
Analyse avancée II Semaine du 2025-05-05 au 2025-05-09
Mathématiques 1ère année
Prof. Fabio Nobile

Série 22 du mercredi 7 mai 2025

Exercice 1.
Soit 𝑢0 ∈ R. On considère le problème à valeur initiale suivant :

{
𝑢′(𝑡) = 𝑢(𝑡)2 − 5𝑢(𝑡) + 6, ∀𝑡 ∈ [0, +∞[,
𝑢(0) = 𝑢0.

(1.1)

Prouver l’existence d’une solution locale en en calculant une par séparation de variables. Donner
les valeurs de 𝑢0 pour lesquelles il existe une solution globale.

Solution
Pour −∞ ⩽ 𝑡1 < 𝑡2 < 𝑡3 ⩽ +∞, supposons que 𝑢 ∈ 𝐶1(]𝑡1, 𝑡3[) satisfait 𝑢′ = 𝑢2 − 5𝑢 + 6.

Supposons aussi que le membre de doite ne s’annule jamais : 𝑢(𝑡) ∉ {2, 3} pour tout 𝑡 ∈]𝑡1, 𝑡3[.
Alors, en posant 𝑢2 = 𝑢(𝑡2), on obtient pour 𝑡 ∈]𝑡1, 𝑡3[,

∫
𝑡

𝑡2

𝑢′(𝑠)
𝑢(𝑠)2 − 5𝑢(𝑠) + 6 d𝑠 = ∫

𝑡

𝑡2

d𝑠 = 𝑡 − 𝑡2. (1.2)

On décompose l’intégrande de gauche en éléments simples et on trouve

∫
𝑡

𝑡2

𝑢′(𝑠)
𝑢(𝑠)2 − 5𝑢(𝑠) + 6 d𝑠 = ∫

𝑡

𝑡2

𝑢′(𝑠)
𝑢(𝑠) − 3 d𝑠 − ∫

𝑡

𝑡2

𝑢′(𝑠)
𝑢(𝑠) − 2 d𝑠 (1.3)

= ln(∣𝑢(𝑡) − 3
𝑢2 − 3 ∣) − ln(∣𝑢(𝑡) − 2

𝑢2 − 2 ∣) (1.4)

= ln(∣𝑢(𝑡) − 3
𝑢(𝑡) − 2∣) − ln(∣𝑢2 − 3

𝑢2 − 2∣). (1.5)

Ainsi, en combinant avec (1.2), on trouve

∣𝑢(𝑡) − 3
𝑢(𝑡) − 2∣ = ∣𝑢2 − 3

𝑢2 − 2∣𝑒𝑡−𝑡2. (1.6)

Par continuité, la première fraction a un signe constant et donc, en considérant le cas particulier
𝑡 = 𝑡2 :

∀𝑡 ∈]𝑡1, 𝑡3[, 𝑢2 − 3
𝑢2 − 2𝑒𝑡−𝑡2 =

𝑢(𝑡) − 3
𝑢(𝑡) − 2 ≠ 1. (1.7)

Alors, ∀𝑡 ∈]𝑡1, 𝑡3[,

𝑢(𝑡) =
3 − 2𝑒𝑡−𝑡2

𝑢2−3
𝑢2−2

1 − 𝑒𝑡−𝑡2
𝑢2−3
𝑢2−2

(1.8)
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((1.7) assure que le dénominateur ne s’annule pas).
Réciproquement, étant donnés 𝑡2 ∈ R et 𝑢2 ∉ {2, 3}, l’expression (1.8) définit une fonction

sur tout intervalle ]𝑡1, 𝑡3[ tel que 𝑡2 ∈]𝑡1, 𝑡3[ et que le dénominateur ne s’y annule pas. De plus
𝑢(𝑡) ∉ {2, 3} sur ]𝑡1, 𝑡3[, 𝑢(𝑡2) = 𝑢2 et on vérifie directement que 𝑢 est bien solution sur ]𝑡1, 𝑡3[. Il
y a trois cas :

— Si 𝑢2 ∈]2, 3[, le dénominateur dans (1.8) ne s’annule pas sur R et on peut choisir ]𝑡1, 𝑡3[=
] − ∞, ∞[.

