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Exercice 1.
Trouver la solution de l’équation de Ricatti définie pour tout 𝑥 ∈ R par

{
𝑦(0) = 0,

𝑦′(𝑥) = 𝑦2(𝑥) − 2e𝑥𝑦(𝑥) + e2𝑥 + e𝑥.
(Ricatti)

Indication. Utiliser le changement de variables 𝑧(𝑥) = 𝑦(𝑥) − e𝑥.

Solution
L’exponentielle est une solution particulière de (Ricatti), si on ignore la condition en 0. Le

changement de variable 𝑧(𝑥) = 𝑦(𝑥) − e𝑥 transforme l’équation de Ricatti en l’équation de
Bernoulli suivante :

{
𝑧(0) = −1,

𝑧′ = 𝑧2.
(Bernoulli)

La solution de (Bernoulli) est définie pour tout 𝑥 ∈ ]−1, +∞[ par

𝑧(𝑥) = − 1
1 + 𝑥. (1.1)

Par conséquent la solution maximale cherchée est définie pour tout 𝑥 ∈ ]−1, +∞[ par

𝑦(𝑥) = 𝑧(𝑥) + e𝑥 = e𝑥 − 1
1 + 𝑥. (1.2)

Exercice 2.
Considérons le problème de Cauchy défini pour 𝑡 ∈ R par

{
𝑢(0) = 1,
𝑢′(𝑡) = 𝑡4 + 2𝑡 − 𝑡2𝑢(𝑡).

(2.1)

Prouver, en la calculant, que (2.1) admet une unique solution globale.

Solution
Nous proposons deux méthodes de calcul alternatives. La première méthode montre facilement

l’unicité de la solution globale.
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Méthode du facteur intégrant. Choisissons une primitive de la fonction 𝑡 ↦ 𝑡2 : prenons 𝑡 ↦ 1
3
𝑡3.

Une fonction 𝑢 est solution de (2.1) si et seulement si

⎧{
⎨{⎩

𝑢(0) = 1,
d
d𝑡 (e𝑡3/3𝑢(𝑡)) = e𝑡3/3(𝑡4 + 2𝑡).

(2.2)

On remarque que, pour tout 𝑐 ∈ R, 𝑡 ↦ 𝑡2e𝑡3/3 + 𝑐 est une primitive de 𝑡 ↦ e𝑡3/3(𝑡4 + 2𝑡).
Ainsi 𝑢 est solution de (2.2) si et seulement s’il existe 𝑐 ∈ R tel que ∀𝑡 ∈ R

{
𝑢(0) = 1,

e𝑡3/3𝑢(𝑡) = 𝑡2e𝑡3/3 + 𝑐,
(2.3)

autrement dit,

{
𝑢(0) = 1,
𝑢(𝑡) = 𝑡2 + 𝑐e−𝑡3/3.

(2.4)

Le seul choix possible est 𝑐 = 1 et donne donc l’unique solution globale : 𝑡 ↦ 𝑡2 + e−𝑡3/3.
Méthode de la variation de la constante. Le problème homogène (i.e. les termes 𝑡4 + 2𝑡 sont

remplacés par 0) s’écrit :

∀𝑡 ∈ R, 𝑢′(𝑡) + 𝑡2𝑢(𝑡) = 0. (2.5)

Supposons qu’il existe un intervalle ouvert non-trivial 𝐼 ⊂ R sur lequel 𝑢 ne s’annule pas.
Alors (2.5) devient

∀𝑡 ∈ 𝐼,
𝑢′(𝑡)
𝑢(𝑡) = −𝑡2. (2.6)

