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Exercice 1.

Considérons la fonction u solution de ’équation

u = u, teR,
u(0) = 1.

Calculer explicitement la suite d’itérées définie par

t
ug=1surR et V(j,t) e N*xR uj(t)::1+/u
0

Solution

Posons f(t,u) = u pour t,u € R et observons les premiers termes de la suite :

up(t) =1,

ul(t):1+/ f(s,uo(s))ds:l+/ ug =1+t
0 0

t2

t
ug(t) =1+ fsul())d8—1+/u1—1—|—t+§,
0

t
2 3
—1+/fsu2 :1+/u2: +t+ 5+ o5
b 20 3
Montrons par récurrence que, pour tout ¢ € N,

VEER w(t) = Z— (1.1)

kol

Soit j € N; supposons que (1.1) soit vrai pour j.
J tk+1

J+1()_1+/u _1+/Zk, 8—1+Z G ZZ—

ce qui prouve (1.1) pour j+ 1 et conclut la preuve.

Remarque. On reconnait ’expansion de Taylor de la fonction exponentielle.

Exercice 2.

Soient %y, uy € R. Discuter I'existence et — le cas échéant — 'unicité d’une solution globale des
problémes de Cauchy suivants.



VteR, u/(t)= fi“—g(); (2.1a)
u(ty) = . (2.1b)
2)
VtER, u(t) = arctan(tu(t)), (2.2a)
u(ty) = ug. (2.2b)
Solution

Chacun des deux problemes admet une unique solution globale. Nous pouvons le prouver avec
le théoréme de Cauchy—Lipschitz (version globale). Vérifions pour chaque probléme I'hypothese
de continuité lipschitzienne globale par rapport au second argument.

1) Notons f la fonction associée au membre de droite de (2.1a) :

223
V(t, a:) cR x R, f(t, a:) = m (23)

Soit (t,z,y) € R x R x R; on obtient avec l'inégalité de Young :

23 y 2% — % + 2%y (x — )|
|f(t,x) — f(ty)] T+22 1442 (1+22)(14y2) (2.4)
_tgl(x—y)<x2+xy+y2)+x2y2(x—y)| 25)
B (14 22)(1+y?) '
2 + xy +y° + 2%y’
ety ey (2.6)
(1+22)(1+y?)
2?4y + 2%y? 4 |zy
< sy (27)

1+ 22 +y2 + 22y?
§x2+§y2+x2y2
<t 12—|- x? —|2— Y2 + x2y? o=l (28)
IQ +y2 +J)2y2
1422 +9y2 + 22y

3
<3 o=yl (29)

< %tQ\x—y|. (2.10)

Ceci prouve que f est globalement lipschitzienne par rapport a son second argument. En
conséquence du théoréme de Cauchy-Lipschtiz, pour tout uy € R le probléme (2.1) a une
solution globale unique dans C*(R).

Il est aussi possible d’utiliser le théoréme des accroissements finis. On a

x3 ' B
1+ 22 a

D’apres le théoréme des accroissements finis, pour tous z,y € R, il existe 6, ,, € ]0, 1] tel que

TN+ 22

322(1 4+ 2?) —2® - 2z
(14 22)2

_a:4+3x2 2 +3
o (1+22)2 T 1422

< 3.

v v
1422 1+ y2

3

(z — y)‘ < 3lz —yl.
2=(y+0, 4 (z—y))



Ainsi f est globalement lipschitzienne par rapport au deuxiéme argument :
[f(t,x) = [t y)] < L@)|z -yl

pour tous t,x,y € R avec £(t) = t? (continue en t).

2) Notons g la fonction associée au membre de droite de (2.2a) :

V(t,z) e Rx R, g¢(t,x) = arctan(tx). (2.11)
D’apres le théoreme des accroissements finis, pour tous , y € R, il existe 0, , € ]0,1] tel
que
arctan(z) — arctan(y) = (z — y) arctan’(y + 6, ,(z —y)) = i 5, (2.12)
et donc
larctan(x) — arctan(y)| < |z — y|. (2.13)
D’ou
lg(t,z) — g(t,y)| = |arctan(tz) — arctan(ty)| < |tz — ty| = || X |z — y|. (2.14)

Ceci prouve que g est lipschitzienne par rapport a son second argument. En conséquence du
théoréeme de Cauchy—Lipschtiz, pour tout ug € R le probléme (2.2) a une solution globale
unique dans C1(R).

Exercice 3.

Soit I C R ouvert avec ty € I, f: I x R™ — R"™ continue, localement lipschitzienne par rapport
au second argument, et soit £ : I — R continue.
On suppose £(t) > 0 pour tout ¢t € I, et

ly- fty) <A+ yl*), Vtel, vyeR™ (3.1)
Montrer que le probleme de Cauchy

{u’(t) = f(t,u(t), tel

u(ty) = ug
admet une solution globale unique w € C*(I,R").

Indication 1 : Le probleme de Cauchy (3.2) admet une solution maximale (J .., w). Sila
solution maximale n’est pas globale (Ja, 8] = Jpax © I avec a, f € [—00, +0¢]), alors on a que si
a € I, alors lim |u(t)| = +oo et si 5 € I, alors lilél [w(t)]| = +oo.

t—at t—pB~

1d
Indication 2 : Considérer la quantité §a|\u(t)|\2, et séparer les cas t € [tg, O] et t € |a, tg).