— Si 𝑢2 > 3, le dénominateur s’annule en un unique 𝑡3 ∈ R et 𝑡3 > 𝑡2 car

𝑒𝑡3−𝑡2 = (𝑢2 − 2)/(𝑢2 − 3) > 1.

On peut donc choisir ]𝑡1, 𝑡3[=] − ∞, 𝑡3[∋ 𝑡2 et, dans ce cas, lim𝑡→𝑡−
3

𝑢(𝑡) = +∞ (le dénomi-
nateur de 𝑢 étant strictement décroissant et le numérateur, en 𝑡3, valant 1).

— Si 𝑢2 < 2, le dénominateur s’annule en un unique 𝑡1 ∈ R, 𝑒𝑡1−𝑡2 < 1, 𝑡1 < 𝑡2 et on peut
choisir ]𝑡1, 𝑡3[=]𝑡1, +∞[∋ 𝑡2. Dans ce cas, lim𝑡→𝑡+

1
𝑢(𝑡) = −∞.

Supposons maintenant que 𝑡2 = 0, 𝑢0 ∶= 𝑢2 ∉ {2, 3} et on ne s’intéresse qu’à 𝑡 ∈ [0, ∞[,
comme dans l’énoncé. On obtient dans ce cas une solution locale

𝑢(𝑡) =
3 − 2𝑒𝑡 𝑢0−3

𝑢0−2

1 − 𝑒𝑡 𝑢0−3
𝑢0−2

(1.9)

dans 𝐶0([0, 𝑇 [) ∩ 𝐶1(]0, 𝑇 [) si 𝑇 > 0 est suffisamment petit. Comme vu ci-dessus, on peut en
fait choisir 𝑇 = +∞ si 𝑢0 ∈]2, 3[∪] − ∞, 2[, ce qui donne une solution gobale. Si 𝑢0 > 3, on peut
choisir 𝑇 > 0 tel que le dénominateur s’annule en 𝑇. Dans ce dernier cas, lim𝑡→𝑇 − 𝑢(𝑡) = +∞ et
la solution n’est pas globale. Il y a encore deux autres solutions globales : les solutions constantes
𝑢 = 2 sur [0, +∞[ et 𝑢 = 3 sur [0, +∞[.

Nous avons obtenu ainsi toutes les solutions globales demandées dans l’énoncé. En effet, si
𝑢 ∈ 𝐶0([0, +∞[) ∩ 𝐶1(]0, +∞[) est une solution globale avec 𝑢(0) = 𝑢0 ∈ R, alors soit 𝑢 = 2 sur
[0, +∞[, soit 𝑢 = 3 sur [0, +∞[, soit il existe 𝑡2 ⩾ 0 tel que 𝑢(𝑡2) ∉ {2, 3}. Supposons être dans
cette dernière situation, et on peut alors même supposé que 𝑡2 > 0 (en effet, si 𝑢(0) ∉ {2, 3}, alors
𝑢(𝑡2) ∉ {2, 3} pour tout 𝑡2 > 0 suffisamment petit, grâce à la continuité de 𝑢 en 𝑡 = 0).

Par continuité de 𝑢, {𝑡 ∈]0, +∞[∶ 𝑢(𝑡) ∉ {2, 3}} est un ouvert contenant 𝑡2. Soit ]𝑡1, 𝑡3[⊂]0, +∞[,
le plus grand intervalle ouvert contenant 𝑡2 sur lequel 𝑢 n’est jamais dans {2, 3}. Alors 𝑢(𝑡1) ∈ {2, 3}
si 𝑡1 > 0, et 𝑢(𝑡3) ∈ {2, 3} si 𝑡3 < +∞. Par l’analyse ci-dessus, 𝑢 est de la forme (1.8) sur
]𝑡1, 𝑡3[ et, pour une solution de cette forme, il est impossible que lim𝑡→𝑡+

1
𝑢(𝑡) ∈ {2, 3} ou que

lim𝑡→𝑡−
3

𝑢(𝑡) ∈ {2, 3} avec 𝑡3 < ∞. D’où ]𝑡1, 𝑡3[=]0, +∞[, 𝑢(0) = 𝑢(𝑡1) ∉ {2, 3} et 𝑢 vaut (1.8) sur
[0, +∞[. En fait 𝑢 donnée par (1.8) est définie sur un intervalle ouvert contenant [0, +∞[ et, par
l’analyse ci-dessus, 𝑢 est nécessairement aussi de la forme (1.9) sur cet intervalle : c’est donc une
des solutions globales déjà obtenues.