En cherchant les primitives de chaque côté, on obtient que toutes les fonctions 𝑢 ∈ C1(𝐼,R)
pour lesquelles il existe 𝑎 ∈ R tel que ln|𝑢(𝑡)| = −𝑡3/3+𝑎 vérifient (2.6). Par conséquent, les
éléments de {𝑡 ↦ e𝑎e−𝑡3/3, 𝑡 ↦ −e𝑎e−𝑡3/3 ∶ 𝑎 ∈ R} ⊂ C1(𝐼,R) sont solutions de (2.6). Ces
solutions peuvent être prolongées sur R ; ces prolongement sont continûment différentiables
et ne s’annulent pas. Par conséquent, les éléments de {𝑡 ↦ e𝑎e−𝑡3/3, 𝑡 ↦ −e𝑎e−𝑡3/3 ∶ 𝑎 ∈
R} ⊂ C1(R,R) sont solution de (2.5), et il y a encore la fonction nulle qui est solution.
Finalement, tous les éléments de {𝑡 ↦ 𝑐e−𝑡3/3 ∶ 𝑐 ∈ R} ⊂ C1(R,R) sont solution de (2.5).
Faisons maintenant varier la constante 𝑐 qui paramétrise l’ensemble des solutions trouvées.
On cherche une solution particulière 𝑢 telle que ∀𝑡 ∈ R

𝑢′(𝑡) = 𝑡4 + 2𝑡 − 𝑡2𝑢(𝑡) (2.7)
et qu’il existe une fonction 𝑐 telle que

𝑢(𝑡) = 𝑐(𝑡)e− 𝑡3

3 . (2.8)

En dérivant cette expression, on trouve

𝑢′(𝑡) = e− 𝑡3

3 (𝑐′(𝑡) − 𝑡2𝑐(𝑡)) (2.9)
d’où, en substituant dans (2.7),

𝑐′(𝑡)e− 𝑡3

3 = 𝑡4 + 2𝑡. (2.10)
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On est donc amenés à trouver les primitives de 𝑡 ↦ e𝑡3/3(𝑡4 + 2𝑡), qui sont {𝑡 ↦ e𝑡3/3𝑡2 + 𝑎 ∶
𝑎 ∈ R}. Pour obtenir une solution de (2.1), on impose 𝑢(0) = 1. Ceci équivaut à 𝑐(0) = 1
(voir (2.8)), donc nécessairement 𝑐 est donnée par 𝑡 ↦ e𝑡3/3𝑡2 +1. On obtient ainsi la solution
globale 𝑢 de (2.1) définie pour tout 𝑡 ∈ R par

𝑢(𝑡) ≔ (e
𝑡3

3 𝑡2 + 1)e− 𝑡3

3 = e− 𝑡3

3 + 𝑡2. (2.11)

La première approche (par le facteur intégrant) montre qu’il y a unicité de la solution globale.

Exercice 3.
Trouver les intégrales de l’équation différentielle définie pour tout 𝑡 ∈ ]3, +∞[ par

(𝑡 − 3)𝑢′(𝑡) − 3𝑢(𝑡) = 𝑡 + 5. (3.1)

Solution
Nous proposons deux méthodes de résolution alternatives.

Méthode de la variation de la constante. L’équation homogène s’écrit, pour tout 𝑡 ∈ ]3, +∞[,

𝑤′(𝑡)(𝑡 − 3) = 3𝑤(𝑡). (3.2)

Autrement dit, en supposant que 𝑤 ne s’annule pas,

𝑤′(𝑡)
𝑤(𝑡) = 3

𝑡 − 3. (3.3)

Intégrer donne que pour tout ̃𝑐 ∈ ]0, +∞[,

ln|𝑤(𝑡)| = 3 ln(𝑡 − 3) + ln( ̃𝑐), (3.4)
décrit une solution de (3.2), donc

𝑤 ∈ {𝑡 ↦ 𝑐(𝑡 − 3)3 ∶ 𝑐 ∈ R ∖ {0}}. (3.5)

Puisque la fonction nulle est aussi une solution de (3.2), tous les éléments de

{𝑡 ↦ 𝑐(𝑡 − 3)3 ∶ 𝑐 ∈ R} (3.6)

sont solution de (3.2).
Faisons maintenant varier la constante 𝑐 qui paramétrise l’ensemble des solutions trouvées.
On cherche une solution particulière 𝑢 telle que ∀𝑡 ∈ R,

