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Exercice 1.

Soit ug € R. On considere le probleme a valeur initiale suivant :

{u/(t) = u(t)2—5u(t) +6, Vte0,400], L)

u(0) = uy.

Prouver I'existence d’une solution locale en en calculant une par séparation de variables. Donner
les valeurs de uq pour lesquelles il existe une solution globale.

Solution

Pour —oo < t; < ty < t3 < 400, supposons que u € C'(|ty,t5]) satisfait u’ = u? — 5u + 6.
Supposons aussi que le membre de doite ne s’annule jamais : u(t) ¢ {2,3} pour tout ¢ €]¢,, t5].
Alors, en posant u, = u(t,), on obtient pour t €]y, t3],

' u'(s) t
Z u(3)2_5u(8)+6dS=[Z ds =t —t,. (1.2)

2

On décompose 'intégrande de gauche en éléments simples et on trouve
t / t / t /
/ 2u(s) ds:/u—(s)ds—/ U—(S)ds (1.3)
, u(s)? —5u(s) +6 h, u(s) —3 , uls) —2

_ ln( %D —ln( u(®) _2D (1.4)

Uy — 2
u(t) —3 <u2—3D
=In||[———|] —1 . 1.5
o([i=s]) (= o
Ainsi, en combinant avec (1.2), on trouve
u(t) —3 ug — 3| 4y,
= . 1.
u(t)2‘ u2—2€ (1.6)

Par continuité, la premiere fraction a un signe constant et donc, en considérant le cas particulier
t= t2 .

Up =3 4y, u(t) —3

Vi Elty ], 22 L b
6] 1» 3[? U2—2e u(t)_2 7& ( )
Alors, Vt €]tq, t3],
3 2¢tt2 122
u(t) = —uz:; (18)
1— et—t222
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((1.7) assure que le dénominateur ne s’annule pas).

Réciproquement, étant donnés t, € R et uy ¢ {2,3}, Uexpression (1.8) définit une fonction
sur tout intervalle Jt1, t5] tel que ty €]t, 3] et que le dénominateur ne s’y annule pas. De plus
u(t) ¢ {2,3} sur Jt1,t3], u(ty) = uy et on vérifie directement que u est bien solution sur Jt, ¢5[. Il
y a trois cas :

— Si uy €]2, 3], le dénominateur dans (1.8) ne s’annule pas sur R et on peut choisir |¢, t3[=
] — 00, 0.

— Si ug > 3, le dénominateur s’annule en un unique t53 € R et t3 > ¢y car
etz = (uy —2)/(ug — 3) > 1.

On peut donc choisir |ty, t5[=] — 00, t3[> t; et, dans ce cas, lim,_,;; u(t) = +oo (le dénomi-
nateur de u étant strictement décroissant et le numérateur, en t5, valant 1).
— Si uy < 2, le dénominateur s’annule en un unique t; € R, ef17%2 < 1, t; < ¢, et on peut
choisir ]ty,t3[=]t1, +00[> t5. Dans ce cas, lim,_,;+ u(t) = —oo.
Supposons maintenant que t, = 0, ug = uy ¢ {2,3} et on ne s’intéresse qu’'a t € [0, oo,
comme dans I’énoncé. On obtient dans ce cas une solution locale

3 Qetuo_’g
ug—2

wh =T = (1.9)
up—2

dans C°([0,T[) N C1(J0,T[) si T > 0 est suffisamment petit. Comme vu ci-dessus, on peut en
fait choisir T' = 400 si ug €]2,3[U] — 00, 2], ce qui donne une solution gobale. Si uy > 3, on peut
choisir 7' > 0 tel que le dénominateur s’annule en 7. Dans ce dernier cas, lim,_,; u(t) = 400 et
la solution n’est pas globale. Il y a encore deux autres solutions globales : les solutions constantes
u =2 sur [0,4o0[ et u = 3 sur [0, +o0].

Nous avons obtenu ainsi toutes les solutions globales demandées dans I’énoncé. En effet, si
u € C9([0, +o00[) N C*(]0, +00[) est une solution globale avec u(0) = uy € R, alors soit u = 2 sur
[0, 400, soit u = 3 sur [0, +o0], soit il existe t, > 0 tel que u(ty) ¢ {2,3}. Supposons étre dans
cette derniére situation, et on peut alors méme supposé que t, > 0 (en effet, si u(0) ¢ {2, 3}, alors
u(ty) ¢ {2,3} pour tout ¢, > 0 suffisamment petit, grace a la continuité de u en ¢ = 0).