La figure 1 donne un aperçu des solutions locales de (1.1) pour 𝑢0 ∈ {1, 2, 2.5, 3, 3.5}. Les
flèches correspondent à (1, 𝑓(𝑡, 𝑢)) ≔ (1, 𝑢2 − 5𝑢 + 6) (normalisé) et donc la pente d’une solution
𝑢 qui passerait par les points de la forme (𝑡, 𝑢(𝑡)). On peut se convaincre qu’aucune des solutions
n’intersecte l’un des axes d’ordonnée 2 ou 3, sauf si 𝑢0 ∈ {2, 3}.
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Figure 1 – Visualisation du champ vectoriel (1, 𝑓(𝑡, 𝑢)) et de 𝑢(𝑡) pour 𝑢0 ∈ {1, 2, 2.5, 3, 3.5}.

Exercice 2.
On considère le problème à valeur initiale

{𝑢′(𝑡) = 𝑢(𝑡)1/3, ∀𝑡 ∈ [0, +∞[,
𝑢(0) = 0.

(2.1)

Trouver la totalité des solutions globales de classe C1([0, +∞[). De même, trouver la totalité des
solutions globales de classe C2([0, +∞[).
Remarque. Dans cet énoncé apparaît la fonction impaire ”racine cubique” definie sur tout R.
De plus 𝑢 ∈ C1([0, +∞[) signifie que : (i) 𝑢 ∈ C0([0, +∞[) ∩ C1(]0, +∞[) ; (ii) la dérivée à droite
𝑢′

+(0) = lim𝑡→0+(𝑢(𝑡) − 𝑢(0))/𝑡 existe ; et (iii) 𝑢′
+(0) = lim𝑡→0+ 𝑢′(𝑡). Dans ce contexte, on note

alors 𝑢′(0) ≔ 𝑢′
+(0). De même, 𝑢 ∈ C2([0, +∞[) signifie que 𝑢 ∈ C1([0, +∞[) et 𝑢′ ∈ C1([0, +∞[),

où 𝑢′ est définie en 0 dans le sens ci-dessus.

Solution
Listons des solutions possibles dans 𝐶1([0, +∞[). Le problème (2.1) suscite immédiatement

trois remarques :
— la fonction nulle est une solution, qui est même dans C2([0, +∞[) ;
— si 𝑣 est une solution globale de (2.1), alors −𝑣 en est également une ;
— une solution strictement positive (res. négative) sur un intervalle ouvert y est strictement

croissante (resp. décroissante).
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Pour trouver d’autres solutions de (2.1), supposons que ∀𝑡 ∈ ]0, +∞[, 𝑢(𝑡) > 0. On peut alors
diviser l’équation différentielle de (2.1) par 𝑢(𝑡)1/3 puis intégrer. Pour tout 𝑡 ∈ ]0, +∞[ et tout
𝛼 ∈ ]0, 𝑡[,

∫
𝑡

𝛼

𝑢′(𝑠)
𝑢(𝑠)1/3 d𝑠 = ∫

𝑡

𝛼
1 d𝑠 = 𝑡 − 𝛼 (2.2)

d’où

[3
2𝑢(𝑠)2/3]

𝑡

𝑠=𝛼
= 𝑡 − 𝛼. (2.3)

Puisque lim𝛼→0+ 𝑢(𝛼) = 𝑢(0) = 0, on obtient

𝑢(𝑡) = (2
3𝑡)

3/2

. (2.4)

La fonction définie par (2.4) est bien une solution dans C1([0, +∞[) ∩ C2(]0, +∞[).
Notons que, pour tout 𝑐 ∈ [0, +∞[, la fonction 𝑡 ↦ (2(𝑡 − 𝑐)/3)3/2 satisfait l’équation diffé-

rentielle de (2.1) sur ]𝑐, +∞[. On peut en construire une solution dans [0, +∞[. On définit la
fonction 𝑢𝑐 par

𝑢𝑐(𝑡) ≔
⎧{
⎨{⎩

0 si 𝑡 ⩽ 𝑐

(2
3(𝑡 − 𝑐))

3/2

si 𝑡 > 𝑐.
(2.5)