(𝑡 − 3)𝑢′(𝑡) − 3𝑢(𝑡) = 𝑡 + 5 (3.7)
et qu’il existe une fonction 𝑐 telle que

𝑢(𝑡) = 𝑐(𝑡)(𝑡 − 3)3 (3.8)
d’où, en substituant dans (3.7),

𝑐′(𝑡) = 𝑡 + 5
(𝑡 − 3)4 = 𝑡 − 3 + 8

(𝑡 − 3)4 = 1
(𝑡 − 3)3 + 8

(𝑡 − 3)4 . (3.9)
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Or ∀𝑏 ∈ R une primitive est

𝑐(𝑡) = 𝑏 − 1
2(𝑡 − 3)2 − 8

3(𝑡 − 3)3 = 𝑏 −
3(𝑡 − 3) + 16

6(𝑡 − 3)3 = 𝑏 − 3𝑡 + 7
6(𝑡 − 3)3 . (3.10)

On obtient finalement la famille de solutions de (3.7)

{𝑡 ↦ 𝑏(𝑡 − 3)3 − 3𝑡 + 7
6 ∶ 𝑏 ∈ R}. (3.11)

C’est déjà la solution générale de (3.1). Néanmoins, dans l’esprit de chercher une solution
particulière, choisissons par exemple 𝑏 = 0 et donc la solution particulière 𝑡 ↦ − 3𝑡+7

6
. La

solution générale de (3.1) s’obtient en additionnant cette solution particulière aux solutions
(3.6) de (3.2). On trouve ainsi la famille de solutions

{𝑡 ↦ 𝑐(𝑡 − 3)3 − 3𝑡 + 7
6 ∶ 𝑐 ∈ R}. (3.12)

Méthode du facteur intégrant. Soit 𝑃 une primitive de 𝑡 ↦ −3(𝑡 − 3)−1 sur ]3, +∞[. Il est équi-
valent à (3.1) que pour tout 𝑡 ∈ ]3, +∞[ :

𝑢′(𝑡) − 3
𝑡 − 3𝑢(𝑡) = 𝑡 + 5

𝑡 − 3 (3.13)

ce qui équivaut à
d
d𝑡 (e𝑃(𝑡)𝑢(𝑡)) = e𝑃(𝑡) 𝑡 + 5

𝑡 − 3. (3.14)

Choisissons 𝑃 donnée par 𝑡 ↦ −3 ln(𝑡 − 3) :

d
d𝑡 ( 𝑢(𝑡)

(𝑡 − 3)3 ) = 𝑡 + 5
(𝑡 − 3)4 = 𝑡 − 3 + 8

(𝑡 − 3)4 , (3.15)

or les primitives du membre de droite sont

{𝑡 ↦ − 1
2(𝑡 − 3)2 − 8

3(𝑡 − 3)3 + 𝑐 ∶ 𝑐 ∈ R}. (3.16)

Ainsi, intégrer (3.15) donne que pour tout 𝑐 ∈ R,

𝑢(𝑡) = (𝑡 − 3)3 × (− 1
2(𝑡 − 3)2 − 8

3(𝑡 − 3)3 + 𝑐) (3.17)

= −𝑡 − 3
2 − 8

3 + 𝑐(𝑡 − 3)3 (3.18)

= 𝑐(𝑡 − 3)3 − 3𝑡 + 7
6 (3.19)

décrit une solution de (3.1). Par conséquent, l’ensemble des solutions de (3.1) est

{𝑡 ↦ 𝑐(𝑡 − 3)3 − 3𝑡 + 7
6 ∶ 𝑐 ∈ R}. (3.20)

Exercice 4.
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Trouver les intégrales de l’équation différentielle définie pour tout 𝑡 ∈ R par

𝑢′(𝑡) = −𝑢(𝑡) + e2𝑡 + e𝑡 + 3 sin 𝑡 + 2e−𝑡. (4.1)