Par continuité de u, {t €]0, +oo[: u(t) ¢ {2,3}} est un ouvert contenant ¢,. Soit |t1,t3[C]0, +00],
le plus grand intervalle ouvert contenant ¢, sur lequel u n’est jamais dans {2, 3}. Alors u(t,) € {2, 3}
sit; > 0, et u(ts) € {2,3} si t3 < +o00. Par lanalyse ci-dessus, u est de la forme (1.8) sur
Jt1,t3] et, pour une solution de cette forme, il est impossible que lim,_,,+ u(t) € {2,3} ou que
lim, ;- u(t) € {2,3} avec t3 < co. Dot Jty,t3[=]0, +-00[, u(0) = u(ty) ¢ {2,3} et u vaut (1.8) sur
[0, 4+00[. En fait u donnée par (1.8) est définie sur un intervalle ouvert contenant [0, +oo[ et, par
Panalyse ci-dessus, u est nécessairement aussi de la forme (1.9) sur cet intervalle : c’est donc une
des solutions globales déja obtenues.

La figure 1 donne un apercu des solutions locales de (1.1) pour ug € {1,2,2.5,3,3.5}. Les
fleches correspondent & (1, f(t,u)) := (1,u? — 5u + 6) (normalisé) et donc la pente d’une solution
u qui passerait par les points de la forme (¢, u(t)). On peut se convaincre qu’aucune des solutions
n’intersecte l'un des axes d’ordonnée 2 ou 3, sauf si uy € {2, 3}.
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FIGURE 1 — Visualisation du champ vectoriel (1, f(¢,u)) et de u(t) pour uy € {1,2,2.5,3,3.5}.

Exercice 2.

On considére le probleme a valeur initiale

" = w(t)'/3 00
{u((é; - 0@ , Vtel0,+o0], (2.1)

Trouver la totalité des solutions globales de classe C1([0, +oc[). De méme, trouver la totalité des
solutions globales de classe C2([0, +00]).

Remarque. Dans cet énoncé apparait la fonction impaire "racine cubique” definie sur tout R.
De plus u € C!([0, +00[) signifie que : (1) u € C°([0, +00[) N C1(]0, +o0[); (11) la dérivée a droite
u/y (0) = limy; o+ (u(t) — u(0))/t existe; et (111) u/ (0) = lim, - u’(¢). Dans ce contexte, on note
alors v/ (0) := v/ (0). De méme, u € C?([0, +-oc[) signifie que u € C1([0, +00[) et v’ € CL([0, +o0]),
ou v’ est définie en 0 dans le sens ci-dessus.

Solution
Listons des solutions possibles dans C'([0, +00]). Le probleéme (2.1) suscite immédiatement
trois remarques :
— la fonction nulle est une solution, qui est méme dans C2([0, +o0]) ;
— si v est une solution globale de (2.1), alors —v en est également une;
— une solution strictement positive (res. négative) sur un intervalle ouvert y est strictement
croissante (resp. décroissante).



Pour trouver d’autres solutions de (2.1), supposons que V¢ € ]0, +o00[, u(t) > 0. On peut alors
diviser I’équation différentielle de (2.1) par u(t)'/* puis intégrer. Pour tout ¢ € ]0, +oo[ et tout

a € 10,1,
/:%ds‘[&ldsta (2.2)
d’ou
[Suts)?] =t-a. (2:3)

Puisque lim,_,¢: u(c) = u(0) = 0, on obtient

u(t) = <§t> " (2.4)

La fonction définie par (2.4) est bien une solution dans C*([0, +-o00[) N C2(]0, +o0]).

Notons que, pour tout ¢ € [0, +oc], la fonction ¢ i (2(t — ¢)/3)*/* satisfait 1’équation diffé-
rentielle de (2.1) sur e, +oo[. On peut en construire une solution dans [0, 4+oco[. On définit la
fonction u, par

0 sit<e
uelt) = {(%(t — c)) . sit> e (2:5)

Pour tout ¢ € [0, +00[, u, est une solution dans C*([0, +oc[) N C2([0, +00[ \ {c}). Cette famille de
solutions, leurs opposées, et la fonction nulle sont toutes les solutions globales trouvées jusqu’ici.
Prouvons maintenant que ce sont les seules. Soit u € C°([0, +o00o[) N C(]0, +00[) solution non-nulle
de (2.1), i.e. il existe t € R* tel que u(t) # 0. On va montrer par une suite de raisonnements que
u est nécessairement de la forme u,. ou —u,. Nous en conclurons que les seules solutions globales
possibles sont celles ci-dessus.