Pour tout 𝑐 ∈ [0, +∞[, 𝑢𝑐 est une solution dans C1([0, +∞[) ∩ C2([0, +∞[ ⧵ {𝑐}). Cette famille de
solutions, leurs opposées, et la fonction nulle sont toutes les solutions globales trouvées jusqu’ici.
Prouvons maintenant que ce sont les seules. Soit 𝑢 ∈ C0([0, +∞[)∩C1(]0, +∞[) solution non-nulle
de (2.1), i.e. il existe ̄𝑡 ∈ R∗

+ tel que 𝑢( ̄𝑡) ≠ 0. On va montrer par une suite de raisonnements que
𝑢 est nécessairement de la forme 𝑢𝑐 ou −𝑢𝑐. Nous en conclurons que les seules solutions globales
possibles sont celles ci-dessus.

Intuitivement, si 𝑢 est strictement positive alors 𝑢′ l’est aussi donc 𝑢 va croître encore plus.
Similairement, si 𝑢 est strictement négative alors 𝑢′ l’est aussi et 𝑢 va décroître encore plus.
L’ensemble {𝑡 ∈ [0, +∞[ ∶ ∀𝑠 ∈ [0, 𝑡], 𝑢(𝑠) = 0} est majoré par ̄𝑡 ; notons 𝑡0 son supremum. Alors
𝑢 est nulle sur [0, 𝑡0], car elle est continue. Prouvons par contradiction que ∀𝑡 ∈ ]𝑡0, +∞[, 𝑢(𝑡) ≠ 0.
Supposons donc l’existence de 𝛽 ∈ ]𝑡0, +∞[ tel que 𝑢(𝛽) = 0. Par définition de 𝑡0, 𝑢 n’est pas
entièrement nulle sur [𝑡0, 𝛽], et donc 𝑢 restreinte à [𝑡0, 𝛽] admet un extremum non nul. Choisissons
un point 𝛾 ∈ ]𝑡0, 𝛽[ où 𝑢 atteint cet extremum : 𝑢(𝛾) ≠ 0 et 0 = 𝑢′(𝛾) = 𝑢(𝛾)1/3 : contradiction.
Nous avons prouvé que 𝑢 était soit strictement positive, soit strictement négative sur ]𝑡0, +∞[.
On supposera désormais que 𝑢 est strictement positive. Le raisonnement demeure général puisque,
si 𝑣 est une solution globale, −𝑣 l’est aussi.

Soient 𝑠 ∈ ]𝑡0, +∞[ et 𝑡 ∈ ]𝑠, +∞[. Pour 𝑟 ∈ [𝑠, 𝑡] on a 𝑢(𝑟) > 0 et on peut diviser l’équation
𝑢′(𝑟) = 𝑢(𝑟)1/3 par 𝑢(𝑟)1/3, obtenant

𝑡 − 𝑠 = ∫
𝑡

𝑠
d𝑟 = ∫

𝑡

𝑠
𝑢′(𝑟)𝑢(𝑟)−1/3 d𝑟 = 3

2(𝑢(𝑡)2/3 − 𝑢(𝑠)2/3). (2.6)

En faisant tendre 𝑠 vers 𝑡0 on trouve 𝑢(𝑡) = ( 2
3
(𝑡 − 𝑡0))

3/2

, pour 𝑡 > 𝑡0. Finalement, on a

𝑢(𝑡) =
⎧{
⎨{⎩

0 si 𝑡 ∈ [0, 𝑡0],

(2
3(𝑡 − 𝑡0))

3/2

si 𝑡 > 𝑡0.
(2.7)
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Donc, la totalité des solutions globales est donnée par les fonctions de la forme (2.7) avec un
certain 𝑡0 ⩾ 0, leurs opposées et la fonction nulle. Seule la fonction nulle est de classe 𝐶2([0, +∞[).

Exercice 3.
Trouver une fonction 𝑣 ∈ C1(]−1, 1[) qui ne s’annule qu’en 0 et qui vérifie pour tout 𝑥 ∈ ]−1, 1[

∫
𝑥

0
𝑣(𝑡) d𝑡 = 1

2 ln(1 + 𝑣(𝑥)2).

Solution
En évaluant l’équation en 𝑥 = 0 on trouve 0 = 1

2
ln(1 + 𝑣(0)2), donc forcément 𝑣(0) = 0. On

dérive l’équation des deux côtés et on obtient

𝑣(𝑥) =
𝑣(𝑥)𝑣′(𝑥)
1 + 𝑣(𝑥)2 .

