𝐽 ⊂ 𝐼 comprenant 𝑡0 et de 𝑢 ∈ C1(𝐽)
tels que (𝐽, 𝑢) soit une solution locale de (4.2). La restriction de 𝑢 à 𝐽 ∩ [𝑡0, +∞[ est donc
une solution locale de (4.1).

2) Soit (𝐽, 𝑢) une solution locale de (4.1). Puisque 𝑡0 ∈ 𝐽, 𝑢 ∈ C0(𝐽) et 𝑢(𝑡0) = 𝑢0 > 0, il existe
un voisinage de 𝑡0 sur lequel 𝑢 est strictement positive. Nous choisissons alors 𝛿 ∈ ]0, +∞[
tel que, ∀𝑡 ∈ B(𝑡0, 𝛿), 𝑢(𝑡) > 0. Soit 𝑡 ∈ ]𝑡0, 𝑡0 + 𝛿[ :

1
2(𝑢2)′(𝑡) = 𝑢′(𝑡)𝑢(𝑡) = 𝑢(𝑡)𝑓(𝑡, 𝑢(𝑡)) ⩾ 𝑙(𝑡)(1 + 𝑢(𝑡)4) ⩾ 𝑎(1 + 𝑢(𝑡)4). (4.3)

Puisque 𝑢 ∈ C0(𝐽) et B(𝑡0, 𝛿) ⊂ 𝐽, 𝑢 ∈ C0([𝑡0, 𝑡]) ; par conséquent, 𝑢 est bornée sur [𝑡0, 𝑡].
Ainsi, on déduit de (4.3)

∫
𝑡

𝑡0

2𝑎 ⩽ ∫
𝑡

𝑡0

(𝑢2)′(𝑠)
1 + 𝑢(𝑠)4 d𝑠 = ∫

𝑢(𝑡)2

𝑢2
0

d𝑣
1 + 𝑣2 = [arctan 𝑣]𝑢(𝑡)2

𝑣=𝑢2
0
. (4.4)

En rappelant que 𝑎 > 0, on obtient

∀𝑡 ∈ ]𝑡0, 𝑡0 + 𝛿[, arctan 𝑢(𝑡)2 ⩾ arctan 𝑢2
0 + 2𝑎(𝑡 − 𝑡0) ⩾ arctan 𝑢2

0 (4.5)
donc

𝑢(𝑡)2 ⩾ tan(arctan 𝑢2
0 + 2𝑎(𝑡 − 𝑡0)) ⩾ 𝑢2

0 > 0 (4.6)

Nous pouvons déduire deux choses de (4.6).
Premièrement, nous pouvons choisir 𝛿 = sup 𝐽 − 𝑡0, i.e. 𝑢 ne s’annule pas sur 𝐽 ∩ ]𝑡0, +∞[.
Ceci peut se prouver par contradiction : supposons que

𝑍 ≔ {𝑡 ∈ 𝐽 ∩ ]𝑡0, +∞[ ∶ 𝑢(𝑡) = 0} ≠ ∅. (4.7)

Puisque 𝑍 est minoré et non vide, il a un infimum. L’inégalité (4.6) est alors valide pour tout
𝑡 ∈ ]𝑡0, inf 𝑍[ et, puisque inf 𝑍 ∈ 𝐽, la continuité de 𝑢 implique que 𝑢(inf 𝑍) = liminf 𝑍 𝑢 ⩾
𝑢0 > 0. Il existe donc un voisinage de inf 𝑍 sur lequel 𝑢 est non nul : cette contradiction
avec la définition de 𝑍 prouve que l’hypothèse (4.7) est fausse.
Deuxièmement, 𝐽 ⊉ [𝑡0, +∞[, i.e. 𝑢 ne peut être une solution globale. Notons

𝜏 ≔ 𝑡0 +
𝜋
2

− arctan 𝑢2
0

2𝑎 (4.8)
et remarquons que

lim
𝑡→𝜏−

tan(arctan 𝑢2
0 + 2𝑎(𝑡 − 𝑡0)) = +∞. (4.9)

Nous déduisons de (4.9) et (4.6) que lim𝜏− 𝑢 = +∞. Alors 𝐽 est nécessairement majoré par
𝜏, ce qui implique que 𝑢 ne peut être une solution globale. Puisque (𝐽, 𝑢) est une solution
locale quelconque, nous avons prouvé qu’il n’existe pas de solution globale à (4.1).

5


	Exercice 1. 
	Exercice 2. 
	Exercice 3. 
	Exercice 4. 