Intuitivement, si u est strictement positive alors u’ I’est aussi donc u va croitre encore plus.
Similairement, si u est strictement négative alors u’ I’est aussi et u va décroitre encore plus.
L’ensemble {t € [0, +o0] : Vs € [0,#], u(s) = 0} est majoré par ¢; notons ¢, son supremum. Alors
u est nulle sur [0, ¢y], car elle est continue. Prouvons par contradiction que Vt € Jtg, +ool, u(t) # 0.
Supposons donc lexistence de 8 € Jty, +oo] tel que u(B) = 0. Par définition de ¢y, u n’est pas
entierement nulle sur [tg, 8], et donc u restreinte a [tg, ] admet un extremum non nul. Choisissons
un point y € Jto, B[ olt u atteint cet extremum : u(y) # 0 et 0 = u’(y) = u(y)'/? : contradiction.
Nous avons prouvé que u était soit strictement positive, soit strictement négative sur J¢y, +o0].
On supposera désormais que u est strictement positive. Le raisonnement demeure général puisque,
si v est une solution globale, —v l’est aussi.

Soient s € |ty, +00[ et ¢ € |s,+o0[. Pour r € [s,t] on a u(r) > 0 et on peut diviser I’équation
o' (r) = u(r)'/* par u(r)'/*, obtenant

t—s= / dr = / o (ryu(r)= dr = %(u(t)z/s - U(S)%)- (2.6)

3/2
En faisant tendre s vers ¢, on trouve u(t) = (%(t — t0)> , pour t > ty. Finalement, on a

0 sitel0,t)

ult) = (;(t—to))% sit >t

(2.7)



Donc, la totalité des solutions globales est donnée par les fonctions de la forme (2.7) avec un
certain t, > 0, leurs opposées et la fonction nulle. Seule la fonction nulle est de classe C?([0, +o0]).

Exercice 3.

Trouver une fonction v € C*(]—1,1[) qui ne s’annule qu’en 0 et qui vérifie pour tout = € |—1, 1|

/w o(t) dt = %mu +o(2)?).
0

Solution
En évaluant ’équation en = = 0 on trouve 0 = %ln(l +v(0)?), donc forcément v(0) = 0. On
dérive I’équation des deux cOtés et on obtient

Supposant v(z) # 0 pour z # 0, on a

— =1

1+ 02
Résolvons cette équation différentielle. Comme on souhaite v(0) = 0, mais que, d’autre part, on a
supposé v(x) # 0, choisissons « et & non nuls et de méme signe, de telle maniére que Uintervalle
fermé compris entre a et x ne contienne pas 0. En intégrant, on obtient

T / v(x)
/a %ds =r—a & ﬁdz =2 —a < arctan(v(x)) — arctan(v(a)) =  — .

v(a)
Comme on souhaite v(0) = 0, on est conduit, en laissant & — 0, & v(z) = tan(z). Un calcul direct
montre que v vérifie bien le probléme énoncé sur l'intervalle | —1,1][.

Exercice 4.

Soit t, € R; notons I = [ty, +0oo[. Soient f € C°(I x R,R) et v : I — R. Supposons que :
(1) w € CO(I); (11) u est dérivable sur I = Jt,, +o0o[; et (111) V¢t € I, u/(t) = f(t,u(t)). Démontrer
que u € CL(I).

Solution

Notons f, :=t  f(t,u(t)); cette fonction est continue sur [ty, +oo[ en tant que composition
de fonctions continues. Puisque v’ = f,, sur Jt,, +00[, on a u € C1(Jty, +o0[) ; d'ott Vt € Jty, +o0],
u € CO([to, t]) N CH(Jto, 2.

Etudions maintenant la régularité de u en to. Le théoréme des accroissements finis assure qu’il
existe ¢, € Jto, t] tel que

u(t) — u(to)

Y = () = fuley). (1)



Il reste donc & étudier la limite de ¢ — f,,(¢;) en ty. Soit une suite (s,,)pen C Jtg, +00[ qui converge
vers ty. Pour tout n € N, {5 < ¢, < s,, donc le théoreme des deux gendarmes assure que (¢, ),en
converge vers to. Puisque f, € C%([ty, +0o0]),

Ainsi
tim A0 =00) _ £ () = futo) (43
t—ty t—1y t—ts

La fonction w est donc dérivable a droite en t,, sa dérivée a droite valant f,(ty). Finalement
u € CY([ty, +oo]) car f, € CO([ty, +o0).
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