Solution

Ezistence. Supposons que |a, f] = Jpax © I. On raisonne par absurde en montrant que w(t)

max -+

est bornée sur [to, 8] si B € I, (resp. o, to] si o € 1).



Supposons 3 € I. Par Ihypothése (3.1), on obtient

1d

3 g lu®I? = () - w'(t) = u(t) - ftu(t) <O+ [u@)]?).

Posons h(t) = |lu(t)|?. Alors,
L+h(t)\  [* W(s) K
ln(l —|—h(t0)> _/tﬂ T+ h(s) %8 210 fs)ds.

ot
lea(8)]2 < (1 + Jua(tg)[2)e o 1% — 1.
Comme ¢ € C°I,R), on a [(t)] < L sur [ty,8] C I pour un L € R, et donc pour M :=

V1 Jug[2elProlk,

Ceci est une contradiction avec le fait que liI[r; u(t)| = 400, et donc Jy.« nest pas de la forme
t—p-

Ja, Bl avec B € 1.
Supposons que « € I. En procédant de facon similaire, on obtient que

N

Donc, on a que

lu(®)] < M Vi€ [ty, .

= u(t) () = u(t) f(t,u(t) > L)1+ [u@)]?),

d’olt on obtient que pour t € Jp,,, N ]—00, tgl,

Ceci permet de conclure

\%

-2 /t0 £(s)ds.

to s)ds
Ju(®)] < (1+ [u(to)|2)eh " fe1ds 1,

et donc pour t € Ja, tg], [|u(t)| < M’. Ceci est une contradiction avec le fait que lim+\|u(t)\| = 400,
t—a

et donc Jy,,, n'est pas de la forme ]a, 8] avec o € I. Ceci implique que Jy o = I.
Unicité. Par le Théoréme 9.32 du polycopié, il existe une unique solution maximale (J ., %)
du probleme du Cauchy ; par le point précédent, J,,.. = I, et donc la solution globale est unique.

Exercice 4.

Soit b € R; notons I := ]b, +-00[. Soient (ty,ug) € I x |0, +00[ et f € CO(I x R,R) localement
lipschitzienne par rapport & son deuxiéme argument. Supposons les existences de a € ]0, +00] et
1 € CY(I,[a,+o0|) tels que V(t,x) € I x ]0,+ool, zf(t,z) > I(t)(1 + 2*). Considérons le probléme
a valeur initiale suivant.

Yt € Jtg, +oof, u(t) = f(t,u(t)), (4.1a)
u(ty) = ug. (4.1b)

1) Justifier existence d’une solution locale & (4.1).



2)

Prouver qu’aucune solution globale n’existe.

Solution

1)

Considérons le probleme de Cauchy suivant :

veel, u'(t)= f(tut)), (4.2a)
u(ty) = ug. (4.2b)

Puisque f est localement lipschitzienne par rapport & son deuxieéme argument, le théoréme de
Cauchy-Lipschitz garantit Pexistence d’un intervalle J C I comprenant t, et de u € C1(J)
tels que (J,u) soit une solution locale de (4.2). La restriction de w & J N [tg, +00[ est donc
une solution locale de (4.1).

Soit (J,u) une solution locale de (4.1). Puisque ¢y € J, u € C°(J) et u(ty) = uy > 0, il existe
un voisinage de t, sur lequel u est strictement positive. Nous choisissons alors d € |0, 00|
tel que, Vt € B(tg,0), u(t) > 0. Soit t € Jtg,tg+ [ :

5 (@) () = w (u(t) = w(t) f(t,u(t) > WA +u®)?) = a(l +u(®)?). (4.3)

Puisque u € CO(J) et B(ty,d) C J, u € CO([ty,t]); par conséquent, u est bornée sur [ty,t].
Ainsi, on déduit de (4.3)

u<t)2 dv u(t)2
/ 2a \/O 1 +u = /u2 T = [arctanv]vzug. (4.4)

0

En rappelant que a > 0, on obtient

Vt € Jtg, to + 0], arctanwu(t)? > arctanud + 2a(t — t,) > arctan u? (4.5)
donc
u(t)? > tan(arctanud + 2a(t —ty)) > ud >0 (4.6)

Nous pouvons déduire deux choses de (4.6).
Premiérement, nous pouvons choisir § = sup J — ¢, i.e. u ne s’annule pas sur J N ¢y, +00].
Ceci peut se prouver par contradiction : supposons que

Z:={t € JNty, +oo| : u(t) =0} # @. (4.7)

Puisque Z est minoré et non vide, il a un infimum. L’inégalité (4.6) est alors valide pour tout
t € Jty, inf Z[ et, puisque inf Z € J, la continuité de u implique que u(inf Z) = limys s u >
ug > 0. Il existe donc un voisinage de inf Z sur lequel u est non nul : cette contradiction
avec la définition de Z prouve que I’hypothése (4.7) est fausse.

Deuxiémement, J D [tg, +00[, i.e. u ne peut étre une solution globale. Notons

s 2
— —arctan ug
=1 4.
Ti=1p+ 50 (4.8)
et remarquons que
lim tan(arctan u + 2a(t — ty)) = +o0. (4.9)

t—T1—
Nous déduisons de (4.9) et (4.6) que lim .- u = 4+o00. Alors J est nécessairement majoré par

7, ce qui implique que u ne peut étre une solution globale. Puisque (J, u) est une solution
locale quelconque, nous avons prouvé qu’il n’existe pas de solution globale a (4.1).
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