Solution
Recherchons une solution particulière de (4.1) sous la forme

𝑣(𝑡) = 𝛼e2𝑡 + 𝛽e𝑡 + 𝛾 sin 𝑡 + 𝛿 cos 𝑡 + 𝜇𝑡e−𝑡. (4.2)

En calculant 𝑣′, on obtient

𝑣′(𝑡) = 2𝛼e2𝑡 + 𝛽e𝑡 + 𝛾 cos 𝑡 − 𝛿 sin 𝑡 + 𝜇e−𝑡 − 𝜇𝑡e−𝑡, (4.3)
ainsi

𝑣′(𝑡) + 𝑣(𝑡) = 3𝛼e2𝑡 + 2𝛽e𝑡 + (𝛾 + 𝛿) cos 𝑡 + (𝛾 − 𝛿) sin 𝑡 + 𝜇e−𝑡. (4.4)

En identifiant avec (4.1), on obtient :

3𝛼 = 1
2𝛽 = 1

𝛾 + 𝛿 = 0
𝛾 − 𝛿 = 3

𝜇 = 2

⎫}}}}
⎬}}}}⎭

⟺

⎧{{{{{{
⎨{{{{{{⎩

𝛼 = 1
3

𝛽 = 1
2

𝛾 = 3
2

𝛿 = −3
2

𝜇 = 2

(4.5)

d’où une solution particulière

𝑣(𝑡) = 1
6(2e2𝑡 + 3e𝑡 − 9 cos 𝑡 + 9 sin 𝑡) + 2𝑡e−𝑡. (4.6)

D’autre part, l’ensemble des solutions générales de l’équation homogène sans second membre
𝑤′ = −𝑤 est {𝑡 ↦ 𝑐e−𝑡 ∶ 𝑐 ∈ R}. Pour tout 𝑐 ∈ R, notons 𝑢𝑐 la fonction définie pour tout 𝑡 ∈ R
par

𝑢𝑐(𝑡) = 𝑐e−𝑡 + 1
6(2e2𝑡 + 3e𝑡 − 9 cos 𝑡 + 9 sin 𝑡) + 2𝑡e−𝑡. (4.7)

Les intégrales demandées sont {𝑢𝑐 ∶ 𝑐 ∈ R}.

Exercice 5.
Soit (𝑎, 𝑏) ∈ R2 tel que 𝑎 < 𝑏. Soient 𝑢, 𝛽 ∈ C0([𝑎, 𝑏[). Supposons que 𝑢 soit différentiable sur

]𝑎, 𝑏[ et que

∀𝑡 ∈ ]𝑎, 𝑏[, 𝑢′(𝑡) ⩽ 𝛽(𝑡)𝑢(𝑡). (5.1)

Prouver que

∀𝑡 ∈ [𝑎, 𝑏[, 𝑢(𝑡) ⩽ 𝑢(𝑎) exp(∫
𝑡

𝑎
𝛽). (5.2)
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Indication. Considérer le facteur intégrant ℎ défini pour tout 𝑡 ∈ [𝑎, 𝑏[ par ℎ(𝑡) ≔ exp(− ∫𝑡
𝑎 𝛽).

Étudier la dérivée de ℎ × 𝑢.
Remarque. Ce résultat est connu comme le « lemme de Grönwall ».

Solution
Notons 𝑣 ≔ ℎ × 𝑢 : 𝑣 ∈ C0([𝑎, 𝑏[) ∩ C1(]𝑎, 𝑏[) et

𝑣′ = ℎ′𝑢 + ℎ𝑢′ = −ℎ𝛽𝑢 + ℎ𝑢′. (5.3)

L’hypothèse (5.1) et (5.3) impliquent que 𝑣 est décroissante : ∀𝑡 ∈ [𝑎, 𝑏[, 𝑣(𝑡) ⩽ 𝑣(𝑎). Autrement
écrit :

∀𝑡 ∈ [𝑎, 𝑏[, 𝑢(𝑡) ⩽ 𝑢(𝑎) exp(∫
𝑡

𝑎
𝛽). (5.4)
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