Supposant 𝑣(𝑥) ≠ 0 pour 𝑥 ≠ 0, on a

𝑣′

1 + 𝑣2 = 1.

Résolvons cette équation différentielle. Comme on souhaite 𝑣(0) = 0, mais que, d’autre part, on a
supposé 𝑣(𝑥) ≠ 0, choisissons 𝛼 et 𝑥 non nuls et de même signe, de telle manière que l’intervalle
fermé compris entre 𝛼 et 𝑥 ne contienne pas 0. En intégrant, on obtient

∫
𝑥

𝛼

𝑣′(𝑠)
1 + 𝑣(𝑠)2 𝑑𝑠 = 𝑥 − 𝛼 ⇔ ∫

𝑣(𝑥)

𝑣(𝛼)

1
1 + 𝑧2 𝑑𝑧 = 𝑥 − 𝛼 ⇔ arctan(𝑣(𝑥)) − arctan(𝑣(𝛼)) = 𝑥 − 𝛼.

Comme on souhaite 𝑣(0) = 0, on est conduit, en laissant 𝛼 → 0, à 𝑣(𝑥) = tan(𝑥). Un calcul direct
montre que 𝑣 vérifie bien le problème énoncé sur l’intervalle ] − 1, 1[.

Exercice 4.
Soit 𝑡0 ∈ R ; notons 𝐼 = [𝑡0, +∞[. Soient 𝑓 ∈ C0(𝐼 × R,R) et 𝑢 ∶ 𝐼 → R. Supposons que :

(i) 𝑢 ∈ C0(𝐼) ; (ii) 𝑢 est dérivable sur ̊𝐼 = ]𝑡0, +∞[ ; et (iii) ∀𝑡 ∈ ̊𝐼, 𝑢′(𝑡) = 𝑓(𝑡, 𝑢(𝑡)). Démontrer
que 𝑢 ∈ C1(𝐼).

Solution
Notons 𝑓𝑢 ≔ 𝑡 ↦ 𝑓(𝑡, 𝑢(𝑡)) ; cette fonction est continue sur [𝑡0, +∞[ en tant que composition

de fonctions continues. Puisque 𝑢′ = 𝑓𝑢 sur ]𝑡0, +∞[, on a 𝑢 ∈ C1(]𝑡0, +∞[) ; d’où ∀𝑡 ∈ ]𝑡0, +∞[,
𝑢 ∈ C0([𝑡0, 𝑡]) ∩ C1(]𝑡0, 𝑡[).

Étudions maintenant la régularité de 𝑢 en 𝑡0. Le théorème des accroissements finis assure qu’il
existe 𝑐𝑡 ∈ ]𝑡0, 𝑡[ tel que

𝑢(𝑡) − 𝑢(𝑡0)
𝑡 − 𝑡0

= 𝑢′(𝑐𝑡) = 𝑓𝑢(𝑐𝑡). (4.1)
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Il reste donc à étudier la limite de 𝑡 ↦ 𝑓𝑢(𝑐𝑡) en 𝑡0. Soit une suite (𝑠𝑛)𝑛∈N ⊂ ]𝑡0, +∞[ qui converge
vers 𝑡0. Pour tout 𝑛 ∈ N, 𝑡0 < 𝑐𝑠𝑛

< 𝑠𝑛 donc le théorème des deux gendarmes assure que (𝑐𝑠𝑛
)𝑛∈N

converge vers 𝑡0. Puisque 𝑓𝑢 ∈ C0([𝑡0, +∞[),

lim
𝑛→+∞

𝑓𝑢(𝑐𝑠𝑛
) = 𝑓𝑢(𝑡0). (4.2)

Ainsi

lim
𝑡→𝑡+

0

𝑢(𝑡) − 𝑢(𝑡0)
𝑡 − 𝑡0

= lim
𝑡→𝑡+

0

𝑓𝑢(𝑐𝑡) = 𝑓𝑢(𝑡0) (4.3)

La fonction 𝑢 est donc dérivable à droite en 𝑡0, sa dérivée à droite valant 𝑓𝑢(𝑡0). Finalement
𝑢 ∈ C1([𝑡0, +∞[) car 𝑓𝑢 ∈ C0([𝑡0, +∞[).
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